JP7072797B2 - Auxiliary catalyst for compounds and photocatalysts - Google Patents

Auxiliary catalyst for compounds and photocatalysts Download PDF

Info

Publication number
JP7072797B2
JP7072797B2 JP2018027663A JP2018027663A JP7072797B2 JP 7072797 B2 JP7072797 B2 JP 7072797B2 JP 2018027663 A JP2018027663 A JP 2018027663A JP 2018027663 A JP2018027663 A JP 2018027663A JP 7072797 B2 JP7072797 B2 JP 7072797B2
Authority
JP
Japan
Prior art keywords
photocatalyst
formula
catalyst
present
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018027663A
Other languages
Japanese (ja)
Other versions
JP2019142800A (en
Inventor
啓太 池上
チャンド バグバラ タルン
勝 芝田
朋香 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANYO-ONODA CITY PUBLIC UNIVERSITY CORPORATION
Original Assignee
SANYO-ONODA CITY PUBLIC UNIVERSITY CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANYO-ONODA CITY PUBLIC UNIVERSITY CORPORATION filed Critical SANYO-ONODA CITY PUBLIC UNIVERSITY CORPORATION
Priority to JP2018027663A priority Critical patent/JP7072797B2/en
Publication of JP2019142800A publication Critical patent/JP2019142800A/en
Application granted granted Critical
Publication of JP7072797B2 publication Critical patent/JP7072797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Pyridine Compounds (AREA)
  • Catalysts (AREA)

Description

特許法第30条第2項適用 (1)平成29年11月11日に「第2回光触媒国際シンポジウム/第23回日中機能材料学会合同シンポジウム(Photocatalysis 2 & SIEMME’23)」のウェブサイトにて公開 (2)平成29年12月1日に「東京理科大学総合研究院光触媒国際研究センター(Photocatalysis International Research Center(PIRC))」が発行した「Photocatalysis 2 & SIEMME’23」にて発表 (3)平成29年12月2日に「第2回光触媒国際シンポジウム/第23回日中機能材料学会合同シンポジウム(Photocatalysis 2 & SIEMME’23)」のポスター発表にて発表Application of Article 30, Paragraph 2 of the Patent Act (1) Website of "2nd Photocatalyst International Symposium / 23rd Japan-China Functional Materials Science Conference Joint Symposium (Photocatalysis 2 & SIEMME'23)" on November 11, 2017 Published at (2) Announced at "Photocatalysis 2 & SIEMME'23" published by "Photocatalysis International Research Center (PIRC)" on December 1, 2017 (Photocatalysis International Research Center (PIRC)) 3) Announced at the poster presentation of "2nd International Photocatalyst Symposium / 23rd Japan-China Functional Materials Science Conference Joint Symposium (Photocatalysis 2 & SIEMME'23)" on December 2, 2017.

本発明は、光触媒用助触媒作用を有する新規な化合物、前記化合物を含む光触媒用助触媒、及び前記光触媒用助触媒を用いる水の分解方法に関する。 The present invention relates to a novel compound having a photocatalytic cocatalytic action, a photocatalytic cocatalyst containing the compound, and a method for decomposing water using the photocatalytic cocatalyst.

近年、省エネルギーの観点から太陽エネルギーの利用が盛んに検討されており、太陽エネルギーを利用する形態の一つとして、光触媒を使用して太陽エネルギーを実際に利用可能なエネルギーへ変換することが検討されている。例えば、光触媒を用いることにより、太陽エネルギーを利用して水を分解して水素と酸素を製造する技術が検討されている。しかし、光触媒だけでは、その効果はあまり高くないため、触媒効果を向上させるための助触媒が必要となる。このような助触媒としては様々なものが提案されているが(特許文献1、特許文献2)、実際に使用できる程度の効果を有するのは、白金等の貴金属を使用した助触媒であった。しかし、白金等の貴金属は、高価であり、資源的にも存在量が限られている。そのため、他の金属を用いた助触媒の開発が求められていたが、光触媒の活性を満足できる程度に向上させることのできる助触媒は得られていなかった。 In recent years, the use of solar energy has been actively studied from the viewpoint of energy saving, and as one of the forms of using solar energy, it has been studied to convert solar energy into actually usable energy by using a photocatalyst. ing. For example, a technique for producing hydrogen and oxygen by decomposing water by using solar energy by using a photocatalyst is being studied. However, the effect of the photocatalyst alone is not so high, so an auxiliary catalyst for improving the catalytic effect is required. Although various such co-catalysts have been proposed (Patent Documents 1 and 2), it is the co-catalyst using a noble metal such as platinum that has an effect to the extent that it can be actually used. .. However, precious metals such as platinum are expensive and their abundance is limited in terms of resources. Therefore, the development of a co-catalyst using other metals has been required, but a co-catalyst capable of improving the activity of the photocatalyst to a satisfactory level has not been obtained.

特開2006-89336号公報Japanese Unexamined Patent Publication No. 2006-89336 特開2011-173102号公報Japanese Unexamined Patent Publication No. 2011-173102

本発明は、上記問題点を解決し、貴金属を使用しなくても光触媒に対する優れた活性向上効果を有する助触媒を提供することを課題とする。 An object of the present invention is to solve the above problems and to provide a co-catalyst having an excellent effect of improving activity on a photocatalyst without using a noble metal.

本発明者らは、金属錯体系の助触媒としては、Pt、Ruなどを中心とする貴金属系錯体が有効であることが定説であるところ、貴金属を使用しない助触媒の開発を目指して検討を開始した。鋭意検討を重ねたところ、これまで検討されていなかったビピリジン配位子に対してアミン基を修飾したCu、Ni等の遷移金属錯体を新規に合成したところ、助触媒としての効果が非常に高く、特にPt等の貴金属錯体と組み合わせて使用すると、貴金属錯体単独で使用する場合に比べて40%の性能向上を示すことを見いだした。これまでも、貴金属以外の金属を用いた錯体系触媒は、いくつか提案されているが、本発明者らが見いだしたような単純な配位子構造を有する錯体で効果を示した事例はみられなかった。本発明はこのようにして完成されたものである。 The present inventors have established that a noble metal-based complex centered on Pt, Ru, etc. is effective as a metal complex-based co-catalyst. It started. After repeated diligent studies, a new transition metal complex such as Cu, Ni, etc., in which an amine group was modified for a bipyridine ligand, which had not been studied so far, was newly synthesized, and the effect as a co-catalyst was very high. In particular, it has been found that when used in combination with a noble metal complex such as Pt, the performance is improved by 40% as compared with the case where the noble metal complex is used alone. Although several complex catalysts using metals other than precious metals have been proposed so far, there are cases where a complex having a simple ligand structure as found by the present inventors was effective. I couldn't. The present invention has been completed in this way.

すなわち、本発明は以下に示す事項により特定されるものである。
[1]式(1)又は(2)で表される化合物。

Figure 0007072797000001
[式(1)中、M1は、Cu、Zn又はCdを表し、Xは、NR(R及びRは水素又はC1~C6のアルキル基を表し、RとRは同じでも異なっていてもよい)を表し、k、l、m及びnは、1~3の整数であり、Xは同じでも異なっていてもよい。]
Figure 0007072797000002
[式(2)中、M2は、Ni、Mn又はZnを表し、Xは、NR(R及びRは水素又はC1~C6のアルキル基を表し、RとRは同じでも異なっていてもよい)を表し、a、b、c、d、e及びfは、1~3の整数であり、Xは同じでも異なっていてもよい。]
[2]式(1)で表される化合物が、式(1-1)で表される化合物である上記[1]記載の化合物。
Figure 0007072797000003
[3]式(2)で表される化合物が、式(2-1)で表される化合物である上記[1]記載の化合物。
Figure 0007072797000004
[4]上記[1]~[3]のいずれか記載の化合物を含む光触媒用助触媒又は電子メディエータ。
[5]光触媒と、光触媒用助触媒又は電子メディエータの存在下、光を照射して水の分解を行う方法であって、前記光触媒用助触媒又は電子メディエータとして上記[4]記載の光触媒用助触媒又は電子メディエータを用いることを特徴とする水の分解方法。 That is, the present invention is specified by the following matters.
[1] A compound represented by the formula (1) or (2).
Figure 0007072797000001
[In the formula (1), M1 represents Cu, Zn or Cd, X represents NR 1 R 2 (R 1 and R 2 represent hydrogen or an alkyl group of C1 to C6, and R 1 and R 2 are the same. However, they may be different), where k, l, m and n are integers of 1 to 3, and X may be the same or different. ]
Figure 0007072797000002
[In the formula (2), M2 represents Ni, Mn or Zn, X represents NR 1 R 2 (R 1 and R 2 represent hydrogen or an alkyl group of C1 to C6, and R 1 and R 2 are the same. , But a, b, c, d, e and f are integers of 1 to 3, and X may be the same or different. ]
[2] The compound according to the above [1], wherein the compound represented by the formula (1) is a compound represented by the formula (1-1).
Figure 0007072797000003
[3] The compound according to the above [1], wherein the compound represented by the formula (2) is a compound represented by the formula (2-1).
Figure 0007072797000004
[4] A photocatalytic co-catalyst or an electronic mediator containing the compound according to any one of the above [1] to [3].
[5] A method of irradiating light to decompose water in the presence of a photocatalyst and a photocatalyst auxiliary catalyst or an electronic mediator, wherein the photocatalyst auxiliary catalyst or the electronic mediator is the photocatalyst auxiliary according to the above [4]. A method for decomposing water, which comprises using a catalyst or an electronic mediator.

本発明の化合物は、光触媒に対する助触媒として使用すると優れた活性向上効果を有する。特に光触媒による水の分解において、優れた活性向上効果を示し、Pt錯体等の貴金属系助触媒と共に使用すると、水素の発生反応に対する優れた活性向上効果を示し、水素の生成量を増加させることができる。そのため、貴金属助触媒の使用量を減らすことができるので、コスト削減と資源維持の観点からの貴金属の使用量の低減を行うことができる。また、本発明の化合物は、単純な配位子構造を有するので、合成が容易である。 The compound of the present invention has an excellent activity improving effect when used as a co-catalyst for a photocatalyst. Especially in the decomposition of water by a photocatalyst, it shows an excellent activity improving effect, and when used together with a noble metal-based co-catalyst such as a Pt complex, it shows an excellent activity improving effect on a hydrogen generation reaction and can increase the amount of hydrogen produced. can. Therefore, since the amount of the noble metal co-catalyst used can be reduced, the amount of the noble metal used can be reduced from the viewpoint of cost reduction and resource maintenance. Moreover, since the compound of the present invention has a simple ligand structure, it is easy to synthesize.

実施例1の測定結果を示す図である。It is a figure which shows the measurement result of Example 1. FIG. 実施例2の測定結果を示す図である。It is a figure which shows the measurement result of Example 2. 実施例3の測定結果を示す図である。It is a figure which shows the measurement result of Example 3. FIG. 式(1-1)で表される化合物のサイクリックボルタモグラムである。It is a cyclic voltamogram of the compound represented by the formula (1-1). 実施例1で調製した化合物の結晶構造図を示す図である。It is a figure which shows the crystal structure diagram of the compound prepared in Example 1. FIG. 実施例2で調製した化合物の結晶構造図を示す図である。It is a figure which shows the crystal structure diagram of the compound prepared in Example 2. FIG. 実施例1で調製した化合物の質量分析の結果を示す図である。It is a figure which shows the result of the mass spectrometry of the compound prepared in Example 1. FIG. 実施例2で調製した化合物の質量分析の結果を示す図である。It is a figure which shows the result of the mass spectrometry of the compound prepared in Example 2.

本発明の化合物は、以下の式(1)又は(2)で表される化合物である。 The compound of the present invention is a compound represented by the following formula (1) or (2).

Figure 0007072797000005
[式(1)中、M1は、Cu、Zn又はCdを表し、Xは、NR(R及びRは水素又はC1~C6のアルキル基を表し、RとRは同じでも異なっていてもよい)を表し、k、l、m及びnは、1~3の整数であり、Xは同じでも異なっていてもよい。]
Figure 0007072797000005
[In the formula (1), M1 represents Cu, Zn or Cd, X represents NR 1 R 2 (R 1 and R 2 represent hydrogen or an alkyl group of C1 to C6, and R 1 and R 2 are the same. However, they may be different), where k, l, m and n are integers of 1 to 3, and X may be the same or different. ]

Figure 0007072797000006
[式(2)中、M2は、Ni、Mn又はZnを表し、Xは、NR(R及びRは水素又はC1~C6のアルキル基を表し、RとRは同じでも異なっていてもよい)を表し、a、b、c、d、e及びfは、1~3の整数であり、Xは同じでも異なっていてもよい。]
Figure 0007072797000006
[In the formula (2), M2 represents Ni, Mn or Zn, X represents NR 1 R 2 (R 1 and R 2 represent hydrogen or an alkyl group of C1 to C6, and R 1 and R 2 are the same. , But a, b, c, d, e and f are integers of 1 to 3, and X may be the same or different. ]

式(1)におけるM1は、Cu、Zn又はCdを表す。その中でも、活性向上効果をより高める観点、金属がより安価である観点からCuが好ましい。また、式(2)におけるM2は、Ni、Mn又はZnを表す。その中でも、活性向上効果をより高める観点、金属の仕事関数が高く電子の捕集能力がより高いという観点からNiが好ましい。式(1)及び式(2)におけるXは各ピリジン環の他のピリジン環と縮合していない炭素原子上に置換しており、式(1)におけるk、l、m及びnは炭素原子上に置換しているXの個数を表す。例えば、(X)においてk=1とは、当該ピリジン環の1個の炭素原子上にXが1個置換している状態を表し、k=2とは、当該ピリジン環の2個の炭素原子上に、それぞれXが1個ずつ置換している状態を表し、k=3とは、当該ピリジン環の3個の炭素原子上に、それぞれXが1個ずつ置換している状態を表す。また、式(2)におけるa、b、c、d、e及びfも同様である。また、本発明の化合物は、光触媒に対する助触媒作用、あるいは電子メディエータ作用を有するものであるが、その作用を阻害しない限り各ピリジン環にX以外の置換基を有していてもよい。 M1 in the formula (1) represents Cu, Zn or Cd. Among them, Cu is preferable from the viewpoint of further enhancing the activity improving effect and from the viewpoint of cheaper metal. Further, M2 in the formula (2) represents Ni, Mn or Zn. Among them, Ni is preferable from the viewpoint of further enhancing the activity improving effect and from the viewpoint of having a high work function of the metal and a higher electron collecting ability. X in the formula (1) and the formula (2) is substituted on the carbon atom which is not condensed with the other pyridine ring of each pyridine ring, and k, l, m and n in the formula (1) are on the carbon atom. Represents the number of Xs replaced with. For example, in (X) k , k = 1 represents a state in which one X is substituted on one carbon atom of the pyridine ring, and k = 2 means two carbon atoms of the pyridine ring. A state in which one X is substituted on each atom is represented, and k = 3 represents a state in which one X is substituted on each of the three carbon atoms of the pyridine ring. The same applies to a, b, c, d, e and f in the formula (2). Further, the compound of the present invention has a cocatalytic action or an electron mediator action on a photocatalyst, but each pyridine ring may have a substituent other than X as long as the action is not inhibited.

式(1)及び式(2)のXにおけるC1~C6のアルキル基とは、置換基を有してもよい炭素数1~6の直鎖状又は分岐状のアルキル基である。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基等が挙げられる。また、上記「置換基を有していてもよい」の置換基としては、ハロゲン原子、アルコキシ基、アリール基等が挙げられる。 The alkyl groups C1 to C6 in X of the formulas (1) and (2) are linear or branched alkyl groups having 1 to 6 carbon atoms which may have a substituent. For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group. And so on. Further, examples of the above-mentioned "may have a substituent" substituent include a halogen atom, an alkoxy group, an aryl group and the like.

式(1)及び式(2)における1~3個のXは、各ピリジン環において、他のピリジン環と縮合している炭素原子を除く4個の炭素原子のいずれの炭素原子上に置換していてもよい。Xの個数は1~2個が好ましく、1個がより好ましい。また、少なくとも1個のXが、ピリジン環の窒素原子に対してp位にある炭素原子上に置換していることが好ましい。XはNRで表され、R及びRは、それぞれ水素又はC1~C6のアルキル基を表し、RとRは同じでも異なっていてもよい。R及びRの少なくとも一方は水素であることが好ましく、両方が水素であることがより好ましい。Xは同じでも異なっていてもよく、例えば、一つのピリジン環が複数のXを有する場合、それぞれのXは同じでも異なっていてもよい。また、異なるピリジン環が有するX同士は同じでも異なっていてもよい。XはNHであり、全てのピリジン環において窒素原子に対してp位にある炭素原子上に置換していることが好ましい。 The 1 to 3 Xs in the formulas (1) and (2) are substituted on any carbon atom of the four carbon atoms except the carbon atom condensed with the other pyridine ring in each pyridine ring. May be. The number of X is preferably 1 to 2, and more preferably 1. Further, it is preferable that at least one X is substituted on the carbon atom at the p-position with respect to the nitrogen atom of the pyridine ring. X is represented by NR 1 R 2 , R 1 and R 2 represent hydrogen or an alkyl group of C1 to C6, respectively, and R 1 and R 2 may be the same or different. At least one of R 1 and R 2 is preferably hydrogen, and more preferably both are hydrogen. The Xs may be the same or different, for example, if one pyridine ring has a plurality of Xs, each X may be the same or different. Further, the Xs of different pyridine rings may be the same or different. X is NH 2 , and it is preferable that all pyridine rings are substituted on the carbon atom at the p-position with respect to the nitrogen atom.

式(1)で表される化合物としては、具体的には、以下に示す化合物(1-1)を例示することができる。 Specifically, as the compound represented by the formula (1), the compound (1-1) shown below can be exemplified.

Figure 0007072797000007
Figure 0007072797000007

また、式(2)で表される化合物としては、具体的には、以下に示す化合物(2-1)を例示することができる。 Further, as the compound represented by the formula (2), specifically, the compound (2-1) shown below can be exemplified.

Figure 0007072797000008
Figure 0007072797000008

(化合物の合成)
本発明の式(1)及び式(2)で表される化合物の合成法は、特に制限されるものではないが、例えば以下の方法を挙げることができる。式(1)で表される化合物を合成する場合は、Cu、Zn又はCdの塩化物を、式(2)で表される化合物を合成する場合は、Ni、Mn又はZnの塩化物をエタノール等の溶媒に溶解した溶液(溶液A)を準備する。また、4,4’-ジアミノ-2,2’-ビピリジル等のジアミノビピリジルを溶解した溶液(溶液B)を準備する。溶液Aを溶液Bに添加して撹拌した後、ジエチルエーテル等の有機溶媒を添加して静置する。静置後、析出物を分離することにより本発明の化合物を得ることができる。静置は、0~5℃で行うことが好ましく、静置時間としては、12~24時間が好ましい。
(Compound synthesis)
The method for synthesizing the compounds represented by the formulas (1) and (2) of the present invention is not particularly limited, and examples thereof include the following methods. When synthesizing the compound represented by the formula (1), the chloride of Cu, Zn or Cd is used, and when synthesizing the compound represented by the formula (2), the chloride of Ni, Mn or Zn is used as ethanol. A solution (solution A) dissolved in a solvent such as is prepared. Further, a solution (solution B) in which diaminobipyridyl such as 4,4'-diamino-2,2'-bipyridyl is dissolved is prepared. After the solution A is added to the solution B and stirred, an organic solvent such as diethyl ether is added and the mixture is allowed to stand. After standing, the compound of the present invention can be obtained by separating the precipitate. The standing time is preferably 0 to 5 ° C., and the standing time is preferably 12 to 24 hours.

(光触媒用助触媒、電子メディエータ)
本発明の式(1)又は式(2)で表される化合物は、光触媒用助触媒として用いることができる。助触媒とは、主の触媒成分が単独で示す触媒作用を強化する作用を有する補助成分のことであり、光触媒用助触媒とは、主の触媒成分である光触媒に対して、前記作用を有する補助成分のことをいう。本発明の光触媒用助触媒は、本発明の式(1)又は式(2)で表される化合物のみからなっていてもよく、助触媒作用を阻害しない限り、あるいは助触媒作用を更に向上させる目的で、他の成分を含んでいてもよい。本発明の光触媒用助触媒が用いられる光触媒は、特に制限されるものではないが、例えば、TiO、WO、SrTiO、CaTiO、LaTi、Ta、ZrO、BiVO、AgNbO、AgPbTi、RbPbNb10、In-(ZnO)、InTaO、BiMoO、BiWO、BiYWO、AgVO、In2-xZnCu、ABiO(AはNa、K、Li、Ag等の一価金属)、TaON、SmTi、BaNbON、SrTaON、LaTaON、SrON、NaTiOS、ZrOS、カーボンナノチューブ系光触媒等を挙げることができ、これらは単独で用いてもよく、2種以上を混合して用いてもよい。カーボンナノチューブ系光触媒としては、例えば、カーボンナノチューブ(シグマ-アルドリッチ製)とデンドリマーを修飾したフラーレン(フラロデンドロン)からなる複合体型光触媒等を挙げることができる。本発明の式(1)又は式(2)で表される化合物は、水溶性を示すとともに、多くの有機溶媒にも可溶なため、次に示す水の分解反応だけでなく、選択的有機合成等の幅広い光触媒反応において適用可能である。また、本発明の式(1)又は式(2)で表される化合物は、各種反応において電子の伝達を行う電子伝達剤である電子メディエータとして用いることができる。
(Auxiliary catalyst for photocatalyst, electronic mediator)
The compound represented by the formula (1) or the formula (2) of the present invention can be used as a co-catalyst for a photocatalyst. The co-catalyst is an auxiliary component having an action of enhancing the catalytic action exhibited by the main catalyst component alone, and the photocatalytic co-catalyst has the above-mentioned action on the photocatalyst which is the main catalytic component. Auxiliary ingredient. The cocatalyst for a photocatalyst of the present invention may consist only of the compound represented by the formula (1) or the formula (2) of the present invention, as long as the cocatalytic action is not inhibited or the cocatalytic action is further improved. For the purpose, it may contain other components. The photocatalyst to which the cocatalyst for the photocatalyst of the present invention is used is not particularly limited, and is, for example, TiO 2 , WO 3 , SrTiO 3 , CaTIO 3 , La 2 Ti 2 O 7 , Ta 2 O 5 , ZrO 2 . , BiVO 4 , AgNbO 3 , AgPbTi 2 O 6 , RbPb 2 Nb 3 O 10 , In 2 O 3- (ZnO) 3 , InTaO 4 , Bi 2 MoO 6 , Bi 2 O 4, BiYWO 6 , Ag In 2-x Zn x Cu 2 O 5 , ABiO 2 (A is a monovalent metal such as Na, K, Li, Ag), TaON, Sm 2 Ti 2 S 2 O 5 , BaNbO 2 N, SrTaO 2 N, LaTaON 2 , Sr 2 ON 2 , NaTiOS 2 , ZrOS, carbon nanotube-based photocatalyst and the like can be mentioned, and these may be used alone or in combination of two or more. Examples of the carbon nanotube-based photocatalyst include a composite photocatalyst composed of carbon nanotubes (manufactured by Sigma-Aldrich) and fullerene (fullerene drone) modified with a dendrimer. Since the compound represented by the formula (1) or the formula (2) of the present invention is water-soluble and soluble in many organic solvents, it is not only the following water decomposition reaction but also selective organic. It can be applied to a wide range of photocatalytic reactions such as synthesis. Further, the compound represented by the formula (1) or the formula (2) of the present invention can be used as an electron mediator which is an electron transfer agent that transfers electrons in various reactions.

(水の分解方法)
本発明の光触媒用助触媒は、光触媒を用いた水の分解における助触媒として用いることがでる。本発明の水の分解方法は、光触媒及び光触媒用助触媒の存在下、光を照射して水の分解を行う方法であって、前記光触媒用助触媒として本発明の光触媒用助触媒を用いることを特徴とする。本発明の水の分解方法に用いる光触媒は、特に制限されず、水の分解に通常用いられる光触媒を用いることができ、例えば、上記(光触媒用助触媒)の段落で例示した光触媒を用いることができる。また、本発明の水の分解方法では、水と光触媒及び光触媒用助触媒を接触させる方法、光触媒と光触媒用助触媒を混合する、光触媒に光触媒用助触媒を担持させる等の光触媒と光触媒用助触媒を組み合わせる方法、光の照射方法、反応時の温度、使用する装置などは従来公知のものを適用することができる。本発明の水の分解方法では、本発明の光触媒用助触媒を他の助触媒と組み合わせて用いることができる。他の助触媒としては、特に制限されるものではないが、例えば、Pt、Pd、Rh、Ru、Ni、Au、Fe、NiO、RuO、IrO、Rh、Cr-Rh複合酸化物、コアシェル型Rh/Cr、Pt/Cr、HPtCl、KPtCl、KPtCl等の白金錯体などの還元反応助触媒、Mg、Ti、Mn、Fe、Co、Ni、Cu、Ga、Ru、Rh、Pd、Ag、Cd、In、Ce、Ta、W、Ir、Pt、Pb等の金属、又はこれらの酸化物若しくは複合酸化物などの酸化反応助触媒を挙げることができる。また、本発明の水の分解方法では、犠牲剤を用いることができる。犠牲剤とは、光触媒による反応過程で、自らは変質しつつ反応を進行させる化合物のことであり、犠牲剤としては、特に制限されるものではなく公知の犠牲剤を使用することができる。例えば、還元剤として働くものとしては、トリエタノールアミン、アスコルビン酸、1-ベンジル-1,4-ジヒドロニコチンアミド等を挙げることができ、酸化剤として働くものとしては、セリウム(IV)イオン、銀イオン等を挙げることができる。本発明の水の分解方法は、例えば、水に光触媒、本発明の光触媒用助触媒、必要に応じて他の助触媒、犠牲剤、pH調整剤等を添加して、可視光又は紫外線等の光を照射することにより行うことができる。例えば、水に光触媒及び本発明の光触媒用助触媒、必要に応じて他の光触媒用助触媒を添加して、撹拌しながら光を照射してもよく、光触媒に本発明の光触媒用助触媒を担持させて水に添加してもよく、必要に応じてさらに他の光触媒用助触媒を担持させてもよい。
(How to decompose water)
The cocatalyst for a photocatalyst of the present invention can be used as a cocatalyst in the decomposition of water using a photocatalyst. The method for decomposing water of the present invention is a method of irradiating light to decompose water in the presence of a photocatalyst and a photocatalyst cocatalyst, and the photocatalyst cocatalyst of the present invention is used as the photocatalyst cocatalyst. It is characterized by. The photocatalyst used in the water decomposition method of the present invention is not particularly limited, and a photocatalyst usually used for water decomposition can be used. For example, the photocatalyst exemplified in the above paragraph (auxiliary catalyst for photocatalyst) may be used. can. Further, in the method for decomposing water of the present invention, a method of contacting water with a photocatalyst and a photocatalyst auxiliary catalyst, a method of mixing a photocatalyst and a photocatalyst auxiliary catalyst, a photocatalyst supporting a photocatalyst auxiliary catalyst, etc. Conventionally known methods such as a method for combining catalysts, a method for irradiating light, a temperature at the time of reaction, and an apparatus to be used can be applied. In the water decomposition method of the present invention, the photocatalytic co-catalyst of the present invention can be used in combination with other co-catalysts. Other co-catalysts are not particularly limited, but are, for example, Pt, Pd, Rh, Ru, Ni, Au, Fe, NiO, RuO 2 , IrO 2 , Rh 2 O 3 , and Cr—Rh composite oxidation. Platinum complexes such as core-shell type Rh / Cr 2 O 3 , Pt / Cr 2 O 3 , H 2 PtCl 4 , K 2 PtCl 6 , K 2 PtCl 4 , etc. , Co, Ni, Cu, Ga, Ru, Rh, Pd, Ag, Cd, In, Ce, Ta, W, Ir, Pt, Pb and other metals, or oxides or composite oxides thereof. A catalyst can be mentioned. Further, in the method for decomposing water of the present invention, a sacrificial agent can be used. The sacrificial agent is a compound that advances the reaction while being altered by itself in the reaction process by the photocatalyst, and the sacrificial agent is not particularly limited, and a known sacrificial agent can be used. For example, those that act as a reducing agent include triethanolamine, ascorbic acid, 1-benzyl-1,4-dihydronicotinamide, and the like, and those that act as an oxidizing agent include cerium (IV) ion and silver. Ions and the like can be mentioned. The method for decomposing water of the present invention is, for example, adding a photocatalyst, a cocatalyst for a photocatalyst of the present invention, another cocatalyst, a sacrificial agent, a pH adjuster, etc. to water, and using visible light or ultraviolet rays. It can be done by irradiating with light. For example, a photocatalyst, a photocatalyst cocatalyst of the present invention, and another photocatalyst cocatalyst may be added to water and irradiated with light while stirring, and the photocatalyst cocatalyst of the present invention may be added to the photocatalyst. It may be carried and added to water, and if necessary, another cocatalyst for a photocatalyst may be carried.

本発明の水の分解方法では、カーボンナノチューブ系光触媒等の光触媒と、助触媒として、貴金属錯体等の還元反応助触媒と本発明の光触媒用助触媒を用いることにより、水の分解による水素発生反応を行うことができる。この際、トリエタノールアミン、1-ベンジル-1,4-ジヒドロニコチンアミド等の還元剤として働く犠牲剤を使用することが好ましい。また、貴金属錯体の還元反応助触媒としては、白金(Pt)錯体が好ましい。Pt錯体としては、例えば、HPtCl、KPtCl、KPtCl等を挙げることができる。本発明の水の分解方法によれば、貴金属系助触媒の使用量を減らすことができ、また、貴金属系助触媒を単独で使用した場合を上回る水素発生効率を得ることができる。 In the water decomposition method of the present invention, a photocatalyst such as a carbon nanotube-based photocatalyst, a reduction reaction co-catalyst such as a noble metal complex, and a photocatalyst co-catalyst of the present invention are used as co-catalysts to generate a hydrogen generation reaction by decomposing water. It can be performed. At this time, it is preferable to use a sacrificial agent that acts as a reducing agent, such as triethanolamine and 1-benzyl-1,4-dihydronicotinamide. Further, as the reduction reaction co-catalyst of the noble metal complex, a platinum (Pt) complex is preferable. Examples of the Pt complex include H 2 PtCl 4 , K 2 PtCl 6 , K 2 PtCl 4 , and the like. According to the water decomposition method of the present invention, the amount of the noble metal-based co-catalyst used can be reduced, and hydrogen generation efficiency higher than that when the noble metal-based co-catalyst is used alone can be obtained.

以下に、実施例において本発明をより詳細に説明するが、本発明の技術範囲は、これらに限定されるものではない。 Hereinafter, the present invention will be described in more detail in Examples, but the technical scope of the present invention is not limited thereto.

[実施例1]
(式(1-1)で表される化合物の合成)
塩化銅(II)0.04gをエタノール1mLに溶解した(溶液Aとする)。次に、4,4’-ジアミノ-2,2’-ビピリジル0.130gをエタノール10mlで溶解した(溶液Bとする)。溶液Aを溶液Bに添加して密閉後、室温で5時間撹拌した。その後ジエチルエーテル10mLを添加し、冷蔵庫中5℃で24時間程度静置して析出物を得た。吸引ろ過し、ジエチルエーテルで2回洗浄後、乾燥して化合物を得た。得られた化合物の構造を、単結晶X線構造解析(測定装置:APEX II Ultra、Bruker社製)及び質量分析(測定装置:Daltonics、Bruker社製)により同定したところ、式(1-1)に示す構造の錯体であった。
[Example 1]
(Synthesis of compound represented by formula (1-1))
0.04 g of copper (II) chloride was dissolved in 1 mL of ethanol (referred to as solution A). Next, 0.130 g of 4,4'-diamino-2,2'-bipyridyl was dissolved in 10 ml of ethanol (referred to as solution B). Solution A was added to solution B, sealed, and then stirred at room temperature for 5 hours. Then, 10 mL of diethyl ether was added, and the mixture was allowed to stand in a refrigerator at 5 ° C. for about 24 hours to obtain a precipitate. It was suction filtered, washed twice with diethyl ether, and dried to obtain a compound. The structure of the obtained compound was identified by single crystal X-ray structure analysis (measuring device: APEX II Ultra, manufactured by Bruker) and mass spectrometry (measuring device: Daltonics, manufactured by Bruker). It was a complex having the structure shown in.

(助触媒効果試験)
光触媒活性をより簡便に評価するため、可視光領域に光増感作用を示すエリシロシンBを用いて、本発明の化合物の助触媒効果を検証した。水100mLに、113.64μMのエリシロシンB、犠牲剤として15mLのトリエタノールアミンを加え、本発明の式(1-1)で表される化合物を濃度を変えて添加した。これに、500WXeランプを用いて可視光(λ≧420nm)を照射して水素発生量を測定した。水素発生量はガスクロマトグラフ(島津製作所製 GC-8A、分析カラム:MS-5A)を用いて定量した。本発明の式(1-1)で表される化合物の添加量は、エリシロシンBの濃度に対して20%、22%、23%、26%、30%とした。結果を図1に示す。図1に示された線の上から、23%、22%、26%、30%、20%である。いずれの場合においても助触媒効果がみられ、23%の場合が最も助触媒効果が高かった。
(Co-catalyst effect test)
In order to evaluate the photocatalytic activity more easily, the cocatalytic effect of the compound of the present invention was verified using erythirocin B, which exhibits a photosensitizing effect in the visible light region. To 100 mL of water, 113.64 μM erythirocin B and 15 mL of triethanolamine as a sacrificial agent were added, and the compound represented by the formula (1-1) of the present invention was added at different concentrations. This was irradiated with visible light (λ ≧ 420 nm) using a 500 WXe lamp, and the amount of hydrogen generated was measured. The amount of hydrogen generated was quantified using a gas chromatograph (GC-8A manufactured by Shimadzu Corporation, analytical column: MS-5A). The amount of the compound represented by the formula (1-1) of the present invention was 20%, 22%, 23%, 26%, and 30% with respect to the concentration of erythirosin B. The results are shown in FIG. From the top of the line shown in FIG. 1, 23%, 22%, 26%, 30%, 20%. The co-catalyst effect was observed in all cases, and the co-catalyst effect was the highest in the case of 23%.

[実施例2]
(式(2-1)で表される化合物の合成)
塩化ニッケル(II)0.04gをエタノール1mLに溶解した(溶液Aとする)。次に、4,4’-ジアミノ-2,2’-ビピリジル0.101gをエタノール10mlで溶解した(溶液Bとする)。溶液Aを溶液Bに添加して密閉後、室温で5時間撹拌した。その後ジエチルエーテル10mLを添加し、冷蔵庫中5℃で24時間程度静置して析出物を得た。吸引ろ過し、ジエチルエーテルで2回洗浄後、乾燥して化合物を得た。得られた化合物の構造を、実施例1と同様に同定したところ、式(2-1)に示す構造の錯体であった。
[Example 2]
(Synthesis of compound represented by formula (2-1))
0.04 g of nickel (II) chloride was dissolved in 1 mL of ethanol (referred to as solution A). Next, 0.101 g of 4,4'-diamino-2,2'-bipyridyl was dissolved in 10 ml of ethanol (referred to as solution B). Solution A was added to solution B, sealed, and then stirred at room temperature for 5 hours. Then, 10 mL of diethyl ether was added, and the mixture was allowed to stand in a refrigerator at 5 ° C. for about 24 hours to obtain a precipitate. It was suction filtered, washed twice with diethyl ether, and dried to obtain a compound. When the structure of the obtained compound was identified in the same manner as in Example 1, it was a complex having the structure represented by the formula (2-1).

(助触媒効果試験)
水100mLに、113.64μMのエリシロシンB、犠牲剤として15mLのトリエタノールアミンを加え、本発明の式(1-1)で表される化合物を26.39μM加えて、他は実施例1と同様に処理して水素発生量を測定した。また、本発明の式(1-1)で表される化合物を式(2-1)で表される化合物に代えた例でも、水素発生量を測定した。その結果を図2に示す。図2に示されるように、いずれの場合も助触媒効果がみられたが、Cu錯体を使用した場合の方が効果が高かった。
(Co-catalyst effect test)
To 100 mL of water, 113.64 μM of erythirosin B and 15 mL of triethanolamine as a sacrificial agent were added, and 26.39 μM of the compound represented by the formula (1-1) of the present invention was added, otherwise the same as in Example 1. The amount of hydrogen generated was measured. Further, the amount of hydrogen generated was also measured in an example in which the compound represented by the formula (1-1) of the present invention was replaced with the compound represented by the formula (2-1). The results are shown in FIG. As shown in FIG. 2, the co-catalytic effect was observed in all cases, but the effect was higher when the Cu complex was used.

[実施例3]
水100mLに、113.64μMのエリシロシンB、犠牲剤として15mLのトリエタノールアミンを加え、0.46mg/LのPt(II)錯体(テトラクロロ白金(II)酸カリウム KPtCl)、本発明の式(1-1)で表される化合物を13.3mg/L加えて、他は実施例1と同様に処理して水素発生量を測定した。また、本発明の式(1-1)で表される化合物を式(2-2)で表される化合物に代えた例でも、水素発生量を測定した。その結果を図3に示す。図3の結果から分かるように、本発明の化合物である式(1-1)及び式(2-1)のいずれの化合物もPt(II)錯体を単独で使用した場合に比べ水素の発生量が増加し、活性が向上していることが示された。
[Example 3]
To 100 mL of water, 113.64 μM erythirocin B and 15 mL of triethanolamine as a sacrificial agent were added to add 0.46 mg / L Pt (II) complex (potassium tetrachloroplatinum ( II ) acid K2 PtCl 4 ), the present invention. The compound represented by the formula (1-1) of the above formula (1-1) was added at 13.3 mg / L, and the others were treated in the same manner as in Example 1 to measure the amount of hydrogen generated. Further, the amount of hydrogen generated was also measured in an example in which the compound represented by the formula (1-1) of the present invention was replaced with the compound represented by the formula (2-2). The results are shown in FIG. As can be seen from the results of FIG. 3, both the compounds of the formula (1-1) and the formula (2-1) of the present invention generate hydrogen as compared with the case where the Pt (II) complex is used alone. Was increased, indicating that the activity was improved.

(電気化学的測定)
式(1-1)で表される化合物のサイクリックボルタモグラムを求めた。測定は、式(1-1)で表される化合物濃度をN,N-ジメチルホルムアミド(DMF)中113.64Mとし、0.1MのNBuPFを支持電解質として用い、参照電極をAg/AgCl、作用電極をグラッシーカーボン、カウンター電極をPtワイヤーとした。その結果を図4に示す。図4の結果から分かるように本発明の化合物である式(1-1)で表される化合物は、酸化還元電位が-0.71Vであり、エリシロシンBから電子を受け取って助触媒作用を発現するのに十分な電位を持っていた。
(Electrochemical measurement)
The cyclic voltammogram of the compound represented by the formula (1-1) was obtained. In the measurement, the compound concentration represented by the formula (1-1) was set to 113.64 M in N, N-dimethylformamide (DMF), 0.1 M NBu 4 PF 6 was used as the supporting electrolyte, and the reference electrode was Ag /. AgCl was used, the working electrode was glassy carbon, and the counter electrode was Pt wire. The results are shown in FIG. As can be seen from the results of FIG. 4, the compound represented by the formula (1-1), which is the compound of the present invention, has a redox potential of −0.71 V, receives an electron from erythirosin B, and exhibits a cocatalytic action. Had enough potential to do.

実施例1と実施例2で調製した化合物のX線構造解析により得られた結晶構造パラメータを表1に示す。また、実施例1で調製した化合物の結晶構造図を図5に、実施例2で調製した化合物の結晶構造図を図6に示す。 Table 1 shows the crystal structure parameters obtained by the X-ray structure analysis of the compounds prepared in Examples 1 and 2. Further, FIG. 5 shows a crystal structure diagram of the compound prepared in Example 1, and FIG. 6 shows a crystal structure diagram of the compound prepared in Example 2.

Figure 0007072797000009
Figure 0007072797000009

実施例1で調製した化合物の質量分析で得られた質量スペクトルを図7に、実施例2で調製した化合物の質量分析で得られた質量スペクトルを図8に示す。 FIG. 7 shows a mass spectrum obtained by mass spectrometry of the compound prepared in Example 1, and FIG. 8 shows a mass spectrum obtained by mass spectrometry of the compound prepared in Example 2.

本発明の化合物は、光触媒に対する助触媒として使用すると、触媒反応の活性を向上させることができるので、例えば、光触媒を用いた水の分解反応に用いることができ、特に水の分解による水素発生反応に好適に用いることができる。さらに、本発明の化合物は、水だけでなく多くの有機溶媒にも可溶なため、例えば、リシンからのピペコリン酸合成といった選択的有機合成を指向した幅広い光触媒反応においても適用可能である。
When the compound of the present invention is used as a co-catalyst for a photocatalyst, the activity of the catalytic reaction can be improved. Can be suitably used for. Furthermore, since the compound of the present invention is soluble not only in water but also in many organic solvents, it can be applied to a wide range of photocatalytic reactions aimed at selective organic synthesis such as pipecolic acid synthesis from lysine.

Claims (2)

式(1-1)で表される化合物又は式(2-1)で表される化合物を含む光触媒用助触媒。
Figure 0007072797000010
Figure 0007072797000011
A photocatalytic co-catalyst containing a compound represented by the formula (1-1) or a compound represented by the formula (2-1) .
Figure 0007072797000010
Figure 0007072797000011
光触媒と、光触媒用助触媒の存在下、光を照射して水の分解を行う方法であって、前記光触媒用助触媒として請求項記載の光触媒用助触媒を用いることを特徴とする水の分解方法。 A method of irradiating light to decompose water in the presence of a photocatalyst and a photocatalyst co-catalyst , wherein the photocatalyst co- catalyst according to claim 1 is used as the photocatalyst co-catalyst . A characteristic method of decomposing water.
JP2018027663A 2018-02-20 2018-02-20 Auxiliary catalyst for compounds and photocatalysts Active JP7072797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018027663A JP7072797B2 (en) 2018-02-20 2018-02-20 Auxiliary catalyst for compounds and photocatalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027663A JP7072797B2 (en) 2018-02-20 2018-02-20 Auxiliary catalyst for compounds and photocatalysts

Publications (2)

Publication Number Publication Date
JP2019142800A JP2019142800A (en) 2019-08-29
JP7072797B2 true JP7072797B2 (en) 2022-05-23

Family

ID=67771847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027663A Active JP7072797B2 (en) 2018-02-20 2018-02-20 Auxiliary catalyst for compounds and photocatalysts

Country Status (1)

Country Link
JP (1) JP7072797B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7371863B2 (en) * 2019-12-20 2023-10-31 本田技研工業株式会社 Redox medium and hydrogen production method using it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4045323B2 (en) 2001-12-28 2008-02-13 アークレイ株式会社 Colorimetric analysis method and reagent used therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4045323B2 (en) 2001-12-28 2008-02-13 アークレイ株式会社 Colorimetric analysis method and reagent used therefor

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ACTA CRYSTALLOGRAPHICA. SECTION E: STRUCTURE REPORTS ONLINE,2006年,Vol.62, No.8,pp.m1810-1811, supporting information
ACTA CRYSTALLOGRAPHICA. SECTION E: STRUCTURE REPORTS ONLINE,2006年,Vol.62, No.9,pp.m2151-m2152, supporting information
ACTA CRYSTALLOGRAPHICA. SECTION E: STRUCTURE REPORTS ONLINE,2007年,Vol.63, No.11,pp.m2668, supporting information
AUSTRALIAN JOURNAL OF CHEMISTRY,2010年,Vol.63, No.9,pp.1358-1364
Chem.Eur.J.,2005年,Vol.11,pp.5742-5748
Cryst.Growth Des.,2012年,Vol.12,pp.1871-1881
Dalton Transaction,2006年,No.10,pp.1331-1337
Dalton Transaction,2011年,Vol.40,pp5687-5696
Eur.J.Inorg.Chem.,1999年,No.9,pp.1507-1521
Eur.J.Inorg.Chem.,2002年,No.8,pp.1985-1997
Inorganica Chimica Acta,2003年,Vol.343,pp.366-372

Also Published As

Publication number Publication date
JP2019142800A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
Saito et al. Photocatalysis of a dinuclear Ru (II)–Re (I) Complex for CO2 reduction on a solid surface
Benseghir et al. Co-immobilization of a Rh catalyst and a Keggin polyoxometalate in the UiO-67 Zr-based metal–organic framework: in depth structural characterization and photocatalytic properties for CO2 reduction
Leng et al. Boosting photocatalytic hydrogen production of porphyrinic MOFs: the metal location in metalloporphyrin matters
Wang et al. Electronic and steric tuning of catalytic H2 evolution by cobalt complexes with pentadentate polypyridyl-amine ligands
Vennampalli et al. Electronic effects on a mononuclear Co complex with a pentadentate ligand for catalytic H2 evolution
Li et al. Simultaneous oxidation of alcohols and hydrogen evolution in a hybrid system under visible light irradiation
Zee et al. Metal–polypyridyl catalysts for electro-and photochemical reduction of water to hydrogen
JP5724170B2 (en) Photochemical reaction device
Jiang et al. Chemical and photocatalytic water oxidation by mononuclear Ru catalysts
WO2012091045A1 (en) Photochemical reaction device
McKinnon et al. Synergistic metal–ligand redox cooperativity for electrocatalytic CO2 reduction promoted by a ligand-based redox couple in Mn and Re tricarbonyl complexes
Prevedello et al. Heterogeneous and homogeneous routes in water oxidation catalysis starting from CuII complexes with tetraaza macrocyclic ligands
Hirahara et al. New series of dinuclear ruthenium (II) complexes synthesized using photoisomerization for efficient water oxidation catalysis
Walsh et al. Water-soluble manganese complex for selective electrocatalytic CO2 reduction to CO
Di Giovanni et al. Dinuclear cobalt complexes with a decadentate ligand scaffold: Hydrogen evolution and oxygen reduction catalysis
Liu et al. Ligand modification to stabilize the cobalt complexes for water oxidation
Molnar et al. Photochemical properties of mixed-metal supramolecular complexes
Niu et al. A noble-metal-free artificial photosynthesis system with TiO2 as electron relay for efficient photocatalytic hydrogen evolution
Hoque et al. Catalytic Oxidation of Water to Dioxygen by Mononuclear Ru Complexes Bearing a 2, 6‐Pyridinedicarboxylato Ligand
JP7072797B2 (en) Auxiliary catalyst for compounds and photocatalysts
Wang et al. A polypyridyl Co (ii) complex-based water reduction catalyst with double H 2 evolution sites
Ho et al. Cobalt complex of a tetraamido macrocyclic ligand as a precursor for electrocatalytic hydrogen evolution
AU2005310262A1 (en) Supramolecular complexes as photocatylysts for the production of hydrogen from water
Yoshimura et al. A systematic study on the double-layered photosensitizing dye structure on the surface of Pt-cocatalyst-loaded TiO2 nanoparticles
EP2640733A1 (en) Photosensitizers and use thereof for generating hydrogen from water

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R150 Certificate of patent or registration of utility model

Ref document number: 7072797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150