JP7068567B2 - Optimal hole diameter measuring method and optimum hole diameter measuring device - Google Patents

Optimal hole diameter measuring method and optimum hole diameter measuring device Download PDF

Info

Publication number
JP7068567B2
JP7068567B2 JP2017230378A JP2017230378A JP7068567B2 JP 7068567 B2 JP7068567 B2 JP 7068567B2 JP 2017230378 A JP2017230378 A JP 2017230378A JP 2017230378 A JP2017230378 A JP 2017230378A JP 7068567 B2 JP7068567 B2 JP 7068567B2
Authority
JP
Japan
Prior art keywords
hole
air
reference hole
measurement
hole diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017230378A
Other languages
Japanese (ja)
Other versions
JP2019100801A (en
Inventor
憲吾 山本
真二 河合
裕之 武田
卓也 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAMOTO METAL TECHNOS CO., LTD.
Original Assignee
YAMAMOTO METAL TECHNOS CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAMOTO METAL TECHNOS CO., LTD. filed Critical YAMAMOTO METAL TECHNOS CO., LTD.
Priority to JP2017230378A priority Critical patent/JP7068567B2/en
Publication of JP2019100801A publication Critical patent/JP2019100801A/en
Application granted granted Critical
Publication of JP7068567B2 publication Critical patent/JP7068567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Drilling And Boring (AREA)

Description

本発明は、溶接構造物などの測定対象物に参照孔とその同心外側に環状のトレパニング孔とを穿けて参照孔を形状変化を測定することで測定対象物の表面および内部の残留応力を測定する方法(MIRS法)において、エアマイクロメータを用いて高精度かつ容易に参照孔の孔径を測定し得る最適な孔径測定方法やこれを用いた最適孔径測定装置に関する。 In the present invention, a reference hole and an annular trepanning hole are formed concentrically outside the reference hole in a measurement object such as a welded structure, and the shape change of the reference hole is measured to measure the residual stress on the surface and inside of the measurement object. The present invention relates to an optimum hole diameter measuring method capable of measuring the hole diameter of a reference hole with high accuracy and easily using an air micrometer, and an optimum hole diameter measuring device using the same method (MIRS method).

従来、深穴穿孔法(DHD:Deep Hole Drilling)による残留応力評価方法は、図7に示すような4つの手順により、応力解放前後の孔径を測定し孔径変化量から板厚内部の残留応力値を算出する。まず、被測定物の穴あけ箇所に当金(Front bush)を装着し、ガンドリル(Gun drill)を用いて、孔あけ加工による貫通もしくは未貫通孔(Reference hole(以下。「参照孔」と称する))を加工する(図7(a)のStep1参照)。次に、この参照孔に関して孔深さ方向に1箇所以上、周方向に3箇所以上、孔径を測定する(図7(b)のStep2参照)。次に、この参照孔に対して、同軸に円筒状にくり抜き加工(トレパニング加工)などの除去加工を行い、周辺の拘束を開放し、残留応力を開放する(図7(c)のStep3参照)。そして、再度、トレパニング加工で周辺除去した後の参照孔に関して孔深さ方向に1箇所以上、周方向に3箇所以上、孔径を測定する(図7(d)のStep4参照)。これらの測定値より、弾性材料であること、無限平板における孔であること、平面応力状態であることなどを仮定条件とし、孔径に対する面内応力成分(σx、σy、σxy)を算出できる。 Conventionally, the residual stress evaluation method by the deep hole drilling method (DHD) measures the hole diameter before and after stress release by four procedures as shown in FIG. 7, and the residual stress value inside the plate thickness is measured from the amount of change in the hole diameter. Is calculated. First, a front bush is attached to the drilled part of the object to be measured, and a through or non-penetrating hole is drilled using a gun drill (Reference hole (hereinafter referred to as "reference hole")). ) (See Step 1 in FIG. 7 (a)). Next, with respect to this reference hole, the hole diameter is measured at one or more points in the hole depth direction and at three or more points in the circumferential direction (see Step 2 in FIG. 7 (b)). Next, the reference hole is coaxially hollowed out in a cylindrical shape (trepanning) to release the restraint around it and release the residual stress (see Step 3 in FIG. 7 (c)). .. Then, the hole diameter is measured again at one or more points in the hole depth direction and at three or more points in the circumferential direction with respect to the reference hole after the peripheral removal by the trepanning process (see Step 4 in FIG. 7 (d)). From these measured values, the in-plane stress components (σx, σy, σxy) with respect to the pore diameter can be calculated on the assumption that the material is an elastic material, the pores are in an infinite flat plate, and the plane stress state.

また、同軸に円筒状にトレパニング加工を施す応力解放過程に生じる塑性変形の影響を排除するために、トレパニング加工と孔径測定とを逐次実施する逐次深穴穿孔法(iDHD法:incremental Deep Hole Drilling)などがあり、上述の深穴穿孔法で算出できる孔軸方向成分(σz)も算出することができる。 Further, in order to eliminate the influence of plastic deformation that occurs in the stress release process in which the trepanning process is performed coaxially in a cylindrical shape, the trepanning process and the hole diameter measurement are sequentially performed by the sequential deep hole drilling method (iDHD method: incremental deep hole drilling). The hole axial component (σz) that can be calculated by the above-mentioned deep hole drilling method can also be calculated.

さらに、上記DHD法やiDHD法では、上記仮定条件により孔径に及ぼす三次元的な応力状態や塑性変形の影響が考慮されておらず、実値と理論値とが乖離し、するという問題があり、面内応力(残留応力(σx、σy、σxy))の精度が落ちるため、DHD法やiDHD法(以下、単に「DHD法」とも称する。)は残留応力測定方法の実用的な測定方法として普及していなかった。これに対して出願人は、仮定条件を実現象に近づけて三次元応力状態、塑性変形の影響を考慮できる高精度の板厚内部残留応力測定方法改良型の深孔穿孔法(以下、「MIRS法」と称する)を特許文献2において提供している(詳細には後述する)。 Further, in the DHD method and the iDHD method, the influence of the three-dimensional stress state and the plastic deformation on the pore diameter due to the above assumption conditions is not taken into consideration, and there is a problem that the actual value and the theoretical value deviate from each other. Since the accuracy of in-plane stress (residual stress (σx, σy, σxy)) drops, the DHD method and iDHD method (hereinafter, also simply referred to as “DHD method”) are practical measurement methods for residual stress measurement methods. It wasn't widespread. On the other hand, the applicant has made a high-precision plate thickness internal residual stress measurement method that can consider the effects of three-dimensional stress state and plastic deformation by bringing the assumption conditions closer to the actual phenomenon. Improved deep hole drilling method (hereinafter, "MIRS"). (Referred to as "law") is provided in Patent Document 2 (details will be described later).

上記DHD法、iDHD法又はMIRS法(以下。「MIRS法等」)のいずれにおいても、参照孔の孔径の測定には、接触式測定として機械式・電気式のマイクロメータを用いる方法や、非接触式測定としてエアプローブ(Air probe)を用いるエアマイクロメータを用いる方法が考えられる。このうちエアマイクロメータ(空気マイクロメータ)は、空気の流量で物の寸法を測る比較測定器であり、流量式、背圧式などの測定方式がある。具体的に参照孔を測定するときに採用される流量式の場合、まずコンプレッサとフィルタできれいな圧縮空気を作った後、これをレギュレータにより一定の圧力に保ち、参照孔に挿入したエアプローブのノズルから圧縮空気を噴出させる。ノズルと参照孔の内壁とのすきまが変化するとノズルから吹き出る流量が変化し、これによりフロートの浮き上がる高さが変化し、フロートの位置移動により参照孔の内径を測定する。 In any of the above DHD method, iDHD method or MIRS method (hereinafter referred to as "MIRS method"), a method using a mechanical / electric micrometer as a contact type measurement or a non-method for measuring the hole diameter of the reference hole is performed. As a contact type measurement, a method using an air micrometer using an air probe can be considered. Of these, an air micrometer (air micrometer) is a comparative measuring instrument that measures the dimensions of an object by the flow rate of air, and there are measurement methods such as a flow rate type and a back pressure type. In the case of the flow rate type, which is specifically used when measuring the reference hole, first create clean compressed air with a compressor and filter, then keep this at a constant pressure with a regulator, and then insert the nozzle of the air probe into the reference hole. Compressed air is ejected from. When the gap between the nozzle and the inner wall of the reference hole changes, the flow rate blown out from the nozzle changes, which changes the floating height of the float, and the inner diameter of the reference hole is measured by moving the position of the float.

エアマイクロメータには、両側2方向(対角方向)に空気が噴出する2点式と120°間隔に3箇所から側方(径方向)に空気が噴出する3点式などがある。測定し易さ、負担を考慮すると2点式の方が容易であるが、一般にエアマイクロメータで孔の内径を測定する場合、内径測定には基準点(0点)がないため測定技術の熟練や孔の中心を求める(求心)必要があり、測定精度を要求する場合、3点式エアマイクロメータを採用することが好ましいと考えられていた。その一方、3点式エアマイクロメータによる測定の場合、リングゲージでゼロ合わせをしなければならず、参照孔が真円でないと測定も難しいのに対して、2点式エアマイクロメータの場合、冶具でのゼロ合わせができ、参照孔の円に歪みがあっても測定できる。すなわち、2点式、3点式いずれのエアマイクロメータも内径測定では背反する利害得失があり、MIRS法等の普及の妨げの1つとの要因となっていた。 The air micrometer includes a two-point type in which air is ejected in two directions (diagonal direction) on both sides and a three-point type in which air is ejected laterally (diameterally) from three points at 120 ° intervals. Considering the ease of measurement and the burden, the two-point method is easier, but in general, when measuring the inner diameter of a hole with an air micrometer, there is no reference point (0 point) in the inner diameter measurement, so skill in measurement technology It was considered preferable to use a three-point air micrometer when it was necessary to find the center of the hole or the center of the hole (centrifugal) and measurement accuracy was required. On the other hand, in the case of measurement with a three-point air micrometer, zero adjustment must be performed with a ring gauge, and measurement is difficult unless the reference hole is a perfect circle, whereas in the case of a two-point air micrometer, it is difficult to measure. Zero adjustment can be performed with a metal fitting, and measurement can be performed even if the circle of the reference hole is distorted. That is, both the two-point type and the three-point type air micrometer have contradictory advantages and disadvantages in the inner diameter measurement, which is one of the factors hindering the spread of the MIRS method and the like.

特開2007-167937号公報Japanese Unexamined Patent Publication No. 2007-167937 特開2015-184118号公報Japanese Unexamined Patent Publication No. 2015-184118

そこで、本発明は、MIRS法等においてエアマイクロメータを用いて高精度かつ容易に参照孔の孔径を測定し得る最適孔径測定方法、およびこの方法を用いる最適孔径測定装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an optimum hole diameter measuring method capable of measuring the hole diameter of a reference hole with high accuracy and easily by using an air micrometer in the MIRS method or the like, and an optimum hole diameter measuring device using this method. do.

本発明は、
測定対象部材の測定箇所に厚み方向の参照孔と該参照孔と略同心外側に環状にくり抜いたトレパニング孔とを形成し、前記トレパニング孔の形成前後の前記参照孔の孔径変化を測定し、前記測定対象部材の表面および内部の残留応力値を算出する残留応力測定における最適孔径測定方法を提供する。前記参照孔の孔径の測定は、前記参照孔に挿入して径方向両側(対角方向)に空気流を噴出させるエアプローブを有して、該空気圧の変化から距離を測定する2点式エアマイクロメータを用いる。
The present invention
A reference hole in the thickness direction and a trepanning hole hollowed out substantially concentrically to the outside of the reference hole are formed at the measurement point of the member to be measured, and the change in the hole diameter of the reference hole before and after the formation of the trepanning hole is measured. Provided is an optimum hole diameter measuring method in residual stress measurement for calculating residual stress values on the surface and inside of a member to be measured. The hole diameter of the reference hole is measured by having an air probe that is inserted into the reference hole and ejects air flow on both sides (diagonal direction) in the radial direction, and measures the distance from the change in air pressure. Use a micrometer.

また、本発明の最適孔径測定方法は、
切削工具の先端位置を制御し切削工具を交換可能に把持するツールホルダを有する加工装置の切削工具によって前記参照孔及びトレパニング孔を形成し、前記加工装置は、前記参照孔の中心位置を記憶しており、
前記参照孔の孔径の測定は、前記加工装置のツールホルダに把持される切削工具を前記2点式エアマイクロメータと交換して、前記加工装置が記憶している前記参照孔の中心位置に前記2点式エアマイクロメータのエアプローブを挿入することにより行う、ことが好ましい。
Further, the optimum hole diameter measuring method of the present invention is
The reference hole and the trepanning hole are formed by a cutting tool of a machining device having a tool holder that controls the tip position of the cutting tool and grips the cutting tool interchangeably , and the machining device stores the center position of the reference hole. And
To measure the hole diameter of the reference hole, the cutting tool held by the tool holder of the processing device is replaced with the two-point air micrometer, and the cutting tool is located at the center position of the reference hole stored in the processing device. It is preferably performed by inserting an air probe of a two-point air micrometer.

また、本発明は、切削工具の先端位置を制御し、切削工具を交換可能に把持するツールホルダを有する加工装置によって測定対象部材の測定箇所に厚み方向の参照孔と該参照孔と略同心外側に環状にくり抜いたトレパニング孔とを形成し、前記トレパニング孔の形成前後の前記参照孔の孔径変化を測定し、前記測定対象部材の表面および内部の残留応力値を算出する残留応力測定に用いる最適孔径測定装置を提供する。
この最適孔径測定装置では、前記参照孔に挿入して径方向両側に空気流を噴出させるエアプローブを有し、該空気流の空気圧の変化から距離を測定する2点式エアマイクロメータのエアプローブが、切削工具と交換可能に前記ツールホルダに装着され、
前記加工装置は、前記参照孔の中心位置を記憶し、該中心位置に前記エアプローブを挿入する、構成を有する。

Further, in the present invention, a reference hole in the thickness direction and a reference hole substantially concentric with the reference hole are located at the measurement point of the member to be measured by a processing device having a tool holder that controls the tip position of the cutting tool and grips the cutting tool interchangeably . Optimal for residual stress measurement in which a trepanning hole hollowed out in an annular shape is formed, the change in the hole diameter of the reference hole before and after the formation of the trepanning hole is measured, and the residual stress value on the surface and inside of the member to be measured is calculated. A hole diameter measuring device is provided.
This optimum hole diameter measuring device has an air probe that is inserted into the reference hole to eject an air flow on both sides in the radial direction, and an air probe of a two-point air micrometer that measures a distance from a change in the air pressure of the air flow. Is attached to the tool holder so that it can be replaced with a cutting tool.
The processing apparatus has a configuration in which the center position of the reference hole is stored and the air probe is inserted into the center position.

上述するように、孔径の測定方法としてはエアマイクロメータ、機械式・電気式のマイクロメータを用いる方法が考えられるが、参照孔作成の際には穿孔による切りくずが表面や内壁に付着していることもあり、接触式の機械式・電気式のマイクロメータの場合には切りくずの有無によって測定精度が変化する可能性がある。これに対してエアマイクロメータの場合、空気流によって切りくずを吹き飛ばす効果がありMIRS法等における参照孔の孔径測定に好適である。また、機械式マイクロメータではMIRS法等における参照孔のような深穴かつ小径を測定する場合、マイクロメータ自体が歪んだり、孔の内壁に接してしまって測定不能なことがあるため採用し難い。したがって、MIRS法等の参照孔の孔径測定にはエアマイクロメータを採用するのが好ましいことがわかった。 As described above, an air micrometer or a mechanical / electric micrometer can be considered as a method for measuring the hole diameter, but chips due to drilling adhere to the surface or the inner wall when creating a reference hole. In the case of contact-type mechanical and electric-type micrometer, the measurement accuracy may change depending on the presence or absence of chips. On the other hand, the air micrometer has the effect of blowing off chips by the air flow and is suitable for measuring the hole diameter of the reference hole in the MIRS method or the like. In addition, it is difficult to use a mechanical micrometer when measuring a deep hole and a small diameter such as a reference hole in the MIRS method, because the micrometer itself may be distorted or may be in contact with the inner wall of the hole, making measurement impossible. .. Therefore, it was found that it is preferable to use an air micrometer for measuring the hole diameter of the reference hole such as the MIRS method.

また、上述するように一般に孔の内径測定を行う場合、2点式エアマイクロメータを用いるよりも3点式エアマイクロメータを用いる方が好ましいと考えられていた。しかしながら、MIRS法等の場合、マシンニングセンタ等の切削加工装置で刃物を付け替えて参照孔とトレパニング孔とを形成するため、その切削加工装置に切削工具を付け替えて加工装置の主軸のツールホルダにエアマイクロメータを取り付けた場合、基準点を自動求心しなくても加工装置自体が参照孔の中心位置(基準点)を設定しているので、本来、測定技量を要する2点式エアマイクロメータであっても精度良く測定することができる。 Further, as described above, when measuring the inner diameter of a hole, it has been generally considered that it is preferable to use a three-point air micrometer rather than a two-point air micrometer. However, in the case of the MIRS method, etc., in order to form a reference hole and a trepanning hole by replacing the cutting tool with a cutting device such as a machining center, a cutting tool is replaced with the cutting device to make it a tool holder for the spindle of the machining device. When an air micrometer is attached, the processing device itself sets the center position (reference point) of the reference hole without automatically centering the reference point, so it is a two-point air micrometer that originally requires measurement skill. Even if there is, it can be measured with high accuracy.

また、3点式エアマイクロメータの場合、参照孔が真円でないと測定誤差を含みやすい。このためトレパニング加工後に略楕円形状に変形している参照孔の孔径測定に採用するのは好ましくない。この点、2点式エアマイクロメータの場合、加工装置の主軸によりゼロ点合わせができ、参照孔にトレパニング加工時の歪みが生じても測定することが可能である。本発明によれば、2点式エアマイクロメータを参照孔の穿孔を行う加工装置の主軸に取り付ける構成であるため、加工装置側で基準位置がわかっており2点式エアマイクロメータの不利な点が解消され、有利な点のみを活用することができる。したがって、MIRS法等での孔径測定にはベストであることがわかった。本発明は、MIRS法やDHD法での孔径測定に最適な構成を提供して点で大きく有利である。 Further, in the case of a three-point air micrometer, a measurement error is likely to be included unless the reference hole is a perfect circle. Therefore, it is not preferable to use it for measuring the hole diameter of the reference hole which is deformed into a substantially elliptical shape after the trepanning process. In this respect, in the case of a two-point air micrometer, the zero point can be adjusted by the spindle of the processing device, and it is possible to measure even if the reference hole is distorted during trepanning processing. According to the present invention, since the two-point air micrometer is attached to the spindle of the processing device for drilling the reference hole, the reference position is known on the processing device side, which is a disadvantage of the two-point air micrometer. Can be resolved and only the advantages can be utilized. Therefore, it was found to be the best for measuring the hole diameter by the MIRS method or the like. The present invention is greatly advantageous in that it provides an optimum configuration for hole diameter measurement by the MIRS method or the DHD method.

本発明の残留応力の最適測定方法および残留応力の最適測定装置によれば、種々の測定対象物の残留応力測定評価としてのMIRS法等において、エアマイクロメータを用いて高精度かつ容易に参照孔の孔径を測定し得る最適な孔径測定方法やこれを用いた最適孔径測定装置の構成が提供されることで、MIRS法等が今後、標準化され一般ユーザが活用する場合の重要な測定方法及び測定装置となる。 According to the optimum measuring method of residual stress and the optimum measuring device of residual stress of the present invention, a reference hole can be easily and accurately measured by using an air micrometer in the MIRS method or the like as a residual stress measurement evaluation of various measurement objects. By providing the optimum hole diameter measuring method capable of measuring the hole diameter of the above and the configuration of the optimum hole diameter measuring device using the same, the MIRS method and the like will be standardized in the future, and important measurement methods and measurements will be used by general users. It becomes a device.

(a)~(e)は、本発明の最適孔径測定方法が用いられる残留応力測定の各工程を示した説明図である。(A) to (e) are explanatory views showing each step of residual stress measurement using the optimum pore diameter measuring method of this invention. 本発明で使用されるエアマイクロメータがそのツールホルダに取り付けられる加工装置の一例としての切削装置の斜視図を示している。The perspective view of the cutting device as an example of the processing device in which the air micrometer used in the present invention is attached to the tool holder is shown. トレパニング加工前後の参照孔の変化と測定する孔径とを表す略平面図を示している。A schematic plan view showing the change in the reference hole before and after the trepanning process and the hole diameter to be measured is shown. 3点式エアマイクロメータによる参照孔の孔径測定を示した図である。It is a figure which showed the hole diameter measurement of a reference hole by a three-point type air micrometer. 2点式エアマイクロメータによる参照孔の孔径測定を示した図である。It is a figure which showed the hole diameter measurement of a reference hole by a two-point air micrometer. 2点式エアマイクロメータによる参照孔の孔径測定を加工装置で行う様子を示す図である。It is a figure which shows the state of performing the hole diameter measurement of a reference hole by a two-point type air micrometer with a processing apparatus. 従来の深穴穿孔法による残留応力評価方法の各工程を示した説明図である。It is explanatory drawing which showed each process of the residual stress evaluation method by the conventional deep hole drilling method.

(残留応力測定方法)
まず。本発明の実施形態を説明する前提として、本最適孔径測定方法が用いられる残留応力測定について説明する。
図1(a)~(e)は、本発明の最適孔径測定方法が用いられる残留応力測定の各工程を示した説明図である。この残留応力評価方法では、図1(a)~(e)に示すような5つの手順により、板厚内部の残留応力値を算出する。ここで、図中の符号1は、溶接構造物などの測定対象部材であり、符号2は測定対象部材1に参照孔10を形成可能なドリルである。また、符号3は、測定対象部材1に形成された参照孔10の内径を測定可能なエアプローブ(孔径測定部及び孔径再測定部)であり、符号4は、放電によって参照孔10の周辺にくり抜き加工(トレパニング加工)を施してトレパニング孔11を形成可能な放電加工機である。符号5は、円筒部分12の軸方向の伸び量ΔZ及び倒れ量Δθのそれぞれを測定可能なタッチプローブである。この残留応力測定では、少なくとも、エアプローブ3を用いて、前記くり抜き加工(トレパニング加工)の前後における参照孔10の形状変化に基づき、応力値算出部(不図示)で測定対象部材1の表面および内部の残留応力値を算出する。応力値算出部は、残留応力値の算出において、参照孔10の孔径、参照孔10の長手方向の長さ変化(伸び量ΔZ)、及び、参照孔10の軸の傾き(倒れ量Δθ)を考慮する。
(Residual stress measurement method)
first. As a premise for explaining the embodiment of the present invention, the residual stress measurement in which the present optimum hole diameter measuring method is used will be described.
1A to 1E are explanatory views showing each step of residual stress measurement in which the optimum pore size measuring method of the present invention is used. In this residual stress evaluation method, the residual stress value inside the plate thickness is calculated by the five procedures as shown in FIGS. 1 (a) to 1 (e). Here, reference numeral 1 in the drawing is a member to be measured such as a welded structure, and reference numeral 2 is a drill capable of forming a reference hole 10 in the member 1 to be measured. Further, reference numeral 3 is an air probe (hole diameter measuring unit and hole diameter re-measuring unit) capable of measuring the inner diameter of the reference hole 10 formed in the measurement target member 1, and reference numeral 4 is around the reference hole 10 by electric discharge. It is an electric discharge machine capable of forming a trepanning hole 11 by performing a hollowing process (trepanning process). Reference numeral 5 is a touch probe capable of measuring each of the axial extension amount ΔZ and the tilt amount Δθ of the cylindrical portion 12. In this residual stress measurement, at least using the air probe 3, the surface of the member 1 to be measured and the surface of the member 1 to be measured and the surface of the member 1 to be measured by the stress value calculation unit (not shown) based on the shape change of the reference hole 10 before and after the hollowing process (trepanning process). Calculate the internal residual stress value. In calculating the residual stress value, the stress value calculation unit determines the hole diameter of the reference hole 10, the change in length of the reference hole 10 in the longitudinal direction (elongation amount ΔZ), and the inclination of the axis of the reference hole 10 (tilt amount Δθ). Consider.

図1では、参照孔10の中心位置を原点O、紙面右方向をX軸、紙面に垂直奥方向をY軸、上垂直方向をZ軸とする。まず、図1(a)において、測定対象部材1の穴あけ箇所に当金(不図示)を装着し、ドリル2を用いた孔あけ加工によって参照孔10を形成する。参照孔10は、貫通孔であっても半貫通孔であっても良い。次に、図1(b)において、参照孔10に関して長手方向(Z方向)に1箇所以上、周方向に3箇所以上、エアプローブ3を用いた孔径の測定を行う。この孔径測定において本発明の最適孔径測定方法では、2点式エアマイクロメータを使用する(後述)。次に、図1(c)において、参照孔10の周辺に対してくり抜き加工(トレパニング加工)を行い、参照孔10の周辺部分の拘束を解放すると共に、同軸に円筒状の円筒部分12を形成する。そして、図1(d)において、再度、周辺除去加工後の参照孔10に関して長手方向(Z方向)に1箇所以上、周方向に3箇所以上、エアプローブ3を用いた孔径の測定を行う。そして、図1(e)において、タッチプローブ5を用いて、円筒部分12の軸方向(Z方向)の伸び量(ΔZ)、及び、XY方向の倒れ量(Δθ)を測定する。これら伸び量(ΔZ)及び倒れ量(Δθ)の測定により、従来法(深穴穿孔法、逐次深穴穿孔法)で残留応力測定が、(σx、σy、σxy)の3つからなる残留応力成分のみを考慮するものであるのに対して、本発明の残留応力測定方法では、(σx、σy、σz、σxy、σyz、σzx)の6成分からなる残留応力成分まで考慮した残留応力測定が可能となり、これまでの仮定条件では省略されていた三次元の残留応力成分を高精度に測定することができる。 In FIG. 1, the center position of the reference hole 10 is the origin O, the right direction of the paper surface is the X axis, the back direction perpendicular to the paper surface is the Y axis, and the upper vertical direction is the Z axis. First, in FIG. 1A, a forehead (not shown) is attached to a drilling portion of the member 1 to be measured, and a reference hole 10 is formed by drilling using a drill 2. The reference hole 10 may be a through hole or a semi-through hole. Next, in FIG. 1B, the hole diameter of the reference hole 10 is measured at one or more locations in the longitudinal direction (Z direction) and at three or more locations in the circumferential direction using the air probe 3. In this hole diameter measurement, a two-point air micrometer is used in the optimum hole diameter measuring method of the present invention (described later). Next, in FIG. 1 (c), a hollowing process (trepanning process) is performed on the periphery of the reference hole 10, the restraint of the peripheral portion of the reference hole 10 is released, and the cylindrical cylindrical portion 12 is coaxially formed. do. Then, in FIG. 1D, the hole diameter of the reference hole 10 after the peripheral removal processing is measured again at one or more locations in the longitudinal direction (Z direction) and at three or more locations in the circumferential direction using the air probe 3. Then, in FIG. 1 (e), the amount of elongation (ΔZ) in the axial direction (Z direction) of the cylindrical portion 12 and the amount of tilt (Δθ) in the XY direction are measured using the touch probe 5. By measuring the amount of elongation (ΔZ) and the amount of tilt (Δθ), the residual stress is measured by the conventional method (deep hole drilling method, sequential deep hole drilling method), and the residual stress consists of three (σx, σy, σxy). While only the components are considered, in the residual stress measuring method of the present invention, the residual stress measurement considering the residual stress component consisting of 6 components (σx, σy, σz, σxy, σyz, σzx) is performed. This makes it possible to measure the three-dimensional residual stress component, which was omitted in the previous assumptions, with high accuracy.

≪エアマイクロメータ(2点式及び3点式)の概説及び本発明で2点式エアマイクロメータを採用する理由について≫
上記参照孔10の孔径に使用するエアマイクロメータについて概明する。
上述したようにエアマイクロメータは、空気の流量で物の寸法を測る比較測定器で流量式、背圧式(差圧方式)などの測定方式があるが、流量式の場合、まずコンプレッサとフィルタできれいな圧縮空気を作った後、これをレギュレータにより一定の圧力に保ったまま、ノズルから噴出させる。ノズル部と測定対象物のすきまが変化するとノズルから吹き出る流量が変化し、フロートの浮き上がる高さが変化する。このフロートの位置移動により測定対象物の寸法を測定することができる。このエアマイクロメータには、2点式エアマイクロメータと、3点式エアマイクロメータとがある。本発明の孔径の最適測定方法で採用する2点式エアマイクロメータは、孔径方向両側(対角:180°間隔)に空気が噴出する2つのノズルがあり、ノズルから参照孔10の内壁に向かって噴出される空気の流量変化による軸線方向のフロートの移動量で孔径を測定する。以下、本発明で2点式エアマイクロメータを採用した理由について説明する。
<< Overview of air micrometer (2-point type and 3-point type) and reason for adopting 2-point type air micrometer in the present invention >>
The air micrometer used for the hole diameter of the reference hole 10 will be described in detail.
As mentioned above, the air micrometer is a comparative measuring instrument that measures the dimensions of an object by the flow rate of air, and there are measurement methods such as flow rate type and back pressure type (differential pressure method). After creating clean compressed air, it is blown out from the nozzle while keeping it at a constant pressure by the regulator. When the clearance between the nozzle and the object to be measured changes, the flow rate blown out from the nozzle changes, and the floating height of the float changes. The dimensions of the object to be measured can be measured by moving the position of the float. This air micrometer includes a two-point air micrometer and a three-point air micrometer. The two-point air micrometer adopted in the optimum measurement method of the hole diameter of the present invention has two nozzles for ejecting air on both sides in the hole diameter direction (diagonal: 180 ° intervals), and the nozzles are directed toward the inner wall of the reference hole 10. The pore diameter is measured by the amount of movement of the float in the axial direction due to the change in the flow rate of the air ejected. Hereinafter, the reason why the two-point air micrometer is adopted in the present invention will be described.

まず、前提として実際に測定を所望するトレパニング加工前後の参照孔10の孔径について説明する。図3にはトレパニング加工前後の参照孔10の変化と測定する孔径とを表す略平面図が示され、(a)にはトレパニング加工前、(b)にはトレパニング加工後が示されている。トレパニング加工前の測定では、(a)に示すように参照孔10の中心O周り45°ごとの直径D1,D2,D3,D4を測定する。その後、参照孔10の外周周りに環状のトレパニング孔11(図1(d)参照)を穿けて残留応力を解放した後に、(b)に示すようにトレパニング加工前の直径D1,D2,D3,D4と同位相の参照孔10’の直径D1’,D2’,D3’,D4’を測定する。図3からもわかるようにトレパニング加工を行うと通常、略真円の参照孔10が略楕円の参照孔10’に変形することがわかった。 First, as a premise, the hole diameter of the reference hole 10 before and after the trepanning process for which measurement is actually desired will be described. FIG. 3 shows a schematic plan view showing the change of the reference hole 10 before and after the trepanning process and the hole diameter to be measured, (a) is shown before the trepanning process, and (b) is shown after the trepanning process. In the measurement before the trepanning process, the diameters D1, D2, D3, and D4 are measured at intervals of 45 ° around the center O of the reference hole 10 as shown in (a). After that, an annular trepanning hole 11 (see FIG. 1 (d)) is formed around the outer periphery of the reference hole 10 to release residual stress, and then, as shown in (b), the diameters D1, D2, D3 before trepanning are processed. The diameters D1', D2', D3', and D4'of the reference hole 10'in phase with D4 are measured. As can be seen from FIG. 3, it was found that when the trepanning process is performed, the reference hole 10 having a substantially perfect circle is usually transformed into the reference hole 10'which has a substantially ellipse shape.

次に、3点式エアマイクロメータによる孔径測定と2点式エアマイクロメータによる孔径測定について、その利点と欠点とを具体的に説明する。
図4は3点式エアマイクロメータによる参照孔10の直径測定(孔径測定)を示している。3点式エアマイクロメータによる測定の場合、図4(a)に示すようにエアプローブ3の中心軸周りに60°間隔で放射状にノズル部3a、3b、3cが設けられ、それぞれ参照孔10の内壁方向に空気を噴射する。参照孔10が真円の場合、ノズル部3a、3b、3cから空気が噴射されると、3方向の空気圧が釣り合う位置にエアプローブ3の中心軸線が参照孔10の中心Oに自動的に位置決めされる。そして、基準となるノズル部3aの位置からその対角方向の直径値を直径D1の直径値として採用する(図4(b)参照)。3点式エアマイクロメータではこのような自動求心作用が働くため測定技量がない測定者でも誤差が少ない。したがって、孔径の測定には一般的に3点式エアマイクロメータが採用されることが多く、MIRS法等においても同様であった。
Next, the advantages and disadvantages of the hole diameter measurement by the three-point air micrometer and the hole diameter measurement by the two-point air micrometer will be specifically described.
FIG. 4 shows the diameter measurement (hole diameter measurement) of the reference hole 10 by a three-point air micrometer. In the case of measurement with a three-point air micrometer, nozzle portions 3a, 3b, and 3c are radially provided at intervals of 60 ° around the central axis of the air probe 3 as shown in FIG. Inject air toward the inner wall. When the reference hole 10 is a perfect circle, when air is injected from the nozzle portions 3a, 3b, and 3c, the central axis of the air probe 3 is automatically positioned at the center O of the reference hole 10 at a position where the air pressures in the three directions are balanced. Will be done. Then, the diameter value in the diagonal direction from the position of the reference nozzle portion 3a is adopted as the diameter value of the diameter D1 (see FIG. 4B). Since such an automatic centripetal action works in a three-point air micrometer, there is little error even for a measurer who does not have measurement skills. Therefore, a three-point air micrometer is generally used for measuring the hole diameter, and the same applies to the MIRS method and the like.

一方、MIRS法等での参照孔10の孔径測定では図3に示すように各位相の直径値D1~D4をそれぞれ測定する必要がある。図3(b)で上述したようにトレパニング加工後の参照孔10’は略楕円であり、それぞれの位相の直径値D1~D4が異なるからである。したがって、3点式エアマイクロメータの場合、エアプローブ3が自動求心しても偏心している楕円の場合、適正な直径値D1~D4を把握することができないということがわかった(図4(c)参照)。 On the other hand, in the hole diameter measurement of the reference hole 10 by the MIRS method or the like, it is necessary to measure the diameter values D1 to D4 of each phase as shown in FIG. This is because, as described above in FIG. 3B, the reference hole 10'after the trepanning process is substantially elliptical, and the diameter values D1 to D4 of the respective phases are different. Therefore, in the case of a three-point air micrometer, it was found that if the air probe 3 is an ellipse that is eccentric even if it is automatically centered, it is not possible to grasp the appropriate diameter values D1 to D4 (FIG. 4 (c)). reference).

図5は2点式エアマイクロメータによる参照孔10の直径測定(孔径測定)を示している。2点式エアマイクロメータによる測定の場合、図5(a)に示すようにエアプローブ3の中心軸周りに対角方向(孔径方向90°間隔)でノズル部3d、3eが設けられ、それぞれ参照孔10の内壁方向(対角方向)に空気を噴射し、2方向の空気圧が釣り合う位置にエアプローブ3の中心軸線が位置決めされる。そして、基準となるノズル部3dの位置からその対角方向の直径値を直径D1の直径値として採用する(図5(b)参照)。2点式エアマイクロメータの場合、3点式エアマイクロメータと異なり、自動求心作用がなくトレパニング加工後に略楕円形状の参照孔10’に変形していても参照孔10’の内壁までの距離が釣り合うため、その意味では適正な直径値D1~D4を測定することができる。 FIG. 5 shows the diameter measurement (hole diameter measurement) of the reference hole 10 by a two-point air micrometer. In the case of measurement with a two-point air micrometer, nozzle portions 3d and 3e are provided diagonally (at intervals of 90 ° in the hole diameter direction) around the central axis of the air probe 3 as shown in FIG. Air is injected in the direction of the inner wall of the hole 10 (diagonal direction), and the central axis of the air probe 3 is positioned at a position where the air pressures in the two directions are balanced. Then, the diameter value in the diagonal direction from the position of the reference nozzle portion 3d is adopted as the diameter value of the diameter D1 (see FIG. 5B). In the case of a two-point air micrometer, unlike a three-point air micrometer, there is no automatic centripetal action and the distance to the inner wall of the reference hole 10'is long even if it is deformed into a substantially elliptical reference hole 10'after trepanning. In that sense, it is possible to measure appropriate diameter values D1 to D4 because they are balanced.

その反面、2点式エアマイクロメータによる測定の場合、図5(d)に示すように測定者の測定技量が低いとエアプローブ3の軸線が参照孔10の中心Oからズレれた状態で挿入される可能性があり、ズレた位置におけるノズル部3d、3eから内壁までの距離を直径値D1として測定してしまってトレパニング加工前の直径値の測定でさえ誤差を含んでしまうという問題があった。 On the other hand, in the case of measurement with a two-point air micrometer, as shown in FIG. 5D, if the measuring skill of the measurer is low, the axis of the air probe 3 is inserted in a state of being deviated from the center O of the reference hole 10. There is a problem that the distance from the nozzle portions 3d and 3e to the inner wall at the displaced position is measured as the diameter value D1, and even the measurement of the diameter value before the trepanning process contains an error. rice field.

これに対して本発明の最適孔径測定方法では、MIRS法等においてトレパニング加工後に変形し略楕円形状になった参照孔10を適正に測定し得るために2点式エアマイクロメータによる測定を推奨し、参照孔10へエアプローブ3をズレて挿入してしまうという問題を加工装置の主軸のツールホルダにエアプローブ3を装着することで解決している。まず参照孔10の穿孔は加工装置のツールホルダに装着された切削工具で行う。加工装置は、切削工具の移動を予め設定した位置座標から算出して自動制御するものである。したがって、ツールホルダが把持する工具等の中心位置の座標が記憶されている。したがって、図6(a)に示すように参照孔10を中心位置Oはドリルで穿孔するときにそのXY座標位置(x1、y1)が記憶されており、ツールホルダからドリルが外されてエアプローブ3が取り付けられるとその中心軸線のXY座標位置を(x1、y1)に維持した状態で参照孔10に挿入されると図6(d)のようにズレた位置で孔径を測定することがない。また、トレパニング加工後に再び参照孔10’の孔径を測定する際にもエアプローブ3の中心軸線のXY座標位置も(x1、y1)の状態で孔径測定することができる。 On the other hand, in the optimum hole diameter measuring method of the present invention, it is recommended to measure with a two-point air micrometer so that the reference hole 10 which is deformed after the trepanning process and has a substantially elliptical shape can be appropriately measured by the MIRS method or the like. The problem that the air probe 3 is misaligned and inserted into the reference hole 10 is solved by mounting the air probe 3 on the tool holder of the spindle of the processing apparatus. First, the reference hole 10 is drilled with a cutting tool attached to the tool holder of the processing apparatus. The machining apparatus automatically controls the movement of the cutting tool by calculating it from the preset position coordinates. Therefore, the coordinates of the center position of the tool or the like held by the tool holder are stored. Therefore, as shown in FIG. 6A, the center position O stores the XY coordinate positions (x1, y1) when the reference hole 10 is drilled, and the drill is removed from the tool holder to obtain an air probe. When 3 is attached, when it is inserted into the reference hole 10 with the XY coordinate position of its central axis maintained at (x1, y1), the hole diameter is not measured at a displaced position as shown in FIG. 6 (d). .. Further, when the hole diameter of the reference hole 10'is measured again after the trepanning process, the hole diameter can be measured with the XY coordinate position of the central axis of the air probe 3 also in the state of (x1, y1).

《2点式エアマイクロメータを取り付ける切削装置による穴あけ・孔径測定例の概説》
図2には、本発明で使用されるエアマイクロメータがそのツールホルダに取り付けられる加工装置の一例としての切削装置100の斜視図を示している。切削装置100は、概ねツールホルダ把持部105と、測定対象部材1を載置する被加工部材設置面102a(当金は不図示)と、ワークステージ102と、ヘッド支台108と、ヘッド107と、操作盤106と、を備えて構成される。
<< Overview of drilling and hole diameter measurement examples using a cutting device equipped with a two-point air micrometer >>
FIG. 2 shows a perspective view of a cutting device 100 as an example of a processing device in which the air micrometer used in the present invention is attached to the tool holder. The cutting device 100 generally includes a tool holder grip portion 105, a member installation surface 102a (not shown) on which a member to be measured 1 is placed, a work stage 102, a head abutment 108, and a head 107. , And an operation panel 106.

まず、ツールホルダ把持部105に加工対象となる測定対象部材1(図1参照)の残留応力の測定位置(参照孔10の中心位置)に回転当接(当接方向=矢印Z方向、回転方向=矢印Zの軸周り方向)させるドリル2(図1参照)を把持させたツールホルダ104を装着する。これにより主軸101下端のツールホルダ把持部105とツールホルダ104及びドリル2は一体に回転する。また、測定対象部材(被加工部材)2は、基台103上をX方向に移動するワークステージ102の上面の被加工部材設置面102aに載置され、固定用クランプ(図示せず)や固定用ポルト(図示せず〉等を用いて固定される。 First, the tool holder grip portion 105 is rotationally contacted (contact direction = arrow Z direction, rotational direction) with the measurement position (center position of the reference hole 10) of the residual stress of the measurement target member 1 (see FIG. 1) to be machined. = Attach the tool holder 104 holding the drill 2 (see FIG. 1) to be made (in the direction around the axis of the arrow Z). As a result, the tool holder grip portion 105 at the lower end of the spindle 101, the tool holder 104, and the drill 2 rotate integrally. Further, the member to be measured (member to be measured) 2 is placed on the member installation surface 102a on the upper surface of the work stage 102 that moves in the X direction on the base 103, and is fixed as a fixing clamp (not shown) or fixed. It is fixed using a port (not shown) or the like.

オペレータは、操作盤106を操作し、ワークステージ102をX方向へ移動させ、測定対象部材2が所望の参照孔10の中心位置の直上にドリル2が位置するところで停止・位置決めする。次に、被加工部材上に停止・位置決めされた状態で操作盤106を操作して、加えてドリル2を下降させ測定対象部材1の参照孔10の位置に当接させながら回転させ、参照孔10が穿孔されるとドリル2が上昇し一旦停止する。なお、連続して複数の参照孔10を穿孔する場合には、停止せずワークステージ102を移動させて次の参照孔の中心位置の真上にドリル2が位置するところで停止・位置決めし、再びドリル2の下降・当接させながらの回転、上昇させ穿孔する参照孔がなくなったところで停止する。 The operator operates the operation panel 106 to move the work stage 102 in the X direction, and stops and positions the measurement target member 2 at a position where the drill 2 is located directly above the center position of the desired reference hole 10. Next, the operation panel 106 is operated in a state of being stopped and positioned on the member to be machined, and in addition, the drill 2 is lowered and rotated while being in contact with the position of the reference hole 10 of the member 1 to be measured to rotate the reference hole. When the 10 is drilled, the drill 2 rises and temporarily stops. When drilling a plurality of reference holes 10 in succession, move the work stage 102 without stopping, stop and position the drill 2 directly above the center position of the next reference hole, and then stop and position the drill 2 again. The drill 2 is rotated while being lowered / contacted, and is raised to stop when there is no reference hole to be drilled.

参照孔10が形成されると、停止した加工装置のツールホルダ104からドリル2を取り外し、エアマイクロメータのエアプローブ3に付け替えて図1(b)に示すようにエアプローブ3を下降させて参照孔10内に挿入し、孔径の測定を所望する深さ位置にエアプローブ3の空気噴出ノズルを位置決めする。そして、コンプレッサ(不図示)からのエアを内壁方向両側に噴出させて孔径を測定する。なお、複数の参照孔を連続穿孔した場合には、動作条件として予め記憶された参照孔10の中心位置座標に移動してエアプローブ3を挿入する。また、エアプローブ3の挿入後、ノズルから空気流を噴出させて孔径を測定し、エアプローブ3を上昇させて参照孔10から抜去する。 When the reference hole 10 is formed, the drill 2 is removed from the tool holder 104 of the stopped processing device, replaced with the air probe 3 of the air micrometer, and the air probe 3 is lowered as shown in FIG. 1 (b) for reference. It is inserted into the hole 10 and the air ejection nozzle of the air probe 3 is positioned at a desired depth position for measuring the hole diameter. Then, air from a compressor (not shown) is ejected on both sides in the direction of the inner wall to measure the hole diameter. When a plurality of reference holes are continuously drilled, the air probe 3 is inserted by moving to the center position coordinates of the reference holes 10 stored in advance as operating conditions. Further, after inserting the air probe 3, an air flow is ejected from the nozzle to measure the hole diameter, and the air probe 3 is raised to be removed from the reference hole 10.

次に、エアプローブ3をツールホルダ104から取り外し、放電加工機4に付け替えて図1(c)に示すように放電加工機4を下降させて放電することでトレパニング加工して参照孔10と同心状の環状円を形成する。トレパニング加工は深さ方向に予め設定した距離行う。トレパニング加工が終了すると放電加工機4を上昇させる。そして、再度、ツールホルダ104から放電加工機4を取り外し、エアプローブ3に付け替えて図1(d)に示すようにエアプローブ3を下降させて参照孔10内に挿入し、トレパニング加工前に孔径測定した深さ位置にエアプローブ3の空気噴出ノズルを位置決めし、再度、上述したようにエアプローブ3から空気を噴出させて孔径を測定する。 Next, the air probe 3 is removed from the tool holder 104, replaced with the electric discharge machine 4, and the electric discharge machine 4 is lowered and discharged as shown in FIG. 1 (c) to perform trepanning processing and concentric with the reference hole 10. Form an annular circle. The trepanning process is performed at a preset distance in the depth direction. When the trepanning process is completed, the electric discharge machine 4 is raised. Then, the electric discharge machine 4 is removed from the tool holder 104 again, replaced with the air probe 3, the air probe 3 is lowered as shown in FIG. 1D, inserted into the reference hole 10, and the hole diameter is before the trepanning process. The air ejection nozzle of the air probe 3 is positioned at the measured depth position, and air is ejected from the air probe 3 again as described above to measure the hole diameter.

以上のようにトレパニング加工前後の参照孔10の孔径を測定する。なお、ここではその後の図1(e)についての説明は省略する。また、この金属加工装置の一連動作は、オペレータが操作盤106で予め、ドリル2、エアプローブ3、放電加工機4の移動座標や移動速度(又は回転速度)や、これらに付与する荷重や空気量、電力、等の各パラメータを入力・設定しておき、設定したパラメータに基づいて加工装置を制御する。 As described above, the hole diameter of the reference hole 10 before and after the trepanning process is measured. It should be noted that the subsequent description of FIG. 1 (e) will be omitted here. Further, in the series of operations of this metal processing apparatus, the operator previously performs the moving coordinates and moving speed (or rotation speed) of the drill 2, the air probe 3, and the electric discharge machine 4 on the operation panel 106, and the load and air applied to them. Each parameter such as quantity and power is input and set, and the machining device is controlled based on the set parameter.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものではないことは言うまでもない。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 Although the embodiments of the present invention have been described above with reference to the drawings, it goes without saying that the specific configuration is not limited to these embodiments. The scope of the present invention is shown by the scope of claims rather than the description of the embodiment described above, and further includes all modifications within the meaning and scope equivalent to the scope of claims.

1 測定対象部材
2 ドリル
3 エアプローブ
3a,3B,3C,3D,3E ノズル部
4 放電加工機
5 タッチプローブ
10,10’ 参照孔
11 くり抜き孔(トレパニング孔)
12 円筒部分
100 加工装置(切削加工装置)
101 主軸
102 ワークステージ
102a 被加工部材設置面
103 基台
104 ツールホルダ
105 ツールホルダ把持部
106 操作盤
107 ヘッド
108 ヘッド支台O 中心
D1,D2,D3,D4 直径
D1’,D2’,D3’,D4’ 直径
1 Member to be measured 2 Drill 3 Air probe 3a, 3B, 3C, 3D, 3E Nozzle part 4 Electric discharge machine 5 Touch probe 10, 10'Reference hole 11 Hollow hole (trepanning hole)
12 Cylindrical part 100 Processing equipment (cutting equipment)
101 Main shaft 102 Work stage 102a Work member installation surface 103 Base 104 Tool holder 105 Tool holder grip 106 Operation panel 107 Head 108 Head abutment O Center D1, D2, D3, D4 Diameter D1', D2', D3', D4'diameter

Claims (3)

測定対象部材の測定箇所に厚み方向の参照孔と該参照孔と略同心外側に環状にくり抜いたトレパニング孔とを形成し、前記トレパニング孔の形成前後の前記参照孔の孔径変化を測定し、前記測定対象部材の表面および内部の残留応力値を算出する残留応力測定における最適孔径測定方法において、
前記参照孔の孔径の測定は、
前記参照孔に挿入して径方向両側に空気流を噴出させるエアプローブを有して、該空気流の空気圧の変化から距離を測定する2点式エアマイクロメータを用いる、最適孔径測定方法。
A reference hole in the thickness direction and a trepanning hole hollowed out substantially concentrically to the outside of the reference hole are formed at the measurement point of the member to be measured, and the change in the hole diameter of the reference hole before and after the formation of the trepanning hole is measured. In the optimum pore size measurement method in residual stress measurement for calculating residual stress values on the surface and inside of the member to be measured.
The measurement of the hole diameter of the reference hole is
An optimum hole diameter measuring method using an air probe that is inserted into the reference hole and ejects an air flow on both sides in the radial direction, and a two-point air micrometer that measures a distance from a change in the air pressure of the air flow.
切削工具の先端位置を制御し切削工具を交換可能に把持するツールホルダを有する加工装置の切削工具によって前記参照孔及びトレパニング孔を形成し、
前記加工装置は、前記参照孔の中心位置を記憶しており、
前記参照孔の孔径の測定は、
前記加工装置のツールホルダに把持される切削工具を前記2点式エアマイクロメータと交換して、前記加工装置が記憶している前記参照孔の中心位置に前記2点式エアマイクロメータのエアプローブを挿入することにより行う、請求項1に記載の最適孔径測定方法。
The reference hole and the trepanning hole are formed by a cutting tool of a processing device having a tool holder that controls the tip position of the cutting tool and grips the cutting tool interchangeably .
The processing apparatus stores the center position of the reference hole, and the processing device stores the center position of the reference hole.
The measurement of the hole diameter of the reference hole is
The cutting tool held by the tool holder of the processing device is replaced with the two-point air micrometer, and the air probe of the two-point air micrometer is located at the center position of the reference hole stored in the processing device. The optimum hole diameter measuring method according to claim 1, which is performed by inserting the.
切削工具の先端位置を制御し、切削工具を交換可能に把持するツールホルダを有する加工装置によって測定対象部材の測定箇所に厚み方向の参照孔と該参照孔と略同心外側に環状にくり抜いたトレパニング孔とを形成し、前記トレパニング孔の形成前後の前記参照孔の孔径変化を測定し、前記測定対象部材の表面および内部の残留応力値を算出する残留応力測定に用いる最適孔径測定装置において、
前記参照孔に挿入して径方向両側に空気流を噴出させるエアプローブを有し、該空気流の空気圧の変化から距離を測定する2点式エアマイクロメータのエアプローブが、切削工具と交換可能に前記ツールホルダに装着され、
前記加工装置は、前記参照孔の中心位置を記憶し、該中心位置に前記エアプローブを挿入する、最適孔径測定装置。
A processing device having a tool holder that controls the tip position of the cutting tool and grips the cutting tool in a replaceable manner. In the optimum hole diameter measuring device used for residual stress measurement, which forms a hole, measures the change in the hole diameter of the reference hole before and after the formation of the trepanning hole, and calculates the residual stress value on the surface and inside of the member to be measured.
The air probe of a two-point air micrometer that has an air probe that is inserted into the reference hole and ejects air flow on both sides in the radial direction and measures the distance from the change in the air pressure of the air flow can be replaced with a cutting tool. Attached to the tool holder
The processing device is an optimum hole diameter measuring device that stores the center position of the reference hole and inserts the air probe into the center position.
JP2017230378A 2017-11-30 2017-11-30 Optimal hole diameter measuring method and optimum hole diameter measuring device Active JP7068567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017230378A JP7068567B2 (en) 2017-11-30 2017-11-30 Optimal hole diameter measuring method and optimum hole diameter measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017230378A JP7068567B2 (en) 2017-11-30 2017-11-30 Optimal hole diameter measuring method and optimum hole diameter measuring device

Publications (2)

Publication Number Publication Date
JP2019100801A JP2019100801A (en) 2019-06-24
JP7068567B2 true JP7068567B2 (en) 2022-05-17

Family

ID=66973364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017230378A Active JP7068567B2 (en) 2017-11-30 2017-11-30 Optimal hole diameter measuring method and optimum hole diameter measuring device

Country Status (1)

Country Link
JP (1) JP7068567B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111141438B (en) * 2020-01-14 2021-04-23 中国科学院金属研究所 Three-dimensional residual stress measuring method by deep hole method
CN111103082B (en) * 2020-01-14 2021-04-23 中国科学院金属研究所 Method for improving precision of measuring three-dimensional residual stress by deep hole method
CN113175902B (en) * 2021-04-19 2023-05-30 西安交通大学 Pneumatic measuring device and method for micro aperture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184118A (en) 2014-03-24 2015-10-22 株式会社山本金属製作所 Residual stress measurement method and residual stress measurement device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5039666B2 (en) * 2008-08-29 2012-10-03 三菱重工業株式会社 Surface roughness measuring method, surface roughness measuring apparatus and processing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184118A (en) 2014-03-24 2015-10-22 株式会社山本金属製作所 Residual stress measurement method and residual stress measurement device

Also Published As

Publication number Publication date
JP2019100801A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP7068567B2 (en) Optimal hole diameter measuring method and optimum hole diameter measuring device
US8893387B2 (en) Method for producing a dental shaped part
US7985119B2 (en) Blank for the production of a dental shaped body and method of producing said shaped body
US8250952B2 (en) Method of machine tool calibration
US10422620B2 (en) Contact-type position measuring device and measuring method using the same
JP5863929B1 (en) Processing equipment
US8881611B2 (en) Automated inspection system
US9656329B2 (en) Machining jig for rotatably supporting workpiece with respect to tool of machine tool and machining system
US10890427B2 (en) Nozzle inspection method and apparatus
WO2002020215A2 (en) Method and instrument for gauging a workpiece
JPH01205906A (en) Method and device for stitch-working wall of columnar bag hole of workpiece
JP6312327B2 (en) Support method, processing method, and apparatus for performing these methods
US20110131826A1 (en) System and Method for Quick and Accurate Tramming
EP3456445A1 (en) Integrated bore profiling tool and method
KR20210129061A (en) Apparatus and method for adjusting a robot arm
JP6048657B2 (en) Water jet processing method and water jet processing apparatus
KR20200096762A (en) Systems and methods for handling workpieces
US9409275B2 (en) Material removal system for use with articles having variations in form
JP2017136661A (en) Cutting tool, processing device having cutting tool, and processing method using cutting tool
CN104454027A (en) Machining method of power turbine guider
CN211304889U (en) Correcting device for drill bit of deep hole boring machine
CN110315104B (en) Method for expanding oil injection hole of airplane flying attachment mounting seat
JP5436392B2 (en) Spindle position measuring device and measuring method
KR100542206B1 (en) Working force controllable processing device
CN113997013A (en) Rudder stock cone fitting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220304

R150 Certificate of patent or registration of utility model

Ref document number: 7068567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150