JP7071094B2 - Half-thrust bearings, thrust bearings, bearing devices and internal combustion engines - Google Patents

Half-thrust bearings, thrust bearings, bearing devices and internal combustion engines Download PDF

Info

Publication number
JP7071094B2
JP7071094B2 JP2017217485A JP2017217485A JP7071094B2 JP 7071094 B2 JP7071094 B2 JP 7071094B2 JP 2017217485 A JP2017217485 A JP 2017217485A JP 2017217485 A JP2017217485 A JP 2017217485A JP 7071094 B2 JP7071094 B2 JP 7071094B2
Authority
JP
Japan
Prior art keywords
thrust bearing
resin coating
thickness
coating layer
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017217485A
Other languages
Japanese (ja)
Other versions
JP2019090432A (en
Inventor
徹也 小川
一紀 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2017217485A priority Critical patent/JP7071094B2/en
Publication of JP2019090432A publication Critical patent/JP2019090432A/en
Application granted granted Critical
Publication of JP7071094B2 publication Critical patent/JP7071094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

本発明は、自動車、船用、一般産業機械等の内燃機関において、特にクランク軸の軸線方向力を受けるための半円環形状の半割スラスト軸受に関し、とりわけ、軸線方向力を受けるための摺動面と摺動面の反対側の背面とを有し、基板上に被覆された樹脂被覆層が摺動面を形成する半割スラスト軸受に係るものである。更に、本発明は、この半割スラスト軸受を有するスラスト軸受、およびこのスラスト軸受を備えた軸受装置、並びにこの軸受装置を備えた内燃機関にも関するものである。 The present invention relates to a semi-annular half-thrust bearing for receiving an axial force of a crank shaft in an internal combustion engine such as an automobile, a ship, or a general industrial machine, and in particular, sliding for receiving an axial force. It relates to a half-thrust bearing having a surface and a back surface on the opposite side of the sliding surface, and a resin coating layer coated on the substrate forms the sliding surface. Further, the present invention relates to a thrust bearing having the half-split thrust bearing, a bearing device provided with the thrust bearing, and an internal combustion engine provided with the bearing device.

内燃機関のクランク軸は、ジャーナル部において、一対の半割軸受を円筒形状に組み合わせて構成される主軸受を介して、内燃機関のシリンダブロック下部に回転自在に支承される。一対の半割軸受のうちの一方又は両方が、クランク軸の軸線方向力を受ける半割スラスト軸受と組み合わせて用いられる。半割スラスト軸受は、半割軸受の軸線方向端面の一方又は両方に配設される。半割スラスト軸受は、クランク軸に生じる軸線方向力を受ける。すなわち、クラッチによってクランク軸と変速機とが接続される際等に、クランク軸に対して入力される軸線方向力を支承することを目的として配置される。 In the journal portion, the crank shaft of the internal combustion engine is rotatably supported under the cylinder block of the internal combustion engine via a main bearing formed by combining a pair of half bearings in a cylindrical shape. One or both of the pair of half-split bearings are used in combination with half-split thrust bearings that receive axial force on the crank shaft. The half-split thrust bearing is arranged on one or both of the axial end faces of the half-split bearing. The half-thrust bearing receives an axial force generated on the crank shaft. That is, it is arranged for the purpose of supporting the axial force input to the crank shaft when the crank shaft and the transmission are connected by the clutch.

半割スラスト軸受として、鋼製などの裏金層に薄い軸受合金層を接着したバイメタルが用いられるが、更にその上に樹脂層を被覆したものも周知である(引用文献1等)。低摩擦で軟らかく弾性のある樹脂層を被覆することにより、潤滑性を向上させ、軸受の焼付きや摩耗を抑制することが可能になっている。 As the half-split thrust bearing, a bimetal in which a thin bearing alloy layer is bonded to a back metal layer made of steel or the like is used, but a bearing in which a resin layer is coated on the bimetal is also well known (Reference 1 and the like). By coating a soft and elastic resin layer with low friction, it is possible to improve lubricity and suppress seizure and wear of bearings.

特開2013-130273号公報Japanese Unexamined Patent Publication No. 2013-130273

近年、エンジンの高性能化、高機能化が進んでいる。それに伴い軸のような相手部材の低剛性化が進み、軸受の高面圧化が求められている。このような条件は軸受にとっては厳しい使用環境になっている。特に、アイドリングストップやハイブリッド車の適用により、優れた耐焼付き性能を有することが望まれている。 In recent years, the performance and functionality of engines have been improved. Along with this, the rigidity of mating members such as shafts has been reduced, and there is a demand for higher surface pressure of bearings. Such conditions are a harsh usage environment for bearings. In particular, it is desired to have excellent seizure resistance by applying an idling stop system or a hybrid vehicle.

このような軸受においては、運転時に、相手部材(例えば軸部材)表面と摺動部材の摺動面との間に潤滑油等の流体潤滑膜が形成されることにより、相手部材表面と摺動部材の摺動面との直接接触が防がれている。従来技術によるスラスト軸受に付与された樹脂被覆層は均一な層厚さで被覆が施されているが、油膜圧力が不足して支承能力不足になり、上記使用環境下において焼付きを招く可能性がある。焼付きを防ぐためには摺動面全体で油膜形成が必要であるが、厳しいエンジン環境で優れた耐焼付き性能を有するには、上記従来技術では不十分である。 In such a bearing, a fluid lubricating film such as lubricating oil is formed between the surface of the mating member (for example, a shaft member) and the sliding surface of the sliding member during operation, so that the bearing slides on the surface of the mating member. Direct contact with the sliding surface of the member is prevented. The resin-coated layer applied to the thrust bearing by the conventional technique is coated with a uniform layer thickness, but the oil film pressure is insufficient and the bearing capacity is insufficient, which may lead to seizure under the above-mentioned usage environment. There is. It is necessary to form an oil film on the entire sliding surface in order to prevent seizure, but the above-mentioned conventional technique is insufficient to have excellent seizure resistance in a harsh engine environment.

本発明は、優れた油膜形成を促進することにより優れた耐焼付き性能を有する半割スラスト軸受、ひいてはスラスト軸受を提供することを目的としている。 An object of the present invention is to provide a half-split thrust bearing having excellent seizure resistance by promoting excellent oil film formation, and thus to provide a thrust bearing.

本発明の一観点によれば、半円環形状を有し、軸線方向力を受けるための摺動面と、前記摺動面の反対側の背面とを有し、基板上に被覆された樹脂被覆層が前記摺動面を形成している半割スラスト軸受が提供される。この半割スラスト軸受は、樹脂被覆層の厚さが、円周方向に沿って変化することを特徴とする。
なお、ここで「半円環形状」とは、2つの半円により内周および外周が規定された形状であるが、これらは幾何学的厳密に半円である必要はない。例えば、外周面または内周面の一部が(例えば周方向端面で)径方向に突出していてもよく、周方向端面から(例えば周方向端面垂直方向に)延長部が存在してもよい。
According to one aspect of the present invention, a resin having a semicircular shape, having a sliding surface for receiving an axial force, and a back surface on the opposite side of the sliding surface, and coated on a substrate. A half-thrust bearing in which a coating layer forms the sliding surface is provided. This half-split thrust bearing is characterized in that the thickness of the resin coating layer changes along the circumferential direction.
Here, the "semicircle shape" is a shape in which the inner circumference and the outer circumference are defined by two semicircles, but these do not have to be geometrically strictly semicircles. For example, a part of the outer peripheral surface or the inner peripheral surface may project radially (for example, at the circumferential end surface), and an extension portion may be present from the circumferential end surface (for example, in the direction perpendicular to the circumferential end surface).

本発明の一具体例によれば、樹脂被覆層の厚さが、円周方向中央部よりも少なくとも1つの端部側で極大になっていることが好ましい。また、樹脂被覆層の厚さが、半割スラスト軸受の周方向両端部へ向かって小さくなっていることが好ましい。 According to one specific example of the present invention, it is preferable that the thickness of the resin coating layer is maximized on at least one end side of the central portion in the circumferential direction. Further, it is preferable that the thickness of the resin coating layer decreases toward both ends in the circumferential direction of the half-split thrust bearing.

本発明の一具体例によれば、樹脂被覆層の厚さが、少なくとも円周角度で5°~45°又は135°~175°の位置で極大になっていることが好ましい。この樹脂被覆層の厚さは、少なくとも円周角度で10°~35°又は145°~170°の位置で極大になっていることが更に好ましい。 According to one specific example of the present invention, it is preferable that the thickness of the resin coating layer is maximized at a position of at least 5 ° to 45 ° or 135 ° to 175 ° in the circumferential angle. It is more preferable that the thickness of the resin coating layer is maximized at a position of at least 10 ° to 35 ° or 145 ° to 170 ° in the circumferential angle.

本発明の一具体例によれば、樹脂被覆層の厚さが、円周角度で5°~45°および135°~175°の2つの位置で極大であることが好ましい。この樹脂被覆層の厚さは、円周角度で10°~35°および145°~170°の2つの位置で極大であることが更に好ましい。 According to one specific example of the present invention, it is preferable that the thickness of the resin coating layer is maximum at two positions of 5 ° to 45 ° and 135 ° to 175 ° in inscribed angle. It is more preferable that the thickness of the resin coating layer is maximized at two positions of 10 ° to 35 ° and 145 ° to 170 ° in inscribed angle.

本発明の一具体例によれば、樹脂被覆層の2つの極大厚さの間に、樹脂被覆層の厚さの極小になる中間位置があり、中間位置での樹脂被覆層の厚さが、樹脂被覆層の2つの極大厚さのうちの最大厚さの50%~90%であることが好ましい。この中間位置での樹脂被覆層の厚さは、最大厚さの65%~90%であることが更に好ましい。 According to one specific example of the present invention, there is an intermediate position where the thickness of the resin coating layer is minimized between the two maximum thicknesses of the resin coating layer, and the thickness of the resin coating layer at the intermediate position is determined. It is preferably 50% to 90% of the maximum thickness of the two maximum thicknesses of the resin coating layer. The thickness of the resin coating layer at this intermediate position is more preferably 65% to 90% of the maximum thickness.

本発明の一具体例によれば、半割スラスト軸受の周方向に沿って半割スラスト軸受を見たとき、半割スラスト軸受の摺動面が、円周角度で5°~45°又は135°~175°の位置で突出した凸形状の輪郭を有していることが好ましい。この凸形状の輪郭の突出位置は、円周角度で10°~35°又は145°~170°が更に好ましい。凸形状の輪郭の突出位置は、円周角度で75°~105°の位置でもよい。 According to a specific example of the present invention, when the half-split thrust bearing is viewed along the circumferential direction of the half-split thrust bearing, the sliding surface of the half-split thrust bearing has a circumferential angle of 5 ° to 45 ° or 135. It is preferable to have a convex contour protruding at a position of ° to 175 °. The protruding position of the convex contour is more preferably 10 ° to 35 ° or 145 ° to 170 ° in terms of inscribed angle. The protruding position of the convex contour may be a position of 75 ° to 105 ° in inscribed angle.

また、輪郭の突出部は、円周角度で5°~45°と135°~175°に2つ存在することが好ましく、円周角度で10°~35°、145°~170°に2つ存在することが更に好ましい。 Further, it is preferable that there are two protrusions of the contour at an inscribed angle of 5 ° to 45 ° and 135 ° to 175 °, and two protrusions at an inscribed angle of 10 ° to 35 ° and 145 ° to 170 °. It is more preferred to be present.

本発明の他の観点によれば、本発明は、2つの半割スラスト軸受からなるスラスト軸受であって、この2つの半割スラスト軸受のうちの少なくとも1つが、上記の本発明の半割スラスト軸受であるスラスト軸受が提供される。 According to another aspect of the present invention, the present invention is a thrust bearing composed of two half-split thrust bearings, and at least one of the two half-split thrust bearings is the above-mentioned half-split thrust of the present invention. Thrust bearings, which are bearings, are provided.

本発明の一具体例によれば、半割スラスト軸受は、内燃機関のクランク軸の軸線方向力を受けるための半割スラスト軸受であることが好ましい。 According to a specific example of the present invention, the half-split thrust bearing is preferably a half-split thrust bearing for receiving an axial force of a crank shaft of an internal combustion engine.

本発明の更に他の観点によれば、本発明は、上記の本発明の半割スラスト軸受を備えた軸受装置も提供される。 According to still another aspect of the present invention, the present invention also provides a bearing device provided with the above-mentioned half-thrust bearing of the present invention.

本発明の更に他の観点によれば、本発明は、上記の本発明の軸受装置を備えた内燃機関も提供される。 According to still another aspect of the present invention, the present invention also provides an internal combustion engine equipped with the above-mentioned bearing device of the present invention.

本発明の樹脂被覆を施した半割スラスト軸受は、樹脂被覆層の厚さの周方向の分布を制御することによって、油膜形成を促進し、低摩擦機能を損なうことなく、耐焼付き性能を向上させることができる。 The resin-coated half-thrust bearing of the present invention promotes oil film formation by controlling the distribution of the thickness of the resin-coated layer in the circumferential direction, and improves seizure resistance without impairing the low friction function. Can be made to.

本発明の構成及びその多くの利点を、添付の概略図面を参照して以下により詳細に述べる。図面は、例示の目的で、いくつかの非限定的な実施例を示す。 The configuration of the present invention and many advantages thereof will be described in more detail below with reference to the accompanying schematic drawings. The drawings show some non-limiting examples for illustrative purposes.

軸受装置の分解斜視図。An exploded perspective view of the bearing device. 軸受装置の断面図。Sectional view of the bearing device. 本発明の半割スラスト軸受の一例の正面図。The front view of an example of the half-split thrust bearing of this invention. 図3の半割スラスト軸受のY1矢視側面図。Y1 arrow side view of the half-split thrust bearing of FIG. 本発明の半割スラスト軸受の一例を、半径方向中央部で周方向に切断した断面の展開図。An expanded view of a cross section of an example of the half-split thrust bearing of the present invention cut in the circumferential direction at the central portion in the radial direction. 本発明の半割スラスト軸受の他の例を、半径方向中央部で周方向に切断した断面の展開図。Another example of the half-split thrust bearing of the present invention is a developed view of a cross section cut in the circumferential direction at the center in the radial direction. 本発明の半割スラスト軸受のさらに他の例を、半径方向中央部で周方向に切断した断面の展開図。Another example of the half-split thrust bearing of the present invention is a developed view of a cross section cut in the circumferential direction at the center in the radial direction. 本発明の半割スラスト軸受のさらに他の例を、半径方向中央部で周方向に切断した断面の展開図。Another example of the half-split thrust bearing of the present invention is a developed view of a cross section cut in the circumferential direction at the center in the radial direction. 本発明の半割スラスト軸受のさらに他の例を、半径方向中央部で周方向に切断した断面の展開図。Another example of the half-split thrust bearing of the present invention is a developed view of a cross section cut in the circumferential direction at the center in the radial direction.

まず、図1及び図2を用いて本発明の半割スラスト軸受8を有する軸受装置1の一例の全体構成を説明する。図1及び図2に示すように、シリンダブロック2の下部に軸受キャップ3を取り付けて構成された軸受ハウジング4には、両側面間を貫通する円形孔である軸受孔(保持孔)5が形成されており、側面における軸受孔5の周縁には円環状凹部である受座6、6が形成されている。軸受孔5には、クランク軸のジャーナル部11を回転自在に支承する半割軸受7、7が円筒状に組み合わされて嵌合される。受座6、6には、クランク軸のスラストカラー面12を介して軸線方向力f(図2参照)を受ける半割スラスト軸受8、8が円環状に組み合わされて嵌合される。半割スラスト軸受8は円環状に組み合せず、例えばシリンダブロック2側のみに勘合されてもよい。 First, the entire configuration of an example of the bearing device 1 having the half-split thrust bearing 8 of the present invention will be described with reference to FIGS. 1 and 2. As shown in FIGS. 1 and 2, the bearing housing 4 configured by attaching the bearing cap 3 to the lower portion of the cylinder block 2 is formed with a bearing hole (holding hole) 5 which is a circular hole penetrating between both side surfaces. The bearing holes 6 and 6 which are annular recesses are formed on the peripheral edge of the bearing hole 5 on the side surface. Half-split bearings 7 and 7 that rotatably support the journal portion 11 of the crank shaft are combined and fitted in the bearing hole 5 in a cylindrical shape. Half-split thrust bearings 8 and 8 that receive an axial force f (see FIG. 2) via the thrust collar surface 12 of the crank shaft are combined and fitted to the receiving seats 6 and 6 in an annular shape. The half-split thrust bearing 8 may not be combined in an annular shape, and may be fitted only to the cylinder block 2 side, for example.

次に、本発明の半割スラスト軸受8の一例の正面図および斜視図を図3および図4に示す。半割スラスト軸受8は、半円環形状の平板に形成された基板89上に樹脂被覆層88を有している。基板89は、通常、鋼製の裏金層に薄い軸受合金層を接着したバイメタルによって構成されることが好ましいが、裏金のみの構成、またはその他の構成でもよい。半割スラスト軸受8は軸線方向を向いた摺動面81(軸受面)を備え、摺動面81は樹脂被覆層から構成される。摺動面81には、潤滑油の保油性を高めるために、周方向両端面83、83の間に1つの油溝81a(図3では2つの油溝を図示している)が形成されていてもよい。 Next, a front view and a perspective view of an example of the half-split thrust bearing 8 of the present invention are shown in FIGS. 3 and 4. The half-split thrust bearing 8 has a resin coating layer 88 on a substrate 89 formed on a semicircular flat plate. The substrate 89 is usually preferably composed of a bimetal in which a thin bearing alloy layer is bonded to a steel back metal layer, but the substrate 89 may be composed of only the back metal or other configurations. The half-split thrust bearing 8 includes a sliding surface 81 (bearing surface) facing in the axial direction, and the sliding surface 81 is composed of a resin coating layer. On the sliding surface 81, one oil groove 81a (two oil grooves are shown in FIG. 3) is formed between both end faces 83 and 83 in the circumferential direction in order to improve the oil retention property of the lubricating oil. You may.

半割スラスト軸受8は軸線方向に垂直な基準面84を画定しており、この基準面84内に、シリンダブロック2の受座6に配置されるように適合された実質的に平坦な背面84aを有する(図4参照)。背面84aは基板89の底面でもある。基板89は、基準面84(背面84a)から軸線方向反対側の上面82を有し、基板の上面には、樹脂被覆層88が被覆されている。樹脂被覆層88の表面は、基準面84(背面84a)から軸線方向に離れた摺動面81を形成し、摺動面81は、クランク軸のスラストカラー面12を介して軸線方向力f(図2参照)を受けるようになっている。 The half-thrust bearing 8 defines a reference plane 84 that is perpendicular to the axial direction, and within this reference plane 84, a substantially flat back surface 84a adapted to be disposed on the seat 6 of the cylinder block 2. (See FIG. 4). The back surface 84a is also the bottom surface of the substrate 89. The substrate 89 has an upper surface 82 opposite to the reference surface 84 (back surface 84a) in the axial direction, and the upper surface of the substrate is coated with a resin coating layer 88. The surface of the resin coating layer 88 forms a sliding surface 81 separated from the reference surface 84 (rear surface 84a) in the axial direction, and the sliding surface 81 has an axial force f (axial force f) via the thrust collar surface 12 of the crank shaft. (See Fig. 2).

図5は、半割スラスト軸受8を、所定の半径で切断した断面を展開した図であり、図5に示された半割スラスト軸受8の横方向両端部が半割スラスト軸受8の周方向両端面83(円周角度0°、180°)、図5に示された半割スラスト軸受8の横方向中央が、半割スラスト軸受8の周方向中央85(円周角度90°)を示す。円周角度は、半割スラスト軸受8の円環形状の中心を中心する周方向両端面83からの角度を言う。本明細書では、クランク軸の摺動する方向(図3に矢印SDで示す)の後方側端面を0°、摺動方向前方側端面を180°にとる(図3参照)。(ただし、摺動方向前方側端面を0°にとっても、本発明の範囲に影響はない。) FIG. 5 is a developed view of a half-split thrust bearing 8 cut at a predetermined radius, and both ends of the half-split thrust bearing 8 in the lateral direction shown in FIG. 5 are in the circumferential direction of the half-split thrust bearing 8. Both end faces 83 (circumferential angle 0 °, 180 °), the lateral center of the half-split thrust bearing 8 shown in FIG. 5 indicates the circumferential center 85 (circumferential angle 90 °) of the half-split thrust bearing 8. .. The inscribed angle refers to the angle from both end faces 83 in the circumferential direction centered on the center of the annular shape of the half-split thrust bearing 8. In the present specification, the rear end surface of the crank shaft in the sliding direction (indicated by the arrow SD in FIG. 3) is set to 0 °, and the rear end surface in the sliding direction is set to 180 ° (see FIG. 3). (However, even if the front end surface in the sliding direction is set to 0 °, the scope of the present invention is not affected.)

本発明の半割スラスト軸受8は、樹脂被覆層88の厚さが、円周方向に沿って変化する。それにより、クランク軸の回転に伴い、油膜形成を促進できる。
図5~図9に、本発明の半割スラスト軸受8の樹脂被覆層88の厚さ分布の例を示す。
In the half-split thrust bearing 8 of the present invention, the thickness of the resin coating layer 88 changes along the circumferential direction. As a result, the formation of an oil film can be promoted as the crank shaft rotates.
5 to 9 show an example of the thickness distribution of the resin coating layer 88 of the half-split thrust bearing 8 of the present invention.

図5に示す基板89上の樹脂被覆層88の分布の一例によれば、樹脂被覆層88は、樹脂被覆層の厚さが、円周方向中央部よりも摺動方向後端の端部側で最大(すなわち極大)となり、半割スラスト軸受の周方向両端部83へ向かって小さくなっている。樹脂被覆層の厚さが最大または極大となる位置は円周角度で5°~45°の位置、好ましくは円周角度で10°~35°の位置である。なお、極大となる位置は1つでなく、複数の、極大部が形成されていてもよいが、そのうちの1つが上記円周角度位置に存在することが望ましい。 According to an example of the distribution of the resin coating layer 88 on the substrate 89 shown in FIG. 5, in the resin coating layer 88, the thickness of the resin coating layer is closer to the end portion of the rear end in the sliding direction than the central portion in the circumferential direction. It becomes the maximum (that is, the maximum) at, and becomes smaller toward both ends 83 in the circumferential direction of the half-split thrust bearing. The position where the thickness of the resin coating layer is maximum or maximum is a position of 5 ° to 45 ° in the inscribed angle, preferably a position of 10 ° to 35 ° in the inscribed angle. It should be noted that the maximum position is not one, and a plurality of maximum portions may be formed, but it is desirable that one of them is present at the above-mentioned inscribed angle position.

図6に樹脂被覆層の厚さ極大部を2つ形成した例を示す。樹脂被覆層88は、樹脂被覆層88の厚さが、両端部側で極大となる2つの極大部を有し、半割スラスト軸受の周方向両端部83へ向かって小さくなっている。樹脂被覆層の厚さが極大となる位置は円周角度で5°~45°および135°~175°の位置、好ましくは円周角度で10°~35°および145°~170°の位置である。2つの極大部の厚さは同じであっても、異なっていてもよい。また、2つの極大部は、円周角度90°に対して対照位置に存在してもよく、対照でない位置に存在してもよい。 FIG. 6 shows an example in which two maximum thickness portions of the resin coating layer are formed. The resin coating layer 88 has two maximum portions in which the thickness of the resin coating layer 88 is maximum on both ends, and the thickness of the resin coating layer 88 decreases toward both ends 83 in the circumferential direction of the half-split thrust bearing. The position where the thickness of the resin coating layer is maximized is at the position of 5 ° to 45 ° and 135 ° to 175 ° in the inscribed angle, preferably at the position of 10 ° to 35 ° and 145 ° to 170 ° in the inscribed angle. be. The thicknesses of the two maximals may be the same or different. Further, the two maximum portions may be present at a control position with respect to the inscribed angle of 90 °, or may be present at a non-control position.

この場合、樹脂被覆層の2つの極大厚さの間に、樹脂被覆層の厚さの極小になる中間位置が存在する。中間位置での樹脂被覆層の厚さが、樹脂被覆層の2つの極大厚さのうちの最大厚さの50%~90%であることが好ましく、最大厚さの65%~90%であることが更に好ましい。樹脂被覆層は、厚さの最大値が2~30μm程度、中間位置での厚さが1~27μm程度になることが好ましい。 In this case, there is an intermediate position between the two maximum thicknesses of the resin coating layer, which is the minimum thickness of the resin coating layer. The thickness of the resin coating layer at the intermediate position is preferably 50% to 90% of the maximum thickness of the two maximum thicknesses of the resin coating layer, and is 65% to 90% of the maximum thickness. Is even more preferable. The maximum thickness of the resin coating layer is preferably about 2 to 30 μm, and the thickness at the intermediate position is preferably about 1 to 27 μm.

このような分布形状に制御することによって、油膜形成を促進し、低摩擦機能を損なうことなく、耐焼付き性能が向上する。この機構は以下の通りである。
樹脂は弾性体であるためストレッチ(伸縮)作用が起こるために、樹脂被覆層の厚さの大きい部分を中心にストレッチ作用を発揮して、潤滑油の流れ分布による油膜圧力が発生し、優れた油膜形成を促すことができ、耐焼付き性が向上する。
By controlling the distribution shape to such a shape, the formation of an oil film is promoted, and the seizure resistance is improved without impairing the low friction function. This mechanism is as follows.
Since the resin is an elastic body, the stretching action occurs, so that the stretching action is exerted mainly on the thick part of the resin coating layer, and the oil film pressure due to the flow distribution of the lubricating oil is generated, which is excellent. Oil film formation can be promoted and seizure resistance is improved.

これらの樹脂被覆層88の周方向厚さ分布は、いずれの径方向位置においても成立することが好ましい。しかし、径方向中央の半径位置で、この厚さ分布が成立していればよい。この場合でも、油膜形成は促進される。なお、樹脂被覆層88の周方向厚さ分布がいずれの径方向位置においても成立する場合でも、周方向中央部86の円周角度が一致する必要がない。ただし、いずれの径方向位置においても、上記の角度範囲を満たすことが好ましい。 It is preferable that the circumferential thickness distribution of these resin coating layers 88 is established at any radial position. However, it is sufficient that this thickness distribution is established at the radial position in the center of the radial direction. Even in this case, oil film formation is promoted. Even when the circumferential thickness distribution of the resin coating layer 88 is established at any radial position, it is not necessary that the inscribed angles of the circumferential central portion 86 match. However, it is preferable to satisfy the above angle range at any radial position.

上記の樹脂被覆層88の周方向厚さ分布は、全体的な分布であり、局所的に見れば小さな凹凸は存在するが、このような局所的凹凸は存在してもよい。 The circumferential thickness distribution of the resin coating layer 88 is an overall distribution, and small irregularities are present when viewed locally, but such local irregularities may be present.

半割スラスト軸受8の基板89の上面82は、図5、図6に示すように平坦面であることが好ましい。この場合、樹脂被覆層88の厚さ分布が摺動面81の輪郭形状になる。しかし、基板89の上面82平坦面でなくてもよい。例えば、図7に示すように周方向中央部が低くなったものや、あるいはその他の形状でもよい。摺動面81の輪郭形状の周方向中央部と円周方向端部との高低差は1~15μm程度が好ましい。 The upper surface 82 of the substrate 89 of the half-split thrust bearing 8 is preferably a flat surface as shown in FIGS. 5 and 6. In this case, the thickness distribution of the resin coating layer 88 becomes the contour shape of the sliding surface 81. However, the upper surface 82 of the substrate 89 does not have to be a flat surface. For example, as shown in FIG. 7, the central portion in the circumferential direction may be lowered, or other shapes may be used. The height difference between the circumferential central portion and the circumferential end portion of the contour shape of the sliding surface 81 is preferably about 1 to 15 μm.

なお、何れの形状であっても、スラストリリーフ87が形成されてもよい(図8)。スラストリリーフ87は、摺動面81側の周方向両端面に隣接する領域に、壁厚が端面に向かって徐々に薄くなるように形成される壁厚減少領域であり、半割スラスト軸受8の周方向端面の径方向全長に亘って延びている。スラストリリーフ87は、半割スラスト軸受8を分割型の軸受ハウジング4内に組み付けた際の位置ずれ等に起因する、一対の半割スラスト軸受8、8の周方向端面83、83同士の位置ずれを緩和するために形成される。 The thrust relief 87 may be formed in any shape (FIG. 8). The thrust relief 87 is a wall thickness reduction region formed in a region adjacent to both end faces in the circumferential direction on the sliding surface 81 side so that the wall thickness gradually decreases toward the end face, and is a region of the half-split thrust bearing 8. It extends over the radial end face. The thrust relief 87 is misaligned between the circumferential end faces 83 and 83 of the pair of half-split thrust bearings 8 and 8 due to misalignment when the half-split thrust bearing 8 is assembled in the split type bearing housing 4. Formed to alleviate.

更に、本発明の半割スラスト軸受8は、基準面84から摺動面81までの軸線方向距離が、前記半割スラスト軸受の周方向に沿って前記半割スラスト軸受を見たとき、前記半割スラスト軸受の前記摺動面が、円周角度で5°~45°又は135°~175°の位置で突出した凸形状の輪郭を有していることが好ましく、円周角度で10°~35°又は145°~170°の位置で突出した凸形状の輪郭を有していることが更に好ましい。この摺動面81の輪郭は、曲線から構成されてもよく、直線から構成されてもよい。
また、輪郭の突出部が、円周角度で5°~45°と135°~175°に2つ存在することが好ましく、円周角度で10°~35°と145°~170°に存在することが更に好ましい。この場合、2つの凸形状部の高さは同じであっても、異なっていてもよい。また、2つの凸形状部は、円周角度90°に対して対照位置に存在してもよく、対照でない位置に存在してもよい。
Further, in the half-split thrust bearing 8 of the present invention, when the axial distance from the reference surface 84 to the sliding surface 81 is seen along the circumferential direction of the half-split thrust bearing, the half-split thrust bearing 8 is seen. It is preferable that the sliding surface of the split thrust bearing has a convex contour protruding at a position of 5 ° to 45 ° or 135 ° to 175 ° in a circumferential angle, and 10 ° to 10 ° in a circumferential angle. It is more preferable to have a convex contour protruding at a position of 35 ° or 145 ° to 170 °. The contour of the sliding surface 81 may be composed of a curved line or a straight line.
Further, it is preferable that two protrusions of the contour are present at the inscribed angles of 5 ° to 45 ° and 135 ° to 175 °, and are present at the inscribed angles of 10 ° to 35 ° and 145 ° to 170 °. Is even more preferable. In this case, the heights of the two convex portions may be the same or different. Further, the two convex portions may be present at a control position with respect to the inscribed angle of 90 °, or may be present at a non-control position.

半割スラスト軸受8の基板89の上面82が平坦面の場合には、この摺動面81の輪郭は、樹脂被覆層88の厚さ分布により決定され、樹脂被覆層88の最大厚さのところで摺動面81が最も突出していることになる。内燃機関の作動時に、摺動面81の突出部がクランク軸と最も強く摺動するため、輪郭が上記の角度範囲で突出していることによって、相手軸材の回転運動に伴って、突出部を中心とするくさび作用による油膜圧力が発生する。さらに、上記に説明した樹脂被覆層によるストレッチ作用による油膜圧力の発生と、隣接する突出部の間の潤滑油保持効果が相まって、優れた油膜形成を促すことができ、それにより耐焼付き性が向上すると共に摩耗が抑制される。
しかし、図7のように、半割スラスト軸受8の基板89の上面82が平坦面でなくてもよい。この場合、摺動面81の輪郭の最大突出部が、樹脂被覆層88の厚さの最大の位置とほぼ一致していることが好ましいが、一致しなくてもよい。一致する場合は、上記の通りの効果が得られるが、一致しない場合でも、くさび作用とストレッチ作用のそれぞれの効果が発揮されるために、スラスト軸受け面の広い範囲で優れた油膜形成を促すことができる。そのため、例えば、図9のように周角度で75°~105°の位置で突出した凸形状の輪郭を有していてもよい。
When the upper surface 82 of the substrate 89 of the half-split thrust bearing 8 is a flat surface, the contour of the sliding surface 81 is determined by the thickness distribution of the resin coating layer 88, and is at the maximum thickness of the resin coating layer 88. The sliding surface 81 is the most protruding. When the internal combustion engine operates, the protruding portion of the sliding surface 81 slides most strongly with the crank shaft. Therefore, the contour protrudes in the above angle range, so that the protruding portion is caused by the rotational movement of the mating shaft material. Oil film pressure is generated due to the wedge action at the center. Furthermore, the generation of oil film pressure due to the stretching action of the resin coating layer described above and the effect of retaining lubricating oil between adjacent protrusions can be combined to promote excellent oil film formation, thereby improving seizure resistance. At the same time, wear is suppressed.
However, as shown in FIG. 7, the upper surface 82 of the substrate 89 of the half-split thrust bearing 8 does not have to be a flat surface. In this case, it is preferable that the maximum protrusion of the contour of the sliding surface 81 substantially coincides with the maximum position of the thickness of the resin coating layer 88, but it does not have to coincide. If they match, the above effects can be obtained, but even if they do not match, the effects of wedge action and stretch action are exhibited, so that excellent oil film formation is promoted over a wide range of the thrust bearing surface. Can be done. Therefore, for example, as shown in FIG. 9, it may have a convex contour that protrudes at a position of 75 ° to 105 ° in a circumferential angle.

樹脂被覆層88を形成する樹脂は、例えば、PAI(ポリアミドイミド)、PI(ポリイミド)、PBI(ポリベンゾイミダゾール)、PA(ポリアミド)、フェノール、エポキシ、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PE(ポリエチレン)、PPS(ポリフェニレンサルファイド)、PEI(ポリエーテルイミド)およびフッ素樹脂およびエラストマーのうちから選ばれる1種または2種以上からなる合成樹脂からなることが好ましい。
樹脂被覆層は、樹脂の他に、固体潤滑剤および充填材の両方またはいずれかを含んでもよい。固体潤滑剤としては、例えば、黒鉛、MoS、WS、h-BN、PTFE、メラミンシアヌレート、フッ化黒鉛、フタロシアニン、グラフェンナノプレートレット、フラーレン、超高分子量ポリエチレンおよびNε‐ラウロイル‐L-リジンから選ばれる1種または2種以上があり、固体潤滑剤を含有することにより、摺動層の摺動特性を高めることができる。好ましい固体潤滑剤の含有量は10~70体積%である。充填材としては、例えば、CaF、CaCO、タルク、マイカ、ムライト、リン酸カルシウム、酸化鉄、酸化アルミニウム、酸化クロム、酸化セリウム、酸化ジルコニウム、酸化チタン、酸化シリコン、酸化マグネシウムなどの酸化物、MoC(モリブデンカーバイト)、SiCなどの炭化物、窒化アルミニウム、窒化ケイ素、c-BNなどの窒化物およびダイヤモンドのうちから選ばれる1種または2種以上があり、この充填材を含有することにより、摺動層の耐摩耗性を高めることが可能となる。好ましい充填剤の含有量は1~25体積%である。
The resin forming the resin coating layer 88 is, for example, PAI (polyetherimide), PI (polyetherimide), PBI (polybenzoimidazole), PA (polyamide), phenol, epoxy, POM (polyacetal), PEEK (polyetheretherketone). ), PE (polyethylene), PPS (polyphenylene sulfide), PEI (polyetherimide) and a synthetic resin composed of one or more selected from a fluororesin and an elastomer.
The resin coating layer may contain, in addition to the resin, a solid lubricant and / or a filler. Examples of solid lubricants include graphite, MoS 2 , WS 2 , h-BN, PTFE, melamine cyanurate, graphite fluoride, phthalocyanine, graphene nanoplatelets, fullerene, ultra high molecular weight polyethylene and Nε-lauroyl-L-. There is one type or two or more types selected from lysine, and by containing a solid lubricant, the sliding characteristics of the sliding layer can be enhanced. The preferred solid lubricant content is 10-70% by volume. Examples of the filler include oxides such as CaF 2 , CaCO 3 , talc, mica, mulite, calcium phosphate, iron oxide, aluminum oxide, chromium oxide, cerium oxide, zirconium oxide, titanium oxide, silicon oxide and magnesium oxide, and Mo. 2 There is one or more selected from carbides such as C (molybdenum carbide) and SiC, nitrides such as aluminum nitride, silicon nitride, c-BN and diamond, and by containing this filler. , It is possible to improve the wear resistance of the sliding layer. The preferred filler content is 1-25% by volume.

半割スラスト軸受8の基板89は、上記の通り、裏金層と、この裏金層上に設けられた軸受合金層とを備えることが好ましい。裏金層としては、Fe合金、Cu、Cu合金等の金属板を用いることができ、軸受合金層は、銅合金、アルミニウム合金、錫合金などの合金から形成できる。軸受合金層上に錫合金、ビスマス合金および鉛合金などのめっき層およびPVD法により蒸着した金属オーバレイ層を設けても良い。裏金層がなく、高強度なアルミニウム合金又は銅合金などの軸受合金層のみを用いることもできる。裏金層表面、すなわち軸受合金層との界面となる側に多孔質金属層を形成してもよいが、多孔質金属層は裏金層と同じ組成を有することも、異なる組成または材料を用いることも可能である。裏金層の表面に多孔質金属層を設けることにより、摺動層と裏金層の接合強度を高めることができる。多孔質金属層は、Cu、Cu合金、Fe、Fe合金等の金属粉末を金属板や条等の表面上に焼結することにより形成することができる。多孔質金属層の空孔率は20~60%程度であればよく、多孔質金属層の厚さは0.05~0.50mm程度とすればよい。この場合、多孔質金属層の表面上に被覆される摺動層の厚さは0.05~0.40mm程度となるようにすればよい。ただし、ここで記載した寸法は一例であり、本発明がこの値の限定されるものではなく、異なる寸法に変更することも可能である。 As described above, the substrate 89 of the half-split thrust bearing 8 preferably includes a back metal layer and a bearing alloy layer provided on the back metal layer. A metal plate such as an Fe alloy, Cu, or Cu alloy can be used as the back metal layer, and the bearing alloy layer can be formed from an alloy such as a copper alloy, an aluminum alloy, or a tin alloy. A plating layer such as a tin alloy, a bismuth alloy, or a lead alloy and a metal overlay layer vapor-deposited by the PVD method may be provided on the bearing alloy layer. It is also possible to use only a bearing alloy layer such as a high-strength aluminum alloy or a copper alloy without a backing metal layer. A porous metal layer may be formed on the surface of the back metal layer, that is, on the side of the interface with the bearing alloy layer, but the porous metal layer may have the same composition as the back metal layer or may use a different composition or material. It is possible. By providing the porous metal layer on the surface of the back metal layer, the bonding strength between the sliding layer and the back metal layer can be increased. The porous metal layer can be formed by sintering a metal powder such as Cu, Cu alloy, Fe, or Fe alloy on the surface of a metal plate, strip, or the like. The porosity of the porous metal layer may be about 20 to 60%, and the thickness of the porous metal layer may be about 0.05 to 0.50 mm. In this case, the thickness of the sliding layer coated on the surface of the porous metal layer may be about 0.05 to 0.40 mm. However, the dimensions described here are examples, and the present invention is not limited to this value, and it is possible to change to different dimensions.

次に、樹脂被覆層88を基板89上に塗布する方法について説明する。樹脂被覆層88の塗布は、例えばスプレー、ロール、パッド、スクリーン等のコート法を用いることが好ましい。樹脂被覆層88の厚さ制御は、これらのコート法において、樹脂の吐出量や付着量や転写量の部分制御を行なうことによって、摺動面全体での層厚分布形状を制御する。樹脂の吐出量の制御の一例として、例えば、多数の吐出ノズルをラインに対して直角方向に一列に配置する。周方向両端部をラインの流れ方向に向けて配置して半割スラスト軸受8をラインに流し、各吐出ノズルからの樹脂の吐出量を調整することにより、所望の樹脂被覆層の厚さ分布が制御可能になる。 Next, a method of applying the resin coating layer 88 on the substrate 89 will be described. For the coating of the resin coating layer 88, for example, it is preferable to use a coating method such as a spray, a roll, a pad, or a screen. In these coating methods, the thickness of the resin coating layer 88 is controlled by partially controlling the amount of resin discharged, the amount of adhesion, and the amount of transfer, thereby controlling the layer thickness distribution shape over the entire sliding surface. As an example of controlling the amount of resin discharged, for example, a large number of discharge nozzles are arranged in a row in a direction perpendicular to the line. By arranging both ends in the circumferential direction toward the flow direction of the line, flowing the half-thrust bearing 8 through the line, and adjusting the amount of resin discharged from each discharge nozzle, the desired thickness distribution of the resin coating layer can be obtained. It becomes controllable.

鋼裏金上のアルミ合金(Al-Sn-Si)の軸受合金層を接着した平坦な半円環形状の基板(外径150mm、内径110mm、厚さ3.0mm)を準備した。樹脂は、PAIを用い、その軸受合金層の表面にスプレーコート法にて、多数の塗料吐出ノズルをラインに対して直角方向に一列に配置して基板をラインに流して樹脂を塗布し、樹脂被覆層を形成した。このようにして、周方向端部付近で樹脂被覆層の厚さが最大になる半割スラスト軸受の試料A、Bおよび、樹脂被覆層の厚さがほぼ均一な試料Cを作製した。試料A、Bの樹脂被覆層の厚さは、厚さ最大部で10μm(円周角度50°)、厚さ最小部で4μmであった。試料Cの樹脂被覆層の厚さは、ほぼ均一に10μmとした。樹脂被覆層の厚さは、径方向中央の各円周角度で試料を切り出し、光学顕微鏡による断面観察によって厚さを測定した。 A flat semicircular substrate (outer diameter 150 mm, inner diameter 110 mm, thickness 3.0 mm) to which a bearing alloy layer of an aluminum alloy (Al—Sn—Si) on a steel back metal was bonded was prepared. As the resin, PAI is used, and a large number of paint ejection nozzles are arranged in a row in a row in the direction perpendicular to the line by a spray coating method on the surface of the bearing alloy layer, and the substrate is flowed through the line to apply the resin. A coating layer was formed. In this way, samples A and B of the half-split thrust bearing in which the thickness of the resin coating layer is maximized near the peripheral end portion, and samples C in which the thickness of the resin coating layer is substantially uniform were prepared. The thickness of the resin coating layers of Samples A and B was 10 μm at the maximum thickness (circumferential angle 50 °) and 4 μm at the minimum thickness. The thickness of the resin coating layer of Sample C was set to 10 μm almost uniformly. The thickness of the resin coating layer was measured by cutting out a sample at each inscribed angle in the center of the radial direction and observing the cross section with an optical microscope.

試料A~Cを用いて表2の条件で焼付き試験を行なった。相手軸材としてS55Cを用い、試料を1000rpmで回転させながら相手軸を試料に接触させ、1MPa/10minの割合で荷重を増加させ、焼付きの発生しない最大の面圧を非焼付き面圧とした。潤滑油としてVG68を100℃で200cc/minの割合で供給した。試験結果は、表1に示すとおり、樹脂被覆層の厚さのほぼ均一な試料Cが非焼付き面圧6MPaであったのに対して、周方向端部付近に凸部を有する試料A、Bが非焼付き面圧7MPaとなり、周方向端部付近に凸部を有することにより耐焼付き性が改善される結果となった。 The seizure test was performed using the samples A to C under the conditions shown in Table 2. Using S55C as the mating shaft material, the mating shaft is brought into contact with the sample while rotating the sample at 1000 rpm, the load is increased at a rate of 1 MPa / 10 min, and the maximum surface pressure at which seizure does not occur is defined as the non-seizure surface pressure. bottom. VG68 was supplied as a lubricating oil at 100 ° C. at a rate of 200 cc / min. As shown in Table 1, the test results show that Sample C, which has a substantially uniform thickness of the resin coating layer, has a non-seizure surface pressure of 6 MPa, whereas Sample A, which has a convex portion near the peripheral end, has a convex portion. The non-seizure surface pressure of B was 7 MPa, and the seizure resistance was improved by having a convex portion near the peripheral end.

Figure 0007071094000001
Figure 0007071094000001

Figure 0007071094000002
Figure 0007071094000002

次に、半割スラスト軸受の樹脂被覆層の厚さが最大となる位置(以下、凸部位置という)を半割スラスト軸受の周方向両端部付近に形成して、凸部位置を変化させて焼付性への影響を調べた。表3に示すとおり凸部位置を円周角度で5°~50°まで変化させた試料1~8を作製した。ここで凸部は、円周角度90°に対して対照位置に2つ設けた(表3には小さい方の円周角度を記載した)。樹脂被覆層の厚さは凸部で10μm、2つの凸部間の厚さ極小部で4μmであった。その他、材質、製造方法は試料Aと同じである。これらの試料を上記の条件で焼付き試験に供した。結果を表3に示す。凸部位置が円周角度で5°~45°(試料1~7)の試料は非焼付き面圧が8MPa以上であったが、凸部位置が円周角度で50°の試料(試料8)は非焼付き面圧が7MPaとなった。さらに、凸部位置が円周角度で10°~35°の試料(試料2~5)は非焼付き面圧が10MPaと更に大きな値が得られた。これは、上記円周角度範囲に凸部を有することにより油膜形成が促進され、非焼付き面圧が向上したと考えられる。 Next, a position where the thickness of the resin coating layer of the half-split thrust bearing is maximized (hereinafter referred to as a convex portion position) is formed near both ends in the circumferential direction of the half-split thrust bearing, and the convex portion position is changed. The effect on seizure property was investigated. As shown in Table 3, Samples 1 to 8 in which the position of the convex portion was changed by the circumferential angle from 5 ° to 50 ° were prepared. Here, two convex portions were provided at control positions with respect to the inscribed angle of 90 ° (Table 3 shows the smaller inscribed angle). The thickness of the resin coating layer was 10 μm at the convex portion and 4 μm at the minimum thickness portion between the two convex portions. Other than that, the material and the manufacturing method are the same as those of sample A. These samples were subjected to a seizure test under the above conditions. The results are shown in Table 3. The sample with the convex position at an inscribed angle of 5 ° to 45 ° (Samples 1 to 7) had a non-seizure surface pressure of 8 MPa or more, but the sample with a convex position at an inscribed angle of 50 ° (Sample 8). ), The non-seizure surface pressure was 7 MPa. Further, the non-seizure surface pressure of the samples (Samples 2 to 5) having the convex portion at an inscribed angle of 10 ° to 35 ° was 10 MPa, which was a larger value. It is considered that the oil film formation was promoted by having the convex portion in the inscribed angle range, and the non-seizure surface pressure was improved.

Figure 0007071094000003
Figure 0007071094000003

次に、凸部位置を円周角度25°および155°の2つに固定したまま、2つの凸部間の樹脂被覆層厚さ極小部の厚さを変化させた。樹脂被覆層の厚さは凸部で10μmとしたままで、樹脂被覆層厚さ極小部の厚さの最大厚さに対する割合(表4に膜圧比%として示す)を47.1%から94.2%まで変化させた試料11~17を作製て、耐焼付き性に及ぼす影響を調べた。試験結果を表4に示す。 Next, the thickness of the resin coating layer thickness minimum portion between the two convex portions was changed while the convex portion positions were fixed at two angles of 25 ° and 155 °. While the thickness of the resin coating layer remains 10 μm at the convex portion, the ratio of the thickness of the resin coating layer minimum thickness to the maximum thickness (shown as the film pressure ratio% in Table 4) is 47.1% to 94. Samples 11 to 17 changed to 2% were prepared, and the effect on seizure resistance was investigated. The test results are shown in Table 4.

Figure 0007071094000004
Figure 0007071094000004

表4に示された結果から、膜厚比が50%~90%である試料12~16は非焼付き面圧が11MPa以上と、膜厚比が50%未満や90%超の試料11、17よりも大きな値が得られた。とりわけ、膜厚比が65%~90%の試料14~16は非焼付き面圧が12MPaの大きな値となり、耐焼付き性が向上することがわかった。 From the results shown in Table 4, the samples 12 to 16 having a film thickness ratio of 50% to 90% have a non-seizure surface pressure of 11 MPa or more, and the samples 11 having a film film ratio of less than 50% or more than 90%. A value greater than 17 was obtained. In particular, it was found that the non-seizure surface pressure of the samples 14 to 16 having a film thickness ratio of 65% to 90% became a large value of 12 MPa, and the seizure resistance was improved.

1 軸受装置
11 ジャーナル部
12 スラストカラー面
2 シリンダブロック
3 軸受キャップ
4 軸受ハウジング
5 軸受孔(保持孔)
6 受座
7 半割軸受
8 半割スラスト軸受
81 摺動面
81a 油溝
82 基板の上面
83 周方向両端面
84 基準面
84a 背面
85 周方向中央
86 周方向中央部
87 スラストリリーフ
88 樹脂被覆層
89 基板
f 軸線方向力
SD 摺動方向
1 Bearing device 11 Journal part 12 Thrust collar surface 2 Cylinder block 3 Bearing cap 4 Bearing housing 5 Bearing hole (holding hole)
6 Seat 7 Half bearing
8 Half-split thrust bearing 81 Sliding surface 81a Oil groove 82 Top surface of board 83 Circumferential end surface 84 Reference surface 84a Back surface 85 Circumferential center 86 Circumferential center 87 Thrust relief 88 Resin coating layer 89 Substrate
f Axial force SD sliding direction

Claims (7)

半円環形状の半割スラスト軸受であって、軸線方向力を受けるための摺動面と、前記摺動面の反対側の背面とを有し、基板上に被覆された樹脂被覆層が前記摺動面を形成している半割スラスト軸受において、前記樹脂被覆層の厚さが、円周方向に沿って曲線状に変化し、
前記樹脂被覆層の厚さが、円周角度で10°~35°および145°~170°の2つの位置で極大であり、前記2つの樹脂被覆層の極大厚さの間に、前記樹脂被覆層の厚さの極小になる中間位置があり、該中間位置での前記樹脂被覆層の厚さが、前記2つの樹脂被覆層の極大厚さのうちの最大厚さの65%~90%であることを特徴とする半割スラスト軸受。
A semi-annular half-thrust bearing having a sliding surface for receiving an axial force and a back surface on the opposite side of the sliding surface, and a resin coating layer coated on a substrate is described above. In the half-thrust bearing forming the sliding surface, the thickness of the resin coating layer changes in a curved shape along the circumferential direction.
The thickness of the resin coating layer is maximum at two positions of 10 ° to 35 ° and 145 ° to 170 ° in circumference, and the resin coating is between the maximum thicknesses of the two resin coating layers. There is an intermediate position where the thickness of the layer is minimized, and the thickness of the resin coating layer at the intermediate position is 65% to 90% of the maximum thickness of the maximum thickness of the two resin coating layers. Half-split thrust bearing characterized by being present.
前記中間位置での前記樹脂被覆層の厚さが、前記2つの樹脂被覆層の極大厚さのうちの最大厚さの76.6%~88.3%であることを特徴とする請求項1に記載された半割スラスト軸受。 Claim 1 is characterized in that the thickness of the resin coating layer at the intermediate position is 76.6% to 88.3% of the maximum thickness of the maximum thicknesses of the two resin coating layers. Half-split thrust bearing described in . 前記半割スラスト軸受の周方向に沿って前記半割スラスト軸受を見たとき、前記半割スラスト軸受の前記摺動面が、円周角度で10°~35°および145°~170°の位置で突出した凸形状の輪郭を有していることを特徴とする請求項1又は請求項2に記載された半割スラスト軸受。 When the half-split thrust bearing is viewed along the circumferential direction of the half-split thrust bearing, the sliding surface of the half-split thrust bearing is positioned at 10 ° to 35 ° and 145 ° to 170 ° in terms of circumferential angle. The half-thrust bearing according to claim 1 or 2, wherein the bearing has a convex contour protruding from the bearing. 2つの半割スラスト軸受からなるスラスト軸受であって、該2つの半割スラスト軸受のうちの少なくとも1つが、請求項1から請求項3までのいずれか1項に記載された半割スラスト軸受であることを特徴とするスラスト軸受。 A thrust bearing composed of two half-split thrust bearings, wherein at least one of the two half-split thrust bearings is the half-split thrust bearing according to any one of claims 1 to 3. Thrust bearings that are characterized by being present. 内燃機関のクランク軸の軸線方向力を受けるための半割スラスト軸受であることを特徴とする請求項1から請求項3までのいずれか1項に記載された半割スラスト軸受。 The half-split thrust bearing according to any one of claims 1 to 3, wherein the half-split thrust bearing is for receiving an axial force of a crank shaft of an internal combustion engine. 請求項1から請求項3までのいずれか1項に記載された半割スラスト軸受を備えた軸受装置。 The bearing device provided with the half-split thrust bearing according to any one of claims 1 to 3. 請求項6に記載された軸受装置を有する内燃機関。 An internal combustion engine having the bearing device according to claim 6.
JP2017217485A 2017-11-10 2017-11-10 Half-thrust bearings, thrust bearings, bearing devices and internal combustion engines Active JP7071094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017217485A JP7071094B2 (en) 2017-11-10 2017-11-10 Half-thrust bearings, thrust bearings, bearing devices and internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017217485A JP7071094B2 (en) 2017-11-10 2017-11-10 Half-thrust bearings, thrust bearings, bearing devices and internal combustion engines

Publications (2)

Publication Number Publication Date
JP2019090432A JP2019090432A (en) 2019-06-13
JP7071094B2 true JP7071094B2 (en) 2022-05-18

Family

ID=66837288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017217485A Active JP7071094B2 (en) 2017-11-10 2017-11-10 Half-thrust bearings, thrust bearings, bearing devices and internal combustion engines

Country Status (1)

Country Link
JP (1) JP7071094B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7068410B2 (en) * 2020-09-28 2022-05-16 大同メタル工業株式会社 Bearing equipment for radial piston machines
JP7167108B2 (en) * 2020-09-28 2022-11-08 大同メタル工業株式会社 Bearing device of radial piston machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126199A (en) 2012-12-27 2014-07-07 Taiho Kogyo Co Ltd Half-split thrust bearing
JP2017110703A (en) 2015-12-15 2017-06-22 大同メタル工業株式会社 Half-split thrust bearing for internal combustion engine crank shaft and bearing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126199A (en) 2012-12-27 2014-07-07 Taiho Kogyo Co Ltd Half-split thrust bearing
JP2017110703A (en) 2015-12-15 2017-06-22 大同メタル工業株式会社 Half-split thrust bearing for internal combustion engine crank shaft and bearing device

Also Published As

Publication number Publication date
JP2019090432A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
US9863462B2 (en) Half thrust bearing and bearing device for crankshaft of internal combustion engine
JP6804578B2 (en) Half-thrust bearing for crankshaft of internal combustion engine
JP7071094B2 (en) Half-thrust bearings, thrust bearings, bearing devices and internal combustion engines
KR102367180B1 (en) Half-half thrust bearings, thrust bearings, bearing devices and internal combustion engines
CN111550493B (en) Semi-divided thrust bearing for crankshaft of internal combustion engine
JP2017096396A (en) Half-split bearing
JP2019203559A (en) Half-split bearing and slide bearing
JP7111470B2 (en) Half thrust bearings, thrust bearings, bearing devices and internal combustion engines
US20200063797A1 (en) Half bearing
JP7079099B2 (en) Half-thrust bearings, thrust bearings, bearing devices and internal combustion engines
WO2018079838A1 (en) Half bearing
US10851836B2 (en) Half bearing
US11619256B2 (en) Half thrust bearing and bearing device for crankshaft of internal combustion engine
US11835084B2 (en) Half thrust bearing and bearing device for crankshaft of internal combustion engine
US10962048B2 (en) Half bearing
JP2022181504A (en) Half thrust bearing
JP2018128071A (en) Half-split bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220506

R150 Certificate of patent or registration of utility model

Ref document number: 7071094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150