JP7075632B2 - Paper leaf inspection device using terahertz wave irradiation device - Google Patents

Paper leaf inspection device using terahertz wave irradiation device Download PDF

Info

Publication number
JP7075632B2
JP7075632B2 JP2017100435A JP2017100435A JP7075632B2 JP 7075632 B2 JP7075632 B2 JP 7075632B2 JP 2017100435 A JP2017100435 A JP 2017100435A JP 2017100435 A JP2017100435 A JP 2017100435A JP 7075632 B2 JP7075632 B2 JP 7075632B2
Authority
JP
Japan
Prior art keywords
waveguide
terahertz wave
paper
paper leaf
irradiation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017100435A
Other languages
Japanese (ja)
Other versions
JP2018194504A (en
Inventor
裕 小山
敬二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laurel Precision Machines Co Ltd
Original Assignee
Laurel Precision Machines Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laurel Precision Machines Co Ltd filed Critical Laurel Precision Machines Co Ltd
Priority to JP2017100435A priority Critical patent/JP7075632B2/en
Publication of JP2018194504A publication Critical patent/JP2018194504A/en
Application granted granted Critical
Publication of JP7075632B2 publication Critical patent/JP7075632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、テラヘルツ波を照射するためのテラヘルツ波の照射装置用いた紙葉類の検査装置に関する。 The present invention relates to an inspection device for paper sheets using a terahertz wave irradiation device for irradiating a terahertz wave.

近年、テラヘルツ波を利用した各種の検出装置が提案されている。例えば下記特許文献1では、紙幣等の被検査類に付着した異物の検出を非接触で高速及び高効率に検査するための検査装置が提案されている。 In recent years, various detection devices using terahertz waves have been proposed. For example, Patent Document 1 below proposes an inspection device for inspecting foreign matter adhering to inspected items such as banknotes in a non-contact manner at high speed and with high efficiency.

この検査装置では、発振器からのテラヘルツ波を、ガルバノミラー等のミラーを機械的に角度変化させることで、紙幣等の被検査類全体を照射したり、被照射部位を複数の領域に分割して各領域毎に発振器を配置して照射することで、紙幣等の被検査類全体を照射したりしていた。 In this inspection device, the terahertz wave from the oscillator is mechanically changed in angle by a mirror such as a galvano mirror to irradiate the entire object to be inspected such as banknotes, or the irradiated part is divided into a plurality of regions. By arranging an oscillator in each area and irradiating it, the entire object to be inspected such as banknotes was irradiated.

このような検査装置によれば、テラヘルツ波を紙幣等の被検査類全体に照射して検査することができ、紙幣等の被検査類に貼付されたテープのような異物を非接触で高速に且つ高効率に検出することが可能であった。 According to such an inspection device, a terahertz wave can be applied to the entire inspected object such as a banknote for inspection, and a foreign substance such as a tape attached to the inspected item such as a banknote can be inspected at high speed without contact. Moreover, it was possible to detect with high efficiency.

特開2016-80452号公報Japanese Unexamined Patent Publication No. 2016-80452

しかしながら、従来の検査装置に設けられたテラヘルツ波の照射装置では、ミラーを機械的に角度変化させることで紙幣等の被検査類全体を照射する装置の場合、ミラーの角度の変化で紙幣等の被検査類全長を照射するため、ミラーから紙幣等の被検査類までの距離を長く設けることが必要で装置が大きくなり易かった。また振動によりミラーの精密な高速の動作を安定に保つことが容易でなかった。 However, in the terahertz wave irradiation device provided in the conventional inspection device, in the case of a device that irradiates the entire object to be inspected such as banknotes by mechanically changing the angle of the mirror, the change in the angle of the mirror causes the banknotes and the like. In order to irradiate the entire length of the inspected object, it was necessary to provide a long distance from the mirror to the inspected object such as banknotes, and the device tended to be large. In addition, it was not easy to keep the mirror's precise high-speed operation stable due to vibration.

さらに被照射部位を複数の領域に分割して各領域に発振器を配置して照射する場合、振動に対しては強いものの、被照射部位を分割した領域の数だけ発振器及びレンズ等を設けて制御しなければならず、装置構成が複雑になり易かった。 Furthermore, when the irradiated area is divided into a plurality of areas and an oscillator is placed in each area for irradiation, although it is resistant to vibration, it is controlled by providing oscillators, lenses, etc. for the number of areas where the irradiated area is divided. This had to be done, and the device configuration tended to be complicated.

そこで本発明では、小型化し易いとともに簡素な構成でテラヘルツ波を長期間安定して照射できるテラヘルツ波の照射装置用いた紙葉類の検査装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an inspection device for paper sheets using a terahertz wave irradiation device capable of stably irradiating a terahertz wave for a long period of time with a simple structure and easy miniaturization.

上記目的を達成する本発明の検査装置は、テラヘルツ波の照射装置を用いた紙葉類の検査装置であって、検査対象の紙葉類を搬送する搬送装置と、搬送装置により搬送される紙葉類の一方の面側からテラヘルツ波を照射するテラヘルツ波の照射装置と、紙葉類からの透過波又は反射波を検出する検出装置と、を備え、テラヘルツ波の照射装置は、発振器と、該発振器からのテラヘルツ波を内部で導波して搬送装置の照射位置で紙葉類の長手方向又は短手方向の全長にテラヘルツ波を照射する導波体と、を備え、棒状の導波体は、可視光を透過せずテラヘルツ波が透過可能な透過材料からなり一軸方向に直線状に延びている棒状の導波体を備え、棒状の導波体は、一方の端部に設けられたテラヘルツ波の入射部と、一側面に設けられたテラヘルツ波を出射する出射部と、出射部が設けられた一側面と対向する他側面に設けられ、出射部に対応する位置及び長さで設けられた凹凸形状のプリズム部と、を有し、入射部の発振器側にレンズ部が設けられ、発振器と入射部のレンズ部との間の空間で共振器を構成し、入射部から導波体の内部の他端側へ向けて導波されるテラヘルツ波を、プリズム部により屈折又は反射して出射部から出射させ、検出装置は、検出素子と該検出素子による検出結果を処理して異物の有無及び位置を判定する情報処理部を備え、該情報処理部により紙葉類に異物の付着のない紙葉類を検出したときの透過波又は反射波の二次元強度分布と検査時に異物が付着した紙葉類を検出したときの透過波又は反射波の二次元強度分布とを比較することで、紙葉類の表面又は裏面に異物が付着しているか否かを検出するThe inspection device of the present invention that achieves the above object is an inspection device for paper leaves using a terahertz wave irradiation device, and is a transport device for transporting the paper leaves to be inspected and a paper conveyed by the transport device. A terahertz wave irradiator that irradiates a terahertz wave from one side of a leaf and a detection device that detects a transmitted wave or a reflected wave from a paper leaf are provided, and the terahertz wave irradiator includes an oscillator and an oscillator. A rod-shaped waveguide including a waveguide that internally waveguides a terahertz wave from the oscillator and irradiates the terahertz wave over the entire length in the longitudinal direction or the lateral direction of the paper leaves at the irradiation position of the carrier. It is made of a transmissive material that does not transmit visible light and can transmit terahertz waves, and has a rod-shaped waveguide extending linearly in one axis direction, and the rod-shaped waveguide is provided at one end. The incident part of the terahertz wave, the emitting part for emitting the terahertz wave provided on one side surface, and the other side surface facing the one side surface where the emitting part is provided are provided at a position and a length corresponding to the emitting part. It has a prism part with a concavo-convex shape, and a lens part is provided on the oscillator side of the incident part. A resonator is formed in the space between the oscillator and the lens part of the incident part, and a waveguide is formed from the incident part. The terahertz wave that is waveguideed toward the other end side of the inside is refracted or reflected by the prism portion and emitted from the exit portion , and the detection device processes the detection element and the detection result by the detection element to generate foreign matter. It is equipped with an information processing unit that determines the presence / absence and position, and the two-dimensional intensity distribution of transmitted or reflected waves when the information processing unit detects paper leaves with no foreign matter attached to them and foreign matter adheres during inspection. By comparing with the two-dimensional intensity distribution of the transmitted wave or the reflected wave when the paper leaf is detected, it is detected whether or not foreign matter is attached to the front surface or the back surface of the paper leaf .

本発明の紙葉類の検査装置において、前記透過材料は、高抵抗シリコン、ガリウム砒素、インジウムリンの何れでもよい。前記プリズム部は、他側面内に形成された複数の凹凸部を有し、導波体の一方の端部からの距離が遠い程、凹凸部の大きさが大きく設けられていてもよい。またプリズム部は、他側面内に形成された複数の凹凸部を有し、導波体の一方の端部からの距離が遠い程、凹凸部の密度が高くなるように設けられていてもよい。さらにプリズム部は、他側面内に形成された複数の凹凸部を有し、導波体の一方の端部からの距離が遠い程、各凹凸部における上流側の面部の傾斜角度が大きくなるように設けられていてもよい。 In the paper leaf inspection apparatus of the present invention, the permeation material may be any of high-resistance silicon, gallium arsenide, and indium phosphide. The prism portion has a plurality of concavo-convex portions formed in the other side surface, and the larger the distance from one end of the waveguide, the larger the size of the concavo-convex portion may be provided. Further, the prism portion may have a plurality of uneven portions formed in the other side surface, and may be provided so that the density of the uneven portions increases as the distance from one end of the waveguide increases. .. Further, the prism portion has a plurality of concavo-convex portions formed in the other side surface, and the farther the distance from one end of the waveguide is, the larger the inclination angle of the upstream surface portion in each concavo-convex portion is. It may be provided in.

本発明の紙葉類の検査装置において、プリズム部には、透過材料に不純物が含有されて屈折率が変化した屈折率変化部を有していてもよい。その場合、プリズム部では、導波体の一方の端部からの距離が遠い程、不純物の濃度が高くなるように屈折率変化部が設けられていてもよい。 In the paper leaf inspection apparatus of the present invention, the prism portion may have a refractive index changing portion in which an impurity is contained in the transmissive material and the refractive index is changed. In that case, the prism portion may be provided with a refractive index changing portion so that the concentration of impurities increases as the distance from one end of the waveguide increases.

本発明の紙葉類の検査装置において、導波体の両端部からそれぞれテラヘルツ波が入射可能であり、各端部から入射したテラヘルツ波がそれぞれ他端側へ向けて導波されて一側面から出射可能であってもよい。
照射装置は、導波体を収容する照射装置用ケース備え、導波体の出射部が紙葉類にテラヘルツ波を出射させるように照射装置用ケースに配設され、発振器が、照射装置用ケースと接続されていてもよい。
出射部と紙葉類との間及び/又は紙葉類と検出素子との間にファイバープレートが介在されてもよい。
In the paper leaf inspection apparatus of the present invention, terahertz waves can be incident from both ends of the waveguide, and the terahertz waves incident from each end are guided toward the other end side from one side surface. It may be possible to emit.
The irradiator is provided with a case for the irradiator that accommodates the waveguide, and the emitter of the waveguide is arranged in the case for the irradiator so as to emit terahertz waves to the paper sheets, and the oscillator is for the irradiator. It may be connected to the case.
A fiber plate may be interposed between the emitting part and the paper leaves and / or between the paper leaves and the detection element.

本発明によれば、導波部の内部で一端側から他端側へ直進及び内部反射しつつテラヘルツ波が導波され、プリズム部で屈折又は反射して側面から出射する。そのため導波体の側面を被照射部位に沿って近接配置し、一端側からテラヘルツ波を導波することで、容易に被照射部位にテラヘルツ波を照射できる。導波体に被照射部位の全長に応じたプリズム部を設けることで、全長の長い被照射部位であっても容易にテラヘルツ波を被照射部位の全長に照射できる。 According to the present invention, a terahertz wave is waveguideed while traveling straight and internally reflected from one end side to the other end side inside the waveguide portion, and is refracted or reflected by the prism portion and emitted from the side surface. Therefore, by arranging the side surface of the waveguide close to the irradiated portion and oscillating the terahertz wave from one end side, the terahertz wave can be easily irradiated to the irradiated portion. By providing the waveguide with a prism portion corresponding to the total length of the irradiated portion, the terahertz wave can be easily applied to the entire length of the irradiated portion even in the irradiated portion having a long total length.

被照射部位の全長が長くても、導波体の側面を被照射部位に近接配置すればよく、導波体を被照射部位から離間させる必要がなく、また導波体の端部側からテラヘルツ波を導波体に入射すればよく、多数の発振器を用いる必要もない。そのため照射装置を大幅に小型化し易い。
さらに被照射部位の全長に照射するためには導波体を駆動する必要がなく、駆動機構や防振機構なども不要であり、さらに導波体の内部で導波して屈折又は反射させるので導波経路を構成する部品も少なくでき、構成を簡素化できる。そのため振動や使用環境等の影響を受け難く、テラヘルツ波を長期間安定して照射できる。
Even if the total length of the irradiated part is long, the side surface of the waveguide may be placed close to the irradiated part, the waveguide does not need to be separated from the irradiated part, and the waveguide is terrahertz from the end side. It suffices to inject the wave into the waveguide, and it is not necessary to use a large number of oscillators. Therefore, it is easy to significantly reduce the size of the irradiation device.
Furthermore, in order to irradiate the entire length of the irradiated area, it is not necessary to drive the waveguide, no drive mechanism or anti-vibration mechanism is required, and the waveguide is made inside the waveguide to refract or reflect it. The number of components that make up the waveguide can be reduced, and the configuration can be simplified. Therefore, it is not easily affected by vibration and the usage environment, and can stably irradiate terahertz waves for a long period of time.

従って、本発明によれば、小型化し易いとともに簡素な構成でテラヘルツ波を長期間安定して照射できるテラヘルツ波の照射装置を提供することができる。 Therefore, according to the present invention, it is possible to provide a terahertz wave irradiation device capable of stably irradiating a terahertz wave for a long period of time with an easy miniaturization and a simple configuration.

本発明の第1実施形態に係るテラヘルツ波の照射装置を用いた検査装置を説明する図であり、(a)は正面図、(b)は右側面図である。It is a figure explaining the inspection apparatus using the terahertz wave irradiation apparatus which concerns on 1st Embodiment of this invention, (a) is a front view, (b) is a right side view. 本発明の第1実施形態に係るテラヘルツ波の照射装置における導波体を示す斜視図である。It is a perspective view which shows the waveguide in the terahertz wave irradiation apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るテラヘルツ波の照射装置における導波体を示す断面図である。It is sectional drawing which shows the waveguide in the terahertz wave irradiation apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るテラヘルツ波の照射装置における導波体の第1変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the waveguide in the terahertz wave irradiation apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るテラヘルツ波の照射装置における導波体の第2変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the waveguide in the terahertz wave irradiation apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るテラヘルツ波の照射装置における導波体の第3変形例を示す平面図である。It is a top view which shows the 3rd modification of the waveguide in the terahertz wave irradiation apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るテラヘルツ波の照射装置における導波体の断面図である。It is sectional drawing of the waveguide in the terahertz wave irradiation apparatus which concerns on 2nd Embodiment of this invention. 第1実施形態又は第2実施形態において、テラヘルツ波の照射装置における導波体へのテラヘルツ波の入射効率を高めた例を示す断面図である。It is sectional drawing which shows the example which raised the incident efficiency of the terahertz wave to the waveguide in the irradiation apparatus of the terahertz wave in the 1st embodiment or the 2nd embodiment. 第3実施形態に係るテラヘルツ波の照射装置の構成を示す断面図である。It is sectional drawing which shows the structure of the terahertz wave irradiation apparatus which concerns on 3rd Embodiment. 第4実施形態に係るテラヘルツ波の照射装置の構成を示す断面図であり、(a)は正面図、(b)は右側面図、(c)はファイバープレートの構成を示す斜視図、(d)はファイバープレートの一部を構成する光フィバーの形状を示す略斜視図である。It is sectional drawing which shows the structure of the terahertz wave irradiation apparatus which concerns on 4th Embodiment, (a) is the front view, (b) is the right side view, (c) is the perspective view which shows the structure of a fiber plate, (d). ) Is a schematic perspective view showing the shape of the optical fiber constituting a part of the fiber plate.

以下、本発明の実施形態について図を用いて詳細に説明する。
[第1実施形態]
本実施形態では、検査装置に組み込まれたテラヘルツ波の照射装置の例を用いて説明する。この検査装置の利用の一例として、以下に示すように紙葉類の表面又は裏面に透明なテープ等の異物が付着しているか否かを検査する装置に適用される。
図1は、本発明の第1実施形態に係るテラヘルツ波の照射装置を用いた検査装置を説明する図であり、(a)は正面図、(b)は右側面図である。
図1(a)及び(b)に示すように、この検査装置10は、検査対象の紙葉類11を搬送する搬送装置12と、搬送装置12により搬送される紙葉類11の一方の面側からテラヘルツ波を照射する照射装置20と、紙葉類11の他方の面側で透過波を検出する検出装置30と、を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
In this embodiment, an example of a terahertz wave irradiation device incorporated in the inspection device will be described. As an example of the use of this inspection device, it is applied to a device for inspecting whether or not foreign matter such as transparent tape is attached to the front surface or the back surface of paper sheets as shown below.
1A and 1B are views for explaining an inspection device using the terahertz wave irradiation device according to the first embodiment of the present invention, where FIG. 1A is a front view and FIG. 1B is a right side view.
As shown in FIGS. 1 (a) and 1 (b), the inspection device 10 has one surface of a transport device 12 for transporting the paper leaves 11 to be inspected and a paper leaf 11 transported by the transport device 12. It includes an irradiation device 20 that irradiates terahertz waves from the side, and a detection device 30 that detects transmitted waves on the other surface side of the paper sheets 11.

テラヘルツ波が照射される対象である紙葉類11は長方形の紙幣等であり、一方の面全面が被照射部位となっている。
搬送装置12は、紙葉類11を面に沿う方向に搬送し、テラヘルツ波の照射位置12aを短手方向又は長手方向に通過させるように、紙葉類11の上部及び下部に搬送ガイド13、13が配設される構成を有している。搬送ガイド13、13の部材としては、樹脂やガラスを用いることができる。
照射装置20は、発振器21と、発振器21からのテラヘルツ波を内部で導波して、搬送装置12の照射位置12aで紙葉類11に照射する導波体22と、を備えている。
The paper leaves 11 to be irradiated with the terahertz wave are rectangular banknotes and the like, and the entire surface of one surface is the irradiated portion.
The transport device 12 transports the paper leaves 11 in the direction along the surface, and the transport guides 13 are placed on the upper and lower portions of the paper leaves 11 so as to pass the terahertz wave irradiation position 12a in the lateral direction or the longitudinal direction. It has a structure in which 13 is arranged. Resin or glass can be used as the members of the transport guides 13 and 13.
The irradiation device 20 includes an oscillator 21 and a waveguide 22 that internally waveguides a terahertz wave from the oscillator 21 and irradiates the paper sheets 11 at the irradiation position 12a of the transfer device 12.

発振器21は、例えばガンダイオード、IMPATT(インパット)ダイオード、タンネットダイオード等の各種ダイオード、Si、GaAsやInPのような化合物半導体から形成されるトランジスタなどの発振素子を有し、30GHz(GHzは10Hz)~12THzの周波数帯のテラヘルツ波を出射可能なものである。発振器21は、例えば銅板やアルミニウム板等の熱伝導性の優れた金属板上に設置するのがよい。金属板をさらに筐体等の金属製部材に熱的に接続することで、放熱面積を広げて放熱効果を向上させることができる。 The oscillator 21 has an oscillating element such as a gunn diode, an IMPATT diode, various diodes such as a tannet diode, and a transistor formed from a compound semiconductor such as Si, GaAs or InP, and has 30 GHz (GHz is 10). It is capable of emitting terahertz waves in the frequency band of 9 Hz) to 12 THz. The oscillator 21 is preferably installed on a metal plate having excellent thermal conductivity such as a copper plate or an aluminum plate. By further thermally connecting the metal plate to a metal member such as a housing, the heat dissipation area can be expanded and the heat dissipation effect can be improved.

図2は、本発明の第1実施形態に係るテラヘルツ波の照射装置20における導波体22を示す斜視図であり、図3は、図2に示す導波体22を示す断面図である。導波体22は、図3に示すように、テラヘルツ波が透過可能な透過材料から略棒状に形成されている。本実施形態では、角柱形状又は蒲鉾形状を有し、一軸方向に直線状に延びている。特に限定されるものではないが、蒲鉾形状は一軸方向に延びる平面と平面の両縁間を外向きに突出した凸形状の曲面とを有している。透過材料は、可視光を透過しない材料であってもよいが、テラヘルツ波の透過率が出来るだけ高い材料が好ましく、例えば高抵抗シリコン(Si)、ガリウム砒素(GaAs)、インジウムリン(InP)等が例示できる。 FIG. 2 is a perspective view showing a waveguide 22 in the terahertz wave irradiation device 20 according to the first embodiment of the present invention, and FIG. 3 is a cross-sectional view showing the waveguide 22 shown in FIG. As shown in FIG. 3, the waveguide 22 is formed in a substantially rod shape from a transmissive material capable of transmitting terahertz waves. In this embodiment, it has a prismatic shape or a semi-cylindrical shape and extends linearly in the uniaxial direction. Although not particularly limited, the kamaboko shape has a plane extending in a uniaxial direction and a convex curved surface protruding outward between both edges of the plane. The transmitting material may be a material that does not transmit visible light, but a material having as high a transmittance of terahertz waves as possible is preferable, and for example, high resistance silicon (Si), gallium arsenide (GaAs), indium phosphide (InP), etc. Can be exemplified.

本実施形態の導波体22は、一方の端部に設けられた入射部23と、入射部23から内部に入射して導光されるテラヘルツ波を屈折又は反射するプリズム部24と、プリズム部24からのテラヘルツ波を出射させる側面の出射部25と、を有している。入射部23は、導波体22の一方の端部に設けられ、対向配置された発振器21からのテラヘルツ波を導波体22の内部に軸方向に入射する。導波体22の内部がテラヘルツ波の導波経路26となっており、テラヘルツ波が入射部23を有する一端側から他端側に向けて直進及び内部反射しつつ導波される。 The waveguide 22 of the present embodiment includes an incident portion 23 provided at one end, a prism portion 24 that refracts or reflects a terahertz wave that is incident and guided from the incident portion 23 to the inside, and a prism portion. It has a side emitting portion 25 for emitting a terahertz wave from 24. The incident portion 23 is provided at one end of the waveguide 22, and the terahertz wave from the oscillators 21 arranged opposite to each other is incident on the inside of the waveguide 22 in the axial direction. The inside of the waveguide 22 is a waveguide 26 for the terahertz wave, and the terahertz wave is guided straight from one end side having the incident portion 23 toward the other end side while being internally reflected.

一側面に設けられた出射部25は、角柱形状の導波体22の場合平滑な平面であり、蒲鉾形状の導波体22の場合外向きの凸曲面である。出射部25の形状及び向き等に応じてテラヘルツ波が出射される。この出射部25は導波経路26の導光方向に連続して設けられており、テラヘルツ波は出射部25からライン状に出射される。本実施形態では、導波体22の出射部25が、搬送装置12の照射位置12aに対して対向するように固定して配置されている。 The emitting portion 25 provided on one side surface is a smooth flat surface in the case of the prism-shaped waveguide 22, and is an outward convex curved surface in the case of the Kamaboko-shaped waveguide 22. A terahertz wave is emitted according to the shape and direction of the emitting portion 25. The emission unit 25 is continuously provided in the light guide direction of the waveguide 26, and the terahertz wave is emitted from the emission unit 25 in a line shape. In the present embodiment, the emitting portion 25 of the waveguide 22 is fixedly arranged so as to face the irradiation position 12a of the conveying device 12.

プリズム部24は、出射部25が設けられた一側面とは異なる対向する他側面に、出射部25に対応する位置及び長さで凹凸形状に形成されている。本実施形態では、出射部25とは反対側の側面から筋状に凹ませることで、断面略三角形等の多角形形状を有する複数の筋状凹部27が鋸刃状に形成されることでプリズム部24が構成されている。なお、断面略三角形等の多角形形状に凹ませる代わりに、同形状の屈折又は反射用部材を嵌め込んだりするようにしてもよく、筋状凹部27を以後、筋状凹凸部27と呼び、導波体22内に複数の筋状凹凸部27が形成されるようにする。 The prism portion 24 is formed in a concavo-convex shape at a position and length corresponding to the emitting portion 25 on the opposite side surface different from the one side surface on which the emitting portion 25 is provided. In the present embodiment, by denting in a streak shape from the side surface opposite to the exit portion 25, a plurality of streak-shaped recesses 27 having a polygonal shape such as a substantially triangular cross section are formed in a saw blade shape to form a prism. The unit 24 is configured. Instead of denting into a polygonal shape such as a substantially triangular cross section, a refraction or reflection member having the same shape may be fitted, and the streak recess 27 is hereinafter referred to as a streak uneven portion 27. A plurality of streaky uneven portions 27 are formed in the waveguide 22.

本実施形態では、各筋状凹凸部27は導波方向に対して交差する方向に互いに平行に、他側面の全幅を横断するように形成されている。特に限定されるものではないが、各筋状凹凸部27が導波体22の内部の導波経路26の中心軸に対して直交して形成されていてもよい。 In the present embodiment, each streak-like uneven portion 27 is formed so as to cross the entire width of the other side surface in a direction intersecting the waveguide direction and parallel to each other. Although not particularly limited, each streak-like uneven portion 27 may be formed orthogonal to the central axis of the waveguide 26 inside the waveguide 22.

このプリズム部24では、導波体22の入射部23が設けられた一端側からの距離が遠い程、筋状凹凸部27の大きさが大きく(凹部の場合は深さが深く)設けられている。即ち、入射部23を有する一端側程、筋状凹凸部27の大きさd1が小さく(凹部の場合は深さd1が浅く)、他端側程、筋状凹凸部27の大きさd2が大きく(凹部の場合は深さd2が深く)なっている。 In the prism portion 24, the larger the distance from the one end side where the incident portion 23 of the waveguide 22 is provided, the larger the size of the streak-like uneven portion 27 (in the case of a concave portion, the deeper the depth). There is. That is, the size d1 of the streak-like uneven portion 27 is smaller toward the one end side having the incident portion 23 (the depth d1 is shallower in the case of the concave portion), and the size d2 of the streak-like uneven portion 27 is larger toward the other end side. (In the case of a recess, the depth d2 is deep).

これらにより、入射部23から導波されたテラヘルツ波が、プリズム部24の複数の筋状凹凸部27における凹凸面で屈折又は反射されて、出射部25からライン状に出射される。そして、これら複数の筋状凹凸部27の数と大きさ、配置間隔、さらには、導波されるテラヘルツ波を屈折又は反射させる面の形状を種々工夫することで、このライン状に出射されたテラヘルツ波を全長で出来るだけ均一にでき、搬送装置12の照射位置12aを移動する紙葉類11の長手方向の全長を照射することができる。 As a result, the terahertz wave guided from the incident portion 23 is refracted or reflected by the uneven surfaces of the plurality of streaky uneven portions 27 of the prism portion 24, and is emitted from the emitting portion 25 in a line shape. Then, by devising the number and size of these plurality of streaky uneven portions 27, the arrangement interval, and the shape of the surface that refracts or reflects the terahertz wave to be waveguideed, the light is emitted in this line shape. The terahertz wave can be made as uniform as possible in the entire length, and the entire length in the longitudinal direction of the paper sheets 11 moving at the irradiation position 12a of the transport device 12 can be irradiated.

紙葉類11の他方の面側で透過波を検出する検出装置30は、例えば、フレネルレンズ、凸レンズ、凹レンズ等からなる集光用光学部品31と、集光用光学部品31を介して導波体22の出射部25と対向するように直線状に多数配置される、ショットキーバリヤダイオード32a~32n等からなる検出素子群33と、検出素子群33の検出結果を搬送装置12の搬送情報などともに処理することで異物の有無及び位置を判定する情報処理部34と、を有している。ショットキーバリヤダイオード32a~32nは、例えばプリント基板35上に搭載されている。
情報処理部34は、紙葉類11に異物の付着のない紙葉類11を検出したときの透過波の二次元強度分布と、検査時に異物が付着した紙葉類11を検出したときの透過波の二次元強度分布とを比較することで、異物が付着しているか否かを検出するように構成されている。
The detection device 30 for detecting the transmitted wave on the other surface side of the paper sheet 11 is waveguideed via, for example, a light-condensing optical component 31 including a frenell lens, a convex lens, a concave lens, and the like, and a light-condensing optical component 31. A large number of detection element groups 33 composed of shotkey barrier diodes 32a to 32n and the like arranged linearly so as to face the emission unit 25 of the body 22, and the detection results of the detection element group 33 are transferred information of the transfer device 12 and the like. It has an information processing unit 34 that determines the presence / absence and position of foreign matter by processing both. The Schottky barrier diodes 32a to 32n are mounted on the printed circuit board 35, for example.
The information processing unit 34 has a two-dimensional intensity distribution of the transmitted wave when the paper leaf 11 having no foreign matter adhered to the paper leaf 11 and a transmission when the paper leaf 11 having foreign matter adhered to the paper leaf 11 is detected. It is configured to detect whether or not foreign matter is attached by comparing it with the two-dimensional intensity distribution of the wave.

この検査装置10では、搬送装置12により紙葉類11が搬送されると、表面又は裏面を照射装置20側に対向させた状態で短手方向又は長手方向に移動して照射位置12aを通過する。照射位置12aには照射装置20から紙葉類11を長手方向又は短手方向に横断するようにライン状のテラヘルツ波が照射されている。紙葉類11が照射位置12aを通過することで、長手方向又は短手方向に横断したライン状のテラヘルツ波が短手方向又は長手方向に順に相対移動して紙葉類11の全面を照射する。照射位置12aでは紙葉類11を透過したテラヘルツ波が検出装置30で検出され、情報処理部34において紙葉類11に異物が付着しているか否が検出される。 In this inspection device 10, when the paper leaves 11 are transported by the transport device 12, they move in the lateral direction or the longitudinal direction with the front surface or the back surface facing the irradiation device 20 side and pass through the irradiation position 12a. .. The irradiation position 12a is irradiated with a line-shaped terahertz wave from the irradiation device 20 so as to cross the paper sheets 11 in the longitudinal direction or the lateral direction. When the paper leaves 11 pass through the irradiation position 12a, the line-shaped terahertz waves crossing the longitudinal direction or the lateral direction move relative to each other in the lateral direction or the longitudinal direction in order to irradiate the entire surface of the paper leaves 11. .. At the irradiation position 12a, the terahertz wave transmitted through the paper leaves 11 is detected by the detection device 30, and the information processing unit 34 detects whether or not foreign matter is attached to the paper leaves 11.

以上のような本実施形態のテラヘルツ波の照射装置20によれば、導波体22の内部で一端側から他端側へ直進及び内部反射しつつテラヘルツ波が導波され、プリズム部24で屈折又は反射して側面から出射する。そのため導波体22の側面を紙葉類11に沿って近接配置し、一端側からテラヘルツ波を導波することで、容易に紙葉類11にテラヘルツ波を照射できる。導波体22に紙葉類11の長手方向又は短手方向の全長に応じたプリズム部24を設けることで、全長が長くても容易にテラヘルツ波を全長に照射できる。 According to the terahertz wave irradiation device 20 of the present embodiment as described above, the terahertz wave is waveguideed straight from one end side to the other end side and internally reflected inside the waveguide 22, and is refracted by the prism portion 24. Or it reflects and emits from the side surface. Therefore, the side surface of the waveguide 22 is arranged close to the paper leaf 11 and the terahertz wave is waveguideed from one end side, so that the terahertz wave can be easily applied to the paper leaf 11. By providing the waveguide 22 with a prism portion 24 corresponding to the total length in the longitudinal direction or the lateral direction of the paper leaf 11, the terahertz wave can be easily applied to the entire length even if the total length is long.

全長が長くても導波体22の側面を紙葉類11に近接配置すれば照射でき、導波体22を紙葉類11から離間するように配置する必要がない。導波体22の端部側からテラヘルツ波を導波体22に入射すればよく、多数の発振器を用いる必要もない。そのため照射装置20を大幅に小型化し得る。 Even if the total length is long, irradiation can be performed by arranging the side surface of the waveguide 22 close to the paper leaves 11, and it is not necessary to arrange the waveguide 22 so as to be separated from the paper leaves 11. A terahertz wave may be incident on the waveguide 22 from the end side of the waveguide 22, and it is not necessary to use a large number of oscillators. Therefore, the irradiation device 20 can be significantly miniaturized.

さらに紙葉類11の全長を照射するために導波体22を駆動するような必要もなく、駆動機構や防振機構なども不要である。しかも導波体22の内部で導波して屈折又は反射させるので導波経路26を構成する部品も少なくでき、構成を簡素化できる。そのため振動や使用環境等の影響を受け難く、テラヘルツ波を長期間安定して照射できる。 Further, it is not necessary to drive the waveguide 22 in order to irradiate the entire length of the paper sheets 11, and no driving mechanism or anti-vibration mechanism is required. Moreover, since the waveguide is wave-guided inside the waveguide 22 to be refracted or reflected, the number of components constituting the waveguide 26 can be reduced, and the configuration can be simplified. Therefore, it is not easily affected by vibration and the usage environment, and can stably irradiate terahertz waves for a long period of time.

このテラヘルツ波の照射装置20によれば、導波体22の一側面には、テラヘルツ波を出射する出射部25が設けられ、出射部25に対応する他側面には、凹凸形状のプリズム部24が設けられている。そのため導波体22の内部の側面で内部反射して導波されるテラヘルツ波の一部を、プリズム部24で屈折又は反射することで出射部25から出射させることができ、残部を下流側へ透過することができる。これにより凹凸形状のプリズム部24を導波方向の広い範囲に設けることで、テラヘルツ波を導波方向の広い範囲から出射させることができる。 According to the terahertz wave irradiation device 20, an emission unit 25 for emitting a terahertz wave is provided on one side surface of the waveguide 22, and an uneven prism portion 24 is provided on the other side surface corresponding to the emission unit 25. Is provided. Therefore, a part of the terahertz wave that is internally reflected and guided by the inner side surface of the waveguide 22 can be emitted from the emitting unit 25 by refracting or reflecting it at the prism unit 24, and the rest can be emitted to the downstream side. Can be transparent. As a result, the terahertz wave can be emitted from a wide range in the waveguide direction by providing the prism portion 24 having a concave-convex shape in a wide range in the waveguide direction.

このテラヘルツ波の照射装置20によれば、プリズム部24が他側面から凹んで形成されるか、又は凹ませた形状に合致した屈折又は反射用部材を嵌め込んだ複数の筋状凹凸部27を有し、導波体22における一端側の入射部23からの距離が遠い程、筋状凹凸部27の大きさが大きく又は深さが深く設けられている。そのため導波体22の内部の導波経路26において、テラヘルツ波があまり減衰されないで到達する上流側では屈折又は反射する割合を小さくでき、減衰されて到達する下流側では屈折又は反射する割合を大きくできる。これにより出射部25の上流側と下流側とで出射されるテラヘルツ波の強度の差を小さくでき、可及的には同等にできる。 According to the terahertz wave irradiation device 20, a plurality of streaky uneven portions 27 in which a prism portion 24 is formed by being recessed from another side surface or a refraction or reflection member matching the recessed shape is fitted are formed. The longer the distance from the incident portion 23 on one end side of the waveguide 22, the larger the size or the deeper the streak-like uneven portion 27 is. Therefore, in the waveguide 26 inside the waveguide 22, the ratio of refraction or reflection can be reduced on the upstream side where the terahertz wave arrives without being attenuated so much, and the ratio of refraction or reflection can be increased on the downstream side where the terahertz wave is attenuated and reached. can. As a result, the difference in the intensity of the terahertz waves emitted between the upstream side and the downstream side of the emitting unit 25 can be reduced, and can be made equivalent as much as possible.

なお上記実施形態は本発明の範囲内において適宜変更可能である。例えば上記では、テラヘルツ波の照射装置20を紙葉類11の検査装置に用いた例について説明したが、何ら限定されるものではなく、他の用途に用いることもでき、例えば立体形状の被照射部位にテラヘルツ波を照射する装置であってもよく、人体等の生物にテラヘルツ波を照射する装置であってもよい。 The above embodiment can be appropriately changed within the scope of the present invention. For example, in the above, an example in which the terahertz wave irradiation device 20 is used as an inspection device for paper sheets 11 has been described, but the present invention is not limited to anything, and can be used for other purposes, for example, irradiation in a three-dimensional shape. It may be a device that irradiates a site with a terahertz wave, or may be a device that irradiates an organism such as a human body with a terahertz wave.

上記実施形態では、照射装置20を用いた検査装置10として、紙葉類11を透過したテラヘルツ波を検出装置30により検出したが、限定されるものではない。紙葉類11に対して照射装置20と同じ側に検出部を設けることで、紙葉類11の表面又は裏面で反射されたテラヘルツ波を検出するように構成することも可能である。その場合、紙葉類11に対する導波体22の出射部25の傾斜角度を上記より大きくしてもよく、出射部25が設けられている導波体22の一方の側面を斜めに形成してもよい。これにより反射波を検出し易くすることができる。 In the above embodiment, as the inspection device 10 using the irradiation device 20, the terahertz wave transmitted through the paper leaves 11 is detected by the detection device 30, but the present invention is not limited thereto. By providing a detection unit on the same side as the irradiation device 20 for the paper leaves 11, it is also possible to configure the terahertz waves reflected on the front surface or the back surface of the paper leaves 11 to be detected. In that case, the inclination angle of the emitting portion 25 of the waveguide 22 with respect to the paper leaves 11 may be larger than the above, and one side surface of the waveguide 22 provided with the emitting portion 25 may be formed diagonally. May be good. This makes it easier to detect the reflected wave.

さらに導波体22は種々の変形が可能であり、例えば上記では多角形形状の筋状凹凸部27を複数設けたが、筋状でなくてもよく、微細な凹凸をランダムに設けてもよい。 Further, the waveguide 22 can be deformed in various ways. For example, in the above, a plurality of polygonal streaky uneven portions 27 are provided, but the waveguide 22 may not be streaky and may be provided with fine irregularities at random. ..

[第1変形例]
図4は、第1変形例のテラヘルツ波の照射装置20における導波体22を示す断面図である。第1変形例の導波体22は、プリズム部24の構造が上記実施形態と異なる構成を有している。この変形例のプリズム部24では、出射部25とは異なる他側面側に、断面略三角形形状の筋状凹凸部27が複数形成されている。そして上記実施形態のように筋状凹凸部27の大きさ又は深さが、入射部23を有する一端側からの距離が遠い程大きく又は深くなるとともに、筋状凹凸部27の密度が高くなるように設けている。即ち、入射部23を有する一端側程、互いに隣り合う筋状凹凸部27間のピッチp1が大きく、他端側程、筋状凹凸部27間のピッチp2が小さくなっている。その他は、上記実施形態と同様である。
[First modification]
FIG. 4 is a cross-sectional view showing a waveguide 22 in the terahertz wave irradiation device 20 of the first modification. The waveguide 22 of the first modification has a structure in which the structure of the prism portion 24 is different from that of the above embodiment. In the prism portion 24 of this modification, a plurality of streaky uneven portions 27 having a substantially triangular cross section are formed on the side surface side different from the exit portion 25. Then, as in the above embodiment, the size or depth of the streak-like uneven portion 27 becomes larger or deeper as the distance from one end side having the incident portion 23 increases, and the density of the streak-like uneven portion 27 increases. It is provided in. That is, the pitch p1 between the streak-like uneven portions 27 adjacent to each other is larger toward one end side having the incident portion 23, and the pitch p2 between the streak-like uneven portions 27 is smaller toward the other end side. Others are the same as those in the above embodiment.

このような第1変形例でも、上記実施形態と同様の作用効果が得られる。特に、第1変形例では、導波体22の一端側からの距離が遠い程、筋状凹凸部27の密度が高くなるように設けられている。そのため導波体22の内部の導波経路26において、テラヘルツ波があまり減衰されないで到達する上流側では屈折又は反射する割合を小さくでき、減衰されて到達する下流側では屈折又は反射する割合を大きくできる。これにより出射部25の上流側と下流側とで出射されるテラヘルツ波の強度の差を小さくでき、顕著な場合には同等にできる。 Even in such a first modification, the same effect as that of the above embodiment can be obtained. In particular, in the first modification, the longer the distance from one end side of the waveguide 22, the higher the density of the streak-like uneven portion 27. Therefore, in the waveguide 26 inside the waveguide 22, the ratio of refraction or reflection can be reduced on the upstream side where the terahertz wave arrives without being attenuated so much, and the ratio of refraction or reflection can be increased on the downstream side where the terahertz wave is attenuated and reached. can. As a result, the difference in the intensity of the terahertz waves emitted between the upstream side and the downstream side of the emitting unit 25 can be reduced, and in a remarkable case, the same can be achieved.

なお、この第1変形例では、複数の筋状凹凸部27の大きさ又は深さを、入射部23を有する一端側からの距離が遠い程大きく又は深くせずに同じ大きさ又は深さで形成し、導波体22の一端側からの距離が遠い程、筋状凹凸部27の密度が高くなるように設けてもよい。 In this first modification, the size or depth of the plurality of streaky uneven portions 27 is the same size or depth without increasing or deepening as the distance from one end side having the incident portion 23 increases. It may be formed so that the density of the streak-like uneven portion 27 increases as the distance from one end side of the waveguide 22 increases.

[第2変形例]
図5は、第2変形例のテラヘルツ波の照射装置20における導波体22を示す断面図である。第2変形例の導波体22は、プリズム部24の構造が上記実施形態と異なる構成を有している。
この変形例のプリズム部24では、出射部25とは異なる他側面側に、断面略三角形形状の筋状凹凸部27が複数形成されている。そして上記実施形態のように筋状凹凸部27の大きさ又は深さが、入射部23を有する一端側からの距離が遠い程大きく又は深くなるとともに、入射部23側に配置される筋状凹凸部27の一面の傾斜角度、言い換えればテラヘルツ波が導波される上流側に配置される一面の傾斜角度が大きくなるように設けられている、即ち、入射部23を有する一端側程、筋状凹凸部27の上流側に配置される一面の傾斜角度θ1が小さく、他端側程、上流側に配置される一面の傾斜角度θ2が大きくなっている。その他は、上記実施形態と同様である。
[Second modification]
FIG. 5 is a cross-sectional view showing a waveguide 22 in the terahertz wave irradiation device 20 of the second modification. The waveguide 22 of the second modification has a structure in which the structure of the prism portion 24 is different from that of the above embodiment.
In the prism portion 24 of this modification, a plurality of streaky uneven portions 27 having a substantially triangular cross section are formed on the side surface side different from the exit portion 25. Then, as in the above embodiment, the size or depth of the streak-like uneven portion 27 becomes larger or deeper as the distance from one end side having the incident portion 23 increases, and the streak-like uneven portion arranged on the incident portion 23 side. The inclination angle of one surface of the portion 27, in other words, the inclination angle of one surface arranged on the upstream side where the terahertz wave is guided is increased, that is, the one end side having the incident portion 23 is streaked. The inclination angle θ1 of one surface arranged on the upstream side of the uneven portion 27 is small, and the inclination angle θ2 of one surface arranged on the upstream side is larger toward the other end side. Others are the same as those in the above embodiment.

このような第2変形例でも、上記実施形態と同様の作用効果が得られる。特に、第2変形例では、導波体22の入射部23を有する一端側からの距離が遠い程、各筋状凹凸部27における上流側の一面の傾斜角度が大きくなるように設けられているので、導波体22の内部の導波経路26において、テラヘルツ波があまり減衰されないで到達する上流側では屈折又は反射する割合を小さくでき、減衰されて到達する下流側では屈折又は反射する割合を大きくできる。これにより出射部25の上流側と下流側とで出射されるテラヘルツ波の強度の差を小さくでき、可及的に同等にできる。 Even in such a second modification, the same effect as that of the above embodiment can be obtained. In particular, in the second modification, the farther the distance from one end side of the waveguide 22 having the incident portion 23 is, the larger the inclination angle of one surface on the upstream side of each streak-like uneven portion 27 is provided. Therefore, in the waveguide 26 inside the waveguide 22, the rate of refraction or reflection can be reduced on the upstream side where the terahertz wave arrives without being attenuated so much, and the rate of refraction or reflection can be reduced on the downstream side where the terahertz wave arrives after being attenuated. You can make it bigger. As a result, the difference in the intensity of the terahertz waves emitted between the upstream side and the downstream side of the emitting unit 25 can be reduced and can be made as equal as possible.

なおこの第2変形例では、複数の筋状凹凸部27の深さを、入射部23を有する一端側からの距離が遠い程深くせずに同じ深さで形成し、導波体22の一端側からの距離が遠い程、各筋状凹凸部27における上流側の内面の傾斜角度が大きくなるように設けてもよい。また第1変形例と同様に、導波体22の入射部23を有する一端側からの距離が遠い程、筋状凹凸部27の密度が高くなるように設けるとともに、導波体22の一端側からの距離が遠い程、各筋状凹凸部27における上流側の内面の傾斜角度が大きくなるように設けてもよい。 In this second modification, the depths of the plurality of streaky uneven portions 27 are formed at the same depth without being deepened as the distance from one end side having the incident portion 23 is far, and one end of the waveguide 22 is formed. The farther the distance from the side is, the larger the inclination angle of the inner surface on the upstream side of each streak-like uneven portion 27 may be. Further, as in the first modification, the longer the distance from one end side of the waveguide 22 having the incident portion 23, the higher the density of the streak-like uneven portion 27, and the one end side of the waveguide 22. It may be provided so that the inclination angle of the inner surface on the upstream side of each streak-like uneven portion 27 becomes larger as the distance from the streak-like uneven portion 27 increases.

[第3変形例]
図6は、第3変形例のテラヘルツ波の照射装置20における導波体22を示す断面図である。第3変形例の導波体22は、両端部にテラヘルツ波の入射部23が設けられ、それぞれに発振器21が配置されている。この導波体22では各端部から入射したテラヘルツ波がそれぞれ他端側へ向けて導波され、側面に設けられたプリズム部24において屈折又は反射され、出射部25から出射可能となっている。この場合、中間位置にテラヘルツ波を遮蔽する遮蔽部28を設け、一方の入射部23からのテラヘルツ波と他方の入射部23からのテラヘルツ波とを、それぞれ別の領域に照射するようにしてもよい。その他は、上記実施形態及び第1乃至第2変形例と同様である。
[Third modification example]
FIG. 6 is a cross-sectional view showing a waveguide 22 in the terahertz wave irradiation device 20 of the third modification. The waveguide 22 of the third modification is provided with terahertz wave incident portions 23 at both ends, and an oscillator 21 is arranged in each. In this waveguide 22, the terahertz wave incident from each end is guided toward the other end side, refracted or reflected by the prism portion 24 provided on the side surface, and can be emitted from the emission portion 25. .. In this case, a shielding portion 28 that shields the terahertz wave is provided at an intermediate position, and the terahertz wave from one incident portion 23 and the terahertz wave from the other incident portion 23 are irradiated to different regions. good. Others are the same as those of the above embodiment and the first and second modifications.

第3変形例でも、上記第1実施形態と同様の作用効果を得ることができる。特に第3実施形態では、導波体22の両端部からそれぞれテラヘルツ波が入射されて出射するように構成されているので、側面からより強いテラヘルツ波を出射して紙葉類11の長手方向の全長に照射することができる。 Also in the third modification, the same action and effect as those of the first embodiment can be obtained. In particular, in the third embodiment, since the terahertz wave is configured to be incident and emitted from both ends of the waveguide 22, a stronger terahertz wave is emitted from the side surface in the longitudinal direction of the paper sheet 11. It can irradiate the entire length.

[第2実施形態]
図7は、第2実施形態に係るテラヘルツ波の照射装置20における導波体22の断面図である。第2実施形態の導波体22のプリズム部24は、上述のような透過材料に不純物を含有させることで、屈折率が他の部位と異なるように変化させた屈折率変化部29を有している。屈折率変化部29に含有させる不純物は、上述の透過材料にドーピング等により拡散することで、テラヘルツ波の屈折率を変化可能なものである。例えば透過材料が高抵抗シリコン等の場合にはリン(P)、ボロン(B)等が例示でき、透過材料がガリウム砒素やインジウムリン等の場合にはシリコン(Si)、亜鉛(Zn)等が例示できる。
[Second Embodiment]
FIG. 7 is a cross-sectional view of the waveguide 22 in the terahertz wave irradiation device 20 according to the second embodiment. The prism portion 24 of the waveguide 22 of the second embodiment has a refractive index changing portion 29 in which the refractive index is changed so as to be different from other portions by containing impurities in the transmission material as described above. ing. The impurities contained in the refractive index changing portion 29 can change the refractive index of the terahertz wave by diffusing into the above-mentioned transmissive material by doping or the like. For example, when the permeation material is high resistance silicon or the like, phosphorus (P), boron (B) or the like can be exemplified, and when the permeation material is gallium arsenic or indium phosphide, silicon (Si), zinc (Zn) or the like can be used. It can be exemplified.

また本実施形態のプリズム部24では、互いに不純物の濃度が異なることで屈折率の互いに異なる複数の屈折率変化部29が設けられている。このプリズム部24では、導波体22の入射部23が設けられた一端側からの距離が遠い程、不純物の濃度が高くなるように複数の屈折率変化部29が隣接して設けられている。さらに各屈折率変化部29の深さが互いに異なるように設けられており、不純物濃度が低い領域では屈折率変化部29の深さが浅くなるように設けられている。 Further, the prism portion 24 of the present embodiment is provided with a plurality of refractive index changing portions 29 having different refractive indexes due to different concentrations of impurities. In the prism portion 24, a plurality of refractive index changing portions 29 are provided adjacent to each other so that the longer the distance from the one end side of the waveguide 22 where the incident portion 23 is provided, the higher the concentration of impurities. .. Further, the depths of the refractive index changing portions 29 are provided so as to be different from each other, and the depth of the refractive index changing portions 29 is provided so as to be shallow in the region where the impurity concentration is low.

このような屈折率変化部29は、例えば次のようにして形成することができる。導波体22の左側端部22a~22eの所定の箇所にマスクをして、不純物拡散を行う。透過材料が高抵抗シリコンの場合、マスクとしてSiO等を使用することができる。導波体22の右側端部22fには、拡散を深く行うためにマスクをしないでもよい。
最初に、不純物拡散は、導波体22の左側端部22a~右側端部22fの表面にだけ拡散(デポジッション又は単にデポと呼ぶ)又はイオン注入を行う。
次に、導波体22を、拡散炉を使用して、所定時間の拡散(ドライブインとも呼ぶ)をして、所望の不純物密度分布を得ることができる。
ここで、拡散炉は、導波体22の長手方向に不均一な、例えば傾斜のある温度分布を有するようにしてもよい。この場合、導波体22の左側端部22a~右側端部22fまでに傾斜のついた温度分布が形成されるので、導波体22の右側端部22fを最高温部とすれば、この箇所の拡散深さが最も高くなる。導波体22の右側端部22fから導波体22の左側端部22aに向かって拡散炉の温度が低下するので、導波体22の左側端部22aの拡散深さが最も浅くなる。これにより、導波体22に屈折率変化部29を形成することができる。
Such a refractive index changing portion 29 can be formed, for example, as follows. Impurities are diffused by masking predetermined portions of the left end portions 22a to 22e of the waveguide 22. When the transmissive material is high resistance silicon, SiO 2 or the like can be used as a mask. The right end 22f of the waveguide 22 may not be masked for deep diffusion.
First, impurity diffusion is performed by diffusion (deposit or simply referred to as depot) or ion implantation only on the surface of the left end 22a to the right end 22f of the waveguide 22.
Next, the waveguide 22 can be diffused (also referred to as drive-in) for a predetermined time using a diffusion furnace to obtain a desired impurity density distribution.
Here, the diffusion furnace may have a temperature distribution that is non-uniform in the longitudinal direction of the waveguide 22, for example, an inclined temperature distribution. In this case, a sloped temperature distribution is formed from the left side end 22a to the right side end 22f of the waveguide 22, so if the right side end 22f of the waveguide 22 is set as the maximum temperature portion, this location. The diffusion depth is the highest. Since the temperature of the diffusion furnace decreases from the right end 22f of the waveguide 22 toward the left end 22a of the waveguide 22, the diffusion depth of the left end 22a of the waveguide 22 becomes the shallowest. As a result, the refractive index changing portion 29 can be formed on the waveguide 22.

その他は第1実施形態と同様に構成することができ、この導波体22を用いて第1実施形態と同様にテラヘルツ波の照射装置20を構成することができる。さらに第3変形例と同様に入射部23を構成することも可能である。 Others can be configured in the same manner as in the first embodiment, and the terahertz wave irradiation device 20 can be configured in the same manner as in the first embodiment using the waveguide 22. Further, it is also possible to configure the incident portion 23 in the same manner as in the third modification.

このような第2実施形態のテラヘルツ波の照射装置20であっても、第1実施形態と同様の作用効果を得ることができる。特に第2実施形態では、プリズム部24には透過材料に不純物が含有されて屈折率が変化した屈折率変化部29を有しているので、導波体22の内部で直進又は内部反射しつつ導波されるテラヘルツ波を屈折率変化部29において屈折又は反射して出射部25から出射できる。そのため不純物を含有させて屈折変化部29を適切に設けることで、容易にテラヘルツ波を紙葉類11の長手方向の全長に容易に照射することができる。 Even with the terahertz wave irradiation device 20 of the second embodiment, the same effect as that of the first embodiment can be obtained. In particular, in the second embodiment, since the prism portion 24 has a refractive index changing portion 29 in which an impurity is contained in the transmissive material and the refractive index is changed, the prism portion 24 travels straight or internally reflects inside the waveguide 22. The terahertz wave to be waveguide can be refracted or reflected by the refractive index changing unit 29 and emitted from the emitting unit 25. Therefore, the terahertz wave can be easily applied to the entire length of the paper leaf 11 in the longitudinal direction by appropriately providing the refraction changing portion 29 containing impurities.

またプリズム部24では導波体22の一端側からの距離が遠い程、不純物濃度が高くなるように屈折率変化部29が設けられているので、導波体22の内部の導波経路26において、テラヘルツ波があまり減衰されないで到達する上流側では屈折又は反射する割合を小さくでき、減衰されて到達する下流側では屈折又は反射する割合を大きくできる。これにより出射部25の上流側と下流側とで出射されるテラヘルツ波の強度の差を小さくでき、顕著な場合には同等にすることも可能である。 Further, in the prism portion 24, the refractive index changing portion 29 is provided so that the longer the distance from one end side of the waveguide 22 is, the higher the impurity concentration is. Therefore, in the waveguide 26 inside the waveguide 22 The rate of refraction or reflection can be reduced on the upstream side where the terahertz wave arrives without much attenuation, and the rate of refraction or reflection can be increased on the downstream side where the terahertz wave arrives after being attenuated. As a result, the difference in the intensity of the terahertz waves emitted between the upstream side and the downstream side of the emitting unit 25 can be reduced, and in a remarkable case, the same can be achieved.

なお第2実施形態においても、本発明の範囲内において、第1実施形態と同様に適宜変更可能である。例えば、図2~図6の第1実施形態の各導波体22に第2実施形態と同様に屈折率変化部29を設けて、プリズム部24としてもよい。 It should be noted that the second embodiment can be appropriately changed as in the first embodiment within the scope of the present invention. For example, the refractive index changing portion 29 may be provided in each waveguide 22 of the first embodiment of FIGS. 2 to 6 as in the second embodiment to form a prism portion 24.

[その他の変形例]
図8は、第1実施形態又は第2実施形態のテラヘルツ波の照射装置20に係る導波体22へのテラヘルツ波の入射効率を高めた例を示す平面図である。この変形例では、テラヘルツ波が発振される発振器21に、導波体22側となる出射側に突出した凸面を有するレンズ部21aが設けられている。そして導波体22には、発振器21と対向した導波体22の入射部23が、発振器21側に凸面を有するレンズ形状に形成されている。ここでは球面形状の集光レンズが形成されている。
[Other variants]
FIG. 8 is a plan view showing an example in which the incident efficiency of the terahertz wave on the waveguide 22 according to the terahertz wave irradiation device 20 of the first embodiment or the second embodiment is increased. In this modification, the oscillator 21 in which the terahertz wave is oscillated is provided with a lens portion 21a having a convex surface protruding on the emission side, which is the waveguide 22 side. The waveguide 22 has an incident portion 23 of the waveguide 22 facing the oscillator 21 formed in a lens shape having a convex surface on the oscillator 21 side. Here, a spherical condensing lens is formed.

こ場合、発振器21と導波体22の入射部23の集光レンズとの間の空間が共振器になるので、波長に応じて共振点を合わせれば顕著に入射効率を向上できる。そのためこの変形例の照射装置20では発振器21と入射部23との間の距離を波長に応じて最適化しており、より入射効率が向上されている。 In this case, since the space between the oscillator 21 and the condenser lens of the incident portion 23 of the waveguide 22 becomes a resonator, the incident efficiency can be remarkably improved by adjusting the resonance points according to the wavelength. Therefore, in the irradiation device 20 of this modification, the distance between the oscillator 21 and the incident portion 23 is optimized according to the wavelength, and the incident efficiency is further improved.

このような変形例では、上記凹凸部を有している第1実施形態又は屈折率変化部を有している第2実施形態の導波体22と組み合わせることで、同様の作用効果を得ることができる。特に、この変形例では、発振器21からのテラヘルツ波がより多く導波体22の入射部23から入射することができ、入射効率を向上できる。即ち、入射部23をレンズ形状に形成することで、入射部23の界面反射の影響を少なくでき、これにより発振器21からのテラヘルツ波をできるだけ多く導波体22に入射させることができる。その結果、被照射部位には、より強くテラヘルツ波を照射することができる。発振器21を導波体22に近接配置でき、テラヘルツ波が導波体22から所望の強さで照射できれば、発振器21にレンズ部21aを設けないことも可能である。 In such a modification, the same effect can be obtained by combining with the waveguide 22 of the first embodiment having the uneven portion or the second embodiment having the refractive index changing portion. Can be done. In particular, in this modification, more terahertz waves from the oscillator 21 can be incident from the incident portion 23 of the waveguide 22, and the incident efficiency can be improved. That is, by forming the incident portion 23 in the shape of a lens, the influence of the interfacial reflection of the incident portion 23 can be reduced, whereby as much terahertz wave from the oscillator 21 can be incident on the waveguide 22. As a result, the irradiated portion can be more strongly irradiated with the terahertz wave. If the oscillator 21 can be arranged close to the waveguide 22 and the terahertz wave can be irradiated from the waveguide 22 with a desired intensity, it is possible not to provide the lens portion 21a on the oscillator 21.

[第3実施形態]
次に第3実施形態について説明する。
図9は、第3実施形態に係るテラヘルツ波の照射装置50の構成を示す断面図である。図9に示すように、第3実施形態に係るテラヘルツ波の照射装置50は、発振器21と、導波体22と、導波体22を保持する照射装置用ケース52等を含んで構成されている。照射装置用ケース52に発振器21が固定されている。照射装置用ケース52が金属で形成されている場合には、発振器21の放熱を、照射装置用ケース52を介して行うことができる。照射装置50は、さらに、発振器21にレンズ部21aと、導波体22に入射部23とを備えていてもよい。
[Third Embodiment]
Next, the third embodiment will be described.
FIG. 9 is a cross-sectional view showing the configuration of the terahertz wave irradiation device 50 according to the third embodiment. As shown in FIG. 9, the terahertz wave irradiation device 50 according to the third embodiment includes an oscillator 21, a waveguide 22, an irradiation device case 52 for holding the waveguide 22, and the like. There is. The oscillator 21 is fixed to the irradiation device case 52. When the irradiation device case 52 is made of metal, the radiator 21 can dissipate heat through the irradiation device case 52. The irradiation device 50 may further include a lens unit 21a in the oscillator 21 and an incident unit 23 in the waveguide 22.

テラヘルツ波の照射装置50によれば、照射装置用ケース52の面積が発振器21の面積よりも大きいので、発振器21の放熱が容易になる。さらに、照射装置用ケース52を銅板やアルミ板等の熱伝導率の優れた金属板上に設置してさらに放熱を行ってもよい。 According to the terahertz wave irradiation device 50, since the area of the irradiation device case 52 is larger than the area of the oscillator 21, the radiator 21 can easily dissipate heat. Further, the case 52 for the irradiation device may be installed on a metal plate having excellent thermal conductivity such as a copper plate or an aluminum plate to further dissipate heat.

なお、この第3実施形態にあっては、発振器21にレンズ部21aが設けられた図8に示す変形例において説明しているが、これに限るものではなく、図1ないし図7に示す第1実施形態ないし第2実施形態にも適用可能な構成である。 Although the third embodiment is described in the modified example shown in FIG. 8 in which the oscillator 21 is provided with the lens portion 21a, the present invention is not limited to this, and the third embodiment is not limited to this, and the third embodiment is shown in FIGS. 1 to 7. It is a configuration applicable to the first embodiment or the second embodiment.

[第4実施形態]
次に第4実施形態について説明する。
図10は、第4実施形態に係るテラヘルツ波の照射装置70の構成を示す図であり、とくに図10(c)はファイバープレート71の構成を示し、(d)に(c)のファイバープレート71の一部を構成する光フィバーの形状を示す。第4実施形態に係るテラヘルツ波の照射装置70は、導波体22と搬送装置12の照射位置12aとの間に、ファイバープレート71を介在させている。ここで、ファイバープレート71は、図10(c)及び(d)に示すように、多数の微小な径を有する光ファイバー71aをマトリックス状に配列したものである。ファイバープレート71は、略棒状の導波体22の側面の出射部25から出射されたテラヘルツ波を、導波体22と対向配置される検出装置30に向けて指向性のある状態で紙葉類11に照射させるようにするものである。すなわち、略棒状の導波体22の側面の出射部25から出射されたテラヘルツ波は、指向性が無い状態で、検出装置30に向けて照射されるが、ファイバープレート71を介在させることで、検出装置30においては、指向性を持って紙葉類11を透過したテラヘルツ波を検出できることになり、より精度の高い紙葉類11の透過波の二次元強度分布を検出できることになる。その意味においては、搬送装置12と検出装置30との間に、ファイバープレート71を介在させるようにしても良いし、両側に設けるようにしても良い。その他は、上記いずれの実施形態と同様である。
[Fourth Embodiment]
Next, the fourth embodiment will be described.
FIG. 10 is a diagram showing the configuration of the terahertz wave irradiation device 70 according to the fourth embodiment, in particular, FIG. 10 (c) shows the configuration of the fiber plate 71, and FIG. 10 (d) shows the fiber plate 71 of (c). The shape of the optical fever that constitutes a part of is shown. The terahertz wave irradiation device 70 according to the fourth embodiment has a fiber plate 71 interposed between the waveguide 22 and the irradiation position 12a of the transfer device 12. Here, the fiber plate 71 is a matrix of optical fibers 71a having a large number of minute diameters, as shown in FIGS. 10 (c) and 10 (d). The fiber plate 71 is a paper leaf in a state in which the terahertz wave emitted from the emitting portion 25 on the side surface of the substantially rod-shaped waveguide 22 is directed toward the detection device 30 arranged to face the waveguide 22. 11 is to be irradiated. That is, the terahertz wave emitted from the emitting portion 25 on the side surface of the substantially rod-shaped waveguide 22 is irradiated toward the detection device 30 in a state where there is no directivity, but by interposing the fiber plate 71, The detection device 30 can detect the terahertz wave transmitted through the paper leaves 11 with directivity, and can detect the two-dimensional intensity distribution of the transmitted wave of the paper leaves 11 with higher accuracy. In that sense, the fiber plate 71 may be interposed between the transport device 12 and the detection device 30, or may be provided on both sides. Others are the same as any of the above embodiments.

このテラヘルツ波の照射装置70においては、テラヘルツ波を紙葉類11に照射する導波体22と搬送装置12の間及び/又は搬送装置12と検出装置30の間にファイバープレート71を介在させるようにしたので、照射装置70の小型化を維持したまま、さらに、紙葉類11に照射するテラヘルツ波及び/又は紙葉類11を透過したテラヘルツ波に、指向性を持たせることができるので、より精度の高い紙葉類11の透過波の二次元強度分布を検出できることになる。 In the terahertz wave irradiation device 70, the fiber plate 71 is interposed between the waveguide 22 and the transfer device 12 for irradiating the paper leaves 11 with the terahertz wave and / or between the transfer device 12 and the detection device 30. Therefore, while maintaining the miniaturization of the irradiation device 70, the terahertz wave irradiating the paper leaves 11 and / or the terahertz wave transmitted through the paper leaves 11 can be made directional. It is possible to detect the two-dimensional intensity distribution of the transmitted wave of the paper leaf 11 with higher accuracy.

10 検査装置
11 紙葉類
12 搬送装置
12a 照射位置
13 搬送ガイド
20,50,70 照射装置
21 発振器
21a レンズ部
22 導波体
23 入射部
24 プリズム部
25 出射部
26 導波経路
27 筋状凹部
28 遮蔽部
29 屈折率変化部
30 検出装置
31 集光用光学部品
32: 検出素子
33 検出素子群
34 情報処理部
35 プリント基板
52 照射装置用ケース
71 ファイバープレート
71a 光ファイバー
10 Inspection device 11 Paper leaf 12 Conveyor device 12a Irradiation position 13 Conveyance guide 20, 50, 70 Irradiation device 21 Oscillator 21a Lens unit 22 waveguide 23 Incident part 24 Prism part 25 Emission part 26 Waveguide path 27 Streak recess 28 Shielding unit 29 Refractive index change unit 30 Detection device 31 Optical component for condensing 32: Detection element 33 Detection element group 34 Information processing unit 35 Printed substrate 52 Irradiation device case 71 Fiber plate 71a Optical fiber

Claims (9)

テラヘルツ波の照射装置を用いた紙葉類の検査装置であって、
検査対象の紙葉類を搬送する搬送装置と、
前記搬送装置により搬送される紙葉類の一方の面側からテラヘルツ波を照射する前記テラヘルツ波の照射装置と、
前記紙葉類からの透過波又は反射波を検出する検出装置と、
を備え、
前記テラヘルツ波の照射装置は、発振器と、該発振器からのテラヘルツ波を内部で導波して前記搬送装置の照射位置で紙葉類の長手方向又は短手方向の全長にテラヘルツ波を照射する導波体と、を備え、
前記導波体は、可視光を透過せずテラヘルツ波が透過可能な透過材料からなり一軸方向に直線状に延びている棒状の導波体でなり
前記棒状の導波体は、
一方の端部に設けられた前記テラヘルツ波の入射部と、
一側面に設けられた前記テラヘルツ波を出射する出射部と、
前記出射部が設けられた一側面と対向する他側面に設けられ、前記出射部に対応する位置及び長さで設けられた凹凸形状のプリズム部と、
を、有しており、
前記入射部の前記発振器側にレンズ部が設けられ、前記発振器と前記入射部のレンズ部との間の空間で共振器を構成し、
前記入射部から前記導波体の内部の他端側へ向けて導波される前記テラヘルツ波を、前記プリズム部により屈折又は反射して前記出射部から出射させ
前記検出装置は、検出素子と該検出素子による検出結果を処理して異物の有無及び位置を判定する情報処理部を備え、該情報処理部により前記紙葉類に異物の付着のない紙葉類を検出したときの透過波又は反射波の二次元強度分布と検査時に異物が付着した紙葉類を検出したときの透過波又は反射波の二次元強度分布とを比較することで、前記紙葉類の表面又は裏面に異物が付着しているか否かを検出する、紙葉類の検査装置
It is an inspection device for paper leaves using a terahertz wave irradiation device.
A transport device that transports paper leaves to be inspected,
The terahertz wave irradiation device that irradiates the terahertz wave from one surface side of the paper sheets transported by the transfer device, and the terahertz wave irradiation device.
A detection device that detects transmitted waves or reflected waves from the paper sheets,
Equipped with
The terahertz wave irradiation device internally waveguides the terahertz wave from the oscillator and the terahertz wave from the oscillator to irradiate the entire length of the paper sheet in the longitudinal direction or the lateral direction at the irradiation position of the carrier device. With a wave body,
The waveguide is a rod-shaped waveguide that is made of a transmissive material that does not transmit visible light and is capable of transmitting terahertz waves and extends linearly in the uniaxial direction.
The rod-shaped waveguide is
The incident part of the terahertz wave provided at one end and
An emission unit that emits the terahertz wave provided on one side,
An uneven prism portion provided on the other side surface facing the one side surface on which the emission portion is provided and provided at a position and length corresponding to the emission portion.
Have,
A lens portion is provided on the oscillator side of the incident portion, and a resonator is formed in the space between the oscillator and the lens portion of the incident portion.
The terahertz wave waveguided from the incident portion toward the other end side inside the waveguide is refracted or reflected by the prism portion and emitted from the emitting portion .
The detection device includes a detection element and an information processing unit that processes the detection result of the detection element to determine the presence / absence and position of a foreign substance, and the information processing unit provides a sheet of paper on which no foreign substance adheres to the paper sheet. By comparing the two-dimensional intensity distribution of the transmitted or reflected wave when the paper is detected with the two-dimensional intensity distribution of the transmitted or reflected wave when the paper leaf to which foreign matter is attached is detected during the inspection, the paper leaf A paper leaf inspection device that detects whether or not foreign matter is attached to the front or back surface of the class .
前記透過材料は、高抵抗シリコン、ガリウム砒素、インジウムリンの何れかである、請求項1に記載の紙葉類の検査装置The paper leaf inspection apparatus according to claim 1, wherein the permeation material is any one of high-resistance silicon, gallium arsenide, and indium phosphide. 前記プリズム部は、前記他側面内に形成された複数の凹凸部を有し、前記導波体の前記一方の端部からの距離が遠い程、前記凹凸部の大きさが大きく設けられている、請求項1に記載の紙葉類の検査装置The prism portion has a plurality of uneven portions formed in the other side surface, and the farther the distance from the one end portion of the waveguide is, the larger the size of the uneven portion is provided. , The paper leaf inspection apparatus according to claim 1. 前記プリズム部は、前記他側面内に形成された複数の凹凸部を有し、前記導波体の前記一方の端部からの距離が遠い程、前記凹凸部の密度が高くなるように設けられている、請求項1に記載の紙葉類の検査装置The prism portion has a plurality of concavo-convex portions formed in the other side surface, and is provided so that the density of the concavo-convex portion increases as the distance from one end of the waveguide increases. The paper leaf inspection apparatus according to claim 1. 前記プリズム部は、前記他側面内に形成された複数の凹凸部を有し、前記導波体の前記一方の端部からの距離が遠い程、前記各凹凸部における上流側の面部の傾斜角度が大きくなるように設けられている、請求項1に記載の紙葉類の検査装置The prism portion has a plurality of uneven portions formed in the other side surface, and the farther the distance from the one end portion of the waveguide is, the more the inclination angle of the upstream surface portion in each of the concave-convex portions is. The paper leaf inspection device according to claim 1, which is provided so as to increase the size of the paper leaf. 前記プリズム部は、前記透過材料に不純物を含有させて屈折率を変化させた屈折率変化部を有し、前記不純物は、前記導波体の前記一方の端部からの距離が遠い程濃度が高くなるように設けられる、請求項1に記載の紙葉類の検査装置The prism portion has a refractive index changing portion in which an impurity is contained in the transmissive material to change the refractive index, and the concentration of the impurity increases as the distance from one end of the waveguide increases. The paper leaf inspection device according to claim 1, which is provided so as to be high. 前記導波体の両端部からそれぞれ前記テラヘルツ波が入射可能であり、前記両端部から入射した前記テラヘルツ波がそれぞれ他端側へ向けて導波されて前記一側面から出射可能である、請求項1に記載の紙葉類の検査装置The claim that the terahertz wave can be incident from both ends of the waveguide, and the terahertz wave incident from both ends can be guided toward the other end and emitted from one side surface. The paper leaf inspection apparatus according to 1. 前記照射装置は、前記導波体を収容する照射装置用ケース備え、前記導波体の出射部が前記紙葉類に前記テラヘルツ波を出射させるように前記照射装置用ケースに配設され、前記発振器が、前記照射装置用ケースと接続されている、請求項1に記載の紙葉類の検査装置 The irradiation device includes an irradiation device case for accommodating the waveguide, and is arranged in the irradiation device case so that an emitting portion of the waveguide emits the terahertz wave to the paper sheets. The paper leaf inspection device according to claim 1, wherein the oscillator is connected to the irradiation device case. 前記出射部と前記紙葉類との間及び/又は前記紙葉類と前記検出素子との間にファイバープレートが介在される、請求項1に記載の紙葉類の検査装置。 The paper leaf inspection apparatus according to claim 1, wherein a fiber plate is interposed between the emitting portion and the paper leaf and / or between the paper leaf and the detection element .
JP2017100435A 2017-05-20 2017-05-20 Paper leaf inspection device using terahertz wave irradiation device Active JP7075632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017100435A JP7075632B2 (en) 2017-05-20 2017-05-20 Paper leaf inspection device using terahertz wave irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100435A JP7075632B2 (en) 2017-05-20 2017-05-20 Paper leaf inspection device using terahertz wave irradiation device

Publications (2)

Publication Number Publication Date
JP2018194504A JP2018194504A (en) 2018-12-06
JP7075632B2 true JP7075632B2 (en) 2022-05-26

Family

ID=64568886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100435A Active JP7075632B2 (en) 2017-05-20 2017-05-20 Paper leaf inspection device using terahertz wave irradiation device

Country Status (1)

Country Link
JP (1) JP7075632B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046726A (en) 2001-07-30 2003-02-14 Kanegafuchi Chem Ind Co Ltd Device for reading print pattern of a variety of paper leaves
JP2006039996A (en) 2004-07-28 2006-02-09 Kaneka Corp Recognition device for paper sheet
US20080138013A1 (en) 2004-04-23 2008-06-12 Parriaux Olivier M High Efficiency Optical Diffraction Device
JP2009058310A (en) 2007-08-31 2009-03-19 Canon Inc Inspection device and inspection method using electromagnetic wave
JP2010013650A (en) 2003-09-02 2010-01-21 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin pellets for light guide plate, light guide plate, method for producing light guide plate and surface light source unit
JP2010223843A (en) 2009-03-25 2010-10-07 Mitsuteru Kimura Terahertz-wave integrated circuit, and terahertz absorption characteristics measuring apparatus using the same
JP2010266931A (en) 2009-05-12 2010-11-25 Kaneka Corp Line light source unit and reader for paper sheet
JP2012244441A (en) 2011-05-20 2012-12-10 Yamaha Corp Repeating device and speaker device
JP2015103356A (en) 2013-11-22 2015-06-04 キヤノン・コンポーネンツ株式会社 Luminaire, image sensor unit and paper identification device
JP2016009388A (en) 2014-06-25 2016-01-18 株式会社ヴィーネックス Line light source and image sensor unit
JP2016080452A (en) 2014-10-14 2016-05-16 ローレル精機株式会社 Inspection device using terahertz (thz) band
US20170052384A1 (en) 2014-04-30 2017-02-23 Hewlett-Packard Development Company, L.P. Imaging appratus and methods using diffraction-based illumination

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3452077B2 (en) * 1993-11-11 2003-09-29 株式会社エンプラス Surface light source device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046726A (en) 2001-07-30 2003-02-14 Kanegafuchi Chem Ind Co Ltd Device for reading print pattern of a variety of paper leaves
JP2010013650A (en) 2003-09-02 2010-01-21 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin pellets for light guide plate, light guide plate, method for producing light guide plate and surface light source unit
US20080138013A1 (en) 2004-04-23 2008-06-12 Parriaux Olivier M High Efficiency Optical Diffraction Device
JP2006039996A (en) 2004-07-28 2006-02-09 Kaneka Corp Recognition device for paper sheet
JP2009058310A (en) 2007-08-31 2009-03-19 Canon Inc Inspection device and inspection method using electromagnetic wave
JP2010223843A (en) 2009-03-25 2010-10-07 Mitsuteru Kimura Terahertz-wave integrated circuit, and terahertz absorption characteristics measuring apparatus using the same
JP2010266931A (en) 2009-05-12 2010-11-25 Kaneka Corp Line light source unit and reader for paper sheet
JP2012244441A (en) 2011-05-20 2012-12-10 Yamaha Corp Repeating device and speaker device
JP2015103356A (en) 2013-11-22 2015-06-04 キヤノン・コンポーネンツ株式会社 Luminaire, image sensor unit and paper identification device
US20170052384A1 (en) 2014-04-30 2017-02-23 Hewlett-Packard Development Company, L.P. Imaging appratus and methods using diffraction-based illumination
JP2016009388A (en) 2014-06-25 2016-01-18 株式会社ヴィーネックス Line light source and image sensor unit
JP2016080452A (en) 2014-10-14 2016-05-16 ローレル精機株式会社 Inspection device using terahertz (thz) band

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENG, L., et al.,Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,Appl. Phys. Lett.,2008年05月06日,Vol. 92, Article No. 181104,pp. 1-3,doi:10.1063/1.2916825
ZHUANG, L. et al.,On-Chip Optical Sampling using an Integrated SOA-based Nonlinear Optical Loop Mirror,ECOC 2016; 42nd European Conference on Optical Communication,2016年12月05日,pp. 758-760,https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7767712

Also Published As

Publication number Publication date
JP2018194504A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
KR101392519B1 (en) Light source apparatus
KR20050049412A (en) Area light source apparatus and liquid crystal display
CN101978207B (en) Light emitting device
US10481348B2 (en) Optical system for coupling light into a waveguide
US20060009749A1 (en) Efficient diffuse light source assembly and method
JP3917491B2 (en) Lens array and laser condensing device
JP5155361B2 (en) Light guide member, laser light guide structure, laser irradiation device, and light source device
US8956038B2 (en) Lighting device having a light guide structure
JP5203289B2 (en) Line light source unit and paper sheet reading device
JP2005017489A (en) Optical antenna
JP4868062B2 (en) Illumination device and image reading device using the same
CA2266922A1 (en) Slot lighting device
US9851577B2 (en) Nano-structured lens for collimating light from surface emitters
JPWO2006049206A1 (en) Illumination device and image reading device using the same
JP4877048B2 (en) Light guide and linear light source device
JP7075632B2 (en) Paper leaf inspection device using terahertz wave irradiation device
US20140071540A1 (en) Optical splitting device
JP7337292B2 (en) Optical member and image reader
WO2022260108A1 (en) Optical member and image reader
JP2009032535A (en) Linear light source device
JP6649090B2 (en) Optical receptacle and optical module
JP7008303B2 (en) Storage inspection equipment
JP2013054386A (en) Light guide member, laser light guide structure, laser irradiation apparatus, and light source device
JP7265370B2 (en) line lighting source
JP2010114044A (en) Linear lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220506

R150 Certificate of patent or registration of utility model

Ref document number: 7075632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150