JP7072970B2 - Phase difference plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel - Google Patents

Phase difference plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel Download PDF

Info

Publication number
JP7072970B2
JP7072970B2 JP2017242483A JP2017242483A JP7072970B2 JP 7072970 B2 JP7072970 B2 JP 7072970B2 JP 2017242483 A JP2017242483 A JP 2017242483A JP 2017242483 A JP2017242483 A JP 2017242483A JP 7072970 B2 JP7072970 B2 JP 7072970B2
Authority
JP
Japan
Prior art keywords
layer
retardation
optical compensation
rth
compensation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017242483A
Other languages
Japanese (ja)
Other versions
JP2019109378A (en
Inventor
秀行 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017242483A priority Critical patent/JP7072970B2/en
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to PCT/JP2018/042824 priority patent/WO2019123948A1/en
Priority to SG11202005242YA priority patent/SG11202005242YA/en
Priority to KR1020207017461A priority patent/KR20200100068A/en
Priority to CN201880081822.3A priority patent/CN111556976B/en
Priority to TW107145658A priority patent/TWI770332B/en
Publication of JP2019109378A publication Critical patent/JP2019109378A/en
Priority to JP2021202965A priority patent/JP2022027908A/en
Application granted granted Critical
Publication of JP7072970B2 publication Critical patent/JP7072970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、位相差板、光学補償層付偏光板、画像表示装置、およびタッチパネル付き画像表示装置に関する。 The present invention relates to a retardation plate, a polarizing plate with an optical compensation layer, an image display device, and an image display device with a touch panel.

近年、薄型ディスプレイの普及と共に、有機ELパネルを搭載した画像表示装置(有機EL表示装置)が提案されている。有機ELパネルは反射性の高い金属層を有しており、外光反射や背景の映り込み等の問題を生じやすい。そこで、光学補償層付偏光板(円偏光板)を視認側に設けることにより、これらの問題を防ぐことが知られている。また、液晶表示パネルの視認側に光学補償層付偏光板を設けることで、視野角を改善することが知られている。一般的な光学補償層付偏光板として、位相差フィルムと偏光子とを、その遅相軸と吸収軸とが用途に応じた所定の角度(例えば、45°)をなすように積層したものが知られている。しかし、従来の位相差フィルムは、光学補償層付偏光板に用いた場合に、斜め方向の色相に所望でない色付きが生じ得るという問題がある。 In recent years, with the spread of thin displays, an image display device (organic EL display device) equipped with an organic EL panel has been proposed. The organic EL panel has a highly reflective metal layer, and tends to cause problems such as external light reflection and background reflection. Therefore, it is known to prevent these problems by providing a polarizing plate with an optical compensation layer (circular polarizing plate) on the visual recognition side. Further, it is known that the viewing angle is improved by providing a polarizing plate with an optical compensation layer on the visual recognition side of the liquid crystal display panel. As a general polarizing plate with an optical compensation layer, a retardation film and a polarizing element are laminated so that their slow-phase axis and absorption axis form a predetermined angle (for example, 45 °) according to the application. Are known. However, the conventional retardation film has a problem that when it is used as a polarizing plate with an optical compensation layer, undesired coloring may occur in the hue in the oblique direction.

特開2016-42185公報Japanese Unexamined Patent Publication No. 2016-42185

本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、斜め方向の色相がニュートラルである画像表示装置を実現し得る位相差板、並びに、そのような位相差板を有する光学補償層付偏光板、画像表示装置、およびタッチパネル装置を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and its main purpose is a retardation plate capable of realizing an image display device having a neutral hue in an oblique direction, and such a retardation plate. It is an object of the present invention to provide a polarizing plate with an optical compensation layer, an image display device, and a touch panel device.

本発明の位相差板は、面内位相差Reが、100nm≦Re(550)≦160nm、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、Nz係数が、Nz(550)<1、0≦|Nz(450)-Nz(550)|≦0.1、および、0≦|Nz(650)-Nz(550)|≦0.1を満たす。
1つの実施形態においては、第1の位相差層と第2の位相差層とが積層された積層構造を有し、上記第1の位相差層は、面内位相差Reが、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、屈折率特性がnx>ny≧nzを満たし、上記第2の位相差層は、厚み方向位相差Rthが、Rth(450)/Rth(550)≦1、および、Rth(650)/Rth(550)≧1を満たし、屈折率特性がnz>nx≧nyを満たす。
本発明の別の局面によれば、光学補償層付偏光板が提供される。この光学補償層付偏光板は、上記位相差板により構成される光学補償層と、偏光子とを有し、上記光学補償層の遅相軸と前記偏光子の吸収軸とのなす角度が35°~55°である。
1つの実施形態においては、上記光学補償層付偏光板は、光学補償層の上記偏光子とは反対側に導電層を有する。
本発明のさらに別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記光学補償層付偏光板を有する。
本発明のさらに別の局面によれば、タッチパネル付き画像表示装置が提供される。このタッチパネル付き画像表示装置は、上記光学補償層付偏光板を有し、上記導電層がタッチパネルセンサーとして機能する。
In the retardation plate of the present invention, the in-plane phase difference Re is 100 nm ≤ Re (550) ≤ 160 nm, Re (450) / Re (550) ≤ 1, and Re (650) / Re (550) ≥ 1. Satisfied and the Nz coefficient is Nz (550) <1, 0 ≦ | Nz (450) -Nz (550) | ≦ 0.1, and 0 ≦ | Nz (650) -Nz (550) | ≦ 0.1 Meet.
In one embodiment, the first retardation layer has a laminated structure in which a first retardation layer and a second retardation layer are laminated, and the first retardation layer has an in-plane retardation Re of Re (450). ) / Re (550) ≦ 1 and Re (650) / Re (550) ≧ 1, the refractive index characteristic satisfies nx> ny ≧ nz, and the second retardation layer has a thickness direction retardation. Rth satisfies Rth (450) / Rth (550) ≦ 1 and Rth (650) / Rth (550) ≧ 1, and the refractive index characteristic satisfies nz> nx ≧ ny.
According to another aspect of the present invention, a polarizing plate with an optical compensation layer is provided. The polarizing plate with an optical compensation layer has an optical compensation layer composed of the retardation plate and a polarizing element, and the angle formed by the slow axis of the optical compensation layer and the absorption axis of the polarizing element is 35. ° to 55 °.
In one embodiment, the polarizing plate with an optical compensation layer has a conductive layer on the opposite side of the optical compensation layer from the polarizing element.
According to yet another aspect of the present invention, an image display device is provided. This image display device has the above-mentioned polarizing plate with an optical compensation layer.
According to yet another aspect of the present invention, an image display device with a touch panel is provided. This image display device with a touch panel has the polarizing plate with the optical compensation layer, and the conductive layer functions as a touch panel sensor.

本発明によれば、位相差板の面内位相差Reが、100nm≦Re(550)≦160nm、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、Nz係数が、Nz(550)<1、0≦|Nz(450)-Nz(550)|≦0.1、および、0≦|Nz(650)-Nz(550)|≦0.1を満たすことにより、光学補償層付偏光板に用いた場合に斜め方向の色相がニュートラルである光学補償層付偏光板を実現し得る。 According to the present invention, the in-plane retardation Re of the retardation plate is 100 nm ≦ Re (550) ≦ 160 nm, Re (450) / Re (550) ≦ 1, and Re (650) / Re (550) ≧. 1 is satisfied, and the Nz coefficient is Nz (550) <1, 0 ≦ | Nz (450) -Nz (550) | ≦ 0.1, and 0 ≦ | Nz (650) -Nz (550) | ≦ 0. By satisfying 1. 1, a polarizing plate with an optical compensation layer having a neutral hue in the diagonal direction when used for a polarizing plate with an optical compensation layer can be realized.

本発明の1つの実施形態による位相差板の概略断面図である。It is the schematic sectional drawing of the retardation plate by one Embodiment of this invention. 本発明の1つの実施形態による光学補償層付偏光板の概略断面図である。It is the schematic sectional drawing of the polarizing plate with an optical compensation layer by one Embodiment of this invention.

以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.

(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(Definition of terms and symbols)
Definitions of terms and symbols herein are as follows.
(1) Refractive index (nx, ny, nz)
"Nx" is the refractive index in the direction in which the refractive index in the plane is maximized (that is, the direction of the slow phase axis), and "ny" is the direction orthogonal to the slow phase axis in the plane (that is, the direction of the phase advance axis). Is the refractive index of, and "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
“Re (λ)” is an in-plane phase difference measured with light having a wavelength of λ nm at 23 ° C. For example, "Re (550)" is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) is obtained by the formula: Re = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in the thickness direction (Rth)
“Rth (λ)” is a phase difference in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, "Rth (550)" is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is obtained by the formula: Rth = (nx-nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.

A.位相差板
本発明の位相差板10は、面内位相差Reが、100nm≦Re(550)≦160nm、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、Nz係数が、Nz(550)<1、0≦|Nz(450)-Nz(550)|≦0.1、および、0≦|Nz(650)-Nz(550)|≦0.1を満たす。すなわち、上記位相差板は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示し、かつ、Nz係数の波長依存性が小さく、広い波長域の測定光に対して屈折率特性がnx>nz>nyの関係を示す。これにより、上記位相差板は、光学補償層付偏光板に用いた場合に斜め方向の色相がニュートラルである光学補償層付偏光板を実現し得る。位相差板は、枚葉状であってもよいし、長尺状であってもよい。
A. Phase difference plate In the phase difference plate 10 of the present invention, the in-plane phase difference Re is 100 nm ≤ Re (550) ≤ 160 nm, Re (450) / Re (550) ≤ 1, and Re (650) / Re (550). ) ≧ 1, and the Nz coefficient is Nz (550) <1, 0 ≦ | Nz (450) -Nz (550) | ≦ 0.1, and 0 ≦ | Nz (650) -Nz (550) | Satisfy ≤0.1. That is, the retardation plate exhibits a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, the wavelength dependence of the Nz coefficient is small, and the refractive index with respect to the measurement light in a wide wavelength range. The characteristic shows the relationship of nx>nz> ny. As a result, the retardation plate can realize a polarizing plate with an optical compensation layer in which the hue in the diagonal direction is neutral when used as a polarizing plate with an optical compensation layer. The retardation plate may have a single-wafer shape or a long shape.

図1は、本発明の1つの実施形態による位相差板10の概略断面図である。代表的には、位相差板10は、第1の位相差層11と第2の位相差層12とが積層された積層構造を有する。この場合、第1の位相差層11は、面内位相差Reが、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、屈折率特性がnx>ny≧nzを満たし、第2の位相差層12は、厚み方向位相差Rthが、Rth(450)/Rth(550)≦1、および、Rth(650)/Rth(550)≧1を満たし、屈折率特性がnz>nx≧nyを満たす。 FIG. 1 is a schematic cross-sectional view of a retardation plate 10 according to one embodiment of the present invention. Typically, the retardation plate 10 has a laminated structure in which the first retardation layer 11 and the second retardation layer 12 are laminated. In this case, in the first retardation layer 11, the in-plane retardation Re satisfies Re (450) / Re (550) ≦ 1 and Re (650) / Re (550) ≧ 1, and has a refractive index characteristic. Satisfies nx> ny ≧ nz, and the thickness direction retardation Rth of the second retardation layer 12 is Rth (450) / Rth (550) ≦ 1 and Rth (650) / Rth (550) ≧ 1. , And the refractive index characteristic satisfies nz> nx ≧ ny.

位相差板の面内位相差Re(550)は、好ましくは120nm~150nmであり、より好ましくは130nm~145nmである。位相差板の面内位相差が上記の範囲内であれば、位相差板と偏光子とを、位相差板の遅相軸方向と偏光子の吸収軸方向とのなす角度が約45°または約135°となるように積層して得られる光学補償層付偏光板は、優れた反射防止特性を実現し得る円偏光板として用いられ得る。 The in-plane retardation Re (550) of the retardation plate is preferably 120 nm to 150 nm, more preferably 130 nm to 145 nm. If the in-plane phase difference of the retardation plate is within the above range, the angle between the retardation plate and the splitter and the slow axis direction of the retardation plate and the absorption axis direction of the polarizing plate is about 45 ° or The polarizing plate with an optical compensation layer obtained by laminating so as to be about 135 ° can be used as a circular polarizing plate capable of realizing excellent antireflection characteristics.

位相差板の面内位相差に関して、Re(450)/Re(550)の値は、好ましくは0.80~0.90であり、より好ましくは0.80~0.88であり、さらに好ましくは0.80~0.86である。Re(650)/Re(550)の値は、好ましくは1.01~1.20であり、より好ましくは1.02~1.15であり、さらに好ましくは1.03~1.10である。これにより、位相差板は、より優れた反射色相を達成することができる。 With respect to the in-plane phase difference of the retardation plate, the value of Re (450) / Re (550) is preferably 0.80 to 0.90, more preferably 0.80 to 0.88, and even more preferably. Is 0.80 to 0.86. The values of Re (650) / Re (550) are preferably 1.01 to 1.20, more preferably 1.02 to 1.15, and even more preferably 1.03 to 1.10. .. Thereby, the retardation plate can achieve a better reflected hue.

位相差板のNz係数は、上記のとおり、Nz(550)<1、0≦|Nz(450)-Nz(550)|≦0.1、および、0≦|Nz(650)-Nz(550)|≦0.1を満たす。Nz(550)は、好ましくは0.3~0.7であり、より好ましくは0.4~0.6であり、さらに好ましくは0.45~0.55であり、特に好ましくは約0.5である。Nz係数がこのような範囲であれば、広い波長域の測定光に対して屈折率特性がnx>nz>nyの関係を示し、これにより、斜め方向の色相がニュートラルであり、かつ、優れた広視野角特性を有する光学補償層付偏光板を実現し得る。 As described above, the Nz coefficients of the retardation plate are Nz (550) <1, 0 ≦ | Nz (450) -Nz (550) | ≦ 0.1, and 0 ≦ | Nz (650) -Nz (550). ) | Satisfy ≤0.1. Nz (550) is preferably 0.3 to 0.7, more preferably 0.4 to 0.6, still more preferably 0.45 to 0.55, and particularly preferably about 0. It is 5. When the Nz coefficient is in such a range, the refractive index characteristic shows the relationship of nx> nz> ny with respect to the measured light in a wide wavelength range, whereby the hue in the diagonal direction is neutral and excellent. A polarizing plate with an optical compensation layer having a wide viewing angle characteristic can be realized.

A-1.第1の位相差層
第1の位相差層は、上記のとおり、面内位相差Reが、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、屈折率特性がnx>ny≧nzを満たす。第1の位相差層の面内位相差Re(550)は、好ましくは100nm~170nmであり、より好ましくは110nm~160nmであり、さらに好ましくは120nm~150nmである。
A-1. First phase difference layer As described above, in the first phase difference layer, the in-plane phase difference Re is Re (450) / Re (550) ≦ 1 and Re (650) / Re (550) ≧ 1. , And the refractive index characteristic satisfies nx> ny ≧ nz. The in-plane retardation Re (550) of the first retardation layer is preferably 100 nm to 170 nm, more preferably 110 nm to 160 nm, and even more preferably 120 nm to 150 nm.

第1の位相差層の面内位相差に関して、Re(450)/Re(550)の値は、好ましくは0.80~0.90であり、より好ましくは0.80~0.88であり、さらに好ましくは0.80~0.86である。Re(650)/Re(550)の値は、好ましくは1.01~1.20であり、より好ましくは1.02~1.15であり、さらに好ましくは1.03~1.10である。 With respect to the in-plane retardation of the first retardation layer, the value of Re (450) / Re (550) is preferably 0.80 to 0.90, more preferably 0.80 to 0.88. , More preferably 0.80 to 0.86. The values of Re (650) / Re (550) are preferably 1.01 to 1.20, more preferably 1.02 to 1.15, and even more preferably 1.03 to 1.10. ..

第1の位相差層は、代表的には、上記の特性を実現し得る任意の適切な樹脂で形成された位相差フィルムである。上記位相差フィルムは、上記特性を実現し得る任意の適切な樹脂フィルムを任意の適切な延伸条件で延伸することにより得られ得る。上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。上記延伸方法、延伸条件を適宜選択することにより、上記所望の光学特性(例えば、屈折率特性、面内位相差、Nz係数)を有する延伸フィルムを得ることができる。 The first retardation layer is typically a retardation film made of any suitable resin capable of achieving the above characteristics. The retardation film can be obtained by stretching any suitable resin film capable of realizing the above characteristics under any suitable stretching conditions. Any suitable stretching method and stretching conditions (for example, stretching temperature, stretching ratio, stretching direction) can be adopted for the stretching. By appropriately selecting the stretching method and stretching conditions, a stretched film having the desired optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient) can be obtained.

位相差フィルムの光弾性係数(の絶対値)は、好ましくは14×10-12Pa-1以下である。位相差フィルムの光弾性係数は、好ましくは1×10-12Pa-1~14×10-12Pa-1であり、より好ましくは2×10-12Pa-1~12×10-12Pa-1である。光弾性係数の絶対値がこのような範囲であれば、高温高湿環境下においても位相差値の変化を抑制することができ、優れた信頼性を実現することができる。また、小さい厚みでも十分な位相差を確保しつつ画像表示装置(特に、有機ELパネル)の屈曲性を維持することができ、さらに、屈曲時の応力による位相差変化(結果として、有機ELパネルの色変化)をより抑制することができる。 The photoelastic coefficient (absolute value) of the retardation film is preferably 14 × 10-12 Pa -1 or less. The photoelastic coefficient of the retardation film is preferably 1 × 10 -12 Pa -1 to 14 × 10 -12 Pa -1 , and more preferably 2 × 10 -12 Pa -1 to 12 × 10 -12 Pa . It is 1 . When the absolute value of the photoelastic coefficient is in such a range, the change in the phase difference value can be suppressed even in a high temperature and high humidity environment, and excellent reliability can be realized. Further, it is possible to maintain the flexibility of the image display device (particularly, the organic EL panel) while ensuring a sufficient phase difference even with a small thickness, and further, the phase difference change due to the stress at the time of bending (as a result, the organic EL panel). Color change) can be further suppressed.

位相差フィルムは、その吸水率が好ましくは3%以下であり、より好ましくは2.5%以下、さらに好ましくは2%以下である。このような吸水率を満足することにより、表示特性の経時変化を抑制することができる。なお、吸水率は、JIS K 7209に準拠して求めることができる。 The water absorption rate of the retardation film is preferably 3% or less, more preferably 2.5% or less, still more preferably 2% or less. By satisfying such a water absorption rate, it is possible to suppress changes in display characteristics over time. The water absorption rate can be obtained in accordance with JIS K 7209.

位相差フィルムは、好ましくは、水分およびガス(例えば酸素)に対するバリア性を有する。延伸フィルムの40℃、90%RH条件下での水蒸気透過率(透湿度)は、好ましくは1.0×10-1g/m/24hr未満である。バリア性の観点からは、透湿度の下限は低いほど好ましい。延伸フィルムの60℃、90%RH条件下でのガスバリア性は、好ましくは1.0×10-7g/m/24hr~0.5g/m/24hrであり、より好ましくは1.0×10-7g/m/24hr~0.1g/m/24hrである。透湿度およびガスバリア性がこのような範囲であれば、光学補償層付偏光板を有機ELパネルに貼り合わせた場合に、当該有機ELパネルを空気中の水分および酸素から良好に保護し得る。なお、透湿度およびガスバリア性はいずれも、JIS K 7126-1に準じて測定され得る。 The retardation film preferably has a barrier property against moisture and gas (eg oxygen). The water vapor permeability (moisture permeability) of the stretched film under the conditions of 40 ° C. and 90% RH is preferably less than 1.0 × 10 -1 g / m 2/24 hr. From the viewpoint of barrier property, it is preferable that the lower limit of the moisture permeability is lower. The gas barrier property of the stretched film under 60 ° C. and 90% RH conditions is preferably 1.0 × 10-7 g / m 2/24 hr to 0.5 g / m 2/24 hr, and more preferably 1.0. × 10-7 g / m 2/24 hr to 0.1 g / m 2/24 hr. When the moisture permeability and the gas barrier property are within such a range, the organic EL panel can be satisfactorily protected from moisture and oxygen in the air when the polarizing plate with an optical compensation layer is attached to the organic EL panel. Both the moisture permeability and the gas barrier property can be measured according to JIS K 7126-1.

位相差フィルムを構成する樹脂としては、例えば、ポリアリレート、ポリイミド、ポリアミド、ポリエステル、ポリビニルアルコール、ポリフマル酸エステル、ノルボルネン樹脂、ポリカーボネート樹脂、セルロース樹脂、環状オレフィン系樹脂およびポリウレタンが挙げられる。これらの樹脂は、単独で用いてもよく組み合わせて用いてもよい。好ましくは、ポリカーボネート樹脂である。上記樹脂の具体例は、例えば特開2015-212828号公報に熱可塑性樹脂として記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 Examples of the resin constituting the retardation film include polyarylate, polyimide, polyamide, polyester, polyvinyl alcohol, polyfumaric acid ester, norbornene resin, polycarbonate resin, cellulose resin, cyclic olefin resin and polyurethane. These resins may be used alone or in combination. A polycarbonate resin is preferable. Specific examples of the above resin are described as thermoplastic resins in, for example, Japanese Patent Application Laid-Open No. 2015-21428. The entire description of the publication is incorporated herein by reference.

上記ポリカーボネート樹脂のガラス転移温度は、110℃以上180℃以下であることが好ましく、より好ましくは120℃以上165℃以下である。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、フィルム成形後に寸法変化を起こす可能性があり、又、得られる有機ELパネルの画像品質を下げる場合がある。ガラス転移温度が過度に高いと、フィルム成形時の成形安定性が悪くなる場合があり、又フィルムの透明性を損なう場合がある。なお、ガラス転移温度は、JIS K 7121(1987)に準じて求められる。 The glass transition temperature of the polycarbonate resin is preferably 110 ° C. or higher and 180 ° C. or lower, more preferably 120 ° C. or higher and 165 ° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, dimensional changes may occur after film molding, and the image quality of the obtained organic EL panel may be deteriorated. If the glass transition temperature is excessively high, the molding stability during film molding may be deteriorated, and the transparency of the film may be impaired. The glass transition temperature is determined according to JIS K 7121 (1987).

延伸方法としては、例えば、横一軸延伸、自由端一軸延伸、固定端二軸延伸、固定端一軸延伸、逐次二軸延伸が挙げられる。好ましくは、固定端一軸延伸である。固定端一軸延伸の具体例としては、樹脂フィルムを長手方向に走行させながら、幅方向(横方向)に延伸する方法が挙げられる。延伸倍率は、好ましくは1.1倍~3.5倍である。延伸温度は、樹脂フィルムのガラス転移温度(Tg)に対し、Tg-30℃~Tg+60℃であることが好ましく、より好ましくはTg-10℃~Tg+50℃である。他の延伸方法としては、長尺状の樹脂フィルムを長手方向に対して所定の角度の方向に連続的に斜め延伸する方法が挙げられる。斜め延伸の方法としては、例えば、特開昭50-83482号公報、特開平2-113920号公報、特開平3-182701号公報、特開2000-9912号公報、特開2002-86554号公報、特開2002-22944号公報等に記載の方法が挙げられる。 Examples of the stretching method include lateral uniaxial stretching, free end uniaxial stretching, fixed end biaxial stretching, fixed end uniaxial stretching, and sequential biaxial stretching. It is preferably fixed-end uniaxial stretching. Specific examples of the fixed-end uniaxial stretching include a method of stretching the resin film in the width direction (lateral direction) while running the resin film in the longitudinal direction. The draw ratio is preferably 1.1 times to 3.5 times. The stretching temperature is preferably Tg-30 ° C to Tg + 60 ° C, more preferably Tg-10 ° C to Tg + 50 ° C with respect to the glass transition temperature (Tg) of the resin film. As another stretching method, a method of continuously diagonally stretching a long resin film in a direction of a predetermined angle with respect to the longitudinal direction can be mentioned. Examples of the method of diagonal stretching include JP-A-50-83482, JP-A-2-113920, JP-A-3-182701, JP-A-2000-9912, and JP-A-2002-86554. Examples thereof include the methods described in JP-A-2002-22944.

位相差フィルム(第1の位相差層)の厚みは、好ましくは10μm~150μmであり、より好ましくは10μm~100μmであり、さらに好ましくは10μm~70μmである。このような厚みであれば、上記所望の面内位相差およびNz係数が得られ得る。 The thickness of the retardation film (first retardation layer) is preferably 10 μm to 150 μm, more preferably 10 μm to 100 μm, and further preferably 10 μm to 70 μm. With such a thickness, the desired in-plane phase difference and Nz coefficient can be obtained.

A-2.第2の位相差層
第2の位相差層は、上記のとおり、厚み方向位相差Rthが、Rth(450)/Rth(550)≦1、および、Rth(650)/Rth(550)≧1を満たし、屈折率特性がnz>nx≧nyを満たす。第2の位相差層の厚み方向の位相差Rth(550)は、好ましくは-30nm~-200nmであり、より好ましくは-35nm~-180nmであり、さらに好ましくは-40nm~-160nmである。
A-2. Second phase difference layer As described above, in the second phase difference layer, the thickness direction retardation Rth is Rth (450) / Rth (550) ≦ 1 and Rth (650) / Rth (550) ≧ 1. , And the refractive index characteristic satisfies nz> nx ≧ ny. The retardation Rth (550) in the thickness direction of the second retardation layer is preferably −30 nm to −200 nm, more preferably −35 nm to −180 nm, and further preferably −40 nm to −160 nm.

第2の位相差層の厚み方向位相差に関して、Rth(450)/Rth(550)の値は、好ましくは0.70~0.90であり、より好ましくは0.72~0.88であり、さらに好ましくは0.74~0.86である。Rth(650)/Rth(550)の値は、好ましくは1.01~1.20であり、より好ましくは1.02~1.15であり、さらに好ましくは1.03~1.10である。 With respect to the thickness direction retardation of the second retardation layer, the value of Rth (450) / Rth (550) is preferably 0.70 to 0.90, more preferably 0.72 to 0.88. , More preferably 0.74 to 0.86. The values of Rth (650) / Rth (550) are preferably 1.01 to 1.20, more preferably 1.02 to 1.15, and even more preferably 1.03 to 1.10. ..

第2の位相差層は、代表的には、上記の特性を実現し得る液晶化合物の配向固化層により構成され得る。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。1つの実施形態においては、第2の位相差層は、好ましくは、ホメオトロピック配向に固定された液晶材料を含み得る。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該位相差層の形成方法の具体例としては、例えば、特許第5826759号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。また、他の具体例としては、特許第5401032号公報、特開2015-200861号公報、特開2015-169875号公報に記載されており、これらの公報は、その全体の記載が本明細書に参考として援用される。第2の位相差層の厚みは、好ましくは0.5μm~50μmであり、より好ましくは0.5μm~40μmであり、さらに好ましくは0.5μm~30μmである。 The second retardation layer may be typically composed of an oriented solidified layer of a liquid crystal compound capable of achieving the above characteristics. As used herein, the term "aligned solidified layer" refers to a layer in which a liquid crystal compound is oriented in a predetermined direction within the layer and the oriented state is fixed. In one embodiment, the second retardation layer may preferably include a liquid crystal material immobilized in a homeotropic orientation. The liquid crystal material (liquid crystal compound) that can be homeotropically oriented may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the liquid crystal compound and the method for forming the retardation layer are described in, for example, Japanese Patent No. 5826759. The entire description of the publication is incorporated herein by reference. Further, as other specific examples, Japanese Patent No. 5401032, Japanese Patent Application Laid-Open No. 2015-20861, and Japanese Patent Application Laid-Open No. 2015-169875 are described, and the entire description of these publications is described in the present specification. It is used as a reference. The thickness of the second retardation layer is preferably 0.5 μm to 50 μm, more preferably 0.5 μm to 40 μm, and even more preferably 0.5 μm to 30 μm.

B.光学補償層付偏光板
図2は、本発明の1つの実施形態による光学補償層付偏光板の概略断面図である。本実施形態の光学補償層付偏光板100は、偏光子20と光学補償層10Aとを備える。光学補償層10Aは、上記A項に記載の位相差板からなる。1つの実施形態においては、光学補償層の遅相軸と偏光子の吸収軸とのなす角度が35°~55°である。実用的には、図示例のように、偏光子20の光学補償層10Aと反対側に保護層30が設けられ得る。また、光学補償層付偏光板は、偏光子20と光学補償層10Aとの間に別の保護層(内側保護層とも称する)を備えてもよい。図示例においては、内側保護層は省略されている。この場合、光学補償層10Aが内側保護層としても機能し得る。このような構成であれば、光学補償層付偏光板のさらなる薄型化が実現され得る。さらに、必要に応じて、光学補償層10Aの偏光子20と反対側(すなわち、光学補償層10Aの外側)に導電層および基材をこの順に設けてもよい(いずれも図示せず)。基材は、導電層に密着積層されている。本明細書において「密着積層」とは、2つの層が接着層(例えば、接着剤層、粘着剤層)を介在することなく直接かつ固着して積層されていることをいう。導電層および基材は、代表的には、基材と導電層との積層体として光学補償層付偏光板100に導入され得る。導電層および基材をさらに設けることにより、光学補償層付偏光板100は、インナータッチパネル付き画像表示装置に好適に用いられ得る。
B. A polarizing plate with an optical compensation layer FIG. 2 is a schematic cross-sectional view of a polarizing plate with an optical compensation layer according to one embodiment of the present invention. The polarizing plate 100 with an optical compensation layer of the present embodiment includes a polarizing element 20 and an optical compensation layer 10A. The optical compensation layer 10A is made of the retardation plate according to the above item A. In one embodiment, the angle formed by the slow axis of the optical compensation layer and the absorption axis of the polarizing element is 35 ° to 55 °. Practically, as shown in the illustrated example, the protective layer 30 may be provided on the side opposite to the optical compensation layer 10A of the polarizing element 20. Further, the polarizing plate with an optical compensation layer may be provided with another protective layer (also referred to as an inner protective layer) between the polarizing element 20 and the optical compensation layer 10A. In the illustrated example, the inner protective layer is omitted. In this case, the optical compensation layer 10A can also function as an inner protective layer. With such a configuration, further reduction in thickness of the polarizing plate with an optical compensation layer can be realized. Further, if necessary, a conductive layer and a base material may be provided in this order on the opposite side of the optical compensation layer 10A from the polarizing element 20 (that is, outside the optical compensation layer 10A) (neither is shown). The base material is closely laminated to the conductive layer. As used herein, the term "adhesive lamination" means that two layers are directly and fixedly laminated without intervening an adhesive layer (for example, an adhesive layer and an adhesive layer). The conductive layer and the base material can be typically introduced into the polarizing plate 100 with an optical compensation layer as a laminate of the base material and the conductive layer. By further providing the conductive layer and the base material, the polarizing plate 100 with an optical compensation layer can be suitably used for an image display device with an inner touch panel.

B-1.偏光子
偏光子20としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体を用いて作製されてもよい。
B-1. Polarizer As the splitter 20, any suitable polarizing element may be adopted. For example, the resin film forming the polarizing element may be a single-layer resin film, or may be produced by using a laminated body having two or more layers.

単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of the polarizing element composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer-based partially saponified film. Examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine and a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride. Preferably, since the PVA-based film is excellent in optical properties, a polarizing element obtained by dyeing a PVA-based film with iodine and uniaxially stretching it is used.

上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution. The draw ratio of the uniaxial stretching is preferably 3 to 7 times. The stretching may be performed after the dyeing treatment or may be performed while dyeing. Further, it may be dyed after being stretched. If necessary, the PVA-based film is subjected to a swelling treatment, a crosslinking treatment, a cleaning treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt and blocking inhibitor on the surface of the PVA-based film, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.

積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizing element obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin. Examples thereof include a polarizing element obtained by using a laminate with a PVA-based resin layer coated and formed on a base material. The ligand obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying the resin base material. It is produced by forming a PVA-based resin layer on top of the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further comprise, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution. The obtained resin base material / polarizing element laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizing element), and the resin base material is peeled off from the resin base material / polarizing element laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface and used. Details of the method for producing such a polarizing element are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of the publication is incorporated herein by reference.

偏光子の厚みは、好ましくは25μm以下であり、より好ましくは1μm~12μmであり、さらに好ましくは3μm~12μmであり、特に好ましくは3μm~8μmである。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。 The thickness of the splitter is preferably 25 μm or less, more preferably 1 μm to 12 μm, still more preferably 3 μm to 12 μm, and particularly preferably 3 μm to 8 μm. When the thickness of the splitter is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained.

偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、上記のとおり43.0%~46.0%であり、好ましくは44.5%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The splitter preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance of the polarizing element is 43.0% to 46.0%, preferably 44.5% to 46.0%, as described above. The degree of polarization of the polarizing element is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.

B-2.保護層
保護層30は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
B-2. Protective layer The protective layer 30 is made of any suitable film that can be used as a protective layer for the stator. Specific examples of the material that is the main component of the film include cellulosic resins such as triacetylcellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, and polysulfones. , Polyester-based, polycarbonate-based, polyolefin-based, (meth) acrylic-based, acetate-based transparent resins and the like. Further, thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned. In addition to this, for example, glassy polymers such as siloxane-based polymers can also be mentioned. Further, the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As the material of this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. Can be used, and examples thereof include a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film can be, for example, an extruded product of the above resin composition.

保護層30には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、保護層30には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、光学補償層付偏光板は、屋外で用いられ得る画像表示装置にも好適に適用され得る。 The protective layer 30 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary. Further / or, if necessary, the protective layer 30 is provided with a process for improving visibility when visually recognizing through polarized sunglasses (typically, a (elliptical) circular polarization function is provided, and an ultra-high phase difference is provided. May be given). By performing such processing, excellent visibility can be realized even when the display screen is visually recognized through a polarizing lens such as polarized sunglasses. Therefore, the polarizing plate with an optical compensation layer can be suitably applied to an image display device that can be used outdoors.

保護層30の厚みは、代表的には5mm以下であり、好ましくは1mm以下、より好ましくは1μm~500μm、さらに好ましくは5μm~150μmである。なお、表面処理が施されている場合、保護層の厚みは、表面処理層の厚みを含めた厚みである。 The thickness of the protective layer 30 is typically 5 mm or less, preferably 1 mm or less, more preferably 1 μm to 500 μm, and even more preferably 5 μm to 150 μm. When the surface treatment is applied, the thickness of the protective layer is the thickness including the thickness of the surface treatment layer.

偏光子20と光学補償層10Aとの間に内側保護層が設けられる場合、当該内側保護層は、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。内側保護層は、光学的に等方性である限り、任意の適切な材料で構成され得る。当該材料は、例えば、保護層30に関して上記した材料から適切に選択され得る。 When an inner protective layer is provided between the polarizing element 20 and the optical compensation layer 10A, it is preferable that the inner protective layer is optically isotropic. As used herein, "optically isotropic" means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is -10 nm to +10 nm. say. The inner protective layer may be constructed of any suitable material as long as it is optically isotropic. The material may be appropriately selected from the materials described above with respect to, for example, the protective layer 30.

内側保護層の厚みは、好ましくは5μm~200μm、より好ましくは10μm~100μm、さらに好ましくは15μm~95μmである。 The thickness of the inner protective layer is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm, and even more preferably 15 μm to 95 μm.

B-3.導電層または基材付導電層
導電層は、必要に応じてパターン化され得る。パターン化によって、導通部と絶縁部とが形成され得る。結果として、電極が形成され得る。電極は、タッチパネルへの接触を感知するタッチセンサー電極として機能し得る。パターンの形状はタッチパネル(例えば、静電容量方式タッチパネル)として良好に動作するパターンが好ましい。具体例としては、特表2011-511357号公報、特開2010-164938号公報、特開2008-310550号公報、特表2003-511799号公報、特表2010-541109号公報に記載のパターンが挙げられる。
B-3. Conductive layer or conductive layer with substrate The conductive layer can be patterned as needed. By patterning, a conductive portion and an insulating portion can be formed. As a result, electrodes can be formed. The electrode can function as a touch sensor electrode that senses contact with the touch panel. The shape of the pattern is preferably a pattern that operates well as a touch panel (for example, a capacitive touch panel). Specific examples include the patterns described in JP-A-2011-511357, JP-A-2010-164938, JP-A-2008-310550, JP-A-2003-511799, and JP-A-2010-541109. Will be.

導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。成膜後、必要に応じて加熱処理(例えば、100℃~200℃)を行ってもよい。加熱処理を行うことにより、非晶質膜が結晶化し得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物が挙げられる。インジウム酸化物には2価金属イオンまたは4価金属イオンがドープされていてもよい。好ましくはインジウム系複合酸化物であり、より好ましくはインジウム-スズ複合酸化物(ITO)である。インジウム系複合酸化物は、可視光領域(380nm~780nm)で高い透過率(例えば、80%以上)を有し、かつ、単位面積当たりの表面抵抗値が低いという特徴を有している。 The conductive layer forms a metal oxide film on any suitable substrate by any suitable film forming method (for example, vacuum deposition method, sputtering method, CVD method, ion plating method, spray method, etc.). It can be formed as a film. After the film formation, heat treatment (for example, 100 ° C. to 200 ° C.) may be performed if necessary. The amorphous film can be crystallized by performing the heat treatment. Examples of the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimon composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. The indium oxide may be doped with divalent metal ions or tetravalent metal ions. It is preferably an indium-based composite oxide, and more preferably an indium-tin composite oxide (ITO). The indium-based composite oxide has a high transmittance (for example, 80% or more) in the visible light region (380 nm to 780 nm), and has a feature that the surface resistance value per unit area is low.

導電層が金属酸化物を含む場合、該導電層の厚みは、好ましくは50nm以下であり、より好ましくは35nm以下である。導電層の厚みの下限は、好ましくは10nmである。 When the conductive layer contains a metal oxide, the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less. The lower limit of the thickness of the conductive layer is preferably 10 nm.

導電層の表面抵抗値は、好ましくは300Ω/□以下であり、より好ましくは150Ω/□以下であり、さらに好ましくは100Ω/□以下である。 The surface resistance value of the conductive layer is preferably 300 Ω / □ or less, more preferably 150 Ω / □ or less, and further preferably 100 Ω / □ or less.

導電層は、上記基材から光学補償層に転写されて導電層単独で光学補償層付偏光板の構成層とされてもよく、基材との積層体(基材付導電層)として光学補償層に積層されてもよい。代表的には、上記のとおり、導電層および基材は、基材付導電層として光学補償層付偏光板に導入され得る。 The conductive layer may be transferred from the base material to the optical compensation layer to form a constituent layer of a polarizing plate with an optical compensation layer by itself, and may be optically compensated as a laminate with the base material (conductive layer with a base material). It may be laminated in a layer. Typically, as described above, the conductive layer and the base material can be introduced into the polarizing plate with an optical compensation layer as the conductive layer with a base material.

基材を構成する材料としては、任意の適切な樹脂が挙げられる。好ましくは、透明性に優れた樹脂である。具体例としては、環状オレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエステル系樹脂、アクリル系樹脂が挙げられる。 Examples of the material constituting the base material include any suitable resin. A resin having excellent transparency is preferable. Specific examples include cyclic olefin resins, polycarbonate resins, cellulosic resins, polyester resins, and acrylic resins.

好ましくは、上記基材は光学的に等方性であり、したがって、導電層は等方性基材付導電層として光学補償層付偏光板に用いられ得る。光学的に等方性の基材(等方性基材)を構成する材料としては、例えば、ノルボルネン系樹脂やオレフィン系樹脂などの共役系を有さない樹脂を主骨格としている材料、ラクトン環やグルタルイミド環などの環状構造をアクリル系樹脂の主鎖中に有する材料などが挙げられる。このような材料を用いると、等方性基材を形成した際に、分子鎖の配向に伴う位相差の発現を小さく抑えることができる。 Preferably, the substrate is optically isotropic, and therefore the conductive layer can be used as a conductive layer with an isotropic substrate in a polarizing plate with an optical compensation layer. Materials that constitute an optically isotropic base material (isotropic base material) include, for example, a material whose main skeleton is a resin that does not have a conjugate system, such as a norbornene-based resin and an olefin-based resin, a lactone ring, and glutar. Examples thereof include materials having a cyclic structure such as an imide ring in the main chain of an acrylic resin. When such a material is used, when an isotropic substrate is formed, the expression of the phase difference due to the orientation of the molecular chains can be suppressed to be small.

基材の厚みは、好ましくは10μm~200μmであり、より好ましくは20μm~60μmである。 The thickness of the base material is preferably 10 μm to 200 μm, more preferably 20 μm to 60 μm.

B-4.その他
本発明の光学補償層付偏光板を構成する各層の積層には、任意の適切な粘着剤層または接着剤層が用いられる。粘着剤層は、代表的にはアクリル系粘着剤で形成される。接着剤層は、代表的にはポリビニルアルコール系接着剤で形成される。
B-4. Others Any suitable adhesive layer or adhesive layer is used for laminating each layer constituting the polarizing plate with an optical compensation layer of the present invention. The pressure-sensitive adhesive layer is typically formed of an acrylic pressure-sensitive adhesive. The adhesive layer is typically formed of a polyvinyl alcohol-based adhesive.

図示しないが、光学補償層付偏光板100の光学補償層10A側には、粘着剤層が設けられていてもよい。粘着剤層が予め設けられていることにより、他の光学部材(例えば、有機ELセル)へ容易に貼り合わせることができる。なお、この粘着剤層の表面には、使用に供されるまで、剥離フィルムが貼り合わされていることが好ましい。 Although not shown, an adhesive layer may be provided on the optical compensation layer 10A side of the polarizing plate 100 with an optical compensation layer. Since the pressure-sensitive adhesive layer is provided in advance, it can be easily attached to another optical member (for example, an organic EL cell). It is preferable that a release film is bonded to the surface of the pressure-sensitive adhesive layer until it is used.

C.画像表示装置
本発明の画像表示装置は、表示セルと、該表示セルの視認側に上記B項に記載の光学補償層付偏光板と、を備える。光学補償層付偏光板は、光学補償層が表示セル側となるように(偏光子が視認側となるように)積層されている。導電層を有する光学補償層付偏光板を備える画像表示装置は、導電層がタッチパネルセンサーとして機能することにより、表示セル(例えば、液晶セル、有機ELセル)と偏光子との間にタッチセンサーが組み込まれた、いわゆるインナータッチパネル付き画像表示装置を構成し得る。
C. Image Display Device The image display device of the present invention includes a display cell and a polarizing plate with an optical compensation layer according to the above item B on the visual recognition side of the display cell. The polarizing plate with an optical compensation layer is laminated so that the optical compensation layer is on the display cell side (the polarizing element is on the visual recognition side). In an image display device including a polarizing plate with an optical compensation layer having a conductive layer, the conductive layer functions as a touch panel sensor, so that a touch sensor is placed between a display cell (for example, a liquid crystal cell or an organic EL cell) and a polarizing element. A built-in so-called image display device with an inner touch panel may be configured.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)厚み
ダイヤルゲージ(PEACOCK社製、製品名「DG-205 type pds-2」)を用いて測定した。
(2)位相差
各位相差板から50mm×50mmのサンプルを切り出して測定サンプルとし、Axometrics社製のAxoscanを用いて測定した。測定波長は450nm、550nm、650nm、測定温度は23℃であった。
また、アタゴ社製のアッベ屈折率計を用いて平均屈折率を測定し、得られた位相差値から屈折率nx、ny、nz、およびNz係数を算出した。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic is as follows. Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are based on weight.
(1) Thickness Measured using a dial gauge (manufactured by PEACOCK, product name "DG-205 type pds-2").
(2) Phase difference A sample of 50 mm × 50 mm was cut out from each retardation plate and used as a measurement sample, and measured using Axoscan manufactured by Axometrics. The measurement wavelengths were 450 nm, 550 nm and 650 nm, and the measurement temperature was 23 ° C.
Further, the average refractive index was measured using an Abbe refractive index meter manufactured by Atago Co., Ltd., and the refractive indexes nx, ny, nz, and Nz coefficients were calculated from the obtained phase difference values.

[実施例1]
1.ポリカーボネート樹脂の作製
撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン(化合物3)29.60質量部(0.046mol)、ISB 29.21質量部(0.200mol)、SPG 42.28質量部(0.139mol)、DPC 63.77質量部(0.298mol)、酢酸カルシウム1水和物1.19×10-2質量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネートを水中に押し出し、ストランドをカッティングしてペレットを得た。
得られたポリカーボネート樹脂のガラス転移温度は130℃であった。
2.位相差板の作製
(1)第1の位相差層として用いる位相差フィルムの作製
得られたポリカーボネート樹脂を単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅300mm、設定温度:220℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、長さ3m、幅300mm、厚み120μmのポリカーボネート樹脂フィルムを作製した。得られたポリカーボネートフィルムを、長さ150mm、幅120mmに切り出し、ラボストレッチャーKARO IV(Bruckner社製)を用いて、温度134℃、倍率2.8倍で固定端一軸延伸を行い、位相差フィルム(厚み:47μm)を得た。
得られた位相差フィルムは、nx>ny>nzの屈折率特性を示し、Re(450)は119nm、Re(550)は139nm、Re(650)は147nmであり、Nz(450)は1.08、Nz(550)は1.13、Nz(650)は1.15であった。
また、得られた位相差フィルムのRe(450)/Re(550)は0.86、Re(650)/Re(550)は1.06であった。
(2)第2の位相差層として用いる液晶固化層の作製
特許5401032号公報の実施例2に従って液晶塗工液を調製し、基材上に液晶固化層(厚み:0.9μm)を形成した。
得られた液晶固化層のRe(550)は0nm、Rth(550)は-45nmであり、nz>nx=nyの屈折率特性を示した。また液晶固化層のRth(450)/Rth(550)は0.79、Rth(650)/Rth(550)は1.07であった。
(3)位相差板の作製
上記位相差フィルムに、アクリル系粘着剤を介して上記液晶固化層を貼り合わせた後、上記基材フィルムを除去して、位相差フィルムに液晶固化層が転写されてなる位相差板(厚み:48μm)を得た。
得られた位相差板のRe(450)は120nm、Re(550)は141nm、Re(650)は150nmであり、Nz(450)は0.76、Nz(550)は0.79、Nz(650)は0.81であった。
3.導電層の作製
上記位相差板の液晶固化層側の表面に、インジウム-スズ複合酸化物からなる透明導電層(厚み20nm)をスパッタリングにより形成し、位相差フィルム/液晶固化層/導電層の積層体を作製した。具体的な手順は以下のとおりである:ArおよびO(流量比はAr:O=99.9:0.1)を導入した真空雰囲気下(0.40Pa)で、10重量%の酸化スズと90重量%の酸化インジウムとの焼結体をターゲットとして用いて、フィルム温度を130℃とし、水平磁場を100mTとするRF重畳DCマグネトロンスパッタリング法(放電電圧150V、RF周波数13.56MHz、DC電力に対するRF電力の比(RF電力/DC電力)は0.8)を用いた。得られた透明導電層を150℃温風オーブンにて加熱して結晶転化処理を行った。
4.偏光子の作製
厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの偏光子を作製した。
具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる偏光子の単体透過率が45.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。更に、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。また、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、乾燥処理は70℃で5分間乾燥させて偏光子を得た。
5.光学補償層付偏光板の作製
上記偏光子の片側に、ポリビニルアルコール系接着剤を介してトリアセチルセルロースフィルム(厚み40μm、コニカミノルタ社製、商品名「KC4UYW」)を貼り合わせた。偏光子のもう片側に、ポリビニルアルコール系接着剤を介して上記位相差板の位相差フィルム側を貼り合わせた。ここで、位相差フィルムの遅相軸が偏光子の吸収軸に対して反時計回りに45°となるように貼り合わせた。
このようにして、保護層/偏光子/位相差フィルム/液晶固化層/導電層の積層構造を有する光学補償層付偏光板を得た。
6.画像表示装置代替品の作製
有機EL表示装置の代替品を以下のようにして作製した。ガラス板に、アルミ蒸着フィルム(東レフィルム加工社製、商品名「DMS蒸着X-42」、厚み50μm)を粘着剤で貼り合せ、有機EL表示装置の代替品とした。得られた光学補償層付偏光板の導電層側にアクリル系粘着剤で粘着剤層を形成し、寸法50mm×50mmに切り出し、有機EL表示装置代替品に実装した。
[Example 1]
1. 1. Preparation of Polycarbonate Resin Polymerization was carried out using a batch polymerization apparatus consisting of two vertical reactors equipped with a stirring blade and a reflux condenser controlled at 100 ° C. Bis [9- (2-phenoxycarbonylethyl) fluoren-9-yl] methane (Compound 3) 29.60 parts by mass (0.046 mol), ISB 29.21 parts by mass (0.200 mol), SPG 42.28 parts by mass Parts (0.139 mol), DPC 63.77 parts by mass (0.298 mol), and calcium acetate monohydrate 1.19 × 10 −2 parts by mass (6.78 × 10-5 mol) were charged. After substituting nitrogen under reduced pressure in the reactor, heating was performed with a heat medium, and stirring was started when the internal temperature reached 100 ° C. The internal temperature was brought to 220 ° C. 40 minutes after the start of the temperature rise, and the depressurization was started at the same time as controlling to maintain this temperature, and the temperature was 13.3 kPa 90 minutes after reaching 220 ° C. The phenol vapor produced by the polymerization reaction was guided to a reflux cooler at 100 ° C., the monomer component contained in a small amount in the phenol vapor was returned to the reactor, and the non-condensed phenol vapor was guided to a condenser at 45 ° C. for recovery. Nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, and then the oligomerized reaction solution in the first reactor was transferred to the second reactor. Then, the temperature rise and depressurization in the second reactor were started, and the internal temperature was 240 ° C. and the pressure was 0.2 kPa in 50 minutes. Then, the polymerization was allowed to proceed until the stirring power became a predetermined value. When the predetermined power was reached, nitrogen was introduced into the reactor to repressurize, the produced polyester carbonate was extruded into water, and the strands were cut to obtain pellets.
The glass transition temperature of the obtained polycarbonate resin was 130 ° C.
2. 2. Fabrication of retardation plate (1) Fabrication of retardation film used as the first retardation layer A single-screw extruder (manufactured by Isuzu Kakohki Co., Ltd., screw diameter 25 mm, cylinder set temperature: 220 ° C.), Polycarbonate resin with a length of 3 m, a width of 300 mm, and a thickness of 120 μm using a film-forming device equipped with a T-die (width 300 mm, set temperature: 220 ° C), chill roll (set temperature: 120 to 130 ° C), and a winder. A film was made. The obtained polycarbonate film was cut into a length of 150 mm and a width of 120 mm, and was subjected to fixed-end uniaxial stretching at a temperature of 134 ° C. and a magnification of 2.8 times using a lab stretcher KARO IV (manufactured by Bruckner). (Thickness: 47 μm) was obtained.
The obtained retardation film exhibited a refractive index characteristic of nx>ny> nz, Re (450) was 119 nm, Re (550) was 139 nm, Re (650) was 147 nm, and Nz (450) was 1. 08, Nz (550) was 1.13, and Nz (650) was 1.15.
The Re (450) / Re (550) of the obtained retardation film was 0.86, and the Re (650) / Re (550) was 1.06.
(2) Preparation of Liquid Crystal Solidified Layer Used as Second Phase Difference Layer A liquid crystal coating liquid was prepared according to Example 2 of Japanese Patent No. 5401032, and a liquid crystal solidified layer (thickness: 0.9 μm) was formed on the substrate. ..
The obtained liquid crystal solidified layer had a Re (550) of 0 nm and an Rth (550) of −45 nm, and exhibited a refractive index characteristic of nz> nx = ny. The Rth (450) / Rth (550) of the liquid crystal solidified layer was 0.79, and the Rth (650) / Rth (550) was 1.07.
(3) Preparation of retardation plate After the liquid crystal solidifying layer is bonded to the retardation film via an acrylic pressure-sensitive adhesive, the base film is removed and the liquid crystal solidifying layer is transferred to the retardation film. A phase difference plate (thickness: 48 μm) was obtained.
The obtained retardation plate has Re (450) of 120 nm, Re (550) of 141 nm, Re (650) of 150 nm, Nz (450) of 0.76, Nz (550) of 0.79, and Nz ( 650) was 0.81.
3. 3. Fabrication of Conductive Layer A transparent conductive layer (thickness 20 nm) made of indium-tin composite oxide is formed on the surface of the retardation plate on the liquid crystal solidified layer side by sputtering, and a retardation film / liquid crystal solidified layer / conductive layer is laminated. The body was made. The specific procedure is as follows: 10 wt% oxidation under vacuum atmosphere (0.40 Pa) with Ar and O 2 (flow ratio Ar: O 2 = 99.9: 0.1) introduced. RF superimposition DC magnetron sputtering method (discharge voltage 150V, RF frequency 13.56MHz, DC) with a film temperature of 130 ° C. and a horizontal magnetic field of 100mT using a sintered body of tin and 90% by weight of indium oxide as a target. The ratio of RF power to power (RF power / DC power) was 0.8). The obtained transparent conductive layer was heated in a warm air oven at 150 ° C. to perform crystal conversion treatment.
4. Fabrication of Polarizer A long roll of polyvinyl alcohol (PVA) resin film (manufactured by Kuraray, product name "PE3000") with a thickness of 30 μm is uniaxially oriented in the longitudinal direction so as to be 5.9 times in the longitudinal direction by a roll stretching machine. While being stretched, it was simultaneously swollen, stained, crosslinked, and washed, and finally dried to prepare a polarizing element having a thickness of 12 μm.
Specifically, the swelling treatment was carried out by stretching 2.2 times while treating with pure water at 20 ° C. Next, the dyeing treatment was carried out in an aqueous solution at 30 ° C. in which the weight ratio of iodine and potassium iodide was adjusted so that the simple substance transmittance of the obtained polarizing element was 45.0% and the weight ratio was 1: 7. However, it was stretched 1.4 times. Further, the cross-linking treatment adopted a two-step cross-linking treatment, and the first-step cross-linking treatment was carried out 1.2 times while being treated with an aqueous solution in which boric acid and potassium iodide were dissolved at 40 ° C. The boric acid content of the aqueous solution of the first-step crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight. The second-step cross-linking treatment was carried out by stretching 1.6 times while treating with an aqueous solution in which boric acid and potassium iodide were dissolved at 65 ° C. The boric acid content of the aqueous solution of the second-step crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight. The washing treatment was carried out with an aqueous potassium iodide solution at 20 ° C. The potassium iodide content of the aqueous solution of the washing treatment was set to 2.6% by weight. Finally, the drying treatment was carried out at 70 ° C. for 5 minutes to obtain a substituent.
5. Preparation of Polarizing Plate with Optical Compensation Layer A triacetyl cellulose film (thickness 40 μm, manufactured by Konica Minolta, trade name “KC4UYW”) was attached to one side of the above-mentioned polarizing element via a polyvinyl alcohol-based adhesive. The retardation film side of the retardation plate was bonded to the other side of the polarizing element via a polyvinyl alcohol-based adhesive. Here, the retardation film was bonded so that the slow axis of the retardation film was 45 ° counterclockwise with respect to the absorption axis of the substituent.
In this way, a polarizing plate with an optical compensation layer having a laminated structure of a protective layer / a splitter / a retardation film / a liquid crystal solidified layer / a conductive layer was obtained.
6. Preparation of substitute for image display device A substitute for organic EL display device was prepared as follows. An aluminum thin-film film (manufactured by Toray Film Processing Co., Ltd., trade name "DMS thin-film X-42", thickness 50 μm) was attached to a glass plate with an adhesive to use it as a substitute for an organic EL display device. A pressure-sensitive adhesive layer was formed on the conductive layer side of the obtained polarizing plate with an optical compensation layer with an acrylic pressure-sensitive adhesive, cut out to a size of 50 mm × 50 mm, and mounted on a substitute for an organic EL display device.

[実施例2]
位相差板の作製工程において、液晶固化層の厚みを1.1μmとすることにより形成した液晶固化層を用いたこと以外は実施例1と同様にして位相差板を得た。
上記液晶固化層のRe(550)は0nm、Rth(550)は-55nmであり、Rth(450)/Rth(550)は0.80、Rth(650)/Rth(550)は1.03であった。
得られた位相差板のRe(450)は120nm、Re(550)は141nm、Re(650)は150nmであり、Nz(450)は0.71、Nz(550)は0.74、Nz(650)は0.76であった。
上記位相差板を用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
[Example 2]
A retardation plate was obtained in the same manner as in Example 1 except that the liquid crystal solidifying layer formed by setting the thickness of the liquid crystal solidifying layer to 1.1 μm was used in the step of manufacturing the retardation plate.
Re (550) of the liquid crystal solidified layer is 0 nm, Rth (550) is -55 nm, Rth (450) / Rth (550) is 0.80, and Rth (650) / Rth (550) is 1.03. there were.
The obtained retardation plate has Re (450) of 120 nm, Re (550) of 141 nm, Re (650) of 150 nm, Nz (450) of 0.71, Nz (550) of 0.74, and Nz ( 650) was 0.76.
A polarizing plate with an optical compensation layer and a substitute for an organic EL display device were obtained in the same manner as in Example 1 except that the above retardation plate was used.

[実施例3]
位相差板の作製工程において、液晶固化層の厚みを1.3μmとすることにより形成した液晶固化層を用いたこと以外は実施例1と同様にして位相差板を得た。
上記液晶固化層のRe(550)は0nm、Rth(550)は-65nmであり、Rth(450)/Rth(550)は0.80、Rth(650)/Rth(550)は1.03であった。
得られた位相差板のRe(450)は120nm、Re(550)は141nm、Re(650)は150nmであり、Nz(450)は0.66、Nz(550)は0.67、Nz(650)は0.70であった。
上記位相差板を用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
[Example 3]
A retardation plate was obtained in the same manner as in Example 1 except that the liquid crystal solidifying layer formed by setting the thickness of the liquid crystal solidifying layer to 1.3 μm was used in the step of manufacturing the retardation plate.
Re (550) of the liquid crystal solidified layer is 0 nm, Rth (550) is -65 nm, Rth (450) / Rth (550) is 0.80, and Rth (650) / Rth (550) is 1.03. there were.
The obtained retardation plate has Re (450) of 120 nm, Re (550) of 141 nm, Re (650) of 150 nm, Nz (450) of 0.66, Nz (550) of 0.67, and Nz ( 650) was 0.70.
A polarizing plate with an optical compensation layer and a substitute for an organic EL display device were obtained in the same manner as in Example 1 except that the above retardation plate was used.

[実施例4]
位相差板の作製工程において、液晶固化層の厚みを1.7μmとすることにより形成した液晶固化層を用いたこと以外は実施例1と同様にして位相差板を得た。
上記液晶固化層のRe(550)は0nm、Rth(550)は-80nmであり、Rth(450)/Rth(550)は0.80、Rth(650)/Rth(550)は1.03であった。
得られた位相差板のRe(450)は121nm、Re(550)は142m、Re(650)は150nmであり、Nz(450)は0.59、Nz(550)は0.60、Nz(650)は0.62であった。
上記位相差板を用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
[Example 4]
A retardation plate was obtained in the same manner as in Example 1 except that the liquid crystal solidifying layer formed by setting the thickness of the liquid crystal solidifying layer to 1.7 μm was used in the step of manufacturing the retardation plate.
Re (550) of the liquid crystal solidified layer is 0 nm, Rth (550) is -80 nm, Rth (450) / Rth (550) is 0.80, and Rth (650) / Rth (550) is 1.03. there were.
The obtained retardation plate has Re (450) of 121 nm, Re (550) of 142 m, Re (650) of 150 nm, Nz (450) of 0.59, Nz (550) of 0.60, and Nz ( 650) was 0.62.
A polarizing plate with an optical compensation layer and a substitute for an organic EL display device were obtained in the same manner as in Example 1 except that the above retardation plate was used.

[実施例5]
位相差板の作製工程において、液晶固化層の厚みを1.9μmとすることにより形成した液晶固化層を用いたこと以外は実施例1と同様にして位相差板を得た。
上記液晶固化層のRe(550)は0nm、Rth(550)は-90nmであり、Rth(450)/Rth(550)は0.80、Rth(650)/Rth(550)は1.03であった。
得られた位相差板のRe(450)は120nm、Re(550)は141m、Re(650)は149nmであり、Nz(450)は0.47、Nz(550)は0.48、Nz(650)は0.50であった。
上記位相差板を用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
[Example 5]
A retardation plate was obtained in the same manner as in Example 1 except that the liquid crystal solidifying layer formed by setting the thickness of the liquid crystal solidifying layer to 1.9 μm was used in the step of manufacturing the retardation plate.
The liquid crystal solidified layer has Re (550) of 0 nm, Rth (550) of −90 nm, Rth (450) / Rth (550) of 0.80, and Rth (650) / Rth (550) of 1.03. there were.
The obtained retardation plate has Re (450) of 120 nm, Re (550) of 141 m, Re (650) of 149 nm, Nz (450) of 0.47, Nz (550) of 0.48, and Nz ( 650) was 0.50.
A polarizing plate with an optical compensation layer and a substitute for an organic EL display device were obtained in the same manner as in Example 1 except that the above retardation plate was used.

[比較例1]
下記化学式(I)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、基材フィルム(ノルボルネン系樹脂フィルム:日本ゼオン(株)製、商品名「ゼオネックス」)に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、基材上に第2の位相差層となる液晶固化層(厚み:1μm)を形成した。この層のRe(550)は0nm、Rth(550)は-100nmであり(nx:1.5326、ny:1.5326、nz:1.6550)、nz>nx=nyの屈折率特性を示した。

Figure 0007072970000001
上記液晶固化層を用いたこと以外は実施例1と同様にして位相差板を得た。
得られた位相差板のRe(450)は119nm、Re(550)は139nm、Re(650)は147nmであり、Nz(450)は0.31、Nz(550)は0.52、Nz(650)は0.60であった。
上記位相差板を用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。 [Comparative Example 1]
20 parts by weight of the side chain liquid crystal polymer represented by the following chemical formula (I) (numbers 65 and 35 in the formula represent mol% of the monomer unit and are conveniently represented by a block polymer: weight average molecular weight 5000). Dissolve 80 parts by weight of a polymerizable liquid crystal (BASF: trade name Palocolor LC242) showing a nematic liquid crystal phase and 5 parts by weight of a photopolymerization initiator (Ciba Specialty Chemicals: trade name Irgacure 907) in 200 parts by weight of cyclopentanone. The liquid crystal coating liquid was prepared. Then, the liquid crystal is formed by applying the coating liquid to a base film (norbornene-based resin film: manufactured by Nippon Zeon Corporation, trade name "Zeonex") with a bar coater, and then heating and drying at 80 ° C. for 4 minutes. Oriented. By irradiating this liquid crystal layer with ultraviolet rays and curing the liquid crystal layer, a liquid crystal solidified layer (thickness: 1 μm) to be a second retardation layer was formed on the substrate. Re (550) of this layer is 0 nm, Rth (550) is -100 nm (nx: 1.5326, ny: 1.5326, nz: 1.6550), and exhibits a refractive index characteristic of nz> nx = ny. rice field.
Figure 0007072970000001
A retardation plate was obtained in the same manner as in Example 1 except that the liquid crystal solidified layer was used.
The obtained retardation plate has Re (450) of 119 nm, Re (550) of 139 nm, Re (650) of 147 nm, Nz (450) of 0.31, Nz (550) of 0.52, and Nz ( 650) was 0.60.
A polarizing plate with an optical compensation layer and a substitute for an organic EL display device were obtained in the same manner as in Example 1 except that the above retardation plate was used.

[比較例2]
実施例1と同様にして作製した位相差フィルムを位相差板として用いたこと以外は実施例1と同様にして光学補償層付偏光板および有機EL表示装置代替品を得た。
[Comparative Example 2]
A polarizing plate with an optical compensation layer and a substitute for an organic EL display device were obtained in the same manner as in Example 1 except that the retardation film produced in the same manner as in Example 1 was used as the retardation plate.

<評価>
実施例および比較例の有機EL表示装置代替品について、下記の評価を行った。評価結果を表1に示す。
(1)反射率及び反射色相
有機EL表示装置代替品を試料とし、コニカミノルタ(株)製分光測色計CM-2600dを用いて正面反射率と正面反射色相とを測定した。正面反射率はSCI方式で測定。正面反射色相は、a色度図上における無彩色からの距離Δaを評価した。
(2)斜め方向の反射率及び反射色相
有機EL表示装置代替品を試料とし、コニカミノルタ(株)製DMS 505を用いて斜め方向の反射率と反射色相を測定した。斜め方向の反射率は極角60°、方位角0°、45°、90°および135°の4点の視感反射率Yの平均値を評価した。斜め方向の反射色相は、a色度図上における、進相軸を基準に60°傾けて測定したときの斜め方向の反射色相と遅相軸を基準に60°傾けて測定したときの反射色相の2点間距離Δaを評価した。
<Evaluation>
The following evaluations were performed on the organic EL display device substitutes of Examples and Comparative Examples. The evaluation results are shown in Table 1.
(1) Reflectance and reflective hue Using a substitute for an organic EL display device as a sample, the front reflectance and the front reflection hue were measured using a spectrophotometer CM-2600d manufactured by Konica Minolta Co., Ltd. Front reflectance is measured by the SCI method. For the front reflection hue, the distance Δa * b * from the achromatic color on the a * b * chromaticity diagram was evaluated.
(2) Oblique Reflectance and Reflected Hue Using a substitute for an organic EL display device as a sample, the oblique reflectance and reflected hue were measured using DMS 505 manufactured by Konica Minolta Co., Ltd. For the reflectance in the oblique direction, the average value of the visual reflectance Y at four points having a polar angle of 60 °, an azimuth angle of 0 °, 45 °, 90 ° and 135 ° was evaluated. The oblique reflected hue is measured at an angle of 60 ° with respect to the phase-advancing axis and the slow-phase axis on the a * b * chromaticity diagram. The distance between two points Δa * b * of the reflected hue of was evaluated.

Figure 0007072970000002
Figure 0007072970000002

実施例の有機EL表示装置代替品は、比較例の有機EL表示装置代替品よりも、斜め反射強度および反射色相が低く、良好であった。 The organic EL display device substitute of the example had lower and better oblique reflection intensity and reflection hue than the organic EL display device substitute of the comparative example.

本発明の位相差板を有する光学補償層付偏光板は、有機ELパネルなどの画像表示装置に好適に用いられる。 The polarizing plate with an optical compensation layer having a retardation plate of the present invention is suitably used for an image display device such as an organic EL panel.

10 位相差板
11 第1の位相差層
12 第2の位相差層
20 偏光子
30 保護層
100 光学補償層付偏光板
10 Phase difference plate 11 First phase difference layer 12 Second phase difference layer 20 Polarizer 30 Protective layer 100 Polarizing plate with optical compensation layer

Claims (4)

位相差板により構成される光学補償層と、偏光子と、を有する光学補償層付偏光板であって、
該光学補償層の遅相軸と該偏光子の吸収軸とのなす角度が35°~55°であり、
該光学補償層と該偏光子とが直接積層されており、
該位相差板の面内位相差Reが、100nm≦Re(550)≦160nm、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、
Nz係数が、Nz(550)<1、0≦|Nz(450)-Nz(550)|≦0.1、および、0≦|Nz(650)-Nz(550)|≦0.1を満たし、
該位相差板が、第1の位相差層と第2の位相差層とが積層された積層構造を有し、
前記第1の位相差層は、面内位相差Reが、Re(450)/Re(550)≦1、および、Re(650)/Re(550)≧1を満たし、屈折率特性がnx>ny≧nzを満たし、単層構造を有し、ポリカーボネート樹脂を含み、
前記第2の位相差層は、厚み方向位相差Rthが、Rth(450)/Rth(550)≦1、および、Rth(650)/Rth(550)≧1を満たし、屈折率特性がnz>nx≧nyを満たす、位相差板:
ここで、Re(450)、Re(550)、およびRe(650)は、それぞれ、23℃における波長450nm、550nm、および650nmの光で測定した面内位相差を表し、Nz(450)、Nz(550)、およびNz(650)は、それぞれ、23℃における波長450nm、550nm、および650nmの光で測定したNz係数を表す。
A polarizing plate with an optical compensation layer having an optical compensation layer composed of a retardation plate and a polarizing element.
The angle formed by the slow axis of the optical compensation layer and the absorption axis of the polarizing element is 35 ° to 55 °.
The optical compensation layer and the polarizing element are directly laminated, and the optical compensator layer is directly laminated.
The in-plane phase difference Re of the retardation plate satisfies 100 nm ≤ Re (550) ≤ 160 nm, Re (450) / Re (550) ≤ 1, and Re (650) / Re (550) ≥ 1.
The Nz coefficient satisfies Nz (550) <1, 0 ≦ | Nz (450) -Nz (550) | ≦ 0.1 and 0 ≦ | Nz (650) -Nz (550) | ≦ 0.1. death,
The retardation plate has a laminated structure in which a first retardation layer and a second retardation layer are laminated.
In the first retardation layer, the in-plane retardation Re satisfies Re (450) / Re (550) ≦ 1 and Re (650) / Re (550) ≧ 1, and the refractive index characteristic is nx>. It satisfies ny ≧ nz, has a single-layer structure, contains a polycarbonate resin, and contains.
In the second retardation layer, the thickness direction retardation Rth satisfies Rth (450) / Rth (550) ≦ 1 and Rth (650) / Rth (550) ≧ 1, and the refractive index characteristic is nz>. Phase difference plate satisfying nx ≧ ny:
Here, Re (450), Re (550), and Re (650) represent in-plane phase differences measured with light having wavelengths of 450 nm, 550 nm, and 650 nm at 23 ° C., respectively, and represent Nz (450) and Nz. (550) and Nz (650) represent Nz coefficients measured with light at wavelengths of 450 nm, 550 nm, and 650 nm at 23 ° C., respectively.
前記光学補償層の前記偏光子とは反対側に導電層を有する、請求項1に記載の光学補償層付偏光板。 The polarizing plate with an optical compensation layer according to claim 1 , which has a conductive layer on the side of the optical compensation layer opposite to the polarizing element. 請求項1に記載の光学補償層付偏光板を有する、画像表示装置。 An image display device having the polarizing plate with an optical compensation layer according to claim 1 . 請求項2に記載の光学補償層付偏光板を有し、
前記導電層がタッチパネルセンサーとして機能する、タッチパネル付き画像表示装置。
The polarizing plate with an optical compensation layer according to claim 2 is provided.
An image display device with a touch panel in which the conductive layer functions as a touch panel sensor.
JP2017242483A 2017-12-19 2017-12-19 Phase difference plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel Active JP7072970B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017242483A JP7072970B2 (en) 2017-12-19 2017-12-19 Phase difference plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
SG11202005242YA SG11202005242YA (en) 2017-12-19 2018-11-20 Phase difference plate, polarizing plate having optical compensation layer, image display device, and image display device having touch panel
KR1020207017461A KR20200100068A (en) 2017-12-19 2018-11-20 Retardation plate, polarizing plate with optical compensation layer, image display device, and touch panel image display device
CN201880081822.3A CN111556976B (en) 2017-12-19 2018-11-20 Retardation plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
PCT/JP2018/042824 WO2019123948A1 (en) 2017-12-19 2018-11-20 Phase difference plate, polarizing plate having optical compensation layer, image display device, and image display device having touch panel
TW107145658A TWI770332B (en) 2017-12-19 2018-12-18 Phase difference plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
JP2021202965A JP2022027908A (en) 2017-12-19 2021-12-15 Retardation plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017242483A JP7072970B2 (en) 2017-12-19 2017-12-19 Phase difference plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021202965A Division JP2022027908A (en) 2017-12-19 2021-12-15 Retardation plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel

Publications (2)

Publication Number Publication Date
JP2019109378A JP2019109378A (en) 2019-07-04
JP7072970B2 true JP7072970B2 (en) 2022-05-23

Family

ID=66993371

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017242483A Active JP7072970B2 (en) 2017-12-19 2017-12-19 Phase difference plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
JP2021202965A Pending JP2022027908A (en) 2017-12-19 2021-12-15 Retardation plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021202965A Pending JP2022027908A (en) 2017-12-19 2021-12-15 Retardation plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel

Country Status (6)

Country Link
JP (2) JP7072970B2 (en)
KR (1) KR20200100068A (en)
CN (1) CN111556976B (en)
SG (1) SG11202005242YA (en)
TW (1) TWI770332B (en)
WO (1) WO2019123948A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114502998A (en) * 2019-10-10 2022-05-13 日东电工株式会社 Polarizing plate with retardation layer and organic electroluminescent display device using the same
CN112748490B (en) * 2019-10-31 2024-09-17 住友化学株式会社 Image display device
JP7162037B2 (en) * 2019-10-31 2022-10-27 住友化学株式会社 image display device
JP7461758B2 (en) * 2020-02-26 2024-04-04 日東電工株式会社 Method for restoring optical properties of polarizing plates deteriorated in high temperature environments
CN113193154B (en) * 2021-04-30 2023-04-07 合肥维信诺科技有限公司 Flexible display panel, preparation method thereof and display device
JP7520197B2 (en) 2022-12-26 2024-07-22 住友化学株式会社 Optical laminate and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054266A (en) 2003-06-19 2004-02-19 Teijin Ltd Liquid crystal display device
WO2015166991A1 (en) 2014-05-01 2015-11-05 富士フイルム株式会社 Organic el display device
WO2018030244A1 (en) 2016-08-08 2018-02-15 日本ゼオン株式会社 Optically anisotropic laminate, polarizing plate and image display device
WO2018123725A1 (en) 2016-12-26 2018-07-05 富士フイルム株式会社 Circularly polarizing plate, and organic electroluminescent display device
JP2018136483A (en) 2017-02-23 2018-08-30 住友化学株式会社 Optical film and method for producing the same
WO2018164126A1 (en) 2017-03-08 2018-09-13 富士フイルム株式会社 Organic electroluminescence display device, phase difference film, and circularly polarizing plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102057611B1 (en) * 2013-05-27 2019-12-20 삼성전자주식회사 Inverse dispertion phase retardation film and display having the same
TWI637197B (en) 2013-08-09 2018-10-01 住友化學股份有限公司 Optical film
JP2016114874A (en) * 2014-12-17 2016-06-23 コニカミノルタ株式会社 Optical film, circular polarization plate and organic electroluminescence display
JP6301885B2 (en) * 2015-08-31 2018-03-28 日東電工株式会社 Polarizing plate with optical compensation layer and organic EL panel using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054266A (en) 2003-06-19 2004-02-19 Teijin Ltd Liquid crystal display device
WO2015166991A1 (en) 2014-05-01 2015-11-05 富士フイルム株式会社 Organic el display device
WO2018030244A1 (en) 2016-08-08 2018-02-15 日本ゼオン株式会社 Optically anisotropic laminate, polarizing plate and image display device
WO2018123725A1 (en) 2016-12-26 2018-07-05 富士フイルム株式会社 Circularly polarizing plate, and organic electroluminescent display device
JP2018136483A (en) 2017-02-23 2018-08-30 住友化学株式会社 Optical film and method for producing the same
WO2018164126A1 (en) 2017-03-08 2018-09-13 富士フイルム株式会社 Organic electroluminescence display device, phase difference film, and circularly polarizing plate

Also Published As

Publication number Publication date
WO2019123948A1 (en) 2019-06-27
TW201940904A (en) 2019-10-16
JP2019109378A (en) 2019-07-04
SG11202005242YA (en) 2020-07-29
CN111556976B (en) 2022-04-26
KR20200100068A (en) 2020-08-25
TWI770332B (en) 2022-07-11
CN111556976A (en) 2020-08-18
JP2022027908A (en) 2022-02-14

Similar Documents

Publication Publication Date Title
JP7072970B2 (en) Phase difference plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
TWI706171B (en) Polarizing plate with optical compensation layer and organic EL panel using it
KR102673311B1 (en) Polarizer with optical compensation layer and organic EL panel using the same
KR20180088405A (en) Longitudinal optical stack and image display
TWI801329B (en) Long polarizer with optical compensation layer and organic EL panel using it
TWI702422B (en) Polarizing plate with optical compensation layer and organic EL panel using it
JP6797537B2 (en) Polarizing plate with optical compensation layer and organic EL panel using it
JP6712335B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
KR102669108B1 (en) Polarizer with optical compensation layer and organic EL panel using the same
WO2017154447A1 (en) Polarizing plate with optical compensation layer, and organic el panel using said polarizing plate
TWI770333B (en) Phase difference film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
JP2019070860A (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP7077372B2 (en) Polarizing plate with optical compensation layer and organic EL panel using it
JP7500531B2 (en) Phase difference film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
JP2023118722A (en) Retardation film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
JP2022087884A (en) Polarizing plate with optical compensation layers, and organic el panel having the same
JP2019091069A (en) Long Polarizing Plate with Optical Compensation Layer and Organic EL Panel Using the Same
CN116529803A (en) Polarizing plate with retardation layer and organic electroluminescent display device using same
JP2018109778A (en) Polarizing plate with optical compensation layers, and organic el panel having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211222

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220510

R150 Certificate of patent or registration of utility model

Ref document number: 7072970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150