JP7065517B2 - Method for producing PTF1A-positive cells - Google Patents

Method for producing PTF1A-positive cells Download PDF

Info

Publication number
JP7065517B2
JP7065517B2 JP2018529905A JP2018529905A JP7065517B2 JP 7065517 B2 JP7065517 B2 JP 7065517B2 JP 2018529905 A JP2018529905 A JP 2018529905A JP 2018529905 A JP2018529905 A JP 2018529905A JP 7065517 B2 JP7065517 B2 JP 7065517B2
Authority
JP
Japan
Prior art keywords
cells
medium
positive cells
pdx1
ptf1a
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018529905A
Other languages
Japanese (ja)
Other versions
JPWO2018021293A1 (en
Inventor
義弥 川口
勉 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of JPWO2018021293A1 publication Critical patent/JPWO2018021293A1/en
Application granted granted Critical
Publication of JP7065517B2 publication Critical patent/JP7065517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本願はPTF1A陽性細胞を製造する方法に関する。 The present application relates to a method for producing PTF1A positive cells.

多能性幹細胞から膵臓細胞への分化は、多能性幹細胞→内胚葉細胞→原腸細胞→膵前駆細胞→膵臓細胞の順に誘導される。ヒト及びマウスにおいて、膵前駆細胞にはPDX1の発現が認められることが知られている。一方でPDX1は、膵前駆細胞だけでなく、他の臓器へ分化する細胞にも認められる。 The differentiation of pluripotent stem cells into pancreatic cells is induced in the order of pluripotent stem cells → endometrial cells → progenitor cells → pancreatic progenitor cells → pancreatic cells. It is known that PDX1 expression is observed in pancreatic progenitor cells in humans and mice. On the other hand, PDX1 is found not only in pancreatic progenitor cells but also in cells that differentiate into other organs.

マウス発生学において、膵原基にPdx1が発現したあと引き続きPtf1aを発現した細胞は、最終的にほぼすべて膵臓細胞に分化することが確認されており、Ptf1aのノックアウトマウスでは膵臓低形成が認められる(非特許文献1)。Ptf1a低発現マウスは膵臓低形成と耐糖能異常が認められる(非特許文献2)。ヒトにおいてもPTF1A遺伝子の突然変異(非特許文献3)あるいはそのエンハンサーの突然変異(非特許文献4)による膵臓低形成が報告されている。 In mouse embryology, it has been confirmed that almost all cells expressing Ptf1a after Pdx1 is expressed in the pancreatic primordium eventually differentiate into pancreatic cells, and pancreatic hypoplasia is observed in Ptf1a knockout mice. (Non-Patent Document 1). Mice with low Ptf1a expression have hypoplasia of the pancreas and impaired glucose tolerance (Non-Patent Document 2). In humans, pancreatic hypoplasia due to mutation of PTF1A gene (Non-Patent Document 3) or mutation of its enhancer (Non-Patent Document 4) has been reported.

これらの知見より、PTF1A遺伝子はマウスのみならずヒトにおいても膵発生の運命決定遺伝子であり、PTF1A遺伝子の発現が膵臓細胞への分化に重要であることが推測される。 From these findings, it is speculated that the PTF1A gene is a fate-determining gene for pancreatic development not only in mice but also in humans, and that the expression of the PTF1A gene is important for the differentiation into pancreatic cells.

多能性幹細胞から膵臓細胞を誘導する方法としては、多能性幹細胞をアクチビン(Activin)やレチノイン酸(RA)を用いて分化誘導する方法などが例示される(特許文献1、非特許文献5から9)。この他にも、多能性幹細胞へPDX1を導入して培養する方法(特許文献2および3)、低分子化合物を適宜組み合わせて多能性幹細胞に作用させてインスリン産生細胞を製造する方法(特許文献4、非特許文献10)が知られている。これら多能性幹細胞から膵臓細胞を誘導する方法において、膵前駆細胞のPDX1発現が重視されてきたが、PTF1Aの発現に焦点をあてて評価したものは少なく、その発現制御は不明な点が多い。 Examples of the method for inducing pluripotent stem cells from pluripotent stem cells include a method for inducing differentiation of pluripotent stem cells using activin or retinoic acid (RA) (Patent Document 1, Non-Patent Document 5). From 9). In addition to this, a method of introducing PDX1 into pluripotent stem cells and culturing them (Patent Documents 2 and 3), and a method of appropriately combining low molecular weight compounds and allowing them to act on pluripotent stem cells to produce insulin-producing cells (Patent). Document 4, non-patent document 10) is known. In the method of inducing pancreatic cells from these pluripotent stem cells, PDX1 expression in pancreatic progenitor cells has been emphasized, but few have been evaluated focusing on the expression of PTF1A, and its expression control is unclear. ..

特開2009-225661号公報Japanese Unexamined Patent Publication No. 2009-22661 米国特許7534608号公報US Pat. No. 7,534,608 特開2006-075022号公報Japanese Unexamined Patent Publication No. 2006-075022 WO2011/081222号公報WO2011 / 081222 WO2015/020113号公報WO2015 / 020113 Gazette

Kawaguchi Y et al., Nat Genet 32: 128-134, 2002Kawaguchi Y et al., Nat Genet 32: 128-134, 2002 Fukuda A et al., Diabetes 57: 2421-2431, 2008Fukuda A et al., Diabetes 57: 2421-2431, 2008 Gabrielle SS et al., Nat Genet 36: 1301-1305, 2004Gabrielle SS et al., Nat Genet 36: 1301-1305, 2004 Michael NW et al., Nat Genet 46: 61-66, 2014Michael NW et al., Nat Genet 46: 61-66, 2014 E.Kroon et al., Nature Biotechnology(2008) Vol.26, No.4 : 443-452E.Kroon et al., Nature Biotechnology (2008) Vol.26, No.4: 443-452 K.A.D'Amour et al., Nature Biotechnology(2006) Vol.24, No.11: 1392-1401K.A.D'Amour et al., Nature Biotechnology (2006) Vol.24, No.11: 1392-1401 W.Jiang, Cell Research(2007) 17: 333-344W.Jiang, Cell Research (2007) 17: 333-344 J.H.Shim et al., Diabetologia (2007) 50: 1228-1238J.H.Shim et al., Diabetologia (2007) 50: 1228-1238 R.Maehra et al., PNAS(2009),vol.106, No.37: 15768-15773R. Maehra et al., PNAS (2009), vol.106, No.37: 15768-15773 Kunisada Y et al., Stem Cell Res. (2012) vol.8, No.2: 274-284.Kunisada Y et al., Stem Cell Res. (2012) vol.8, No.2: 274-284.

上記先行技術文献はいずれも引用により本願の一部を構成する。 All of the above prior art documents form part of the present application by citation.

本願はPTF1A陽性細胞をインビトロで製造する方法を提供することを目的とする。特に多能性幹細胞、例えばiPS細胞からPDX1陽性細胞を経てPTF1A陽性細胞を誘導する方法を提供する。 This application aims to provide a method for producing PTF1A positive cells in vitro. In particular, we provide a method for inducing PTF1A-positive cells from pluripotent stem cells, for example, iPS cells via PDX1-positive cells.

本願は、
PDX1陽性細胞を提供する工程、および
PDX1陽性細胞を(a)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤、およびcAMP類縁体からなる群より選択される少なくとも一種、(b)ステロイドおよび(c)ニコチンアミドからなる群から選択される1以上の物質を含む培地で培養する工程を含む、PTF1A陽性細胞の製造方法を提供する。
This application is
The process of providing PDX1-positive cells, and
PDX1-positive cells are selected from the group consisting of (a) adenylate cyclase activator, cAMP phosphodiesterase inhibitor, and at least one selected from the group consisting of cAMP relatives, (b) steroids and (c) nicotine amide. Provided is a method for producing PTF1A positive cells, which comprises a step of culturing in a medium containing one or more substances.

好適な態様としては、(a)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤、およびcAMP類縁体からなる群より選択される少なくとも一種、(b)ステロイドおよび(c)ニコチンアミドからなる群から選択される1以上の物質を含む培地で培養する前に、PDX1陽性細胞をヒストンデアセチラーゼ阻害剤を含む培地で培養する工程を含む方法が提供される。 In a preferred embodiment, it is selected from the group consisting of (a) an adenylate cyclase activator, a cAMP phosphodiesterase inhibitor, and at least one selected from the group consisting of cAMP relatives, (b) a steroid and (c) a nicotine amide. Provided is a method comprising culturing PDX1-positive cells in a medium containing a histone deacetylase inhibitor prior to culturing in a medium containing one or more substances to be grown.

本願において、PDX1陽性細胞は、多能性幹細胞から誘導された細胞であってよい。多能性幹細胞からPDX1陽性細胞を得る方法は種々報告されており、公知のいずれの方法を用いてもよい。 In the present application, PDX1-positive cells may be cells derived from pluripotent stem cells. Various methods for obtaining PDX1-positive cells from pluripotent stem cells have been reported, and any known method may be used.

本願発明の方法により、低分子物質を用いて効率的にPDX1陽性細胞におけるPTF1Aの発現を誘導することが可能となった。本願発明の方法により、多能性幹細胞から効率的にPTF1A発現細胞を製造することができる。 The method of the present invention has made it possible to efficiently induce the expression of PTF1A in PDX1-positive cells using a small molecule substance. According to the method of the present invention, PTF1A-expressing cells can be efficiently produced from pluripotent stem cells.

本願実施例の概略図である。It is a schematic diagram of the Example of this application. 本願方法により誘導された細胞におけるPTF1Aの発現量の経時変化を示す。The time course of the expression level of PTF1A in the cells induced by the method of the present application is shown. 本願方法により誘導された細胞における、インスリン遺伝子およびアミラーゼ遺伝子の発現を示す。The expression of the insulin gene and the amylase gene in the cells induced by the method of the present application is shown.

本願発明は、PDX1陽性細胞を(a)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤、およびcAMP類縁体からなる群より選択される少なくとも一種、(b)ステロイドおよび(c)ニコチンアミドからなる群から選択される1以上の物質を含む培地で培養する工程を含むPTF1A陽性細胞の製造方法を提供する。 The present invention comprises at least one selected from the group consisting of (a) adenylate cyclase activator, cAMP phosphodiesterase inhibitor, and cAMP analog, (b) steroid and (c) nicotine amide, for PDX1-positive cells. Provided is a method for producing PTF1A positive cells, which comprises a step of culturing in a medium containing one or more substances selected from the above.

本願発明において用いられる培地は、基礎培地に適宜物質を添加して作成される。基礎培地としては、例えばIMDM培地、Medium 199培地、Eagle's Minimum Essential Medium (EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium (DMEM)培地、Improved MEM(Invitrogen)、Ham's F12培地、RPMI 1640培地、Fischer's培地、Neurobasal Medium(ライフテクノロジーズ)、StemPro34(Invitrogen)およびこれらの混合培地、例えばDMEM/F12培地(DMEMとHam's F12の1:1混合培地)などが包含される。基礎培地としては、血清含有培地であっても、無血清培地でもよい。必要に応じて、基礎培地は、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、1-チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有し得る。 The medium used in the present invention is prepared by appropriately adding a substance to the basal medium. The basal medium includes, for example, IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, αMEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Improved MEM (Invitrogen), Ham's F12 medium, RPMI 1640 medium, Fischer's medium. , Neurobasal Medium (Life Technologies), StemPro34 (Invitrogen) and their mixed media, such as DMEM / F12 medium (1: 1 mixed medium of DMEM and Ham's F12) and the like. The basal medium may be a serum-containing medium or a serum-free medium. If desired, the basal medium may be, for example, albumin, transferase, Knockout Serum Replacement (KSR), N2 supplement (Invitrogen), B27 supplement (Invitrogen), fatty acids, insulin, It may contain one or more serum substitutes such as collagen precursors, trace elements, 2-mercaptoethanol, 1-thiolglycerol, lipids, amino acids, L-glutamine, Glutamax (Invitrogen), non-essential amino acids, vitamins, It may also contain one or more substances such as growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts and the like.

本願において用いられるPDX1陽性細胞としては、多能性幹細胞から誘導された細胞培養物が好適に用いられる。PDX1遺伝子陽性細胞の培養物としては、立体構造を有する細胞塊状態で培養されているものを用いるのが好ましい。 As the PDX1-positive cells used in the present application, cell cultures derived from pluripotent stem cells are preferably used. As the culture of PDX1 gene-positive cells, it is preferable to use those cultured in a cell mass state having a three-dimensional structure.

本願の方法の一態様において、(a)、(b)、および(c)からなる群から選択される1以上を含有する培地においてPDX1陽性細胞を培養する工程は、好ましくはPDX1陽性細胞を予め下記に述べる第1工程および第2工程にて培養した後の第3工程として行う。 In one aspect of the method of the present application, the step of culturing PDX1-positive cells in a medium containing one or more selected from the group consisting of (a), (b), and (c) is preferably to preliminarily obtain PDX1-positive cells. This is performed as the third step after culturing in the first step and the second step described below.

[PDX1陽性細胞からPTF1A陽性細胞誘導の第1工程]
PDX1陽性細胞からPTF1A陽性細胞誘導の第1工程ではPDX1陽性細胞を成長因子、レチノイン酸受容体(RAR)アゴニスト、ヘッジホッグ経路阻害剤、プロテインキナーゼC活性化剤およびALK5受容体阻害剤を含む培地にて培養する。各成分の培地中の濃度は適宜定めれば良い。
[First step of inducing PTF1A-positive cells from PDX1-positive cells]
In the first step of inducing PTF1A-positive cells from PDX1-positive cells, PDX1-positive cells are subjected to a medium containing a growth factor, a retinoic acid receptor (RAR) agonist, a hedgehog pathway inhibitor, a protein kinase C activator, and an ALK5 receptor inhibitor. Cultivate in. The concentration of each component in the medium may be appropriately determined.

PDX1陽性細胞からPTF1A細胞誘導の第1工程において、好ましくはヒストンデアセチラーゼ(HDAC)阻害剤を培地に添加する。
ヒストンデアセチラーゼ(HDAC)阻害剤としては例えば、バルプロ酸 (VPA)、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害剤、HDACに対するsiRNAおよびshRNA(例えばHDAC1 siRNA Smartpool(登録商標)(Millipore)、HuSH 29mer shRNA Constructs against HDAC1 (OriGene))等の核酸性発現阻害剤、MEK阻害剤(例えば、PD184352、PD98059、U0126、SL327およびPD0325901)、Glycogen synthase kinase-3阻害剤(例えば、BioおよびCHIR99021)、DNAメチルトランスフェラーゼ阻害剤(例えば、5-azacytidine)、ヒストンメチルトランスフェラーゼ阻害剤(例えば、BIX-01294 等の低分子阻害剤、Suv39hl、Suv39h2、SetDBlおよびG9aに対するsiRNAおよびshRNA等の核酸性発現阻害剤など)、L-channel calcium agonist (例えばBayk8644)が例示される。
In the first step of inducing PTF1A cells from PDX1-positive cells, a histone deacetylase (HDAC) inhibitor is preferably added to the medium.
Examples of histone deacetylase (HDAC) inhibitors include small molecule inhibitors such as valproic acid (VPA), tricostatin A, sodium butyrate, MC 1293, M344, siRNA and shRNA against HDAC (eg HDAC1 siRNA Smartpool®). ) (Millipore), HuSH 29mer shRNA Constructs against HDAC1 (OriGene)) and other nucleic acid expression inhibitors, MEK inhibitors (eg PD184352, PD98059, U0126, SL327 and PD0325901), Glycogen synthase kinase-3 inhibitors (eg, PD184352, PD98059, U0126, SL327 and PD0325901). Bio and CHIR99021), DNA methyltransferase inhibitors (eg, 5-azacytidine), histone methyltransferase inhibitors (eg, small molecule inhibitors such as BIX-01294), nucleic acids such as siRNA and shRNA against Suv39hl, Suv39h2, SetDBl and G9a. Examples include sex expression inhibitors), L-channel nucleic acid agonists (eg Bayk 8644).

HDAC阻害剤としては酪酸ナトリウムが好適に用いられる。HDAC阻害剤として酪酸ナトリウムを用いる場合、培地中の濃度は通常50μM~1000μM、好ましくは200μM~800μM、例えば約500μMである。第1工程においては1日~3日、好ましくは1日培養する。 Sodium butyrate is preferably used as the HDAC inhibitor. When sodium butyrate is used as the HDAC inhibitor, the concentration in the medium is usually 50 μM to 1000 μM, preferably 200 μM to 800 μM, for example about 500 μM. In the first step, the cells are cultured for 1 to 3 days, preferably 1 day.

[PDX1陽性細胞からPTF1A陽性細胞誘導の第2工程]
第2工程以降において、培養は浮遊培養で、低接着プレートを用いて行うのが好ましい。第2工程において、培地は基礎培地に成長因子、レチノイン酸受容体(RAR)アゴニスト、ヘッジホッグ経路阻害剤、ROCK阻害剤、プロテインキナーゼC活性化剤およびALK5受容体阻害剤を含有するものが好適に用いられる。各成分の培地中の濃度は適宜定めれば良い。第2工程においては、第1工程で得た細胞を新たなプレートに満たした第2工程用培地中へ移してから1日~3日、好ましくは1日培養する。
[Second step of inducing PTF1A-positive cells from PDX1-positive cells]
In the second and subsequent steps, the culture is a suspension culture, preferably using a low-adhesion plate. In the second step, the medium preferably contains a growth factor, a retinoic acid receptor (RAR) agonist, a hedgehog pathway inhibitor, a ROCK inhibitor, a protein kinase C activator, and an ALK5 receptor inhibitor in the basal medium. Used for. The concentration of each component in the medium may be appropriately determined. In the second step, the cells obtained in the first step are transferred to a medium for the second step filled with a new plate and then cultured for 1 to 3 days, preferably 1 day.

[PDX1陽性細胞からPTF1A陽性細胞誘導の第3工程]
PDX1陽性細胞を(a)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤、およびcAMP類縁体からなる群より選択される少なくとも一種、(b)ステロイドおよび(c)ニコチンアミドからなる群から選択される1以上の物質を含む培地で培養する。
[Third step of inducing PTF1A-positive cells from PDX1-positive cells]
PDX1-positive cells are selected from the group consisting of (a) adenylate cyclase activator, cAMP phosphodiesterase inhibitor, and at least one selected from the group consisting of cAMP analogs, (b) steroids and (c) nicotine amide. Incubate in medium containing one or more substances.

培地は、上述した基礎培地へ(a)アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤、およびcAMP類縁体からなる群より選択される少なくとも一種、(b)ステロイドおよび(c)ニコチンアミドからなる群から選択される1以上の物質を添加することによって作成される。好ましい基礎培地は、B-27サプリメントを添加したDMEM/F12である。 The medium is a group consisting of (a) an adenylate cyclase activator, a cAMP phosphodiesterase inhibitor, and at least one selected from the group consisting of cAMP analogs, (b) steroids and (c) nicotine amide to the above-mentioned basal medium. It is made by adding one or more substances selected from. A preferred basal medium is DMEM / F12 supplemented with B-27 supplement.

アデニル酸シクラーゼ活性化剤、cAMPホスホジエステラーゼ阻害剤、およびcAMP類縁体からなる群より選択される物質の例としては、アデニル酸シクラーゼ活性を有する化合物、cAMPホスホジエステラーゼ阻害活性を有する化合物、およびアデニル酸シクラーゼ活性とcAMPホスホジエステラーゼ阻害活性とを併せ持つ化合物等が挙げられる。より具体的には、ホルスコリン、ジブチルcAMP、PACAP27(pituitary adenylate cyclase activating polypeptide 27)、IBMX(3-イソブチル-1-メチルキサンチン)等が挙げられる。好ましくは、ホルスコリンである。ホルスコリンの培地中の濃度は通常0.1から50μM、好ましくは2から50μMであり、例えば約10μMである。 Examples of substances selected from the group consisting of adenylate cyclase activator, cAMP phosphodiesterase inhibitor, and cAMP analogs include compounds having adenylate cyclase activity, compounds having cAMP phosphodiesterase inhibitory activity, and adenylate cyclase activity. And a compound having both cAMP phosphodiesterase inhibitory activity and the like. More specifically, forskolin, dibutyl cAMP, PACAP27 (pituitary adenylate cyclase activating polypeptide 27), IBMX (3-isobutyl-1-methylxanthine) and the like can be mentioned. Forskolin is preferred. The concentration of forskolin in the medium is usually 0.1 to 50 μM, preferably 2 to 50 μM, for example about 10 μM.

ステロイドとしては、デキサメサゾン、ヒドロコルチゾン、ベタメタゾン、ベクロメタゾン等が挙げられる。なかでもデキサメサゾンが好適に用いられる。ステロイドとしてデキサメサゾンを使用する場合の培地中の濃度は、通常0.1から50μM、好ましくは2から50μM、例えば約10μMである。 Examples of steroids include dexamethasone, hydrocortisone, betamethasone, beclomethasone and the like. Of these, dexamethasone is preferably used. When dexamethasone is used as a steroid, the concentration in the medium is usually 0.1 to 50 μM, preferably 2 to 50 μM, for example about 10 μM.

ニコチンアミドの培地中の濃度は、0.01から20mM、好ましくは0.1から5mMであり、例えば約1mMである。 The concentration of nicotinamide in the medium is 0.01 to 20 mM, preferably 0.1 to 5 mM, for example about 1 mM.

本願の方法において、成分(a)、(b)、および(c)はそれぞれを単独で添加しても、任意の2種類を組み合わせて添加しても、(a)(b)(c)を全て添加してもよい。好ましくは、ホルスコリン、デキサメサゾンおよびニコチンアミドのいずれか1種、2種または3種全てを含む培地が挙げられる。 In the method of the present application, the components (a), (b), and (c) may be added alone or in combination of any two types, or the components (a), (b), and (c) may be added. All may be added. Preferred are media containing any one, two or all three of forskolin, dexamethasone and nicotinamide.

本願の方法において、培地はさらに成長因子、レチノイン酸受容体(RAR)アゴニスト、ヘッジホッグ経路阻害剤、プロテインキナーゼC阻害剤およびALK5受容体阻害剤を含有するものであってもよい。各成分の培地中の濃度は適宜定めれば良い。 In the method of the present application, the medium may further contain a growth factor, a retinoic acid receptor (RAR) agonist, a hedgehog pathway inhibitor, a protein kinase C inhibitor and an ALK5 receptor inhibitor. The concentration of each component in the medium may be appropriately determined.

成長因子としては好ましくはKGFが用いられる。KGFは、Keratinocyte Growth Factorと呼ばれるタンパク質であり、FGF-7と呼ばれることもある。EGFは、上皮成長因子またはEpidermal Growth Factorと呼ばれるタンパク質である。 As the growth factor, KGF is preferably used. KGF is a protein called Keratinocyte Growth Factor and is sometimes called FGF-7. EGF is a protein called Epidermal Growth Factor or Epidermal Growth Factor.

レチノイン酸受容体(RAR)アゴニストは天然に存在するレチノイドであっても、化学的に合成されたレチノイド、レチノイド骨格を持たないレチノイン酸受容体アゴニスト化合物やレチノイン酸受容体アゴニスト活性を有する天然物であってもよい。RARアゴニストとしての活性をもつ天然レチノイドの例としては、レチノイン酸(立体異性体の全トランス-レチノイン酸(全トランスRA)と9-シス-レチノイン酸(9-シスRA)が知られている)が挙げられる。化学的に合成されたレチノイドは当技術分野で公知である(米国特許第5,234,926号,米国特許第4,326,055号等)。レチノイド骨格を持たないレチノイン酸受容体アゴニスト化合物の例としては、Am80、AM580、TTNPB、AC55649が挙げられる。レチノイン酸受容体アゴニスト活性を有する天然物の例としてはホノキオール、マグノロールが挙げられる(生物機能開発研究所紀要9:55-61,2009年)。RARアゴニストは、好ましくはレチノイン酸、AM580(4-[[5,6,7,8-テトラヒドロ-5,5,8,8-テトラメチル2-ナフタレニル]カルボキシアミド]安息香酸)、TTNPB(4-[[E]-2-[5,6,7,8-テトラヒドロ-5,5,8,8-テトラメチル2-ナフタレニル]-1-プロペニル]安息香酸)、AC55649(4’-オクチル-[1,1’-ビフェニル]-4-カルボン酸)であり、さらに好ましくはレチノイン酸である。 Retinoic acid receptor (RAR) agonists are naturally occurring retinoids, chemically synthesized retinoids, retinoic acid receptor agonist compounds that do not have a retinoid skeleton, and natural products that have retinoic acid receptor agonist activity. There may be. Examples of natural retinoids with activity as RAR agonists are retinoic acid (the stereoisomers of total trans-retinoic acid (total trans RA) and 9-cis-retinoic acid (9-cis RA) are known). Can be mentioned. Chemically synthesized retinoids are known in the art (US Pat. No. 5,234,926, US Pat. No. 4,326,055, etc.). Examples of retinoic acid receptor agonist compounds having no retinoid skeleton include Am80, AM580, TTNPB, AC55649. Examples of natural products having retinoic acid receptor agonist activity include honokiol and magnolol (Bulletin of the Institute for Biological Function Development 9: 55-61, 2009). RAR agonists are preferably retinoic acid, AM580 (4-[[5,6,7,8-tetrahydro-5,5,8,8-tetramethyl 2-naphthalenyl] carboxyamide] benzoic acid), TTNPB (4- [[E] -2- [5,6,7,8-Tetrahydro-5,5,8,8-Tetramethyl 2-naphthalenyl] -1-propenyl] Benzoic acid), AC55649 (4'-octyl- [1 , 1'-biphenyl] -4-carboxylic acid), more preferably retinoic acid.

ヘッジホッグ経路阻害剤は、ソニック・ヘッジホッグ、インディアン・ヘッジホッグ、およびデザート・ヘッジホッグのいずれかが膜受容体であるPatchedに結合して起こるシグナル、例えば、Smoothenedの活性を阻害する化合物を意味し、ヘッジホッグが受容体に結合して起こるシグナルを阻害すれば、特に限定されないが、例えば、シクロパミン、ジェルビン、3-Keto-N-(aminoethyl-aminocaproyl-dihydro-cinnamoyl)(KAAD)-シクロパミン、CUR-61414、SANT-1、SANT-2、SANT-3、SANT-4、IPI-926、IPI-269609、GDC-0449およびNVP-LDE-225が挙げられる。好ましくは、シクロパミンである。 Hedgehog pathway inhibitor means a compound that inhibits the activity of a signal such as Sonic hedgehog, Indian hedgehog, or Desert hedgehog that binds to the membrane receptor Patched, eg, Smoothened. However, as long as the hedgehog inhibits the signal generated by binding to the receptor, it is not particularly limited, and for example, cyclopamine, jervine, 3-Keto-N- (aminoethyl-aminocaproyl-dihydro-cinnamoyl) (KAAD) -cyclopamine, Examples include CUR-61414, SANT-1, SANT-2, SANT-3, SANT-4, IPI-926, IPI-269609, GDC-0449 and NVP-LDE-225. Cyclopamine is preferred.

プロテインキナーゼC活性化剤としては、Alpha APP Modulator、例えば(2S,5S)-(E,E)-8-(5-(4-(トリフルオロメチル)フェニル)-2,4-ペンタジエノイルアミノ)ベンゾラクタムが例示される。 Examples of the protein kinase C activator include Alpha APP Modulator, for example (2S, 5S)-(E, E) -8- (5- (4- (trifluoromethyl) phenyl) -2,4-pentadienoylamino. ) Benlactam is exemplified.

ALK5受容体阻害剤としては、ALK5阻害剤II(2-[3-[6-メチルピリジン-2-イル]-1H-ピラゾル-4-イル]-1,5-ナフチリジン)が例示される。
第3工程において培養は浮遊培養で、低接着プレートを用いて行うのが好ましい。培養期間は特に限定的ではなく、第3工程開始時にそれまでの工程で得た細胞を新たなプレートに満たした上記培地中に移してから4日~14日、例えば8日以上、好ましくは約12日間培養する。
Examples of the ALK5 receptor inhibitor include ALK5 inhibitor II (2- [3- [6-methylpyridine-2-yl] -1H-pyrazol-4-yl] -1,5-naphthylidine).
In the third step, the culture is suspension culture, and it is preferable to use a low-adhesion plate. The culture period is not particularly limited, and 4 to 14 days, for example, 8 days or more, preferably about 8 days or more, after transferring the cells obtained in the previous step to the above-mentioned medium filled with a new plate at the start of the third step. Incubate for 12 days.

培養条件は特に限定的ではないが、一つの態様においては37℃、5%CO2、5%O2の条件下で培養すればよい。 The culture conditions are not particularly limited, but in one embodiment, the culture may be performed under the conditions of 37 ° C., 5% CO2, and 5% O2.

本願の方法により、細胞におけるPTF1Aの発現が増加する。また、本願の方法にて培養された細胞は、インスリンおよびアミラーゼの両方を発現する。 The method of the present application increases the expression of PTF1A in cells. In addition, cells cultured by the method of the present application express both insulin and amylase.

本願の方法の一態様において、PDX1陽性細胞は、哺乳動物の多能性幹細胞から誘導されたものである。多能性幹細胞とは、生体に存在する全ての細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞である。例えば胚性幹(ES)細胞(J.A. Thomson et al. (1998), Science 282:1145-1147; J.A. Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92:7844-7848;J.A. Thomson et al. (1996), Biol. Reprod., 55:254-259; J.A. Thomson and V.S. Marshall (1998), Curr. Top. Dev. Biol., 38:133-165)、核移植により得られるクローン胚由来の胚性幹(ntES)細胞(T. Wakayama et al. (2001), Science, 292:740-743; S. Wakayama et al. (2005), Biol. Reprod., 72:932-936; J. Byrne et al. (2007), Nature, 450:497-502)、精子幹細胞(「GS細胞」)(M. Kanatsu-Shinohara et al. (2003) Biol. Reprod., 69:612-616; K. Shinohara et al. (2004), Cell, 119:1001-1012)、胚性生殖細胞(「EG細胞」)(Y. Matsui et al. (1992), Cell, 70:841-847; J.L. Resnick et al. (1992), Nature, 359:550-551)、人工多能性幹(iPS)細胞(K. Takahashi and S. Yamanaka (2006) Cell, 126:663-676; K. Takahashi et al. (2007), Cell, 131:861-872; J. Yu et al. (2007), Science, 318:1917-1920; Nakagawa, M.ら,Nat. Biotechnol. 26:101-106 (2008);WO2007/069666)、培養線維芽細胞や骨髄幹細胞由来の多能性細胞(Muse細胞)(WO2011/007900)などが含まれる。より好ましくは、多能性幹細胞はヒト多能性幹細胞であり、例えばヒトES細胞およびヒトiPS細胞である。更に好ましくはヒトiPS細胞である。 In one aspect of the method of the present application, PDX1-positive cells are derived from mammalian pluripotent stem cells. Pluripotent stem cells are stem cells having pluripotency capable of differentiating into all cells existing in a living body and also having proliferative ability. For example, embryonic stem (ES) cells (J.A. Thomson et al. (1998), Science 282: 1145-1147; J.A. Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92: 7844-7848; J.A. Thomson et al. (1996), Biol. Reprod., 55: 254-259; J.A. Thomson and V.S. Marshall (1998), Curr. Top. Dev. Biol., 38: 133-165), obtained by nuclear transplantation Embryonic stem (ntES) cells derived from cloned embryos (T. Wakayama et al. (2001), Science, 292: 740-743; S. Wakayama et al. (2005), Biol. Reprod., 72: 932-936 J. Byrne et al. (2007), Nature, 450: 497-502), sperm stem cells (“GS cells”) (M. Kanatsu-Shinohara et al. (2003) Biol. Reprod., 69: 612-616 K. Shinohara et al. (2004), Cell, 119: 1001-1012), Embryonic Stem Cell (“EG Cell”) (Y. Matsui et al. (1992), Cell, 70: 841-847; J.L. Resnick et al. (1992), Nature, 359: 550-551), Artificial pluripotent stem (iPS) cells (K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676; K. Takahashi et al (2007), Cell, 131: 861-872; J. Yu et al. (2007), Science, 318: 1917-1920; Nakagawa, M. et al., Nat. Biotechnol. 26: 101-106 (2008); WO2007 / 069666), pluripotent cells (Muse cells) derived from cultured fibroblasts and bone marrow stem cells (WO2011 / 007900), etc. are included. More preferably, the pluripotent stem cells are human pluripotent stem cells, such as human ES cells and human iPS cells. More preferably, it is a human iPS cell.

多能性幹細胞は、公知の方法を用いて製造したものを用いても、市販の多能性幹細胞や、研究あるいは移植医療のためにその由来する個体の情報と共に保存された多能性幹細胞を用いてもよい。頻度の高いHLAハプロタイプをホモで有するひとをドナーとして用いることにより、汎用性の高いiPS細胞バンクを構築するプロジェクトが日本において現在進行中であり(CYRANOSKI, Nature vol. 488, 139(2012))、例えばかかるiPS細胞バンクから取得された多能性幹細胞を用いてもよい。 Pluripotent stem cells can be commercially available pluripotent stem cells or pluripotent stem cells stored with information on the individual from which they are derived for research or transplantation medicine, even if they are produced using known methods. You may use it. A project to construct a highly versatile iPS cell bank by using a person homozygous for the HLA haplotype, which is frequently used, is currently underway in Japan (CYRANOSKI, Nature vol. 488, 139 (2012)). For example, pluripotent stem cells obtained from such an iPS cell bank may be used.

本願の方法において用いられる多能性幹細胞は、任意の方法で実質的に分離(または解離)することで単一細胞の状態として培養しても、または、細胞同士が接着した細胞凝集塊の状態で培養してもよい。単一細胞の状態に分離して培養する場合の分離の方法としては、例えば、力学的分離や、プロテアーゼ活性とコラゲナーゼ活性を有する分離溶液(例えば、トリプシンとコラゲナーゼの含有溶液Accutase(TM)およびAccumax(TM)(Innovative Cell Technologies, Inc)が挙げられる)またはコラゲナーゼ活性のみを有する分離溶液を用いた分離が挙げられる。多能性幹細胞は、コーティング処理された培養皿を用いて接着培養することができる。 The pluripotent stem cells used in the method of the present application can be cultured as a single cell state by substantially separating (or dissociating) by an arbitrary method, or a state of a cell aggregate in which cells adhere to each other. It may be cultured in. Separation methods for separating and culturing into a single cell state include, for example, mechanical separation and separation solutions having protease activity and collagenase activity (for example, solutions containing trypsin and collagenase Accutase (TM) and Accumax. (TM) (Innovative Cell Technologies, Inc)) or separation using a separation solution having only collagenase activity. Pluripotent stem cells can be adherently cultured using a coated culture dish.

多能性幹細胞からPDX1陽性細胞を誘導するには、まず、多能性幹細胞から内胚葉細胞を誘導し、内胚葉細胞から原腸細胞を誘導する。原腸細胞からさらに、PDX1陽性細胞を誘導する。 To induce PDX1-positive cells from pluripotent stem cells, first induce endoderm cells from pluripotent stem cells and then induce archenteron cells from endoderm cells. Further induce PDX1-positive cells from archenteronal cells.

多能性幹細胞から内胚葉細胞を経て原腸細胞を得るには、従来から公知の方法を用いれば良い。一つの態様として、多能性幹細胞をアクチビン受容体様キナーゼ-4,7の活性化剤、GSK3阻害剤、ROCK阻害剤およびP13キナーゼを含有する培地中で1~4日、好ましくは2日間培養し、次いでアクチビン受容体様キナーゼ-4,7の活性化剤のみを含有する培地中1~4日、好ましくは2日間培養し、さらにGSK3阻害剤および成長因子を含有する培地中にて3~8日、好ましくは4日間培養する。かかる操作により原腸細胞を得ることができる。 In order to obtain archenteron cells from pluripotent stem cells via endoderm cells, a conventionally known method may be used. In one embodiment, pluripotent stem cells are cultured in medium containing activin receptor-like kinase-4,7 activator, GSK3 inhibitor, ROCK inhibitor and P13 kinase for 1-4 days, preferably 2 days. Then, incubate in a medium containing only the activin receptor-like kinase-4,7 activator for 1 to 4 days, preferably 2 days, and further in a medium containing a GSK3 inhibitor and a growth factor for 3 to 3 to. Incubate for 8 days, preferably 4 days. Archenteronal cells can be obtained by such an operation.

アクチビン受容体様キナーゼ-4,7の活性化剤とは、ALK-4および/又はALK-7に対し活性化作用を有する物質であり、例えば、アクチビン、Nodal、Myostatinが挙げられる。好ましくは、アクチビンである。アクチビンには、アクチビンA、B、C、DおよびABが知られているが、アクチビンA、B、C、D、ABのいずれのアクチビンも使用することができる。アクチビンとしては特にアクチビンAが好適に用いられる。また、アクチビンとしてはヒト、マウス等いずれの哺乳動物由来のアクチビンをも使用することができる。工程1に使用するアクチビンとしては、分化に用いる多能性幹細胞と同一の動物種由来のアクチビンを用いることが好ましく、例えばヒト由来の多能性幹細胞を出発原料とする場合、ヒト由来のアクチビンを用いることが好ましい。これらのアクチビンは商業的に入手可能である。 The activin receptor-like kinase-4,7 activator is a substance having an activating effect on ALK-4 and / or ALK-7, and examples thereof include activin, Nodal, and Myostatin. Preferred is activin. As activin, activin A, B, C, D and AB are known, but any activin A, B, C, D or AB can be used. As activin, activin A is particularly preferably used. Further, as activin, activin derived from any mammal such as human or mouse can be used. As the activin used in step 1, it is preferable to use activin derived from the same animal species as the pluripotent stem cells used for differentiation. For example, when human-derived pluripotent stem cells are used as a starting material, human-derived activin is used. It is preferable to use it. These activins are commercially available.

GSK3阻害剤とは、GSK-3βタンパク質のキナーゼ活性(例えば、βカテニンに対するリン酸化能)を阻害する物質として定義され、既に多数のものが知られているが、例えば、インジルビン誘導体であるBIO(別名、GSK-3β阻害剤IX;6-ブロモインジルビン3'-オキシム)、マレイミド誘導体であるSB216763(3-(2,4-ジクロロフェニル)-4-(1-メチル-1H-インドール-3-イル)-1H-ピロール-2,5-ジオン)、SB415286(3-[(3-クロロ-4-ヒドロキシフェニル)アミノ]-4-(2-ニトロフェニル)-1H-ピロール-2,5-ジオン)、フェニルαブロモメチルケトン化合物であるGSK-3β阻害剤VII(4-ジブロモアセトフェノン)、細胞膜透過型のリン酸化ペプチドであるL803-mts(別名、GSK-3βペプチド阻害剤;Myr-N-GKEAPPAPPQSpP-NH2)および高い選択性を有するCHIR99021(6-[[2-[[4-(2,4-ジクロロフェニル)-5-(4-メチル-1H-イミダゾール-2-イル)-2-ピリミジニル]アミノ]エチル]アミノ]ニコチノニトリル)が挙げられる。これらの化合物は、例えばCalbiochem社やBiomol社等から市販されており容易に利用することが可能である。他の入手先から入手しても、あるいは自ら作製してもよい。GSK-3β阻害剤は、好ましくは、CHIR99021であり得る。 A GSK3 inhibitor is defined as a substance that inhibits the kinase activity of the GSK-3β protein (for example, the ability to phosphorylate β-catenin), and many of them are already known. Also known as GSK-3β inhibitor IX; 6-bromoindylbin 3'-oxym, SB216763 (3- (2,4-dichlorophenyl) -4- (1-methyl-1H-indol-3-yl), a maleimide derivative. ) -1H-pyrrole-2,5-dione), SB415286 (3-[(3-chloro-4-hydroxyphenyl) amino] -4- (2-nitrophenyl) -1H-pyrrole-2,5-dione) , GSK-3β inhibitor VII (4-dibromoacetophenone), a phenylαbromomethylketone compound, L803-mts (also known as GSK-3β peptide inhibitor; Myr-N-GKEAPPAPPQSpP-), a cell membrane permeabilizing kinase. NH2) and CHIR99021 with high selectivity (6-[[2-[[4- (2,4-dichlorophenyl) -5- (4-methyl-1H-imidazol-2-yl) -2-pyrimidinyl] amino] Ethyl] amino] nicotinonitrile). These compounds are commercially available from, for example, Calbiochem, Biomol, etc., and can be easily used. It may be obtained from other sources or may be made by yourself. The GSK-3β inhibitor may preferably be CHIR99021.

次いで原腸細胞からPDX1陽性細胞を誘導する。
原腸細胞からPDX1陽性細胞を誘導するには、原腸細胞をまず成長因子、例えばKGFおよびEGF、レチノイン酸受容体(RAR)アゴニスト、ヘッジホッグ経路阻害剤、およびROCK阻害剤を含有する培地にて培養する。培地としては、公知の基礎培地から適宜選択して用いれば良いが、例えばDMEM/F12培地にB27サプリメントを配合した培地が好適に用いられる。培地中への各添加物の含有量は適宜定めれば良い。
Then, PDX1-positive cells are induced from archenteron cells.
To induce PDX1-positive cells from proto-enterocytes, first place the proto-enterocytes in a medium containing growth factors such as KGF and EGF, retinoic acid receptor (RAR) agonists, hedgehog pathway inhibitors, and ROCK inhibitors. And cultivate. As the medium, a known basal medium may be appropriately selected and used. For example, a medium in which B27 supplement is mixed with DMEM / F12 medium is preferably used. The content of each additive in the medium may be appropriately determined.

ROCK阻害剤は、Rho-キナーゼ(ROCK)の機能を抑制できるものである限り特に限定されず、例えば、Y-27632(例、Ishizaki et al., Mol. Pharmacol. 57, 976-983 (2000);Narumiya et al., Methods Enzymol. 325,273-284 (2000)参照)、Fasudil/HA1077(例、Uenata et al., Nature 389: 990-994 (1997)参照)、H-1152(例、Sasaki et al., Pharmacol. Ther. 93: 225-232 (2002)参照)、Wf-536(例、Nakajima et al., Cancer Chemother Pharmacol. 52(4): 319-324 (2003)参照)およびそれらの誘導体、ならびにROCKに対するアンチセンス核酸、RNA干渉誘導性核酸(例、siRNA)、ドミナントネガティブ変異体、およびそれらの発現ベクターが挙げられる。また、ROCK阻害剤としては他の公知の低分子化合物も使用できる(例えば、米国特許出願公開第2005/0209261号、同第2005/0192304号、同第2004/0014755号、同第2004/0002508号、同第2004/0002507号、同第2003/0125344号、同第2003/0087919号、及び国際公開第2003/062227号、同第2003/059913号、同第2003/062225号、同第2002/076976号、同第2004/039796号参照)。本願発明では、1種または2種以上のROCK阻害剤が使用され得る。本工程で用いる好ましいROCK阻害剤としては、Y-27632が挙げられる。 The ROCK inhibitor is not particularly limited as long as it can suppress the function of Rho-kinase (ROCK), for example, Y-27632 (eg, Ishizaki et al., Mol. Pharmacol. 57, 976-983 (2000)). Narumiya et al., Methods Enzymol. 325,273-284 (2000)), Fasudil / HA1077 (eg Uenata et al., Nature 389: 990-994 (1997)), H-1152 (eg Sasaki et al). ., Pharmacol. Ther. 93: 225-232 (2002)), Wf-536 (eg, Nakajima et al., Cancer Chemother Pharmacol. 52 (4): 319-324 (2003)) and their derivatives, Also included are antisense nucleic acids for ROCK, RNA interference-inducible nucleic acids (eg, siRNA), dominant negative variants, and expression vectors thereof. In addition, other known low molecular weight compounds can also be used as the ROCK inhibitor (for example, US Patent Application Publication No. 2005/0209261, 2005/0192304, 2004/0014755, 2004/0002508). , 2004/0002507, 2003/0125344, 2003/0087919, and International Publication 2003/062227, 2003/059913, 2003/062225, 2002/076976 No., 2004/039796). In the present invention, one or more ROCK inhibitors can be used. A preferred ROCK inhibitor used in this step is Y-27632.

原腸細胞からPDX1陽性細胞への誘導に当たり、立体構造を有する細胞塊としてのPDX1陽性細胞を得るために、細胞は三次元支持体となる物質、例えばマトリゲルの存在下で培養してもよい。 In order to induce PDX1-positive cells from archenteron cells to obtain PDX1-positive cells as a cell mass having a three-dimensional structure, the cells may be cultured in the presence of a substance that serves as a three-dimensional support, for example, Matrigel.

原腸細胞からPDX1陽性細胞誘導の工程は、培地を適宜新しいものに交換しながら4~14日、例えば約8日行う。本工程により、PDX1陽性細胞が誘導される。本願の一態様においては、本工程で得られた細胞を、PDX1陽性細胞として用いる。 The step of inducing PDX1-positive cells from archenteron cells is carried out for 4 to 14 days, for example, about 8 days, while changing the medium to a new one as appropriate. This step induces PDX1-positive cells. In one aspect of the present application, the cells obtained in this step are used as PDX1-positive cells.

本願発明を実施例にて更に詳細に説明する。実施例の概略を図1に示した。
ヒトiPS細胞 201B7株(Cell 131:861-872, 2007)を使用した。
未分化状態の維持には37℃、5%CO2のもとに、フィーダー細胞としてマイトマイシン処理をしたマウス繊維芽細胞株SNLを、培地として霊長類ES細胞用培地(リプロセル)を用いた。同培地へは4ng/mL human recombinant bFGF(WAKO)、0.5% Penicillin-Streptomycin(GIBCO)を添加した。培地交換は継代の翌々日から毎日行い、6~7日ごとに継代をおこなった。
The invention of the present application will be described in more detail with reference to Examples. The outline of the example is shown in FIG.
Human iPS cell 201B7 strain (Cell 131: 861-872, 2007) was used.
To maintain the undifferentiated state, a mouse fibroblast line SNL treated with mitomycin as a feeder cell under 5% CO 2 was used as a medium, and a medium for primate ES cells (reprocell) was used as a medium. 4 ng / mL human recombinant bFGF (WAKO) and 0.5% Penicillin-Streptomycin (GIBCO) were added to the medium. Medium exchange was performed daily from the day after the passage, and the passage was performed every 6 to 7 days.

まず未分化iPS細胞を24穴プレートで内胚葉細胞へと分化させた。
未分化なiPS細胞のディッシュからフィーダー細胞を除去し、Accutase(Innovative Cell Technologies)で単一細胞になるまで解離させた。24穴プレートは前日から室温でマトリゲルコートしたものを用いた。各種分化誘導因子を含むRPMI培地(GIBCO)に分散させたiPS細胞を24穴プレートに1穴あたり2×104個の密度で播種し、37℃、5%CO2で2日間培養した。分化誘導因子として、アクチビンA(100ng/mL)とGSK3阻害剤CHIR99021(3μM)、Y-27632(10μM)、ワルトマニン(100nM)、2%B27サプリメント(GIBCO)を使用した。2日間の培養ののち、培地をアクチビンA(100ng/mL)、2%B27サプリメントを含むRPMI培地に交換して1日間培養した。さらに同様の培地に交換して1日間培養した。
First, undifferentiated iPS cells were differentiated into endoderm cells on a 24-well plate.
Feeder cells were removed from the dish of undifferentiated iPS cells and dissociated by Accutase (Innovative Cell Technologies) until they became single cells. The 24-well plate used was Matrigel-coated at room temperature from the previous day. IPS cells dispersed in RPMI medium (GIBCO) containing various differentiation-inducing factors were seeded on a 24-well plate at a density of 2 × 10 4 cells per hole, and cultured at 37 ° C. and 5% CO 2 for 2 days. Activin A (100 ng / mL) and GSK3 inhibitors CHIR99021 (3 μM), Y-27632 (10 μM), Waltmanin (100 nM), and 2% B27 supplement (GIBCO) were used as differentiation-inducing factors. After culturing for 2 days, the medium was replaced with RPMI medium containing activin A (100 ng / mL) and 2% B27 supplement, and the cells were cultured for 1 day. Further, it was replaced with the same medium and cultured for 1 day.

次に原腸細胞への分化誘導をおこなった。分化誘導因子として、KGF(50ng/mL)、CHIR99021(2μM)を含み、2%B27サプリメントを含むRPMI培地を1日ごとに交換し、計4日間培養した。 Next, differentiation into archenteron cells was induced. RPMI medium containing KGF (50 ng / mL) and CHIR99021 (2 μM) and 2% B27 supplement as differentiation-inducing factors was exchanged daily and cultured for a total of 4 days.

原腸細胞をPDX1陽性細胞へ誘導した。
ここまで誘導した細胞をAccutaseで単一細胞にまで解離し、前日からマトリゲルコートしておいた6穴プレートに各種分化誘導因子および2.5%マトリゲルを含および2%B27サプリメントを含むDMEM/F12培地(GIBCO)に懸濁して播種した。
Archenteron cells were induced into PDX1-positive cells.
The cells induced so far are dissociated into single cells by Accutase, and DMEM / F12 medium containing various differentiation-inducing factors and 2.5% Matrigel and 2% B27 supplement in a 6-well plate coated with Matrigel from the previous day ( It was suspended in GIBCO) and sown.

分化誘導因子として、KGF(50ng/mL)、EGF(100ng/mL)、レチノイン酸(2μM)、シクロパミン(250nM)、Y-27632(10μM)を添加した。37℃、5%O2、5%CO2で8日間培養した。以後の培養はすべて同様のガス・温度設定でおこなった。培地交換は同様のものを4日目に1度おこなった。8日間の培養が終わったサンプルを「D0」と表記する。得られた細胞塊を免疫染色および定量RT-PCRにて確認したところ、PDX1を発現していることが確認されたが、PTF1A発現は確認されなかった。As differentiation-inducing factors, KGF (50 ng / mL), EGF (100 ng / mL), tretinoin acid (2 μM), cyclopamine (250 nM), and Y-27632 (10 μM) were added. The cells were cultured at 37 ° C, 5% O 2 , and 5% CO 2 for 8 days. Subsequent cultures were all performed with the same gas and temperature settings. The same medium was exchanged once on the 4th day. Samples that have been cultured for 8 days are referred to as "D0". When the obtained cell mass was confirmed by immunostaining and quantitative RT-PCR, it was confirmed that PDX1 was expressed, but PTF1A expression was not confirmed.

<PDX1陽性細胞からPTF1A発現誘導の第1工程>
続いてPTF1A発現を誘導するために、マトリゲルを含まずに各種分化誘導因子を含むDMEM/F12培地で1日間培養した。分化誘導因子として、酪酸ナトリウム(500uM)、KGF(50ng/mL)、レチノイン酸(100nM)、シクロパミン(250nM)、PKC活性剤Alpha-APP Modulator(250nM)、ALK5受容体阻害剤(1μM)、2%B27サプリメントを用いた。陰性コントロール群では酪酸ナトリウムを添加しなかった。
<First step of inducing PTF1A expression from PDX1-positive cells>
Subsequently, in order to induce PTF1A expression, the cells were cultured for 1 day in DMEM / F12 medium containing various differentiation-inducing factors without Matrigel. As differentiation-inducing factors, sodium butyrate (500uM), KGF (50ng / mL), retinoic acid (100nM), cyclopamine (250nM), PKC activator Alpha-APP Modulator (250nM), ALK5 receptor inhibitor (1μM), 2 % B27 supplement was used. Sodium butyrate was not added in the negative control group.

<PDX1陽性細胞からPTF1A発現誘導の第2工程>
細胞をセルスクレイパーで接着細胞を剥がし、低接着6穴プレートに浮遊させた。培地は、KGF(50ng/mL)、レチノイン酸(100nM)、シクロパミン(250nM)、Alpha-APP Modulator(250nM)、ALK5受容体阻害剤(1μM)、2%B27サプリメントに加え、Y-27632(10μM)を添加したDMEM/F12培地とし、この条件で1日間培養し細胞塊を形成させた。(第2工程)
<Second step of inducing PTF1A expression from PDX1-positive cells>
The cells were stripped of adherent cells with a cell scraper and floated on a low adhesion 6-hole plate. The medium was KGF (50 ng / mL), retinoic acid (100 nM), cyclopamine (250 nM), Alpha-APP Modulator (250 nM), ALK5 receptor inhibitor (1 μM), 2% B27 supplement, and Y-27632 (10 μM). ) Was added to DMEM / F12 medium, and the cells were cultured under these conditions for 1 day to form cell clumps. (Second step)

<PDX1陽性細胞からPTF1A発現誘導の第3工程>
次に得られた細胞塊をKGF(50ng/mL)、レチノイン酸(100nM)、シクロパミン(250nM)、Alpha-APP Modulator(250nM)、ALK5受容体阻害剤(1μM)、2%B27サプリメントに、新たな分化誘導因子として、ホルスコリン(10μM)、デキサメサゾン(10μM)、ニコチンアミド(1mM)を加えた培地へ培地交換した(添加群)。培養は以後12日間継続し、4日毎に同様の培地に交換した。6日目、10日目、14日目にサンプリングを行った。それぞれ「D6」「D10」「D14」と表記する。浮遊培養の前に酪酸ナトリウムを添加しなかった陰性コントロール群では引き続きホルスコリン、デキサメサゾン、ニコチンアミドを添加せず、これを最終的な陰性コントロール(非添加群)とした。
添加群と非添加群のPTF1Aの発現量を、B2M遺伝子をインターナルコントロール、ヒト膵組織検体を陽性コントロールとして用いて、定量RT-PCRでPTF1Aの発現を評価した。結果を図2に示す。
<Third step of inducing PTF1A expression from PDX1-positive cells>
Next, the obtained cell mass was newly added to KGF (50 ng / mL), retinoic acid (100 nM), cyclopamine (250 nM), Alpha-APP Modulator (250 nM), ALK5 receptor inhibitor (1 μM), and 2% B27 supplement. The medium was replaced with a medium containing horscholine (10 μM), dexamesazone (10 μM), and nicotinamide (1 mM) as differentiation-inducing factors (addition group). The culture was continued for 12 days thereafter, and the medium was replaced with the same medium every 4 days. Sampling was performed on the 6th, 10th, and 14th days. Notated as "D6", "D10", and "D14", respectively. Forskolin, dexamethasone, and nicotinamide were not added to the negative control group to which sodium butyrate was not added before the suspension culture, and this was used as the final negative control (non-addition group).
The expression levels of PTF1A in the added group and the non-added group were evaluated by quantitative RT-PCR using the B2M gene as an internal control and a human pancreatic tissue sample as a positive control. The results are shown in FIG.

また、14日目の細胞について定量RT-PCRでインスリンおよびアミラーゼの発現を確認した。結果を図3に示す。 In addition, the expression of insulin and amylase was confirmed by quantitative RT-PCR on the cells on the 14th day. The results are shown in FIG.

Claims (7)

ヒト多能性幹細胞から誘導されたPDX1陽性細胞を提供する工程、
得られたPDX1陽性細胞を、酪酸ナトリウム、KGF、レチノイン酸受容体アゴニスト、シクロパミン、プロテインキナーゼ活性化剤および及びALK5受容体阻害剤を含む培地で1~3日間培養する第1工程、
工程1で得られた細胞をKGF、レチノイン酸受容体アゴニスト、シクロパミン、プロテインキナーゼ活性化剤および及びALK5受容体阻害剤を含む培地で1~3日培養する第2工程、および
工程2で得られた細胞を、ホルスコリン、デキサメタゾン、ニコチンアミド、KGF、レチノイン酸受容体アゴニスト、シクロパミン、プロテインキナーゼ活性化剤およびALK5受容体阻害剤を含む培地で4~14日間培養を行う第3工程
を含む、PTF1A陽性細胞の製造方法。
A step of providing PDX1-positive cells derived from human pluripotent stem cells,
The first step of culturing the obtained PDX1-positive cells in a medium containing sodium butyrate, KGF, a retinoic acid receptor agonist, cyclopamine, a protein kinase activator and an ALK5 receptor inhibitor for 1 to 3 days.
The cells obtained in step 1 are cultured in a medium containing KGF, a retinoic acid receptor agonist, cyclopamine, a protein kinase activator and an ALK5 receptor inhibitor for 1 to 3 days, and the cells obtained in step 2 are obtained. PTF1A comprising a third step of culturing the cells in a medium containing holscholine, dexamethasone, nicotine amide, KGF, retinoic acid receptor agonist, cyclopamine, protein kinase activator and ALK5 receptor inhibitor for 4-14 days. Method for producing positive cells.
第2工程及び第3工程の培養を、低接着プレートを用いて浮遊培養とする、請求項1記載の方法。 The method according to claim 1, wherein the culture in the second step and the third step is a suspension culture using a low-adhesion plate. 第3工程において8日間以上培養を行う、請求項1または2記載の方法。 The method according to claim 1 or 2, wherein the culture is carried out for 8 days or more in the third step. 第1工程において1日間培養を行う、請求項1~3いずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the culture is carried out for one day in the first step. PTF1A陽性細胞が、インスリンおよびアミラーゼを発現する、請求項1~4いずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein PTF1A-positive cells express insulin and amylase. 多能性幹細胞が、ヒトES細胞またはヒトiPS細胞である、請求項1~5いずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the pluripotent stem cell is a human ES cell or a human iPS cell. 請求項1~6いずれかに記載の方法を含む、インスリン発現細胞およびアミラーゼ発現細胞の製造方法。 A method for producing an insulin-expressing cell and an amylase-expressing cell, which comprises the method according to any one of claims 1 to 6.
JP2018529905A 2016-07-26 2017-07-25 Method for producing PTF1A-positive cells Active JP7065517B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016146415 2016-07-26
JP2016146415 2016-07-26
PCT/JP2017/026837 WO2018021293A1 (en) 2016-07-26 2017-07-25 Method for producing cells positive for ptf1a

Publications (2)

Publication Number Publication Date
JPWO2018021293A1 JPWO2018021293A1 (en) 2019-05-09
JP7065517B2 true JP7065517B2 (en) 2022-05-12

Family

ID=61016233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018529905A Active JP7065517B2 (en) 2016-07-26 2017-07-25 Method for producing PTF1A-positive cells

Country Status (2)

Country Link
JP (1) JP7065517B2 (en)
WO (1) WO2018021293A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7477983B2 (en) 2020-02-12 2024-05-02 株式会社カネカ Cell aggregation inhibitors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081222A1 (en) 2009-12-29 2011-07-07 武田薬品工業株式会社 Method for manufacturing pancreatic-hormone-producing cells
WO2015020113A1 (en) 2013-08-07 2015-02-12 国立大学法人京都大学 Method for producing pancreatic hormone-producing cell
JP2015519048A (en) 2012-04-30 2015-07-09 ユニバーシティー、ヘルス、ネットワークUniversity Health Network Methods and compositions for generating pancreatic progenitor cells and functional beta cells from hPSC

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081222A1 (en) 2009-12-29 2011-07-07 武田薬品工業株式会社 Method for manufacturing pancreatic-hormone-producing cells
JP2015519048A (en) 2012-04-30 2015-07-09 ユニバーシティー、ヘルス、ネットワークUniversity Health Network Methods and compositions for generating pancreatic progenitor cells and functional beta cells from hPSC
WO2015020113A1 (en) 2013-08-07 2015-02-12 国立大学法人京都大学 Method for producing pancreatic hormone-producing cell

Also Published As

Publication number Publication date
JPWO2018021293A1 (en) 2019-05-09
WO2018021293A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6602288B2 (en) Methods and compositions for culturing endoderm progenitor cells in suspension
EP3060652B1 (en) In vitro production of foregut stem cells
EP2505639B1 (en) Method for manufacturing pancreatic-hormone-producing cells
US20220186189A1 (en) Method for inducing differentiation of alveolar epithelial cells
CN105008518B (en) Culturing human embryonic stem cells at an air-liquid interface for differentiation into pancreatic endocrine cells
KR102288191B1 (en) In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (pec) and endocrine cells
US20090298169A1 (en) Pancreatic and Liver Endoderm Cells and Tissue by Differentiation of Definitive Endoderm Cells Obtained from Human Embryonic Stems
US9796962B2 (en) Method for generating pancreatic hormone-producing cells
EP3828262A1 (en) Novel renal progenitor cell marker and method for concentrating renal progenitor cells using same
JP7471558B2 (en) Method for producing nephron progenitor cells
JP7065517B2 (en) Method for producing PTF1A-positive cells
WO2023149407A1 (en) Lung mesenchymal cells and method for producing lung mesenchymal cells
WO2014104403A1 (en) Method for Inducing Exocrine Pancreatic Cells
JP7437766B2 (en) Method for producing pluripotent stem cells that are free from mesendoderm differentiation resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220419

R150 Certificate of patent or registration of utility model

Ref document number: 7065517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150