JP7075490B2 - Photoreactive device and method - Google Patents

Photoreactive device and method Download PDF

Info

Publication number
JP7075490B2
JP7075490B2 JP2020531198A JP2020531198A JP7075490B2 JP 7075490 B2 JP7075490 B2 JP 7075490B2 JP 2020531198 A JP2020531198 A JP 2020531198A JP 2020531198 A JP2020531198 A JP 2020531198A JP 7075490 B2 JP7075490 B2 JP 7075490B2
Authority
JP
Japan
Prior art keywords
plate
shaped member
light
reaction
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020531198A
Other languages
Japanese (ja)
Other versions
JPWO2020017246A1 (en
Inventor
強 荒井
雅彦 則常
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2020017246A1 publication Critical patent/JPWO2020017246A1/en
Application granted granted Critical
Publication of JP7075490B2 publication Critical patent/JP7075490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/50Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、光反応装置及び方法に関する。 The present invention relates to photoreactive devices and methods.

光の照射により光反応させる光反応装置として、光反応を連続的に行う装置が知られている。この装置は、光反応性化合物を含有する反応対象液を流しながら、流れている反応対象液に光を照射することにより、光反応を行う。 As a photoreactive device that causes a light reaction by irradiation with light, a device that continuously performs a photoreaction is known. This device performs a photoreaction by irradiating the flowing reaction target liquid with light while flowing the reaction target liquid containing the photoreactive compound.

例えば、特許文献1にはマイクロ反応器と、非原料ガスを供給するガス供給部と、液体原料を供給する液体原料供給部とを備え、光分解反応を行う装置が記載されている。マイクロ反応器は、内面に光触媒層が設けられ、液体原料が流れるマイクロ流路を備える。マイクロ流路は、光透過性材料により構成され、断面が矩形、円形、楕円、または多角形などである。マイクロ流路は、流路径が10~2000μmであり、断面が矩形の場合の長辺の長さ/短辺の長さ、及び断面が円の場合の長直径/短直径は、1~20程度とされている。 For example, Patent Document 1 describes a device including a micro-reactor, a gas supply unit for supplying a non-raw material gas, and a liquid raw material supply unit for supplying a liquid raw material, and performing a photodecomposition reaction. The microreactor is provided with a photocatalyst layer on the inner surface and includes a microchannel through which a liquid raw material flows. The microchannel is made of a light transmissive material and has a rectangular, circular, elliptical, or polygonal cross section. The microchannel has a channel diameter of 10 to 2000 μm, and the length of the long side / the length of the short side when the cross section is rectangular and the long diameter / short diameter when the cross section is circular are about 1 to 20. It is said that.

特許文献2の光反応装置は、ポーラスシリコンの層がマイクロ流路の内面に設けられた反応部と、マイクロ流路に原料液体を送り込む送り込み手段と、ポーラスシリコン層に光を照射する光照射手段とを備える。マイクロ流路は数10~数1000μm程度の微細な径の流路とされており、幅50μm~1000μm、深さ10μm~1000μmが好ましいと記載されている。 The photoreactive device of Patent Document 2 includes a reaction unit in which a porous silicon layer is provided on the inner surface of a microchannel, a feeding means for feeding a raw material liquid into the microchannel, and a light irradiation means for irradiating the porous silicon layer with light. And prepare. The microchannel is a channel having a fine diameter of about several tens to several thousand μm, and it is described that a width of 50 μm to 1000 μm and a depth of 10 μm to 1000 μm are preferable.

また、特許文献3には、チューブが螺旋状に巻き付けられている透明で円筒状の内部容器と、円筒容器に接触しないように配される光源と、内部容器と光源との間に配される冷却管とを備える光反応装置が記載されている。 Further, in Patent Document 3, a transparent and cylindrical inner container in which a tube is spirally wound, a light source arranged so as not to come into contact with the cylindrical container, and an arrangement between the inner container and the light source. A photoreactor with a cooling tube is described.

特開2009-233606号公報Japanese Unexamined Patent Publication No. 2009-23366 特開2011-161416号公報Japanese Unexamined Patent Publication No. 2011-161416 特開2009-219947号公報Japanese Unexamined Patent Publication No. 2009-21994

特許文献1~3のいずれの装置においても処理量を増加させる場合には、光反応に必要な照射時間を確保しながら反応対象液の流量を大きくするために、光源を大きくし、かつ、マイクロ流路またはチューブを長くするといった装置の大型化が必要になる。しかし、この手法は圧力損失が大きくなってしまうため、処理量の向上には限界がある。 In any of the devices of Patent Documents 1 to 3, when the processing amount is increased, the light source is increased and the micro is increased in order to increase the flow rate of the reaction target liquid while ensuring the irradiation time required for the photoreaction. It is necessary to increase the size of the device such as lengthening the flow path or tube. However, since this method increases the pressure loss, there is a limit to the improvement of the processing amount.

そこで、本発明は、装置の大型化を抑えながらも処理量が向上する光反応装置及び方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a photoreactive device and a method for improving the processing amount while suppressing the increase in size of the device.

上記課題を解決するために、本発明は、反応部と、光源ユニットと、光源側温調機構とを備え、光反応性化合物を含有する反応対象液を流しながら、反応対象液に光を照射することにより、光反応させる。反応部は、光を透過する第1板状部材と、第1板状部材と隙間をもって対面した第2板状部材とを有する。反応部は、第1板状部材と第2板状部材とにより1組の対向した面が画定された扁平流路が内部に形成されている。光源ユニットは、第1板状部材の第2板状部材側とは反対側に配されており、光を射出する複数の光源が面状に配されている。光源側温調機構は、反応部の温度を光源ユニット側から調節する。光源側温調機構は、第3板状部材と、光源側供給部とを有する。第3板状部材は、第1板状部材の光源ユニット側に、第1板状部材と隙間をもって対面した状態で配され、かつ、光を透過する。光源側供給部は、第3板状部材と第1板状部材との間に伝熱媒体を供給する。 In order to solve the above problems, the present invention comprises a reaction unit, a light source unit, and a light source side temperature control mechanism, and irradiates the reaction target liquid with light while flowing the reaction target liquid containing a photoreactive compound. By doing so, it causes a photoreaction. The reaction unit has a first plate-shaped member that transmits light and a second plate-shaped member that faces the first plate-shaped member with a gap. The reaction section is internally formed with a flat flow path in which a set of facing surfaces is defined by the first plate-shaped member and the second plate-shaped member. The light source unit is arranged on the side opposite to the second plate-shaped member side of the first plate-shaped member, and a plurality of light sources for emitting light are arranged in a plane shape. The light source side temperature control mechanism adjusts the temperature of the reaction unit from the light source unit side. The light source side temperature control mechanism has a third plate-shaped member and a light source side supply unit. The third plate-shaped member is arranged on the light source unit side of the first plate-shaped member in a state of facing the first plate-shaped member with a gap, and transmits light. The light source side supply unit supplies a heat transfer medium between the third plate-shaped member and the first plate-shaped member.

また、本発明は、反応部と、光源ユニットと、光源側温調機構と、背面側温調機構とを備え、光反応性化合物を含有する反応対象液を流しながら、反応対象液に光を照射することにより、光反応させる。反応部は、光を透過する第1板状部材と、第1板状部材と隙間をもって対面した第2板状部材とを有する。反応部は、第1板状部材と第2板状部材とにより1組の対向した面が画定された扁平流路が内部に形成されている。光源ユニットは、第1板状部材の第2板状部材側とは反対側に配されており、光を射出する複数の光源が面状に配されている。光源側温調機構は、反応部の温度を光源ユニット側から調節する。背面側温調機構は、反応部の温度を光源ユニット側とは反対側から調節し、第2板状部材の第1板状部材とは反対側に、第2板状部材と隙間をもって対面した状態で配される第4板状部材と、第2板状部材と第4板状部材との間に伝熱媒体を供給する背面側供給部とを有する。 Further, the present invention includes a reaction unit, a light source unit, a light source side temperature control mechanism, and a back surface side temperature control mechanism, and emits light to the reaction target liquid while flowing a reaction target liquid containing a photoreactive compound. By irradiating, it reacts with light. The reaction unit has a first plate-shaped member that transmits light and a second plate-shaped member that faces the first plate-shaped member with a gap. The reaction section is internally formed with a flat flow path in which a set of facing surfaces is defined by the first plate-shaped member and the second plate-shaped member. The light source unit is arranged on the side opposite to the second plate-shaped member side of the first plate-shaped member, and a plurality of light sources for emitting light are arranged in a plane shape. The light source side temperature control mechanism adjusts the temperature of the reaction unit from the light source unit side. The rear temperature control mechanism adjusts the temperature of the reaction unit from the side opposite to the light source unit side, and faces the second plate-shaped member on the opposite side of the first plate-shaped member with a gap from the second plate-shaped member. It has a fourth plate-shaped member arranged in a state, and a back side supply unit that supplies a heat transfer medium between the second plate-shaped member and the fourth plate-shaped member.

第2板状部材は、光を反射することが好ましい。 The second plate-shaped member preferably reflects light.

第1板状部材と第2板状部材とは、起立した姿勢で配されることが好ましい。 The first plate-shaped member and the second plate-shaped member are preferably arranged in an upright posture.

扁平流路は、反応部の下部に反応対象液の供給口として開口し、かつ、反応部の上部に排出口として開口していることが好ましい。 It is preferable that the flat flow path is opened at the lower part of the reaction part as a supply port of the liquid to be reacted and at the upper part of the reaction part as a discharge port.

扁平流路の反応対象液の流れ方向に直交する断面において、長手方向の長さをWPとし、短手方向の長さをTPとするときに、WP/TPで求める比が少なくとも3であることが好ましい。 In the cross section orthogonal to the flow direction of the reaction target liquid in the flat flow path, the ratio obtained by WP / TP is at least 3 when the length in the longitudinal direction is WP and the length in the lateral direction is TP. Is preferable.

反応部の温度を光源ユニット側とは反対側から調節する背面側温調機構を備えることが好ましい。 It is preferable to provide a back side temperature control mechanism that adjusts the temperature of the reaction unit from the side opposite to the light source unit side.

背面側温調機構は、第4板状部材と、背面側供給部とを有することが好ましい。第4板状部材は、第2板状部材の第1板状部材とは反対側に、第2板状部材と隙間をもって対面した状態で配される。背面側供給部は、第2板状部材と第4板状部材との間に伝熱媒体を供給する。 The back surface side temperature control mechanism preferably has a fourth plate-shaped member and a back surface side supply unit. The fourth plate-shaped member is arranged on the opposite side of the second plate-shaped member from the first plate-shaped member in a state of facing the second plate-shaped member with a gap. The back side supply unit supplies a heat transfer medium between the second plate-shaped member and the fourth plate-shaped member.

本発明の光反応方法は、光反応性化合物を含有する反応対象液を流しながら、反応対象液に光を照射することにより、光反応させる。光反応方法は、反応部の内部に備えられる扁平流路に反応対象液を供給し、扁平流路内を流れている反応対象液に光を照射し、第1板状部材の光源ユニット側に、第1板状部材と隙間をもって対面した状態で配され、かつ、光を透過する第3板状部材と、第3板状部材と第1板状部材との間に伝熱媒体を供給する光源側供給部とを有する光源側温調機構により光源ユニット側から反応部の温度を調節する。扁平流路は、光を透過する第1板状部材と、第1板状部材と隙間をもって対面した第2板状部材とにより1組の対向した面が画定されている。光は、第1板状部材の第2板状部材側とは反対側に配され、光を射出する複数の光源が面状に配された光源ユニットにより、反応対象液に照射される。また、本発明の光反応方法は、第2板状部材の前記第1板状部材とは反対側に、第2板状部材と隙間をもって対面した状態で配される第4板状部材と、第2板状部材と第4板状部材との間に伝熱媒体を供給する背面側供給部とを有する背面側温調機構により前記光源ユニット側とは反対側から前記反応部の温度を調節する。 In the photoreaction method of the present invention, a reaction target liquid containing a photoreactive compound is allowed to flow, and the reaction target liquid is irradiated with light to cause a photoreaction. In the photoreaction method, the reaction target liquid is supplied to the flat flow path provided inside the reaction unit, the reaction target liquid flowing in the flat flow path is irradiated with light, and the light source unit side of the first plate-shaped member is irradiated. , A heat transfer medium is supplied between the third plate-shaped member, which is arranged so as to face the first plate-shaped member with a gap and transmits light, and between the third plate-shaped member and the first plate-shaped member. The temperature of the reaction unit is adjusted from the light source unit side by the light source side temperature control mechanism having the light source side supply unit . In the flat flow path, a set of facing surfaces is defined by a first plate-shaped member that transmits light and a second plate-shaped member that faces the first plate-shaped member with a gap. The light is arranged on the side opposite to the second plate-shaped member side of the first plate-shaped member, and the reaction target liquid is irradiated with the light source unit in which a plurality of light sources for emitting light are arranged in a plane shape. Further, the photochemical reaction method of the present invention comprises a fourth plate-shaped member arranged on the opposite side of the second plate-shaped member from the first plate-shaped member so as to face the second plate-shaped member with a gap. The temperature of the reaction unit is adjusted from the side opposite to the light source unit side by the back side temperature control mechanism having the back side supply unit for supplying the heat transfer medium between the second plate-shaped member and the fourth plate-shaped member. do.

本発明によれば、装置の大型化を抑えながらも処理量が向上する。 According to the present invention, the processing amount is improved while suppressing the increase in size of the apparatus.

光反応装置の概略斜視図である。It is a schematic perspective view of a photoreactor. 光源の平面図である。It is a top view of a light source. 光反応装置の一部断面図であり、(A)は反応対象液の流れ方向に直交する断面図であり、(B)は反応対象液の流れ方向に沿った断面図である。It is a partial cross-sectional view of a photoreactor, (A) is a cross-sectional view orthogonal to the flow direction of the reaction target liquid, and (B) is a cross-sectional view along the flow direction of the reaction target liquid. 扁平流路の説明図である。It is explanatory drawing of the flat flow path. 比WP/TPと収率との関係を示すグラフである。It is a graph which shows the relationship between the ratio WP / TP and the yield. 光反応装置の説明図である。It is explanatory drawing of the optical reaction apparatus. 別の光反応装置の説明図である。It is explanatory drawing of another light reaction apparatus. 別の光反応装置の説明図である。It is explanatory drawing of another light reaction apparatus. 光反応の例の説明図である。It is explanatory drawing of the example of a photoreaction.

図1において、本発明の一実施形態である光反応装置10は、光反応性化合物を含有する反応対象液11(図3参照)を流しながら、反応対象液11に光を照射することにより、光反応を連続的に行う。光反応装置10は、光源ユニット13と、反応ユニット14とを備える。 In FIG. 1, the photoreactive device 10 according to the embodiment of the present invention irradiates the reaction target liquid 11 with light while flowing the reaction target liquid 11 (see FIG. 3) containing the photoreactive compound. The photoreaction is continuous. The photoreactive device 10 includes a light source unit 13 and a reaction unit 14.

光源ユニット13は、反応対象液11に光を照射するためのものである。光源ユニット13は、板状に形成されており、一方の表面13aが光を射出する射出面となっている。以下、射出面に符号13aを付す。光源ユニット13は、射出面13aが、反応対象液11を流す方向(以下、流れ方向と称する)Xと平行となる状態に配する。この例では、流れ方向Xを鉛直方向上向きとしているので、射出面13aが鉛直方向となる状態に光源ユニット13を垂直に起立した姿勢(垂直姿勢)で設けてある。光源ユニット13の詳細は、別の図面を参照して後述する。なお、流れ方向Xに直交する方向を幅方向Yとし、流れ方向Xと幅方向Yとの両方に直交する方向を厚み方向Zとする。 The light source unit 13 is for irradiating the reaction target liquid 11 with light. The light source unit 13 is formed in a plate shape, and one surface 13a is an emission surface for emitting light. Hereinafter, reference numerals 13a are attached to the injection surface. The light source unit 13 is arranged so that the injection surface 13a is parallel to the direction (hereinafter referred to as the flow direction) X through which the reaction target liquid 11 flows. In this example, since the flow direction X is directed upward in the vertical direction, the light source unit 13 is provided in a vertically standing posture (vertical posture) in a state where the injection surface 13a is in the vertical direction. Details of the light source unit 13 will be described later with reference to another drawing. The direction orthogonal to the flow direction X is defined as the width direction Y, and the direction orthogonal to both the flow direction X and the width direction Y is defined as the thickness direction Z.

反応ユニット14は、ユニット本体21と、送液部22と、回収部23と、冷却器24とを備える。ユニット本体21は概ね直方体状に形成されているが、形状はこの例に限定されない。ユニット本体21のハウジング27には、光源ユニット13からの光を内部へ案内するための開口27aが形成されている。ユニット本体21は、開口27aが光源ユニット13と対向する状態に、配される。なお、開口27aは矩形としているが、開口の形状はこの例に限られない。 The reaction unit 14 includes a unit main body 21, a liquid feeding unit 22, a collecting unit 23, and a cooler 24. The unit main body 21 is formed in a substantially rectangular parallelepiped shape, but the shape is not limited to this example. The housing 27 of the unit main body 21 is formed with an opening 27a for guiding the light from the light source unit 13 to the inside. The unit main body 21 is arranged so that the opening 27a faces the light source unit 13. The opening 27a is rectangular, but the shape of the opening is not limited to this example.

ユニット本体21の内部には、反応対象液11と水28(図3参照)との各流路が形成されている。送液部22と回収部23とはユニット本体21に接続しており、送液部22は反応対象液11をユニット本体21へ供給し、回収部23は光反応を経た反応対象液11をユニット本体21から回収する。この例では、反応対象液11の流れ方向Xを前述のように鉛直方向上向きとしているから、送液部22はユニット本体21の下部、具体的にはハウジング27の底面に形成された供給口S1に、回収部23はユニット本体21の上部、具体的にはハウジング27の天面に形成された排出口D1(図3(B)参照)に、接続させている。 Inside the unit main body 21, each flow path of the reaction target liquid 11 and water 28 (see FIG. 3) is formed. The liquid feeding unit 22 and the collecting unit 23 are connected to the unit main body 21, the liquid feeding unit 22 supplies the reaction target liquid 11 to the unit main body 21, and the collecting unit 23 supplies the reaction target liquid 11 that has undergone a photoreaction to the unit. Collect from the main body 21. In this example, since the flow direction X of the reaction target liquid 11 is directed upward in the vertical direction as described above, the liquid feeding unit 22 is the supply port S1 formed in the lower part of the unit main body 21, specifically, the bottom surface of the housing 27. The recovery unit 23 is connected to the upper part of the unit main body 21, specifically, the discharge port D1 (see FIG. 3B) formed on the top surface of the housing 27.

冷却器24は、配管L1~配管L6によりユニット本体21と接続している。冷却器24は、水28をユニット本体21へ供給し、ユニット本体21を経た水28を回収し、冷却した後に再びユニット本体21へ供給する。このように、冷却器24は、水28をユニット本体21へ供給する供給部と、ユニット本体21から回収する回収部と、冷却する冷却部との機能を併せもつ。これにより、水28は冷却器24とユニット本体21とを循環し、この循環によりユニット本体21内における反応対象液11は温度を調節されるから、光が照射され続けてもユニット本体21の温度が上昇せず、光反応がより進みやすい。なお、反応ユニット14の詳細については、別の図面を用いて後述する。 The cooler 24 is connected to the unit main body 21 by pipes L1 to L6. The cooler 24 supplies water 28 to the unit main body 21, collects the water 28 that has passed through the unit main body 21, cools the water 28, and then supplies the water 28 to the unit main body 21 again. As described above, the cooler 24 has a function of a supply unit for supplying water 28 to the unit main body 21, a recovery unit for collecting water from the unit main body 21, and a cooling unit for cooling. As a result, the water 28 circulates between the cooler 24 and the unit main body 21, and the temperature of the reaction target liquid 11 in the unit main body 21 is adjusted by this circulation. Therefore, even if the light continues to be irradiated, the temperature of the unit main body 21 is adjusted. Does not increase, and the photoreaction is more likely to proceed. The details of the reaction unit 14 will be described later with reference to another drawing.

冷却器24に接続している配管L1は、分岐部PS1において配管L2と配管L3とに分岐している。配管L2はユニット本体21の光源ユニット13側に、配管L3はユニット本体21の光源ユニット13側とは反対側(以下、背面側と称する)に接続している。配管L2及び配管L3の接続位置は、光源ユニット13の下部であることが好ましく、本例でもそのようにしている。ハウジング27の下部に形成されている供給口S2と供給口S3(図3参照)とは、配管L5と配管L6との接続部である。 The pipe L1 connected to the cooler 24 is branched into the pipe L2 and the pipe L3 at the branch portion PS1. The pipe L2 is connected to the light source unit 13 side of the unit main body 21, and the pipe L3 is connected to the side opposite to the light source unit 13 side of the unit main body 21 (hereinafter referred to as the back side). The connection position of the pipe L2 and the pipe L3 is preferably the lower part of the light source unit 13, and this is also the case in this example. The supply port S2 and the supply port S3 (see FIG. 3) formed in the lower part of the housing 27 are connection portions between the pipe L5 and the pipe L6.

また、冷却器24に接続している配管L4は、分岐部PS2において配管L5と配管L6とに分岐している。配管L5はユニット本体21の光源ユニット13側に、配管L6はユニット本体21の背面側に接続している。配管L5及び配管L6の接続位置は、光源ユニット13の上部であることが好ましく、本例でもそのようにしている。ハウジング27の上部に形成されている排出口D2と供給口D3(図3参照)とは、配管L4と配管L5との接続部である。 Further, the pipe L4 connected to the cooler 24 is branched into the pipe L5 and the pipe L6 at the branch portion PS2. The pipe L5 is connected to the light source unit 13 side of the unit main body 21, and the pipe L6 is connected to the back side of the unit main body 21. The connection position of the pipe L5 and the pipe L6 is preferably the upper part of the light source unit 13, and this is also the case in this example. The discharge port D2 and the supply port D3 (see FIG. 3) formed in the upper part of the housing 27 are connection portions between the pipe L4 and the pipe L5.

図2に示すように、光源ユニット13は、複数の光源17と、これら光源17を支持する支持板18とを有する。支持板18の一面に複数の光源17が面状に配されることにより、面状の射出面13aが形成されており、本例の射出面13aは平面状である。なお、この例では、各光源17が支持板18に埋め込まれ、各光源17と支持板18とが面一となっている。しかし、光源17の支持板18への設置態様は、射出面13aを面状に形成していればこの例に限られず、例えば、各光源17は支持板18の表面から突出した状態に設けられていてもよい。 As shown in FIG. 2, the light source unit 13 has a plurality of light sources 17 and a support plate 18 that supports these light sources 17. By arranging a plurality of light sources 17 in a planar shape on one surface of the support plate 18, a planar injection surface 13a is formed, and the emission surface 13a of this example is a flat surface. In this example, each light source 17 is embedded in the support plate 18, and each light source 17 and the support plate 18 are flush with each other. However, the mode of installing the light source 17 on the support plate 18 is not limited to this example as long as the injection surface 13a is formed in a planar shape. For example, each light source 17 is provided so as to protrude from the surface of the support plate 18. May be.

光源17は、この例ではLED(Light Emitting Diode,発光ダイオード)であり、複数の光源17は図2に示すように正方配列としている。しかし、光源は、LEDに限られず、光反応させる光反応性化合物に応じて適宜選択される。光源は、例えば、高圧水銀ランプ、キセノンランプ、メタルハライドランプなどでもよい。複数の光源17は、正方配列に限られず、例えばマトリックス配列などの他の規則的な配列でもよいし、不規則な配し方であってもよい。また、光源17は、図2においては、列数(紙面横方向)を16列、行数(紙面縦方向)を15行として描いてあるが、光源17の列数及び行数もこの例に限定されない。光源ユニット13は、各光源17のオンとオフ及びオンの場合の出力調節を行うコントローラ(図示無し)を備えており、反応対象液11に対する照度を調節する。 The light source 17 is an LED (Light Emitting Diode) in this example, and the plurality of light sources 17 are arranged in a square as shown in FIG. However, the light source is not limited to the LED, and is appropriately selected depending on the photoreactive compound to be photoreacted. The light source may be, for example, a high-pressure mercury lamp, a xenon lamp, a metal halide lamp, or the like. The plurality of light sources 17 are not limited to a square array, and may be another regular array such as a matrix array or an irregular arrangement. Further, in FIG. 2, the light source 17 is drawn with 16 columns in the horizontal direction of the paper surface and 15 rows in the vertical direction of the paper surface, but the number of columns and the number of rows of the light source 17 are also used in this example. Not limited. The light source unit 13 includes a controller (not shown) that adjusts the output of each light source 17 when it is on, off, and on, and adjusts the illuminance with respect to the reaction target liquid 11.

幅方向Yにおける射出面13aの光が射出される領域の長さ(以下、射出幅と称する)WEは、特に限定されない。しかし、反応ユニット14における受光領域をより大きく確保する観点では、幅方向Yにおける開口27aの長さ(以下、開口幅と称する)W27a(図1参照)と同じまたは開口幅W27aよりも大きいことが好ましく、この例では開口幅W27aよりも大きくしている。なお、本例では、幅方向Yに並んだ複数の光源17の一端のひとつから他端のひとつまでの長さを射出幅WEとしている。 The length WE of the region where the light of the emission surface 13a in the width direction Y is emitted (hereinafter referred to as the emission width) is not particularly limited. However, from the viewpoint of securing a larger light receiving region in the reaction unit 14, the length of the opening 27a in the width direction Y (hereinafter referred to as the opening width) W27a (see FIG. 1) may be the same or larger than the opening width W27a. Preferably, in this example, it is made larger than the opening width W27a. In this example, the length from one end to one of the other ends of the plurality of light sources 17 arranged in the width direction Y is defined as the emission width WE.

図3に示すように、反応ユニット14は、反応対象液11及び/または水28の流路を形成するための板状の部材及びハウジング27等が組み合わされて構成されている。具体的には、光源ユニット13側から、第3板状部材43、第1板状部材41、第2板状部材42、第4板状部材44の順で配され、互いに隙間をもって対面しており、互いに平行な状態、かつ垂直姿勢でハウジング27の内部に設けられている。なお、互いの対向面のなす角が0.06°以内であれば平行と見なしてよい。第1板状部材41~第4板状部材44は、反応対象液11及び/または水28の流路を形成するためのものであり、そのため、反応対象液11及び/または水28が漏れ出さない状態に、ハウジング27の内壁に固定されている。また、第1板状部材41~第4板状部材44は、反応対象液11及びまたは水28の圧力によって破壊しない十分な強度としている。 As shown in FIG. 3, the reaction unit 14 is configured by combining a plate-shaped member for forming a flow path of the reaction target liquid 11 and / or the water 28, a housing 27, and the like. Specifically, the third plate-shaped member 43, the first plate-shaped member 41, the second plate-shaped member 42, and the fourth plate-shaped member 44 are arranged in this order from the light source unit 13 side, and face each other with a gap. It is provided inside the housing 27 in a state parallel to each other and in a vertical posture. If the angle between the facing surfaces is within 0.06 °, it may be regarded as parallel. The first plate-shaped member 41 to the fourth plate-shaped member 44 are for forming a flow path of the reaction target liquid 11 and / or the water 28, so that the reaction target liquid 11 and / or the water 28 leaks out. It is fixed to the inner wall of the housing 27 in a non-existent state. Further, the first plate-shaped member 41 to the fourth plate-shaped member 44 have sufficient strength not to be destroyed by the pressure of the reaction target liquid 11 and / or the water 28.

第1板状部材41と第2板状部材42とは、反応対象液11を平面状(平膜状)に流すためのものであり、ハウジング27とともに、反応対象液11を反応させる反応部47を構成する。隙間をもって互いに対面している第1板状部材41と第2板状部材42とは、XY平面におけるサイズが概ね同じに形成されており、幅方向Yにおける長さよりも互いの間隔が小さく、これにより、断面が扁平な扁平流路P1を反応対象液11の流路として反応部47の内部に形成している。したがって、扁平流路P1は幅方向Yにおける長さ(以下、流路幅と称する)WPが厚み方向Zにおける長さ(以下、流路厚みと称する)TPよりも大きい面状(平面状)の流路となっている。このように、第1板状部材41と第2板状部材42とは、扁平流路P1の1組の対向面を画定し、互いの対向面41a,42aとハウジング27の内壁面とが扁平流路P1の壁面となっている。 The first plate-shaped member 41 and the second plate-shaped member 42 are for flowing the reaction target liquid 11 in a planar shape (flat film shape), and together with the housing 27, the reaction unit 47 for reacting the reaction target liquid 11. To configure. The first plate-shaped member 41 and the second plate-shaped member 42 facing each other with a gap are formed to have substantially the same size in the XY plane, and the distance between them is smaller than the length in the width direction Y. As a result, a flat flow path P1 having a flat cross section is formed inside the reaction unit 47 as a flow path of the reaction target liquid 11. Therefore, the flat flow path P1 has a planar shape (planar shape) in which the length WP in the width direction Y (hereinafter referred to as the flow path width) is larger than the length TP in the thickness direction Z (hereinafter referred to as the flow path thickness). It is a flow path. In this way, the first plate-shaped member 41 and the second plate-shaped member 42 define a pair of facing surfaces of the flat flow path P1, and the facing surfaces 41a, 42a and the inner wall surface of the housing 27 are flat. It is the wall surface of the flow path P1.

前述の供給口S1と排出口D1とは、図3(B)に示すように、第1板状部材41と第2板状部材42との間に形成されている。供給口S1と排出口D1とは幅方向Yに延びたスリット状に形成されており、これらの開口面積(YZ平面での面積)及び形状は、扁平流路のYZ平面における断面の面積及び形状と同じにしてある。これにより、反応対象液11の流れは幅方向Yに延びた形状に成形され、扁平流路P1に案内された後、扁平流路P1から排出される。なお、この例では、供給口S1により、反応対象液11の幅方向Yに延びた形状に成形しているが、供給口S1よりも上流、すなわち送液部22側で幅方向Yに延びた形状に成形してもよい。 As shown in FIG. 3B, the supply port S1 and the discharge port D1 described above are formed between the first plate-shaped member 41 and the second plate-shaped member 42. The supply port S1 and the discharge port D1 are formed in a slit shape extending in the width direction Y, and the opening area (area in the YZ plane) and shape thereof are the area and shape of the cross section of the flat flow path in the YZ plane. It is the same as. As a result, the flow of the reaction target liquid 11 is formed into a shape extending in the width direction Y, guided by the flat flow path P1, and then discharged from the flat flow path P1. In this example, the supply port S1 is formed into a shape extending in the width direction Y of the reaction target liquid 11, but it extends upstream from the supply port S1, that is, on the liquid feeding portion 22 side in the width direction Y. It may be molded into a shape.

第1板状部材41と第2板状部材42とハウジング27とで囲まれる扁平流路P1には、例えば流れ方向Xに延びた部材など、扁平流路P1を仕切る仕切り部材は設けられていない(非設置)。つまり扁平流路P1はひとつの空間として形成されており、これにより、反応対象液11は、流れを幅方向Yで分割されることなく反応部47の内部を流れる。扁平流路P1の内部に仕切り部材がある場合に比べて、仕切り部材の体積分の容積が反応対象液11の流れ領域として確保され、すなわち体積効率が高い。また、仕切り部材がある場合には、仕切り部材近傍における反応対象液11の流速の減少があるが、扁平流路P1は仕切り部材が非設置であるから仕切り部材に起因する流速の減少が無い。このように、装置の大型化が抑えられながらも大きな処理量が確保される。 The flat flow path P1 surrounded by the first plate-shaped member 41, the second plate-shaped member 42, and the housing 27 is not provided with a partition member for partitioning the flat flow path P1, such as a member extending in the flow direction X. (Not installed). That is, the flat flow path P1 is formed as one space, whereby the reaction target liquid 11 flows inside the reaction portion 47 without being divided in the width direction Y. Compared with the case where the partition member is inside the flat flow path P1, the volume corresponding to the volume of the partition member is secured as the flow region of the reaction target liquid 11, that is, the volumetric efficiency is high. Further, when there is a partition member, there is a decrease in the flow velocity of the reaction target liquid 11 in the vicinity of the partition member, but since the partition member is not installed in the flat flow path P1, there is no decrease in the flow velocity due to the partition member. In this way, a large amount of processing can be secured while suppressing the increase in size of the apparatus.

扁平流路P1よりも光源ユニット13側に配される第1板状部材41と第3板状部材43とは、光源17からの光を透過する素材から形成されている。 The first plate-shaped member 41 and the third plate-shaped member 43 arranged on the light source unit 13 side of the flat flow path P1 are formed of a material that transmits light from the light source 17.

第1板状部材41と第3板状部材43との素材は、光源ユニット13からの光を透過するものであれば特に限定されない。例えば、ガラス、アクリル樹脂、塩化ビニルなどが挙げられる。特に第1板状部材41は、反応対象液に侵されない素材とし、本例では第1板状部材41と第3板状部材43とは、ともにガラスとしている。 The material of the first plate-shaped member 41 and the third plate-shaped member 43 is not particularly limited as long as it transmits light from the light source unit 13. For example, glass, acrylic resin, vinyl chloride and the like can be mentioned. In particular, the first plate-shaped member 41 is made of a material that is not affected by the reaction target liquid, and in this example, both the first plate-shaped member 41 and the third plate-shaped member 43 are made of glass.

光源ユニット13からの光が扁平流路P1の幅方向Yにおいて全域かつ均一に照射されるために、扁平流路P1の流路幅WPは開口幅W27a以下であることが好ましく、本例では開口幅W27aと同じにしてある。 Since the light from the light source unit 13 is uniformly irradiated over the entire area in the width direction Y of the flat flow path P1, the flow path width WP of the flat flow path P1 is preferably an opening width W27a or less, and in this example, an opening. It is the same as the width W27a.

第2板状部材42は、第1板状部材41同様に反応対象液に侵されない素材で形成しており、さらに、光源ユニット13からの光を反射する素材で形成されていることが好ましい。本例でもそのようにしており、具体的には、ハステロイ(登録商標)で形成している。なお、第2板状部材42は、少なくとも対向面42aが光を反射すればよい。したがって、例えば第2板状部材42を厚み方向Zにおいて複層の構造とし、対向面42aを成す層に光を反射する素材を用いてもよい。このような例として、例えば、対向面42aを成す素材に鏡面をもつアルミ箔などを用いる態様がある。なお、扁平流路P1を画定するハウジング27の内面も同様に、光を反射する素材で形成することが好ましい。 The second plate-shaped member 42 is preferably made of a material that is not affected by the reaction target liquid like the first plate-shaped member 41, and is further preferably made of a material that reflects light from the light source unit 13. This is also the case in this example, specifically, it is formed of Hastelloy (registered trademark). The second plate-shaped member 42 may reflect light at least on the facing surface 42a. Therefore, for example, the second plate-shaped member 42 may have a multi-layered structure in the thickness direction Z, and a material that reflects light may be used for the layer forming the facing surface 42a. As such an example, for example, there is an embodiment in which an aluminum foil having a mirror surface is used as the material forming the facing surface 42a. Similarly, it is preferable that the inner surface of the housing 27 that defines the flat flow path P1 is also made of a material that reflects light.

第1板状部材41の光源ユニット13側に配された第3板状部材43と、第2板状部材42の背面側に配された第4板状部材44とは、前述の冷却器24(図1参照)とともに、反応部47の温度を調節する温調機構48(図1参照)を構成している。第3板状部材43と冷却器24とは、光源ユニット13側から調節する光源側の温調機構(以下、光源側温調機構と称する)である。また、第4板状部材44と冷却器24とは、背面側から調節する背面側の温調機構(以下、背面側温調機構と称する)である。 The third plate-shaped member 43 arranged on the light source unit 13 side of the first plate-shaped member 41 and the fourth plate-shaped member 44 arranged on the back surface side of the second plate-shaped member 42 are the above-mentioned cooler 24. Together with (see FIG. 1), it constitutes a temperature control mechanism 48 (see FIG. 1) that regulates the temperature of the reaction unit 47. The third plate-shaped member 43 and the cooler 24 are a light source side temperature control mechanism (hereinafter referred to as a light source side temperature control mechanism) adjusted from the light source unit 13 side. Further, the fourth plate-shaped member 44 and the cooler 24 are a temperature control mechanism on the back side (hereinafter, referred to as a temperature control mechanism on the back side) that is adjusted from the back side.

このように、この例では、ひとつの冷却器24が光源側温調機構と背面側温調機構とのいずれも構成しているが、光源側温調機構と背面側温調機構とを、それぞれ別個の冷却器で構成してもよい。そのため、冷却器の個数等に応じて、冷却器とユニット本体21とを接続する配管の態様は適宜変更され、個々の冷却器により第3板状部材43と第1板状部材41との間及び第4板状部材44と第2板状部材42との間に水28が供給される。なお、冷却器24を加熱器(図示無し)に置き換えてもよく、冷却器24と加熱器とは対象とする反応の必要温度によって使い分ければよい。 As described above, in this example, one cooler 24 constitutes both the light source side temperature control mechanism and the back side temperature control mechanism, but the light source side temperature control mechanism and the back side temperature control mechanism are each configured. It may be configured with a separate cooler. Therefore, the mode of the piping connecting the cooler and the unit main body 21 is appropriately changed according to the number of coolers and the like, and the individual coolers are used between the third plate-shaped member 43 and the first plate-shaped member 41. Water 28 is supplied between the fourth plate-shaped member 44 and the second plate-shaped member 42. The cooler 24 may be replaced with a heater (not shown), and the cooler 24 and the heater may be used properly according to the required temperature of the target reaction.

第3板状部材43は、第1板状部材41と隙間をもって対面した状態で配されることにより、互いの隙間に水28の流路(以下、水流路と称する)P2を、扁平流路P1と同様に扁平に形成している。第4板状部材44も同様に、第2板状部材42と隙間をもって対面した状態で配されることにより、互いの隙間に水流路P3を扁平に形成している。第2板状部材42と第4板状部材44とハウジング27との各下部には貫通孔が水28の供給口S2,S3として、及び第2板状部材42と第4板状部材44とハウジング27との各上部には貫通孔が水28の排出口D2,D3としてそれぞれ形成されている。水流路P2は供給口S2と排出口D2と接続し、水流路P3は供給口S3と排出口D3とに接続する。水流路は、この例に限られず、例えばチューブ(図示無し)を第1板状部材41の光源側表面に接した状態に配し、チューブ内を水流路としてもよい。 The third plate-shaped member 43 is arranged so as to face the first plate-shaped member 41 with a gap, so that the water flow path (hereinafter referred to as a water flow path) P2 is provided in the gap between the third plate-shaped member 43 and the flat flow path. It is formed flat like P1. Similarly, the fourth plate-shaped member 44 is arranged so as to face the second plate-shaped member 42 with a gap, so that the water flow path P3 is formed flat in the gap between the four plate-shaped members 44. Through holes are provided in the lower portions of the second plate-shaped member 42, the fourth plate-shaped member 44, and the housing 27 as water supply ports S2 and S3, and the second plate-shaped member 42 and the fourth plate-shaped member 44. Through holes are formed in the upper portions of the housing 27 as outlets D2 and D3 for the water 28, respectively. The water flow path P2 is connected to the supply port S2 and the discharge port D2, and the water flow path P3 is connected to the supply port S3 and the discharge port D3. The water flow path is not limited to this example, and for example, a tube (not shown) may be arranged in contact with the surface of the first plate-shaped member 41 on the light source side, and the inside of the tube may be used as the water flow path.

ハウジング27は、背面側にも開口27aと同様の開口27bが形成されている。しかし、この例では光の照射に背面側は寄与しないから、開口27bは無くてもよいし、第4板状部材44をハウジング27と一体に形成していてもよい。 The housing 27 is also formed with an opening 27b similar to the opening 27a on the back surface side. However, in this example, since the back surface side does not contribute to the irradiation of light, the opening 27b may be omitted, or the fourth plate-shaped member 44 may be integrally formed with the housing 27.

水流路P2と水流路P3との流路幅WP、流路厚みTP、及び流路長LPは特に限定されない。ただし、反応部47内をより確実に温度調節する観点では、流路幅WP及び流路長LPは、扁平流路P1の流路幅WP及び流路長LPと同じまたはそれらよりも大きくすることが好ましい。本例では、水流路P2と水流路P3とは同容積に形成しており、これらは、流路幅WPが扁平流路P1よりも大きく、流路長LPが扁平流路と同じにしている。なお、図3においては、図の煩雑化を避けるため、流路幅WPと流路厚みTPと流路長LPとは、扁平流路P1についてのみ図示してある。 The flow path width WP, flow path thickness TP, and flow path length LP between the water flow path P2 and the water flow path P3 are not particularly limited. However, from the viewpoint of more reliably controlling the temperature inside the reaction unit 47, the flow path width WP and the flow path length LP should be the same as or larger than the flow path width WP and the flow path length LP of the flat flow path P1. Is preferable. In this example, the water flow path P2 and the water flow path P3 are formed to have the same volume, and the flow path width WP is larger than the flat flow path P1 and the flow path length LP is the same as the flat flow path. .. In FIG. 3, in order to avoid complication of the figure, the flow path width WP, the flow path thickness TP, and the flow path length LP are shown only for the flat flow path P1.

扁平流路P1の流路厚みTPは、0.1mm以上20mm以下の範囲内であることが好ましい。扁平流路P1の流路厚みTPは、0.5mm以上10mm以下の範囲内であることがより好ましく、1mm以上6mm以下の範囲内であることがさらに好ましい。なお、本例では扁平流路P1の流路厚みTPを6mmとしている。 The flow path thickness TP of the flat flow path P1 is preferably in the range of 0.1 mm or more and 20 mm or less. The flow path thickness TP of the flat flow path P1 is more preferably in the range of 0.5 mm or more and 10 mm or less, and further preferably in the range of 1 mm or more and 6 mm or less. In this example, the flow path thickness TP of the flat flow path P1 is 6 mm.

扁平流路P1の流路長LPを流路幅WPで除した値、すなわちLP/WPで求める比は、大きくとも300であることが好ましい。LP/WPで求める比は大きくても100以下であることがより好ましく、大きくても50であることがさらに好ましい。なお、本例では32としている。 The value obtained by dividing the flow path length LP of the flat flow path P1 by the flow path width WP, that is, the ratio obtained by LP / WP is preferably 300 at the maximum. The ratio obtained by LP / WP is more preferably 100 or less at the maximum, and further preferably 50 at the maximum. In this example, it is 32.

水28は、伝熱媒体の一例である。伝熱媒体の他の例としては、エチレングリコール、プロピレングリコール、シリコーンオイルなどが挙げられる。 Water 28 is an example of a heat transfer medium. Other examples of heat transfer media include ethylene glycol, propylene glycol, silicone oil and the like.

第2板状部材42の対向面42aとハウジング27の扁平流路P1を画定する内壁面とが、光を反射しない場合、または反射率が低い場合には、扁平流路P1のうち、図4に示すように対向面42a及びハウジング27の内壁面に近いほど、光の照射量が小さい領域(以下、低照射領域と称する)ALとなる。すなわち、幅方向Yの端部のうち、厚み方向Zにおいて射出面13aから遠い領域ほど、光の照射量が小さくなる。この低照射領域ALの幅方向Yにおける長さ(以下、低照射領域幅と称する)WLは、流路厚みTPを一定とした場合には、一定である。そのため、流路幅WPが大きいほど、流路幅WPに対する低照射領域幅WLの割合WL/WPは小さく、よって、扁平流路P1を流れる反応対象液11により多くの照射量で光が照射されるから好ましい。なお、図4においては、便宜上、ユニット本体21のうち第2板状部材42とハウジング27の一部のみを描いており、また、供給口S1と排出口D1との図示は略してある。 When the facing surface 42a of the second plate-shaped member 42 and the inner wall surface defining the flat flow path P1 of the housing 27 do not reflect light or have a low reflectance, FIG. 4 of the flat flow path P1 is shown in FIG. As shown in the above, the closer to the facing surface 42a and the inner wall surface of the housing 27, the smaller the light irradiation amount (hereinafter referred to as the low irradiation area) AL. That is, in the end portion in the width direction Y, the region farther from the injection surface 13a in the thickness direction Z, the smaller the irradiation amount of light. The length (hereinafter referred to as the low irradiation region width) WL in the width direction Y of the low irradiation region AL is constant when the flow path thickness TP is constant. Therefore, the larger the flow path width WP, the smaller the ratio WL / WP of the low irradiation region width WL to the flow path width WP. Therefore, the reaction target liquid 11 flowing through the flat flow path P1 is irradiated with light at a larger irradiation amount. Therefore, it is preferable. In FIG. 4, for convenience, only a part of the second plate-shaped member 42 and the housing 27 of the unit main body 21 is drawn, and the supply port S1 and the discharge port D1 are not shown.

さらに、扁平流路P1の幅方向Yにおける各端部では、反応対象液11はハウジング27の内壁面の抵抗を受けた状態で流れる。そのため、幅方向Yにおける端部では、一方の端部と他方の端部との間の中央部よりも流速が小さくなる。したがって、扁平流路P1のうち、壁面の抵抗を受ける領域の割合を小さくするほど、処理量が大きくなり、また、流速が幅方向Yにおいて均一な領域の割合が大きいことになるから目的とする生成物の収率も高くなる。 Further, at each end of the flat flow path P1 in the width direction Y, the reaction target liquid 11 flows under the resistance of the inner wall surface of the housing 27. Therefore, the flow velocity at the end portion in the width direction Y is smaller than that at the central portion between one end portion and the other end portion. Therefore, the smaller the proportion of the region that receives the resistance of the wall surface in the flat flow path P1, the larger the processing amount, and the larger the proportion of the region where the flow velocity is uniform in the width direction Y. The yield of the product is also high.

そこで、上記の低照射領域幅WLと、幅方向Yにおける端部の抵抗との影響をできるだけ小さくするために、WP/TPで求める比は少なくとも3であることが好ましく、本例では10.4としている。WP/TPで求める比は、3以上1000以下の範囲内であることがより好ましく、上記の各影響をより確実に抑える観点で、5以上750以下の範囲内であることがさらに好ましく、10以上500以下の範囲内であること特に好ましい。 Therefore, in order to minimize the influence of the above-mentioned low irradiation region width WL and the resistance of the end portion in the width direction Y, the ratio obtained by WP / TP is preferably at least 3, and 10.4 in this example. It is supposed to be. The ratio determined by WP / TP is more preferably in the range of 3 or more and 1000 or less, and further preferably in the range of 5 or more and 750 or less from the viewpoint of more reliably suppressing each of the above effects. It is particularly preferable that it is within the range of 500 or less.

上記構成の作用を説明する。送液部22により供給される反応対象液11は、ユニット本体21の第1板状部材41と第2板状部材42との間を、この例では鉛直方向上向きを流れ方向Xとして流れる。扁平流路P1は、射出面13aと平行の面状の流路であるから、反応対象液11の流れは射出面13aに対面した平面状(平膜状)となっている。そのため、チューブ内を流すなどのような従来の手法に比べて、装置の大型化を避けながらも、より大流量で反応対象液11を流すことができるから、光反応させる反応対象液11の処理量が多くなる。また、平面状の流れに対して光が面状に照射されるから、扁平流路P1を通過する間の反応対象液11の全域において光反応が進み、その結果、光反応により得られる生成物の収率も向上する。 The operation of the above configuration will be described. The reaction target liquid 11 supplied by the liquid feeding unit 22 flows between the first plate-shaped member 41 and the second plate-shaped member 42 of the unit main body 21 with the vertical upward direction as the flow direction X in this example. Since the flat flow path P1 is a planar flow path parallel to the injection surface 13a, the flow of the reaction target liquid 11 is a flat surface (flat film shape) facing the injection surface 13a. Therefore, as compared with the conventional method such as flowing in a tube, the reaction target liquid 11 can be flowed at a larger flow rate while avoiding an increase in the size of the apparatus, so that the reaction target liquid 11 can be treated with a light reaction. The amount will increase. Further, since the light is radiated in a planar manner to the planar flow, the photoreaction proceeds in the entire area of the reaction target liquid 11 while passing through the flat flow path P1, and as a result, the product obtained by the photoreaction occurs. Yield is also improved.

例えば、扁平流路P1と同体積中に、チューブを面状に敷き詰めた場合と比べて、扁平流路P1はチューブ自体が占める体積分大きな容積をもつから、その分、流量が多く確保される。さらに、長いチューブの内壁の抵抗を受けずに済むから、圧力損失も小さくなり、大きな流速が確保され、かつ、扁平流路P1内での反応対象液11の流速はチューブ内での流速に比べて均一である。なお、扁平流路P1の流路幅WPを62.5mm、流路厚みTPを6mm、流れ方向Xにおける長さ(以下、流路長と称する)LPを2000mmとした扁平流路P1での処理量と、これと同体積中に面状に敷き詰めたチューブ(内径が4mm、厚みが1mm)での処理量とを、光反応の反応率が概ね同じになる状態において比較したところ、前者は後者の約2.9倍であることが確認されている。 For example, compared to the case where the tube is spread in a plane in the same volume as the flat flow path P1, the flat flow path P1 has a large volume of the volume occupied by the tube itself, so that a large flow rate is secured accordingly. .. Further, since the resistance of the inner wall of the long tube is not received, the pressure loss is small, a large flow velocity is secured, and the flow velocity of the reaction target liquid 11 in the flat flow path P1 is higher than the flow velocity in the tube. And uniform. Processing in the flat flow path P1 in which the flow path width WP of the flat flow path P1 is 62.5 mm, the flow path thickness TP is 6 mm, and the length (hereinafter referred to as the flow path length) LP in the flow direction X is 2000 mm. When the amount and the treatment amount in a tube (inner diameter of 4 mm, thickness of 1 mm) spread in a plane in the same volume were compared in a state where the reaction rate of the photochemical reaction was almost the same, the former was the latter. It has been confirmed that it is about 2.9 times that of.

第1板状部材41と第2板状部材42とが起立した姿勢、具体的には垂直姿勢であり、さらには下部から反応対象液11が供給されるから、扁平流路P1の空気が排出口D1から排除されやすい。例えば、反応対象液11の供給を開始した場合には、扁平流路P1内にあった空気が反応対象液11の液面の上昇に伴い抜けやすく、また、扁平流路P1内の反応対象液11に気泡があっても気泡がぬけやすい。そのため、気泡の混在によって反応対象液の流れが乱れることも抑制される。 Since the first plate-shaped member 41 and the second plate-shaped member 42 are in an upright posture, specifically, a vertical posture, and the reaction target liquid 11 is supplied from the lower part, the air in the flat flow path P1 is discharged. It is easy to be excluded from the exit D1. For example, when the supply of the reaction target liquid 11 is started, the air in the flat flow path P1 is easily released as the liquid level of the reaction target liquid 11 rises, and the reaction target liquid in the flat flow path P1 is easily released. Even if there are bubbles in 11, the bubbles are easy to escape. Therefore, it is possible to suppress the disturbance of the flow of the reaction target liquid due to the mixing of bubbles.

第3板状部材43と第1板状部材41とは光を透過するから、第1板状部材41の第2板状部材42側とは反対側に配された光源ユニット13からの光は、開口27aにおいて露呈した第3板状部材43と、さらには第1板状部材41とを介して、扁平流路P1を通過中の反応対象液11に照射される。互いに対向する射出面13aと反応対象液11の流れとはともに面状に形成されているから、反応対象液11の全体にわたり光が効果的に照射され、これにより光反応が確実に進む。 Since the third plate-shaped member 43 and the first plate-shaped member 41 transmit light, the light from the light source unit 13 arranged on the side opposite to the second plate-shaped member 42 side of the first plate-shaped member 41 is emitted. The reaction target liquid 11 passing through the flat flow path P1 is irradiated through the third plate-shaped member 43 exposed at the opening 27a and further, the first plate-shaped member 41. Since the injection surfaces 13a facing each other and the flow of the reaction target liquid 11 are both formed in a planar shape, light is effectively irradiated over the entire reaction target liquid 11, whereby the photoreaction proceeds reliably.

第2板状部材42は光を反射するから、扁平流路P1内の反応対象液11を透過した光が第2板状部材42の対向面42aで反射し、再び反応対象液11に照射される。その結果、光反応がより進みやすい。 Since the second plate-shaped member 42 reflects light, the light transmitted through the reaction target liquid 11 in the flat flow path P1 is reflected by the facing surface 42a of the second plate-shaped member 42 and is irradiated to the reaction target liquid 11 again. Ru. As a result, the photoreaction is more likely to proceed.

冷却器24で温度調節された水28は供給口S2,S3から水流路P2,P3に案内され、平面状(平膜状)に流れた後に、排出口D2,D3から排出される。排出された水28は、再び冷却器24により温度を調節される。水流路P2は、扁平流路P1と同様に扁平な流路として形成されているから、水28の流量がより大きく確保されるから、反応部47がより効果的に冷却される。 The water 28 whose temperature is controlled by the cooler 24 is guided from the supply ports S2 and S3 to the water flow paths P2 and P3, flows in a planar shape (flat film shape), and then is discharged from the discharge ports D2 and D3. The temperature of the discharged water 28 is adjusted again by the cooler 24. Since the water flow path P2 is formed as a flat flow path like the flat flow path P1, a larger flow rate of the water 28 is secured, so that the reaction portion 47 is cooled more effectively.

第3板状部材43と第4板状部材44とが第1板状部材41と第2板状部材42と同様に垂直姿勢であるから、水流路P2、P3の空気が排出口D2,D3から排除されやすい。そのため、冷却効果がより確実に維持される。 Since the third plate-shaped member 43 and the fourth plate-shaped member 44 are in the same vertical posture as the first plate-shaped member 41 and the second plate-shaped member 42, the air in the water flow paths P2 and P3 is discharged from the outlets D2 and D3. Easy to be excluded from. Therefore, the cooling effect is more reliably maintained.

比WP/TPで求める比が3以上であるから、光反応がより効果的に進み、高い収率で目的とする生成物が得られる。なお、図5に示すように、比WP/TPと収率との間には相関性がある。比WP/TPが0に近い場合には、収率が極めて低く、比WP/TPが大きくなるに従い収率は漸増し、やがて微増または一定になる。漸増する収率が一定になる比WP/TPが3である。したがって、比WP/TPは3以上であることが好ましいと言える。 Since the ratio determined by the ratio WP / TP is 3 or more, the photoreaction proceeds more effectively and the desired product can be obtained in a high yield. As shown in FIG. 5, there is a correlation between the ratio WP / TP and the yield. When the ratio WP / TP is close to 0, the yield is extremely low, and the yield gradually increases as the ratio WP / TP increases, and then slightly increases or becomes constant. The ratio WP / TP at which the gradually increasing yield becomes constant is 3. Therefore, it can be said that the ratio WP / TP is preferably 3 or more.

扁平流路P1の流路厚みTPが1mm以上であるから、1mm未満である場合に比べて、流量が大きくても低い圧力損失で処理することができる。また、扁平流路P1の流路厚みTPが20mm以下であることにより、20mmを超える場合に比べて、扁平流路P1の最深部(射出面13aからの距離が最も大きい箇所)まで十分な照度で光が照射される。また、扁平流路P1はLP/WPが300以下であるから、300を超える場合に比べて、流量が大きくても低い圧力損失で処理することができる。 Since the flow path thickness TP of the flat flow path P1 is 1 mm or more, it is possible to process with a lower pressure loss even if the flow rate is large, as compared with the case where the flow rate is less than 1 mm. Further, since the flow path thickness TP of the flat flow path P1 is 20 mm or less, sufficient illuminance to the deepest part of the flat flow path P1 (the place where the distance from the injection surface 13a is the largest) is sufficient as compared with the case where it exceeds 20 mm. Is illuminated with light. Further, since the flat flow path P1 has an LP / WP of 300 or less, it can be processed with a low pressure loss even if the flow rate is large, as compared with the case where the LP / WP exceeds 300.

上記の例は、第1板状部材41及び第2板状部材42を垂直姿勢で配した場合であるが、垂直姿勢に限られず、水平姿勢でもよい。ただし、前述の空気の排除効果を得る観点では、起立した状態である方が水平姿勢であるよりも好ましい。具体的には、図6に示すように、第1板状部材41と水平ラインHLとのなす角θ(ただし、0°≦θ≦180°,単位は°である)は0°<θ<180°であることが好ましく、0°<θ≦90°であることがより好ましい。第2板状部材42は第1板状部材41と平行に配するから、第2板状部材42の水平ラインHLとのなす角も上記なす角θと同じである。また、第3板状部材43,第4板状部材44,光源17の射出面13aのそれぞれと水平ラインHLとのなす角も上記なす角θと同じである。なお、上記なす角θは、図6に示すように、第1板状部材41の背面側表面と水平ラインHLとのなす角である。 The above example is a case where the first plate-shaped member 41 and the second plate-shaped member 42 are arranged in a vertical posture, but the posture is not limited to the vertical posture and may be a horizontal posture. However, from the viewpoint of obtaining the above-mentioned air removal effect, an upright posture is preferable to a horizontal posture. Specifically, as shown in FIG. 6, the angle θ (where 0 ° ≤ θ ≤ 180 °, the unit is °) formed by the first plate-shaped member 41 and the horizontal line HL is 0 ° <θ <. It is preferably 180 °, and more preferably 0 ° <θ≤90 °. Since the second plate-shaped member 42 is arranged in parallel with the first plate-shaped member 41, the angle formed by the second plate-shaped member 42 with the horizontal line HL is also the same as the angle θ formed above. Further, the angle formed by each of the third plate-shaped member 43, the fourth plate-shaped member 44, and the emission surface 13a of the light source 17 and the horizontal line HL is the same as the angle θ formed above. As shown in FIG. 6, the formed angle θ is the angle formed by the back surface of the first plate-shaped member 41 and the horizontal line HL.

上記の例では、光源ユニット13からの光すなわち照射光を反射する第2板状部材42を用いているが、光を透過する第2板状部材を用いてもよい。図7のユニット本体61は、第2板状部材42の代わりに、照射光を透過する第2板状部材62を備える。なお、図7においては、前述の例と同じ部材等については同じ符号を付し、説明を略す。 In the above example, the second plate-shaped member 42 that reflects the light from the light source unit 13, that is, the irradiation light is used, but the second plate-shaped member that transmits the light may be used. The unit main body 61 of FIG. 7 includes a second plate-shaped member 62 that transmits irradiation light instead of the second plate-shaped member 42. In FIG. 7, the same members and the like as in the above-mentioned example are designated by the same reference numerals, and the description thereof will be omitted.

本例の第2板状部材62は、第1板状部材41及び第3板状部材43と同様にガラス製である。さらにユニット本体61は、照射光を反射する反射板を第2板状部材62の背面側に設けており、これにより扁平流路P1を流れる反応対象液11に対する照射量を向上させている。なお、反射板の代わりに、例えば前述のアルミ箔などを用いてもよい。この場合には、第4板状部材44は、反射板63の背面側表面と隙間をもって設けるから、第2板状部材62との間にも反射板63を介して隙間を設けてあることになる。このようにして、第4板状部材44は反射板63を介して第2板状部材62との間に水流路P3を形成する。 The second plate-shaped member 62 of this example is made of glass like the first plate-shaped member 41 and the third plate-shaped member 43. Further, the unit main body 61 is provided with a reflector for reflecting the irradiation light on the back surface side of the second plate-shaped member 62, thereby improving the irradiation amount of the reaction target liquid 11 flowing through the flat flow path P1. In addition, instead of the reflector, for example, the above-mentioned aluminum foil or the like may be used. In this case, since the fourth plate-shaped member 44 is provided with a gap from the back surface of the reflector 63, a gap is also provided between the fourth plate-shaped member 44 and the second plate-shaped member 62 via the reflector 63. Become. In this way, the fourth plate-shaped member 44 forms a water flow path P3 with the second plate-shaped member 62 via the reflector 63.

上記の各例は、扁平流路P1に対して一方向から光を照射する例であるが、光は複数の方向から照射してもよい。例えば、背面側からも光を照射する態様もある。図8に示す光反応装置70は、ユニット本体21の代わりにユニット本体71を備え、かつ、2つの光源ユニット13A,13Bを備える。光源ユニット13A,13Bのそれぞれは、光源ユニット13と同じであるので、説明は略す。以下の説明において、これら2つの光源ユニットを区別しない場合には光源ユニット13と記載する。また、図8においては、前述の例と同じ部材等については同じ符号を付し、説明を略す。 Each of the above examples is an example of irradiating the flat flow path P1 with light from one direction, but the light may be irradiated from a plurality of directions. For example, there is also a mode of irradiating light from the back side. The photoreactive device 70 shown in FIG. 8 includes a unit main body 71 instead of the unit main body 21, and also includes two light source units 13A and 13B. Since each of the light source units 13A and 13B is the same as the light source unit 13, the description thereof is omitted. In the following description, when these two light source units are not distinguished, they are referred to as a light source unit 13. Further, in FIG. 8, the same members and the like as in the above-mentioned example are designated by the same reference numerals, and the description thereof will be omitted.

ユニット本体71は、ユニット本体21における第2板状部材42の代わりに前述の第2板状部材62を備え、第4板状部材44の代わりに第4板状部材74を備える。この例では、ハウジング27の開口27aに加えて開口27bも光を扁平流路P1に案内するための開口として利用する。光源ユニット13Aと開口27aとが対向する状態に、かつ、光源ユニット13Bと開口27bとが対向する状態に、ユニット本体71と光源ユニット13Aと光源ユニット13Bとが配される。 The unit main body 71 includes the above-mentioned second plate-shaped member 62 in place of the second plate-shaped member 42 in the unit main body 21, and includes a fourth plate-shaped member 74 in place of the fourth plate-shaped member 44. In this example, in addition to the opening 27a of the housing 27, the opening 27b is also used as an opening for guiding light to the flat flow path P1. The unit body 71, the light source unit 13A, and the light source unit 13B are arranged so that the light source unit 13A and the opening 27a face each other and the light source unit 13B and the opening 27b face each other.

本例の第4板状部材74は、第1板状部材41及び第3板状部材43と同様にガラス製である。第4板状部材74のこれ以外の構成は、第4板状部材44と同様である。第4板状部材74は、第2板状部材42に隙間をもって対面する第4板状部材44と同様に、第2板状部材62に隙間をもって対面している。これにより、水流路P3が第2板状部材62と第4板状部材74とにより扁平に形成される。 The fourth plate-shaped member 74 of this example is made of glass like the first plate-shaped member 41 and the third plate-shaped member 43. Other configurations of the fourth plate-shaped member 74 are the same as those of the fourth plate-shaped member 44. The fourth plate-shaped member 74 faces the second plate-shaped member 62 with a gap, similarly to the fourth plate-shaped member 44 facing the second plate-shaped member 42 with a gap. As a result, the water flow path P3 is formed flat by the second plate-shaped member 62 and the fourth plate-shaped member 74.

光の照射量が上記の各例の2倍になるから、光反応の進み具合の観点では、この例の扁平流路P1の流路厚みTPは上記の各例の2倍である0.2mm以上40mm以下の範囲内であってもよい。 Since the amount of light irradiation is twice that of each of the above examples, the flow path thickness TP of the flat flow path P1 of this example is 0.2 mm, which is twice that of each of the above examples, from the viewpoint of the progress of the photoreaction. It may be within the range of 40 mm or less.

上記の光反応装置は、各種の光反応に用いることができる。光反応の例としては、ハロゲン化、還元、環化、クロスカップリング、トリフルオロメチル化などがある。 The above photoreactor can be used for various photoreactions. Examples of photoreactions include halogenation, reduction, cyclization, cross-coupling, trifluoromethylation and the like.

ハロゲン化としては、例えば図9に示す光反応が一例として挙げられる。この反応では、まず、光反応化合物としてのo-トルニトリルを試薬としてのN-ブロモスクシンイミド(NBS)と共に、溶媒としてのアセトニトリルに溶解することにより反応対象液11とする。この反応対象液11を、20℃に温度を調節しながら波長が365nmの光をLEDにより照射する。光反応装置10を用いることにより反応生成物としてのα-ブロモ-o-トルニトリルが81%の収率で得られる。 As an example of halogenation, the photoreaction shown in FIG. 9 can be mentioned as an example. In this reaction, first, o-tolunitrile as a photoreactive compound is dissolved in acetonitrile as a solvent together with N-bromosuccinimide (NBS) as a reagent to prepare a reaction target liquid 11. The reaction target liquid 11 is irradiated with light having a wavelength of 365 nm by an LED while adjusting the temperature to 20 ° C. By using the photoreactor 10, α-bromo-o-tolunitrile as a reaction product can be obtained in a yield of 81%.

10 光反応装置
11 反応対象液
13 光源ユニット
13a 射出面
14 反応ユニット
17 光源
18 支持板
21,61,71 ユニット本体
22 送液部
23 回収部
24 冷却器
27 ハウジング
27a 開口
28 水
41 第1板状部材
42,62 第2板状部材
43 第3板状部材
44,74 第4板状部材
47 反応部
48 温調機構
63 反射板
AL 低照射領域
D1~D3 排出口
LP 流路長
P1 扁平流路
P2,P3 水流路
S1~S3 供給口
TP 流路厚み
W27a 開口幅
WE 射出幅
WP 流路幅
X 流れ方向
Y 幅方向
Z 厚み方向
10 Optical reactor 11 Reaction target liquid 13 Light source unit 13a Injection surface 14 Reaction unit 17 Light source 18 Support plate 21, 61, 71 Unit body 22 Liquid supply unit 23 Recovery unit 24 Cooler 27 Housing 27a Opening 28 Water 41 First plate Members 42, 62 2nd plate-shaped member 43 3rd plate-shaped member 44,74 4th plate-shaped member 47 Reaction part 48 Temperature control mechanism 63 Reflector AL Low irradiation area D1 to D3 Discharge port LP Flow path length P1 Flat flow path P2, P3 Water flow path S1 to S3 Supply port TP Flow path thickness W27a Opening width WE Injection width WP Flow path width X Flow direction Y Width direction Z Thickness direction

Claims (10)

光反応性化合物を含有する反応対象液を流しながら、前記反応対象液に光を照射することにより、光反応させる光反応装置において、
前記光を透過する第1板状部材と、前記第1板状部材と隙間をもって対面した第2板状部材とを有し、前記第1板状部材と前記第2板状部材とにより1組の対向した面が画定された扁平流路が内部に形成されている反応部と、
前記第1板状部材の前記第2板状部材側とは反対側に配され、前記光を射出する複数の光源が面状に配された光源ユニットと、
前記反応部の温度を光源ユニット側から調節する光源側温調機構と
を備え
前記光源側温調機構は、
前記第1板状部材の前記光源ユニット側に、前記第1板状部材と隙間をもって対面した状態で配され、かつ、前記光を透過する第3板状部材と、
前記第3板状部材と前記第1板状部材との間に伝熱媒体を供給する光源側供給部と、
を有する光反応装置。
In a photoreactive device that causes a photoreaction by irradiating the reaction target liquid with light while flowing a reaction target liquid containing a photoreactive compound.
It has a first plate-shaped member that transmits light and a second plate-shaped member that faces the first plate-shaped member with a gap, and a set of the first plate-shaped member and the second plate-shaped member. A reaction part in which a flat flow path in which the facing surfaces of the light is defined is formed inside,
A light source unit arranged on the side opposite to the second plate-shaped member side of the first plate-shaped member and having a plurality of light sources for emitting the light arranged in a plane shape.
A light source side temperature control mechanism that adjusts the temperature of the reaction unit from the light source unit side ,
Equipped with
The light source side temperature control mechanism is
A third plate-shaped member that is arranged on the light source unit side of the first plate-shaped member so as to face the first plate-shaped member with a gap and that transmits the light.
A light source side supply unit that supplies a heat transfer medium between the third plate-shaped member and the first plate-shaped member,
Photoreactive device with.
光反応性化合物を含有する反応対象液を流しながら、前記反応対象液に光を照射することにより、光反応させる光反応装置において、
前記光を透過する第1板状部材と、前記第1板状部材と隙間をもって対面した第2板状部材とを有し、前記第1板状部材と前記第2板状部材とにより1組の対向した面が画定された扁平流路が内部に形成されている反応部と、
前記第1板状部材の前記第2板状部材側とは反対側に配され、前記光を射出する複数の光源が面状に配された光源ユニットと、
前記反応部の温度を光源ユニット側から調節する光源側温調機構と
前記反応部の温度を前記光源ユニット側とは反対側から調節する背面側温調機構と、
を備え、
前記背面側温調機構は、
前記第2板状部材の前記第1板状部材とは反対側に、前記第2板状部材と隙間をもって対面した状態で配される第4板状部材と、
前記第2板状部材と前記第4板状部材との間に伝熱媒体を供給する背面側供給部と、
を有する光反応装置。
In a photoreactive device that causes a photoreaction by irradiating the reaction target liquid with light while flowing a reaction target liquid containing a photoreactive compound.
It has a first plate-shaped member that transmits light and a second plate-shaped member that faces the first plate-shaped member with a gap, and a set of the first plate-shaped member and the second plate-shaped member. A reaction part in which a flat flow path in which the facing surfaces of the light is defined is formed inside,
A light source unit arranged on the side opposite to the second plate-shaped member side of the first plate-shaped member and having a plurality of light sources for emitting the light arranged in a plane shape.
A light source side temperature control mechanism that adjusts the temperature of the reaction unit from the light source unit side ,
A rear temperature control mechanism that adjusts the temperature of the reaction unit from the side opposite to the light source unit side,
Equipped with
The back side temperature control mechanism is
A fourth plate-shaped member arranged on the opposite side of the second plate-shaped member from the first plate-shaped member so as to face the second plate-shaped member with a gap.
A back side supply unit that supplies a heat transfer medium between the second plate-shaped member and the fourth plate-shaped member,
Photoreactive device with.
前記第2板状部材は、前記光を反射する請求項1または2に記載の光反応装置。 The photoreactive device according to claim 1 or 2, wherein the second plate-shaped member reflects the light. 前記第1板状部材と前記第2板状部材とは、起立した姿勢で配される請求項1ないし3のいずれか1項に記載の光反応装置。 The photoreactive device according to any one of claims 1 to 3, wherein the first plate-shaped member and the second plate-shaped member are arranged in an upright posture. 前記扁平流路は、前記反応部の下部に前記反応対象液の供給口として開口し、かつ、前記反応部の上部に排出口として開口している請求項4に記載の光反応装置。 The photoreactive device according to claim 4, wherein the flat flow path is opened as a supply port for the liquid to be reacted at the lower part of the reaction section and as a discharge port at the upper part of the reaction section. 前記扁平流路の前記反応対象液の流れ方向に直交する断面において、長手方向の長さをWPとし、短手方向の長さをTPとするときに、WP/TPで求める比が少なくとも3である請求項1ないし5のいずれか1項に記載の光反応装置。 In the cross section of the flat flow path orthogonal to the flow direction of the reaction target liquid, when the length in the longitudinal direction is WP and the length in the lateral direction is TP, the ratio obtained by WP / TP is at least 3. The photoreactor according to any one of claims 1 to 5. 前記反応部の温度を前記光源ユニット側とは反対側から調節する背面側温調機構を備える請求項1に記載の光反応装置。 The photoreactive device according to claim 1 , further comprising a backside temperature control mechanism that adjusts the temperature of the reaction unit from the side opposite to the light source unit side. 前記背面側温調機構は、
前記第2板状部材の前記第1板状部材とは反対側に、前記第2板状部材と隙間をもって対面した状態で配される第4板状部材と、
前記第2板状部材と前記第4板状部材との間に伝熱媒体を供給する背面側供給部と、
を有する請求項7に記載の光反応装置。
The back side temperature control mechanism is
A fourth plate-shaped member arranged on the opposite side of the second plate-shaped member from the first plate-shaped member so as to face the second plate-shaped member with a gap.
A back side supply unit that supplies a heat transfer medium between the second plate-shaped member and the fourth plate-shaped member,
The photoreactor according to claim 7.
光反応性化合物を含有する反応対象液を流しながら、前記反応対象液に光を照射することにより、光反応させる光反応方法において、
前記光を透過する第1板状部材と、前記第1板状部材と隙間をもって対面した第2板状部材とにより1組の対向した面が画定された扁平流路を内部に備える反応部の前記扁平流路に、前記反応対象液を供給し、
前記扁平流路内を流れている前記反応対象液に対し、前記第1板状部材の前記第2板状部材側とは反対側に配され、前記光を射出する複数の光源が面状に配された光源ユニットにより前記光を照射し、
前記第1板状部材の前記光源ユニット側に、前記第1板状部材と隙間をもって対面した状態で配され、かつ、前記光を透過する第3板状部材と、前記第3板状部材と前記第1板状部材との間に伝熱媒体を供給する光源側供給部とを有する光源側温調機構により前記光源ユニット側から前記反応部の温度を調節する光反応方法。
In a photoreaction method in which a reaction target liquid containing a photoreactive compound is allowed to flow and the reaction target liquid is irradiated with light to cause a photoreaction.
A reaction unit including a flat flow path in which a set of facing surfaces is defined by a first plate-shaped member that transmits light and a second plate-shaped member that faces the first plate-shaped member with a gap. The reaction target liquid is supplied to the flat flow path, and the reaction target liquid is supplied.
A plurality of light sources that are arranged on the side of the first plate-shaped member opposite to the second plate-shaped member side of the reaction target liquid flowing in the flat flow path and emit the light are planar. The light is irradiated by the arranged light source unit,
A third plate-shaped member arranged on the light source unit side of the first plate-shaped member in a state of facing the first plate-shaped member with a gap and transmitting the light, and the third plate-shaped member. A light reaction method for adjusting the temperature of the reaction unit from the light source unit side by a light source side temperature control mechanism having a light source side supply unit for supplying a heat transfer medium between the first plate-shaped member .
光反応性化合物を含有する反応対象液を流しながら、前記反応対象液に光を照射することにより、光反応させる光反応方法において、
前記光を透過する第1板状部材と、前記第1板状部材と隙間をもって対面した第2板状部材とにより1組の対向した面が画定された扁平流路を内部に備える反応部の前記扁平流路に、前記反応対象液を供給し、
前記扁平流路内を流れている前記反応対象液に対し、前記第1板状部材の前記第2板状部材側とは反対側に配され、前記光を射出する複数の光源が面状に配された光源ユニットにより前記光を照射し、
前記光源ユニット側から前記反応部の温度を調節し、
前記反応部の温度を前記光源ユニット側とは反対側から調節する背面側温調機構であって、前記第2板状部材の前記第1板状部材とは反対側に、前記第2板状部材と隙間をもって対面した状態で配される第4板状部材と、前記第2板状部材と前記第4板状部材との間に伝熱媒体を供給する背面側供給部とを有する前記背面側温調機構により前記光源ユニット側とは反対側から前記反応部の温度を調節する光反応方法。
In a photoreaction method in which a reaction target liquid containing a photoreactive compound is allowed to flow and the reaction target liquid is irradiated with light to cause a photoreaction.
A reaction unit including a flat flow path in which a set of facing surfaces is defined by a first plate-shaped member that transmits light and a second plate-shaped member that faces the first plate-shaped member with a gap. The reaction target liquid is supplied to the flat flow path, and the reaction target liquid is supplied.
A plurality of light sources that are arranged on the side of the first plate-shaped member opposite to the second plate-shaped member side of the reaction target liquid flowing in the flat flow path and emit the light are planar. The light is irradiated by the arranged light source unit,
Adjust the temperature of the reaction unit from the light source unit side,
It is a back side temperature control mechanism that adjusts the temperature of the reaction unit from the side opposite to the light source unit side, and the second plate-shaped member is on the side opposite to the first plate-shaped member of the second plate-shaped member. The back surface having a fourth plate-shaped member arranged so as to face the member with a gap, and a back surface side supply unit for supplying a heat transfer medium between the second plate-shaped member and the fourth plate-shaped member. A light reaction method in which the temperature of the reaction unit is adjusted from the side opposite to the light source unit side by a side temperature control mechanism .
JP2020531198A 2018-07-17 2019-06-24 Photoreactive device and method Active JP7075490B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018134050 2018-07-17
JP2018134050 2018-07-17
PCT/JP2019/024967 WO2020017246A1 (en) 2018-07-17 2019-06-24 Photoreaction apparatus and method

Publications (2)

Publication Number Publication Date
JPWO2020017246A1 JPWO2020017246A1 (en) 2021-07-15
JP7075490B2 true JP7075490B2 (en) 2022-05-25

Family

ID=69164048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020531198A Active JP7075490B2 (en) 2018-07-17 2019-06-24 Photoreactive device and method

Country Status (2)

Country Link
JP (1) JP7075490B2 (en)
WO (1) WO2020017246A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512209A (en) 1998-04-17 2002-04-23 シュトゥディエンゲゼルシャフト・コーレ・ミット・ベシュレンクテル・ハフツング Photochemical and thermochemical solar synthesis using flat-bed solar collectors / solar reactors
JP2003200043A (en) 2002-01-04 2003-07-15 Tasuke Iwashita Apparatus for decomposing organic substance by using organic or inorganic el element
JP2004523607A (en) 2000-12-21 2004-08-05 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド Tubular reactor with coaxial cylinder and method of using the same
WO2016056371A1 (en) 2014-10-09 2016-04-14 東レ株式会社 Photochemical reaction device, photochemical reaction method using same, and lactone production method using said method
JP2017127283A (en) 2016-01-22 2017-07-27 株式会社日立製作所 Device for processing cultured product, method for processing cultured product, and apparatus for purifying cultured product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878891A (en) * 1987-06-25 1989-11-07 Baylor Research Foundation Method for eradicating infectious biological contaminants in body tissues
GB2248835A (en) * 1990-10-16 1992-04-22 Dow Stade Gmbh Process for preparing 1,1,1-trichloroethane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512209A (en) 1998-04-17 2002-04-23 シュトゥディエンゲゼルシャフト・コーレ・ミット・ベシュレンクテル・ハフツング Photochemical and thermochemical solar synthesis using flat-bed solar collectors / solar reactors
JP2004523607A (en) 2000-12-21 2004-08-05 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド Tubular reactor with coaxial cylinder and method of using the same
JP2003200043A (en) 2002-01-04 2003-07-15 Tasuke Iwashita Apparatus for decomposing organic substance by using organic or inorganic el element
WO2016056371A1 (en) 2014-10-09 2016-04-14 東レ株式会社 Photochemical reaction device, photochemical reaction method using same, and lactone production method using said method
JP2017127283A (en) 2016-01-22 2017-07-27 株式会社日立製作所 Device for processing cultured product, method for processing cultured product, and apparatus for purifying cultured product

Also Published As

Publication number Publication date
WO2020017246A1 (en) 2020-01-23
JPWO2020017246A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
US9821289B2 (en) Microreactor for photoreactions
US20180155215A1 (en) Sterilization device
JP6681314B2 (en) Water treatment apparatus and water treatment method
US20200230270A1 (en) Uv-led photoreactors with controlled radiation and hydrodynamics and methods for fabrication and use of same
US20220176336A1 (en) Multi-reflector photoreactor for controlled irradiation of fluid
JP6680688B2 (en) Modular flow-through photochemical reactor system
WO1997020179A1 (en) Dispersion type multi-temperature control system and fluid temperature control device applicable to the system
JP6826141B2 (en) Ultraviolet irradiation device
US9370761B2 (en) Microreactor
JP7398243B2 (en) Fluid sterilizer
CN101146605B (en) Device, method and use for continuously carrying out photochemical processes with thin optical layer thicknesses, narrow residence time distribution and high throughputs
JP7075490B2 (en) Photoreactive device and method
US20230107949A1 (en) Polygonal continuous flow reactor for photochemical processes
JP7299101B2 (en) UV irradiation device
JP6676749B2 (en) Apparatus for applying liquid medium irradiated with UV radiation to a substrate
CN108430931B (en) Liquid treatment method and apparatus
WO2021225079A1 (en) Flow-type photoreaction reactor and flow-type photoreaction device
JP2018528471A (en) Apparatus for applying a liquid medium irradiated with UV radiation to a substrate
JP4189684B2 (en) UV irradiation equipment
JP2018528470A (en) Apparatus for applying a liquid medium irradiated with UV radiation to a substrate
US20240140831A1 (en) Water treatment device with internal chamber
CN113019266A (en) Continuous photocatalytic pipeline reactor and method for carrying out trifluoromethylation reaction
KR102134678B1 (en) Apparatus configured to heat liquid and connected to processing equipment by in-line mode
US20240269642A1 (en) Apparatus for carrying out photochemical reactions
CN211141588U (en) Fluid sterilizing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220513

R150 Certificate of patent or registration of utility model

Ref document number: 7075490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150