JP7064399B2 - A method for manufacturing an additive for a positive electrode of a non-aqueous electrolyte secondary battery, a positive electrode for a non-aqueous electrolyte secondary battery, and a positive electrode for a non-aqueous electrolyte secondary battery. - Google Patents

A method for manufacturing an additive for a positive electrode of a non-aqueous electrolyte secondary battery, a positive electrode for a non-aqueous electrolyte secondary battery, and a positive electrode for a non-aqueous electrolyte secondary battery. Download PDF

Info

Publication number
JP7064399B2
JP7064399B2 JP2018131037A JP2018131037A JP7064399B2 JP 7064399 B2 JP7064399 B2 JP 7064399B2 JP 2018131037 A JP2018131037 A JP 2018131037A JP 2018131037 A JP2018131037 A JP 2018131037A JP 7064399 B2 JP7064399 B2 JP 7064399B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
aqueous electrolyte
electrolyte secondary
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018131037A
Other languages
Japanese (ja)
Other versions
JP2020009680A (en
Inventor
由紀子 松尾
知弘 橋爪
雅也 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2018131037A priority Critical patent/JP7064399B2/en
Publication of JP2020009680A publication Critical patent/JP2020009680A/en
Application granted granted Critical
Publication of JP7064399B2 publication Critical patent/JP7064399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解質二次電池正極用添加剤、非水電解質二次電池用正極、及び非水電解質二次電池用正極の製造方法に関するものである。 The present invention relates to an additive for a positive electrode of a non-aqueous electrolyte secondary battery, a positive electrode for a non-aqueous electrolyte secondary battery, and a method for manufacturing a positive electrode for a non-aqueous electrolyte secondary battery.

近年、携帯電話やノートパソコン等のモバイル端末機器の駆動電源として、高いエネルギー密度を有し、高容量であるリチウムイオン二次電池に代表される非水電解質二次電池(非水系二次電池)が広く利用されている。前記モバイル端末機器は、高性能化、小型化及び軽量化が進められており、また、ハイブリッド自動車(HEV)や電動工具等にも非水電解質二次電池が用いられるようになっていることから、非水電解質二次電池をより高容量化及び高出力化することが検討されている。また、非水電解質二次電池の高容量化及び高出力化に伴って、充放電の繰り返しによる電極の膨張及び収縮による電池特性の低下を抑制することも要求されている。 In recent years, non-aqueous electrolyte secondary batteries (non-aqueous secondary batteries) represented by lithium-ion secondary batteries, which have high energy density and high capacity, as drive power sources for mobile terminal devices such as mobile phones and laptop computers. Is widely used. The mobile terminal devices are becoming higher in performance, smaller in size, and lighter in weight, and non-aqueous electrolyte secondary batteries are being used in hybrid electric vehicles (HEVs), electric tools, and the like. , It is being studied to increase the capacity and output of non-aqueous electrolyte secondary batteries. Further, as the capacity and output of the non-aqueous electrolyte secondary battery are increased, it is also required to suppress the deterioration of the battery characteristics due to the expansion and contraction of the electrode due to repeated charging and discharging.

電極の作製は、通常、活物質、導電助剤、バインダー及び有機溶媒等を合せ、分散してスラリー化し、集電体上に塗布し、乾燥固化することにより行われる。バインダーとしては、通常、PVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)等の有機系フッ素化合物が使用される。また、特許文献1及び2には、フッ化ビニリデン系共重合体等の有機系フッ素化合物の使用について記載されている。しかし、これらのフッ素化合物は、自然環境下では分解性に劣り、環境負荷が大きい。このため、有機系フッ素化合物に代えて、環境負荷の小さいセルロース誘導体などの多糖類をバインダーとして用いることが検討されている。 The electrode is usually produced by combining an active material, a conductive auxiliary agent, a binder, an organic solvent, and the like, dispersing the electrode, forming a slurry, applying the mixture on a current collector, and drying and solidifying the electrode. As the binder, an organic fluorine compound such as PVDF (polyvinylidene fluoride) or PTFE (polytetrafluoroethylene) is usually used. Further, Patent Documents 1 and 2 describe the use of an organic fluorine compound such as a vinylidene fluoride-based copolymer. However, these fluorine compounds are inferior in decomposability in the natural environment and have a large environmental load. Therefore, it has been studied to use a polysaccharide such as a cellulose derivative having a small environmental load as a binder instead of the organic fluorine compound.

特許文献3には、「電流集電体と、前記電流集電体上に形成され、正極活物質、非イオン性セルロース系化合物を含む増粘剤、導電剤、およびバインダーを含む正極活物質組成物層と、を備えることを特徴とするリチウム二次電池用正極。」が記載されている。 Patent Document 3 describes "a current current collector and a positive electrode active material composition formed on the current current collector and containing a positive electrode active material, a thickener containing a nonionic cellulose-based compound, a conductive agent, and a binder. A positive electrode for a lithium secondary battery, characterized by comprising a physical layer. "

特許5797206号公報Japanese Patent No. 5979206 特許6095654号公報Japanese Patent No. 6095654 特開2004-349263号公報Japanese Unexamined Patent Publication No. 2004-349263

Journal of Polymer science, part A: Polymer Chemistry 2013, 51, 3590-3597Journal of Polymer science, part A: Polymer Chemistry 2013, 51, 3590-3597

非水電解質二次電池は、正極、負極、電解質、及びセパレータ等によって構成されるところ、従来のセルロース誘導体を含む電極は、耐電解質性が充分ではなく、電解質によって膨潤し、電池特性の低下につながった。 A non-aqueous electrolyte secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, a separator, and the like. However, the conventional electrode containing a cellulose derivative does not have sufficient electrolyte resistance and swells due to the electrolyte, resulting in deterioration of battery characteristics. connected.

本発明は、環境負荷が小さく、非水電解質二次電池の電極の作製に用いられる有機溶媒に対する溶解性に優れると共に、優れた耐電解質性を有する非水電解質二次電池正極用添加剤を提供することを目的とする。 The present invention provides an additive for a positive electrode of a non-aqueous electrolyte secondary battery, which has a small environmental load, is excellent in solubility in an organic solvent used for producing an electrode of a non-aqueous electrolyte secondary battery, and has excellent electrolyte resistance. The purpose is to do.

本発明の第一は、ジヒドロキシプロピルセルロースを含有し、前記ジヒドロキシプロピルセルロースのジヒドロキシプロピル置換度(DS)が0.1以上である、非水電解質二次電池正極用添加剤に関する。 The first aspect of the present invention relates to a non-aqueous electrolyte secondary battery positive electrode additive containing dihydroxypropyl cellulose and having a dihydroxypropyl substitution degree (DS) of 0.1 or more.

前記非水電解質二次電池正極用添加剤において、前記ジヒドロキシプロピルセルロースのグルコース単位あたりに結合したジヒドロキシプロピル基の平均数(MS)が、0.5以上10以下であってよい。 In the non-aqueous electrolyte secondary battery positive electrode additive, the average number (MS) of dihydroxypropyl groups bonded per glucose unit of the dihydroxypropyl cellulose may be 0.5 or more and 10 or less.

本発明の第二は、前記非水電解質二次電池正極用添加剤を含有する、非水電解質二次電池用正極に関する。 The second aspect of the present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery containing the additive for the positive electrode of the non-aqueous electrolyte secondary battery.

本発明の第三は、前記非水電解質二次電池正極用添加剤、正極活物質、導電助剤、及び有機溶媒を分散してスラリーを調製する工程と、前記スラリーを箔状の集電体上に塗布する工程とを有する、非水電解質二次電池用正極の製造方法に関する。 The third aspect of the present invention is a step of preparing a slurry by dispersing the additive for a positive electrode of a non-aqueous electrolyte secondary battery, a positive electrode active material, a conductive auxiliary agent, and an organic solvent, and a foil-shaped current collector of the slurry. The present invention relates to a method for manufacturing a positive electrode for a non-aqueous electrolyte secondary battery, which comprises a step of applying on the surface.

本発明によれば、環境負荷が小さく、非水電解質二次電池の電極の作製に用いられる有機溶媒に対する溶解性に優れると共に、優れた耐電解質性を有する非水電解質二次電池正極用添加剤を提供することができる。 According to the present invention, an additive for a positive electrode of a non-aqueous electrolyte secondary battery having a small environmental load, excellent solubility in an organic solvent used for producing an electrode of a non-aqueous electrolyte secondary battery, and excellent electrolyte resistance. Can be provided.

[非水電解質二次電池正極用添加剤]
本開示の非水電解質二次電池正極用添加剤は、ジヒドロキシプロピルセルロースを含有し、前記ジヒドロキシプロピルセルロースのジヒドロキシプロピル置換度(DS)が0.1以上である。
[Additive for positive electrode of non-aqueous electrolyte secondary battery]
The additive for the positive electrode of a non-aqueous electrolyte secondary battery of the present disclosure contains dihydroxypropyl cellulose, and the dihydroxypropyl substitution degree (DS) of the dihydroxypropyl cellulose is 0.1 or more.

本開示の非水電解質二次電池正極用添加剤は、環境負荷が小さく、非水電解質二次電池の電極の作製に用いられる有機溶媒に対する溶解性に優れると共に、優れた耐電解質性を有する。そのため、本開示の非水電解質二次電池正極用添加剤によれば、環境負荷が小さく、優れた耐電解質性を有する非水電解質二次電池用の正極を得ることができる。 The additive for the positive electrode of a non-aqueous electrolyte secondary battery of the present disclosure has a small environmental load, is excellent in solubility in an organic solvent used for producing an electrode of a non-aqueous electrolyte secondary battery, and has excellent electrolyte resistance. Therefore, according to the additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure, it is possible to obtain a positive electrode for the non-aqueous electrolyte secondary battery having a small environmental load and excellent electrolyte resistance.

非水電解質二次電池とは、水溶液以外の電解質を用いた二次電池の総称であり、水溶液以外の電解質としては、有機電解液、ポリマーゲル電解質、固体電解質、ポリマー電解質、及び溶融塩電解質等が挙げられる。また、非水電解質二次電池としては、リチウムイオン電池及びリチウムイオンキャパシタ等が挙げられる。 A non-aqueous electrolyte secondary battery is a general term for a secondary battery using an electrolyte other than an aqueous solution, and examples of the electrolyte other than the aqueous solution include an organic electrolyte, a polymer gel electrolyte, a solid electrolyte, a polymer electrolyte, and a molten salt electrolyte. Can be mentioned. Examples of the non-aqueous electrolyte secondary battery include a lithium ion battery and a lithium ion capacitor.

非水電解質二次電池は、少なくとも正極、負極、及び正極と負極との間に配置された電解質を備えることができる。 The non-aqueous electrolyte secondary battery can include at least a positive electrode, a negative electrode, and an electrolyte disposed between the positive electrode and the negative electrode.

非水電解質二次電池の電極(特に正極)の作製は、例えば、活物質、導電助剤、バインダー及び有機溶媒等を分散してスラリー化し、当該スラリーを集電体上に塗布し、乾燥固化して、塗膜を形成することにより行われるところ、当該有機溶媒として、例えば、N-メチル-2-ピロリドン(NMP)、トルエン、キシレン等の芳香族系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒;メチルエチルケトン、シクロヘキサノン等のケトン系溶媒;酢酸エステル等のエステル系溶媒;ヘキサン、シクロヘキサン等の炭化水素系溶媒等が知られている。また、これらの有機溶媒は、単独で用いてもよいし、2種以上を併用してもよい。 To prepare an electrode (particularly a positive electrode) for a non-aqueous electrolyte secondary battery, for example, an active material, a conductive auxiliary agent, a binder, an organic solvent, etc. are dispersed and made into a slurry, and the slurry is applied onto a current collector and dried and solidified. Then, when it is carried out by forming a coating film, as the organic solvent, for example, an aromatic solvent such as N-methyl-2-pyrrolidone (NMP), toluene or xylene; an amide such as dimethylformamide or dimethylacetamide. System solvents; Ketone solvents such as methyl ethyl ketone and cyclohexanone; Estel solvents such as acetates; Hydrocarbon solvents such as hexane and cyclohexane are known. Further, these organic solvents may be used alone or in combination of two or more.

ジヒドロキシプロピルセルロースは、セルロースの水酸基の水素がジヒドロキシプロピル基で置換されたものの他;セルロースの水酸基の水素を置換したジヒドロキシプロピル基の1又は2の水酸基の水素がさらにジヒドロキシプロピル基に置換されたもの、及びジヒドロキシプロピル基の1又は2の水酸基の水素を置換したジヒドロキシプロピル基にさらにジヒドロキシプロピル基が結合したもの等ジヒドロキシプロピル基が互いに多数結合したものも包含する。 In dihydroxypropyl cellulose, hydrogen in the hydroxyl group of cellulose is substituted with a dihydroxypropyl group; hydrogen in one or two hydroxyl groups of the dihydroxypropyl group in which hydrogen in the hydroxyl group of cellulose is substituted is further substituted with a dihydroxypropyl group. , And those in which a large number of dihydroxypropyl groups are bonded to each other, such as those in which a dihydroxypropyl group is further bonded to a dihydroxypropyl group in which hydrogen of one or two hydroxyl groups of the dihydroxypropyl group is substituted, are also included.

ジヒドロキシプロピルセルロースのジヒドロキシプロピル置換度(DS)は0.1以上であるところ、0.2以上2.0以下が好ましく、0.3以上1.0以下がより好ましい。ジヒドロキシプロピル置換度(DS)が上記範囲であることにより、本開示の非水電解質二次電池正極用添加剤は、非水電解質二次電池の電極の作製に用いられる有機溶媒、特にN-メチル-2-ピロリドン(NMP)に対する溶解性に優れる。また、非水電解質二次電池に用いられ得る電解質、特に、エチレンカーボネート、及びプロピレンカーボネートに対する耐膨潤性、及び耐溶解性に優れる。 The dihydroxypropyl substitution degree (DS) of the dihydroxypropyl cellulose is 0.1 or more, preferably 0.2 or more and 2.0 or less, and more preferably 0.3 or more and 1.0 or less. When the dihydroxypropyl substitution degree (DS) is in the above range, the additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure is an organic solvent used for producing the electrode of the non-aqueous electrolyte secondary battery, particularly N-methyl. -Excellent solubility in 2-pyrrolidone (NMP). In addition, it is excellent in swelling resistance and solubility resistance to electrolytes that can be used in non-aqueous electrolyte secondary batteries, particularly ethylene carbonate and propylene carbonate.

ここで、ジヒドロキシプロピル置換度(DS)とは、セルロースの繰り返し単位(グルコピラノース単位)あたりの水酸基(2位、3位、及び6位の水酸基)のうち、水素が置換されている水酸基の数(平均値)を示す。 Here, the degree of substitution (DS) is the number of hydroxyl groups (2-position, 3-position, and 6-position hydroxyl groups) per repeating unit (glucopyranose unit) of cellulose in which hydrogen is substituted. (Average value) is shown.

ジヒドロキシプロピル置換度(DS)は、以下の方法により測定することができる。ASTM:D-817-91に準ずる方法や、13C-NMR、H-NMRにより測定できる。具体的には、非特許文献1に開示されている方法を用いることができる。すなわち、置換度(DS)は、DMSO中で13C-NMRを測定することにより定量可能である。グルコースのC2,C3,C4に結合する酸素原子が置換されていない(C-OH)あるいは、炭素原子で置換されているかによって、グルコースの炭素原子のピークが異なる化学シフトに検出されることに基づいている。 The degree of dihydroxypropyl substitution (DS) can be measured by the following method. ASTM: Measurement can be performed by a method according to D-817-91, 13 C-NMR, and 1 H-NMR. Specifically, the method disclosed in Non-Patent Document 1 can be used. That is, the degree of substitution (DS) can be quantified by measuring 13 C-NMR in DMSO. Based on the fact that the peak of the carbon atom of glucose is detected in different chemical shifts depending on whether the oxygen atom bonded to C2, C3, C4 of glucose is not substituted (C-OH) or is substituted with a carbon atom. ing.

ジヒドロキシプロピルセルロースは、グルコース単位あたりに結合したジヒドロキシプロピル基の平均数(MS)が、0.5以上10以下が好ましく、0.7以上5.0以下がより好ましく、0.9以上2.5以下がさらに好ましい。MSが上記範囲であることにより、本開示の非水電解質二次電池正極用添加剤は、非水電解質二次電池の電極の作製に用いられる有機溶媒、特にN-メチル-2-ピロリドン(NMP)に対する溶解性に優れる。 In dihydroxypropyl cellulose, the average number (MS) of dihydroxypropyl groups bonded per glucose unit is preferably 0.5 or more and 10 or less, more preferably 0.7 or more and 5.0 or less, and 0.9 or more and 2.5. The following is more preferable. Due to the above range of MS, the additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure is an organic solvent used for producing the electrode of the non-aqueous electrolyte secondary battery, particularly N-methyl-2-pyrrolidone (NMP). ) Has excellent solubility.

グルコース単位あたりに結合したジヒドロキシプロピル基の平均数(MS)は、以下の方法により測定することができる。非特許文献1に記載される手順のように、ジヒドロキシプロピルセルロースを完全プロピオニルエステル化したのち、H-NMRを測定することで、定量可能である。なお、ジヒドロキシプロピルセルロースには、セルロース骨格に直接結合するOH基と、ジヒドロキシプロピル基に結合するOH基の二種類のOH基が存在し、1個のグルコース環あたりの、これら二種類のOH基の数は、3+(MS)である。 The average number of dihydroxypropyl groups bound per glucose unit (MS) can be measured by the following method. It can be quantified by measuring 1 H-NMR after completely propionyl esterifying dihydroxypropyl cellulose as in the procedure described in Non-Patent Document 1. Dihydroxypropyl cellulose has two types of OH groups, an OH group directly bonded to the cellulose skeleton and an OH group bonded to the dihydroxypropyl group, and these two types of OH groups per glucose ring. The number of is 3+ (MS).

ジヒドロキシプロピルセルロースは、セルロースに、塩基触媒下、グリシドールまたはエピクロロヒドリンと反応させることにより調製できる。 Dihydroxypropyl cellulose can be prepared by reacting cellulose with glycidol or epichlorohydrin under a base catalyst.

また、本開示の非水電解質二次電池正極用添加剤を電極に添加することにより、柔軟性が高く、電極塗膜と集電体との密着性に優れた電極を得ることができる。 Further, by adding the additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure to the electrode, it is possible to obtain an electrode having high flexibility and excellent adhesion between the electrode coating film and the current collector.

本開示の非水電解質二次電池正極用添加剤は、活物質同士の結着性、及び塗膜と集電体との密着性を向上できるため、電極を構成するバインダーとして添加することも好ましい。バインダーとは、活物質同士の結着、または塗膜と集電体とを結着させ、導電ネットワーク構造を保つものである。 Since the additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure can improve the bondability between active materials and the adhesion between the coating film and the current collector, it is also preferable to add it as a binder constituting the electrode. .. The binder is a binder that binds active materials to each other or a coating film to a current collector to maintain a conductive network structure.

本開示の非水電解質二次電池正極用添加剤は、バインダーとして従来公知のPVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)等の有機系フッ素化合物と併用してもよい。 The additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure may be used in combination with a conventionally known organic fluorine compound such as PVDF (polyvinylidene fluoride) or PTFE (polytetrafluoroethylene) as a binder.

本開示の非水電解質二次電池正極用添加剤は、非水電解質二次電池の電極の作製に用いられる有機溶媒に対する溶解性に優れることから、添加により電極の作製を容易とする。 Since the additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure has excellent solubility in the organic solvent used for producing the electrode of the non-aqueous electrolyte secondary battery, the addition facilitates the production of the electrode.

[非水電解質二次電池用正極]
本開示の非水電解質二次電池用正極は、前記非水電解質二次電池正極用添加剤を含有するものである。本開示の非水電解質二次電池用正極は、環境負荷が小さく、優れた耐電解質性を有する。また、柔軟性が高く、電極塗膜と集電体との密着性にも優れる。
[Positive electrode for non-aqueous electrolyte secondary battery]
The positive electrode for a non-aqueous electrolyte secondary battery of the present disclosure contains the additive for the positive electrode of the non-aqueous electrolyte secondary battery. The positive electrode for a non-aqueous electrolyte secondary battery of the present disclosure has a small environmental load and has excellent electrolyte resistance. In addition, it has high flexibility and excellent adhesion between the electrode coating film and the current collector.

[非水電解質二次電池用正極の製造方法]
本開示の非水電解質二次電池用正極の製造方法は、前記非水電解質二次電池正極用添加剤、正極活物質、導電助剤、及び有機溶媒を分散してスラリーを調製する工程と、前記スラリーを箔状の集電体上に塗布する工程とを有する。
[Manufacturing method of positive electrode for non-aqueous electrolyte secondary battery]
The method for producing a positive electrode for a non-aqueous electrolyte secondary battery according to the present disclosure includes a step of dispersing the additive for the positive electrode of the non-aqueous electrolyte secondary battery, a positive electrode active material, a conductive auxiliary agent, and an organic solvent to prepare a slurry. It has a step of applying the slurry onto a foil-shaped current collector.

(スラリーを調製する工程)
スラリーを調製する工程は、前記非水電解質二次電池正極用添加剤、正極活物質、導電助剤、及び有機溶媒を分散する。
(Step to prepare slurry)
In the step of preparing the slurry, the additive for the positive electrode of the non-aqueous electrolyte secondary battery, the positive electrode active material, the conductive auxiliary agent, and the organic solvent are dispersed.

前記非水電解質二次電池正極用添加剤、正極活物質、導電助剤、及び有機溶媒を分散する方法は特に限定されるものではなく、公知の方法を採用できる。前記非水電解質二次電池正極用添加剤、正極活物質、導電助剤、及び有機溶媒の添加順序も特に限定されるものではない。例えば、有機溶媒に対し、前記非水電解質二次電池正極用添加剤(例えば、前記ジヒドロキシプロピルセルロース)、正極活物質、及び導電助剤を添加し、分散してスラリーを調製する方法;並びに、有機溶媒に対し、正極活物質を添加して分散し、導電助剤を添加して分散し、さらに、前記非水電解質二次電池正極用添加剤(例えば、前記ジヒドロキシプロピルセルロース)を添加して分散することによりスラリーを調製する方法等が挙げられる。 The method for dispersing the additive for the positive electrode of the non-aqueous electrolyte secondary battery, the positive electrode active material, the conductive auxiliary agent, and the organic solvent is not particularly limited, and a known method can be adopted. The order of addition of the additive for the positive electrode of the non-aqueous electrolyte secondary battery, the positive electrode active material, the conductive auxiliary agent, and the organic solvent is not particularly limited. For example, a method of adding an additive for a positive electrode of a non-aqueous electrolyte secondary battery (for example, the dihydroxypropyl cellulose), a positive electrode active material, and a conductive auxiliary agent to an organic solvent and dispersing them to prepare a slurry; A positive electrode active material is added and dispersed, a conductive auxiliary agent is added and dispersed, and an additive for the positive electrode of the non-aqueous electrolyte secondary battery (for example, the dihydroxypropyl cellulose) is further added to the organic solvent. Examples thereof include a method of preparing a slurry by dispersing.

分散は、粉砕機や分級機を用いて行ってもよい。例えば、乳鉢、ボールミル、ビーズミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミル及び篩等が挙げられる。 Dispersion may be performed using a crusher or a classifier. For example, a mortar, a ball mill, a bead mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling airflow type jet mill, a sieve and the like can be mentioned.

ここで、スラリーとは、前記非水電解質二次電池正極用添加剤、正極活物質、及び導電助剤を有機溶媒に懸濁させた懸濁液をいい、当該スラリーには、前記非水電解質二次電池正極用添加剤、正極活物質及び導電助剤の他、任意成分が含まれていてもよい。 Here, the slurry means a suspension in which the additive for the positive electrode of the non-aqueous electrolyte secondary battery, the positive electrode active material, and the conductive auxiliary agent are suspended in an organic solvent, and the slurry includes the non-aqueous electrolyte. In addition to the additive for the positive electrode of the secondary battery, the positive electrode active material and the conductive auxiliary agent, any component may be contained.

(非水電解質二次電池正極用添加剤)
非水電解質二次電池正極用添加剤は、上記のとおり、ジヒドロキシプロピルセルロースを含有するものである。
(Additive for positive electrode of non-aqueous electrolyte secondary battery)
As described above, the additive for the positive electrode of the non-aqueous electrolyte secondary battery contains dihydroxypropyl cellulose.

前記スラリーにおける非水電解質二次電池正極用添加剤の含有量は、有機溶媒を除く、スラリーの固形分全体に対して、0.1質量%以上10質量%以下が好ましく、0.1質量%以上8質量%以下がより好ましく、0.1質量%以上5質量%以下がさらに好ましい。 The content of the additive for the positive electrode of the non-aqueous electrolyte secondary battery in the slurry is preferably 0.1% by mass or more and 10% by mass or less, preferably 0.1% by mass, based on the total solid content of the slurry excluding the organic solvent. 8% by mass or more is more preferable, and 0.1% by mass or more and 5% by mass or less is further preferable.

非水電解質二次電池正極用添加剤は、活物質同士の結着性、及び塗膜と集電体との密着性を向上できるため、非水電解質二次電池用正極のバインダーとして好適である。このとき、バインダーとして従来公知のPVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)等の有機系フッ素化合物と、本開示の非水電解質二次電池正極用添加剤とを併用してもよい。 The additive for the positive electrode of a non-aqueous electrolyte secondary battery is suitable as a binder for the positive electrode of a non-aqueous electrolyte secondary battery because it can improve the bondability between active materials and the adhesion between the coating film and the current collector. .. At this time, an organic fluorine compound such as PVDF (polyvinylidene fluoride) or PTFE (polytetrafluoroethylene) conventionally known as a binder may be used in combination with the additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure. ..

また、本開示の非水電解質二次電池正極用添加剤は、電極を構成する材料の分散性を高めることもできるため、非水電解質二次電池用正極の分散剤としても好適である。 Further, the additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure can also enhance the dispersibility of the material constituting the electrode, and is therefore suitable as a dispersant for the positive electrode of the non-aqueous electrolyte secondary battery.

例えば、上記スラリーを調製する工程において、有機溶媒に対し、正極活物質を添加して分散し、導電助剤を添加して分散し、さらに、前記非水電解質二次電池正極用添加剤(例えば、前記ジヒドロキシプロピルセルロース)を添加して分散することによりスラリーを調製する方法を用いる場合に、導電助剤に代えて、導電助剤、前記非水電解質二次電池正極用添加剤(例えば、前記ジヒドロキシプロピルセルロース)及び少量の有機溶媒を分散したものを用いることができる。導電助剤は、活物質に比べて粒子径が小さく、分散性に乏しいため、予め前記非水電解質二次電池正極用添加剤(例えば、前記ジヒドロキシプロピルセルロース)及び少量の有機溶媒と分散しておくことにより、得られるスラリー全体をより均一に分散できる。 For example, in the step of preparing the slurry, the positive electrode active material is added and dispersed with respect to the organic solvent, the conductive auxiliary agent is added and dispersed, and further, the additive for the positive electrode of the non-aqueous electrolyte secondary battery (for example). , The dihydroxypropyl cellulose) is added and dispersed to prepare a slurry, and instead of the conductive auxiliary agent, a conductive auxiliary agent and the additive for the positive electrode of the non-aqueous electrolyte secondary battery (for example, the above-mentioned Dihydroxypropyl cellulose) and a small amount of organic solvent dispersed therein can be used. Since the conductive auxiliary agent has a smaller particle size and poor dispersibility than the active material, it is previously dispersed with the non-aqueous electrolyte secondary battery positive electrode additive (for example, the dihydroxypropyl cellulose) and a small amount of organic solvent. By setting, the entire obtained slurry can be dispersed more uniformly.

(正極活物質)
正極活物質とは、二次電池において、充放電に直接関与する物質であって、正極に用いられるものをいう。
(Positive electrode active material)
The positive electrode active material is a substance that is directly involved in charging / discharging in a secondary battery and is used for the positive electrode.

正極活物質としては、例えば、リチウムイオン二次電池に使用されている従来公知のもの、例えば、リチウムイオンを吸蔵放出可能とする、リチウム-遷移金属複合酸化物及びリチウム-遷移金属リン酸化合物等が挙げられる。リチウム-遷移金属複合酸化物としては、例えば、LiMnO、LiCoO、及びLiNiO等が、リチウム-遷移金属リン酸化合物としては、例えば、LiFePO等が挙げられる。 Examples of the positive electrode active material include conventionally known materials used in lithium ion secondary batteries, such as a lithium-transition metal composite oxide and a lithium-transition metal phosphoric acid compound capable of storing and releasing lithium ions. Can be mentioned. Examples of the lithium-transition metal composite oxide include LiMnO 2 , LiCoO 2 , and LiNiO 2 , and examples of the lithium-transition metal phosphoric acid compound include LiFePO 4 .

前記スラリーにおける正極活物質の含有量は、有機溶媒を除くスラリーの固形分全体に対して、70質量%以上99質量%以下が好ましく、80質量%以上99質量%以下がより好ましい。 The content of the positive electrode active material in the slurry is preferably 70% by mass or more and 99% by mass or less, more preferably 80% by mass or more and 99% by mass or less, based on the total solid content of the slurry excluding the organic solvent.

(導電助剤)
導電助剤とは、活物質間の導電を補助する物質をいう。
(Conductive aid)
The conductive auxiliary agent is a substance that assists the conduction between active materials.

導電助剤としては、カーボンブラック、カーボンナノチューブ、アセチレンブラック、ケッチェンブラック、グラファイト、及び気相成長カーボン繊維等の導電性カーボンが挙げられる。これらの導電助剤は、単独で用いてもよいし、2種以上を併用してもよい。 Examples of the conductive auxiliary agent include conductive carbons such as carbon black, carbon nanotubes, acetylene black, ketjen black, graphite, and vapor-grown carbon fibers. These conductive aids may be used alone or in combination of two or more.

前記スラリーにおける導電助剤の含有量は、有機溶媒を除く、スラリーの固形分全体に対して、1質量%以上25質量%以下が好ましく、1質量%以上20質量%以下がより好ましい。 The content of the conductive auxiliary agent in the slurry is preferably 1% by mass or more and 25% by mass or less, and more preferably 1% by mass or more and 20% by mass or less, based on the total solid content of the slurry excluding the organic solvent.

(有機溶媒)
有機溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)、トルエン、及びキシレン等の芳香族系溶媒;ジメチルホルムアミド、及びジメチルアセトアミド等のアミド系溶媒;メチルエチルケトン、及びシクロヘキサノン等のケトン系溶媒;酢酸エステル等のエステル系溶媒;並びに、ヘキサン、及びシクロヘキサン等の炭化水素系溶媒等が挙げられる。これらの溶媒は、単独で用いてもよいし、2種以上を併用してもよい。
(Organic solvent)
Examples of the organic solvent include aromatic solvents such as N-methyl-2-pyrrolidone (NMP), toluene, and xylene; amide solvents such as dimethylformamide and dimethylacetamide; and ketone solvents such as methylethylketone and cyclohexanone. Examples thereof include ester solvents such as acetic acid esters; and hydrocarbon solvents such as hexane and cyclohexane. These solvents may be used alone or in combination of two or more.

また、本開示の非水電解質二次電池正極用添加剤は、上記のとおり、特に、N-メチル-2-ピロリドン(NMP)に対する溶解性に優れる。したがって、スラリーの調製に用いられる有機溶媒としては、N-メチル-2-ピロリドン(NMP)が好適である。 Further, as described above, the additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure is particularly excellent in solubility in N-methyl-2-pyrrolidone (NMP). Therefore, N-methyl-2-pyrrolidone (NMP) is suitable as the organic solvent used for preparing the slurry.

前記スラリーにおける有機溶媒の含有量は、有機溶媒を除く、スラリーの固形分を100質量部として、50質量部以上300質量部以下が好ましく、75質量部以上150質量部以下がより好ましい。 The content of the organic solvent in the slurry is preferably 50 parts by mass or more and 300 parts by mass or less, and more preferably 75 parts by mass or more and 150 parts by mass or less, with the solid content of the slurry being 100 parts by mass excluding the organic solvent.

(任意成分)
スラリーには、本開示の非水電解質二次電池正極用添加剤、正極活物質、導電助剤及び有機溶媒の他、必要に応じて、分散剤、レベリング剤、酸化防止剤、及び増粘剤等の従来公知の任意成分が含まれていてもよい。
(Optional ingredient)
In addition to the additives for the positive electrode of the non-aqueous electrolyte secondary battery, the positive electrode active material, the conductive auxiliary agent and the organic solvent of the present disclosure, the slurry includes a dispersant, a leveling agent, an antioxidant, and a thickener, if necessary. It may contain a conventionally known arbitrary component such as.

分散剤としては、疎水性鎖と親水性基をもつ高分子化合物;硫酸塩、スルホン酸塩、リン酸塩等を有するアニオン性化合物;及びアミン等のカチオン性化合物等を用いることができる。具体的には、例えば、セルロース、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ブチラール、ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレンオキシド、及びポリビニルピロリドン等を用いることができる。また、本開示の非水電解質二次電池正極用添加剤が含有するジヒドロキシプロピルセルロースは、電極を構成する材料の分散性を高めることもできるため、非水電解質二次電池用正極の分散剤としても好適である。 As the dispersant, a polymer compound having a hydrophobic chain and a hydrophilic group; an anionic compound having a sulfate, a sulfonate, a phosphate or the like; and a cationic compound such as an amine can be used. Specifically, for example, cellulose, carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, butyral, polyvinyl alcohol, modified polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone and the like can be used. Further, the dihydroxypropyl cellulose contained in the additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure can enhance the dispersibility of the material constituting the electrode, and thus can be used as a dispersant for the positive electrode of the non-aqueous electrolyte secondary battery. Is also suitable.

(前記スラリーを箔状の集電体上に塗布する工程)
前記スラリーを箔状の集電体上に塗布する工程において、スラリーを箔状の集電体に塗布する方法としては、従来公知のものを採用できる。スラリーを集電体に塗布する方法としては、バーコート法、スプレーコート法、ロールコート法、ドクターブレード法、フローコート法、ディップコート法、スクリーン印刷法、及びインクジェット法等があげられる。
(Step of applying the slurry onto a foil-shaped current collector)
In the step of applying the slurry to the foil-shaped current collector, a conventionally known method can be adopted as a method of applying the slurry to the foil-shaped current collector. Examples of the method of applying the slurry to the current collector include a bar coating method, a spray coating method, a roll coating method, a doctor blade method, a flow coating method, a dip coating method, a screen printing method, and an inkjet method.

スラリーの塗布により形成される塗膜の厚み及び面積は特に限定されず、用途に応じて塗布量、塗布面積等を適宜調整して塗布すればよい。また、箔状の集電体の一方の面に塗布してよく、両面に塗布してもよい。塗布量としては、例えば、片面目付け量が100g/m以上500g/m以下であってよい。 The thickness and area of the coating film formed by coating the slurry are not particularly limited, and the coating amount, coating area, and the like may be appropriately adjusted and coated according to the intended use. Further, it may be applied to one surface of the foil-shaped current collector, or may be applied to both sides. As the coating amount, for example, the one-sided basis weight may be 100 g / m 2 or more and 500 g / m 2 or less.

集電体を形成する材料としては、従来公知の材料を用いることができる。例えば、リチウムイオン二次電池の正極集電体として知られるアルミニウムを用いることが好ましい。なお、正極集電体として知られるアルミニウムを用いる場合、負極集電体としては、銅を用いることができる。また、正極集電体の厚みは、1μm以上100μm以下であってよい。 As the material for forming the current collector, a conventionally known material can be used. For example, it is preferable to use aluminum known as a positive electrode current collector for a lithium ion secondary battery. When aluminum known as a positive electrode current collector is used, copper can be used as the negative electrode current collector. Further, the thickness of the positive electrode current collector may be 1 μm or more and 100 μm or less.

(任意工程)
前記スラリーを箔状の集電体上に塗布する工程の後、塗布したスラリーを乾燥してもよい。スラリーの乾燥により、主に有機溶媒等を除去して、箔状の集電体上に塗膜を定着させる。
(Arbitrary process)
After the step of applying the slurry on the foil-shaped current collector, the applied slurry may be dried. By drying the slurry, mainly organic solvents and the like are removed, and the coating film is fixed on the foil-shaped current collector.

乾燥の条件(例えば、乾燥温度や所要時間)は、スラリーの固形分率、スラリーに含まれる材料、目的とする塗膜の厚み等に応じて適宜決定すればよい。スラリーに含まれる有機溶媒の引火温度を下回り、かつ集電体の酸化や変色が生じる温度を下回る温度が好ましい。例えば、有機溶媒として、N-メチル-2-ピロリドンを用い、集電体として、アルミニウムを用いる場合、乾燥温度は60℃以上130℃以下が好ましく、70℃以上110℃以下がより好ましい。 The drying conditions (for example, the drying temperature and the required time) may be appropriately determined according to the solid content of the slurry, the material contained in the slurry, the thickness of the target coating film, and the like. It is preferable that the temperature is lower than the ignition temperature of the organic solvent contained in the slurry and lower than the temperature at which the current collector is oxidized or discolored. For example, when N-methyl-2-pyrrolidone is used as the organic solvent and aluminum is used as the current collector, the drying temperature is preferably 60 ° C. or higher and 130 ° C. or lower, and more preferably 70 ° C. or higher and 110 ° C. or lower.

乾燥方法としては、例えば熱風装置、低湿風装置、真空装置、各種赤外線装置、電磁誘導装置、マイクロ波装置等の適当な乾燥装置や、送風機等の乾燥促進手段を単独または組み合わせて用いることができる。 As the drying method, for example, an appropriate drying device such as a hot air device, a low humidity air device, a vacuum device, various infrared devices, an electromagnetic induction device, a microwave device, or a drying promoting means such as a blower can be used alone or in combination. ..

また乾燥は複数回に分けて実施してもよく、例えば、集電体の一方の面に配置した場合は1回、両面に配置した場合は2回実施することが出来る。 Further, the drying may be carried out in a plurality of times, for example, once when it is arranged on one surface of the current collector, and twice when it is arranged on both sides.

集電体上に形成される乾燥後の塗膜の厚みとしては、従来公知の厚みを採用できる。例えば、10μm以上80μmであってよい。 As the thickness of the coating film after drying formed on the current collector, a conventionally known thickness can be adopted. For example, it may be 10 μm or more and 80 μm.

[非水電解質二次電池]
上記の非水電解質二次電池正極の製造方法により製造した非水電解質二次電池用正極を用いて、非水電解質二次電池を製造する場合、従来公知の方法により製造すればよい。
[Non-water electrolyte secondary battery]
When a non-aqueous electrolyte secondary battery is manufactured by using the positive electrode for a non-aqueous electrolyte secondary battery manufactured by the above-mentioned method for manufacturing a non-aqueous electrolyte secondary battery positive electrode, it may be manufactured by a conventionally known method.

少なくとも、非水電解質二次電池は、正極、負極、及び正極と負極との間に配置された電解質を備えることができる。非水電解質二次電池として、リチウムイオン二次電池を製造する場合、電解質(特に電解液)としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、及びエチルメチルカーボネート等のカーボネート類の有機溶媒を用いることができる。 At the very least, the non-aqueous electrolyte secondary battery can include a positive electrode, a negative electrode, and an electrolyte disposed between the positive electrode and the negative electrode. When a lithium ion secondary battery is manufactured as a non-aqueous electrolyte secondary battery, the electrolyte (particularly the electrolytic solution) may be, for example, ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate or the like. Organic solvents such as carbonates can be used.

本開示の非水電解質二次電池正極用添加剤は、これらのカーボネート類の有機溶媒、特に、エチレンカーボネート、及びプロピレンカーボネートにより膨潤しにくい。そのため、本開示の非水電解質二次電池正極用添加剤を含有する電極は、これらのカーボネート類の有機溶媒を電解質としても、耐電解質性、特に、耐膨潤性、及び耐溶解性に優れる。したがって、本開示の非水電解質二次電池正極用添加剤を含有する電極により構成される非水電解質二次電池は、充放電の繰り返しにより、電極の膨張及び収縮が繰り返されても、電池特性の低下を抑制することが期待される。 The additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure is less likely to swell due to the organic solvents of these carbonates, particularly ethylene carbonate and propylene carbonate. Therefore, the electrode containing the additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure is excellent in electrolyte resistance, particularly swelling resistance and solubility resistance, even if the organic solvent of these carbonates is used as an electrolyte. Therefore, the non-aqueous electrolyte secondary battery composed of the electrode containing the additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure has battery characteristics even if the electrode is repeatedly expanded and contracted due to repeated charging and discharging. It is expected to suppress the decrease in the battery.

以下、実施例により本発明を具体的に説明するが、本発明は、これらの実施例によりその技術的範囲が限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the technical scope of the present invention is not limited by these Examples.

(実施例A-1)
攪拌機、冷却管を備えた丸底フラスコに、水800g、NaOH60g、及び尿素40gからなる混合液を入れ、当該混合液にセルロース(「微結晶セルロース」)20gを加え、-20℃で、12時間攪拌した。続いて、グリシドール140gを混合液に滴下し、室温で24時間攪拌を継続した。さらに、酢酸93gを加えて、NaOHを中和した後、メタノール1600gを加えて、生成しているジヒドロキシプロピルセルロースを沈殿させた。得られた沈殿物をろ過にて回収し、メタノール1000mLで繰り返し洗浄することで、ジヒドロキシプロピルセルロースを30.1g得た。
(Example A-1)
A mixture of 800 g of water, 60 g of NaOH, and 40 g of urea is placed in a round bottom flask equipped with a stirrer and a cooling tube, 20 g of cellulose (“microcrystalline cellulose”) is added to the mixture, and the mixture is -20 ° C. for 12 hours. Stirred. Subsequently, 140 g of glycidol was added dropwise to the mixed solution, and stirring was continued at room temperature for 24 hours. Further, 93 g of acetic acid was added to neutralize NaOH, and then 1600 g of methanol was added to precipitate the produced dihydroxypropyl cellulose. The obtained precipitate was collected by filtration and washed repeatedly with 1000 mL of methanol to obtain 30.1 g of dihydroxypropyl cellulose.

得られたジヒドロキシプロピルセルロースについて、以下の方法で、ジヒドロキシプロピルセルロース置換度(DS)、グルコース単位あたりに結合したジヒドロキシプロピル基の平均数(MS)を測定し、また、耐電解質性、及び電極の作製に用いる有機溶媒への溶解性をそれぞれ評価した。結果は表1に示す。 For the obtained dihydroxypropyl cellulose, the dihydroxypropyl cellulose substitution degree (DS), the average number of dihydroxypropyl groups bonded per glucose unit (MS) were measured by the following methods, and the electrolyte resistance and the electrode were measured. The solubility in the organic solvent used for the production was evaluated. The results are shown in Table 1.

(実施例A-2)
グリシドールの仕込み量を90gに変更した以外は、実施例A-1と同様にして、ジヒドロキシプロピルセルロースを24.8g得た。
(Example A-2)
24.8 g of dihydroxypropyl cellulose was obtained in the same manner as in Example A-1 except that the amount of glycidol charged was changed to 90 g.

得られたジヒドロキシプロピルセルロースについて、以下の方法で、ジヒドロキシプロピルセルロース置換度(DS)、グルコース単位あたりに結合したジヒドロキシプロピル基の平均数(MS)を測定し、また、耐電解質性、及び電極の作製に用いる有機溶媒への溶解性をそれぞれ評価した。結果は表1に示す。 For the obtained dihydroxypropyl cellulose, the dihydroxypropyl cellulose substitution degree (DS), the average number of dihydroxypropyl groups bonded per glucose unit (MS) were measured by the following methods, and the electrolyte resistance and the electrode were measured. The solubility in the organic solvent used for the production was evaluated. The results are shown in Table 1.

(ジヒドロキシプロピルセルロース置換度(DS))
DMSO中で13C-NMRを測定することにより定量した。
(Degree of Substitution of Dihydroxypropyl Cellulose (DS))
Quantified by measuring 13 C-NMR in DMSO.

(グルコース単位あたりに結合したジヒドロキシプロピル基の平均数(MS))
ジヒドロキシプロピルセルロースを完全プロピオニルエステル化したのち、H-NMRを測定することにより定量した。
(Average number of dihydroxypropyl groups bound per glucose unit (MS))
After complete propionyl esterification of dihydroxypropyl cellulose, it was quantified by measuring 1 H-NMR.

(耐電解質性)
サンプル濃度が約5質量%となるよう、容量9mlのサンプル管に、サンプルを約0.1g入れ、続いて、電解質として有機溶媒を約2g入れた。45℃で一晩攪拌し、サンプル管内の様子を目視で観察した。有機溶媒としてエチレンカーボネートを用いた場合、及び有機溶媒としてプロピレンカーボネートを用いた場合、それぞれについて耐電解質性の評価を行った。
(Electrolyte resistance)
About 0.1 g of the sample was placed in a sample tube having a capacity of 9 ml so that the sample concentration was about 5% by mass, and then about 2 g of an organic solvent as an electrolyte was placed. The mixture was stirred overnight at 45 ° C., and the inside of the sample tube was visually observed. Electrolyte resistance was evaluated when ethylene carbonate was used as the organic solvent and when propylene carbonate was used as the organic solvent.

耐電解質性を以下の基準により評価した。
A:サンプルは、有機溶媒に溶解しない、膨潤も起こらず、粉状のままである。
B:サンプルは、有機溶媒に溶解しないが、膨潤がおきており、粉状は残っていない。
C:サンプルは、有機溶媒にほぼ溶解している。膨潤部分も無く、多少にごりがあるか、もしくは透明の溶液となっている。
Electrolyte resistance was evaluated according to the following criteria.
A: The sample does not dissolve in organic solvents, does not swell, and remains powdery.
B: The sample does not dissolve in the organic solvent, but it is swollen and no powder remains.
C: The sample is almost dissolved in an organic solvent. There is no swelling part, and it is a slightly turbid or transparent solution.

(有機溶媒への溶解性)
サンプル濃度が約5質量%となるよう、容量9mlのサンプル管に、サンプルを約0.1g入れ、続いて、N-メチル-2-ピロリドン(NMP)を約2g入れた。45℃で一晩攪拌し、サンプル管内の様子を目視で観察した。
(Solubility in organic solvent)
About 0.1 g of the sample was placed in a sample tube having a capacity of 9 ml so that the sample concentration was about 5% by mass, followed by about 2 g of N-methyl-2-pyrrolidone (NMP). The mixture was stirred overnight at 45 ° C., and the inside of the sample tube was visually observed.

有機溶媒への溶解性を以下の基準により評価した。
A:サンプルは、有機溶媒に溶解しない、膨潤も起こらず、粉状のままである。
B:サンプルは、有機溶媒に溶解しないが、膨潤がおきており、粉状は残っていない。
C:サンプルは、有機溶媒にほぼ溶解している。膨潤部分も無く、多少にごりがあるか、もしくは透明の溶液となっている。
Solubility in organic solvents was evaluated according to the following criteria.
A: The sample does not dissolve in organic solvents, does not swell, and remains powdery.
B: The sample does not dissolve in the organic solvent, but it is swollen and no powder remains.
C: The sample is almost dissolved in an organic solvent. There is no swelling part, and it is a slightly turbid or transparent solution.

(比較例A-1)
セルローストリアセテート(アセチル置換度:2.9、LT-35:(株)ダイセル製)について、上記の方法で耐電解質性、及び電極の作製に用いる有機溶媒への溶解性を評価した。結果は表1に示す。
(Comparative Example A-1)
Cellulose triacetate (acetyl substitution degree: 2.9, LT-35: manufactured by Daicel Co., Ltd.) was evaluated for electrolyte resistance and solubility in an organic solvent used for producing an electrode by the above method. The results are shown in Table 1.

(比較例A-2)
セルロースジアセテート(アセチル置換度:2.4、L-30:(株)ダイセル製)について、上記の方法で耐電解質性、及び電極の作製に用いる有機溶媒への溶解性を評価した。結果は表1に示す。
(Comparative Example A-2)
Cellulose diacetate (acetyl substitution degree: 2.4, L-30: manufactured by Daicel Co., Ltd.) was evaluated for electrolyte resistance and solubility in an organic solvent used for producing an electrode by the above method. The results are shown in Table 1.

(比較例A-3)
メチルセルロース(メチル置換度:1.8、和光純薬(株)製)について、上記の方法で耐電解質性、及び電極の作製に用いる有機溶媒への溶解性を評価した。結果は表1に示す。
(Comparative Example A-3)
Methyl cellulose (methyl substitution degree: 1.8, manufactured by Wako Pure Chemical Industries, Ltd.) was evaluated for electrolyte resistance and solubility in an organic solvent used for producing an electrode by the above method. The results are shown in Table 1.

(比較例A-4)
PVDF(ポリフッ化ビニリデン:KYNAR(登録商標)HSV900)について、上記の方法で耐電解質性、及び電極の作製に用いる有機溶媒への溶解性を評価した。結果は表1に示す。
(Comparative Example A-4)
PVDF (polyvinylidene fluoride: KYNAR® HSV900) was evaluated for electrolyte resistance and solubility in an organic solvent used for producing an electrode by the above method. The results are shown in Table 1.

(比較例A-5)
PVDF(ポリフッ化ビニリデン:KYNAR(登録商標)HSV1800)について、上記の方法で耐電解質性、及び電極の作製に用いる有機溶媒への溶解性を評価した。結果は表1に示す。
(Comparative Example A-5)
PVDF (polyvinylidene fluoride: KYNAR® HSV1800) was evaluated for electrolyte resistance and solubility in an organic solvent used for producing an electrode by the above method. The results are shown in Table 1.

Figure 0007064399000001
Figure 0007064399000001

表1に示すように、本開示の非水電解質二次電池正極用添加剤は、非水電解質二次電池の電極の作製に用いられる有機溶媒に対する優れた溶解性を有すると共に、電解質に対しては溶解も膨潤もせず優れた耐電解質性を有する。 As shown in Table 1, the additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present disclosure has excellent solubility in the organic solvent used for producing the electrode of the non-aqueous electrolyte secondary battery, and also has excellent solubility in the electrolyte. Has excellent electrolyte resistance without dissolving or swelling.

(実施例B-1)
コバルト酸リチウム(LiCoO)(日本化学工業製、セルシードC5H)100質量部、カーボンブラック(電気化学工業製、デンカブラック)2質量部、実施例A-1により得られたジヒドロキシプロピルセルロース2質量部を、N-メチル-2-ピロリドンに分散させ、スラリー(言い換えれば、スラリー状の正極合剤)を調製した。N-メチル-2-ピロリドンの添加量はジヒドロキシプロピルセルロースのインヘレント粘度(極限粘度)に応じて適宜調整し、合剤の粘度が、E型粘度計を用いて、25℃、せん断速度2s-1で測定を行った際、5000~30000mPa・sとなるよう調整した。N-メチル-2-ピロリドンの添加量は、コバルト酸リチウム(LiCoO)、カーボンブラック、及び実施例A-1により得られたジヒドロキシプロピルセルロースの合計含量100質量部に対し、120質量部となった。
(Example B-1)
Lithium cobaltate (LiCoO 2 ) (manufactured by Nippon Kagaku Kogyo, Celseed C5H) 100 parts by mass, carbon black (manufactured by Denka Kagaku Kogyo, Denka Black) 2 parts by mass, dihydroxypropyl cellulose obtained by Example A-1 by 2 parts by mass. Was dispersed in N-methyl-2-pyrrolidone to prepare a slurry (in other words, a slurry-like positive electrode mixture). The amount of N-methyl-2-pyrrolidone added is appropriately adjusted according to the intrinsic viscosity (extreme viscosity) of dihydroxypropyl cellulose, and the viscosity of the mixture is 25 ° C. using an E-type viscometer and the shear rate is 2s -1 . When the measurement was carried out in, the temperature was adjusted to 5000 to 30000 mPa · s. The amount of N-methyl-2-pyrrolidone added was 120 parts by mass with respect to 100 parts by mass of the total content of lithium cobalt oxide (LiCoO 2 ), carbon black, and dihydroxypropyl cellulose obtained by Example A-1. rice field.

前記スラリー(言い換えれば、正極合剤)を、厚み15μmのAl(アルミニウム)箔上にバーコーターで塗布し(バーコート法)、110℃で30分熱風乾燥し、片面目付け量が200g/mの片面塗工電極(正極)を作製した。得られた電極について、以下の方法で電極塗膜と集電体との密着性を評価した。結果は表2に示す。 The slurry (in other words, a positive electrode mixture) is applied on an Al (aluminum) foil having a thickness of 15 μm with a bar coater (bar coat method), dried with hot air at 110 ° C. for 30 minutes, and the amount of one-sided grain is 200 g / m 2 . A single-sided coated electrode (positive electrode) was prepared. With respect to the obtained electrode, the adhesion between the electrode coating film and the current collector was evaluated by the following method. The results are shown in Table 2.

(密着性:電極折り曲げ試験)
電極塗膜と集電体との密着性を以下の方法により評価した。電極を幅25mm×長さ90mmの矩形に切って試験片とした。試験片を直径10mmのステンレス棒に巻きつけ、目視にて電極の割れの有無を以下の基準により評価した。ひび割れまたは剥がれが少ないほど、電極が柔軟性が高く、電極塗膜と集電体との密着性に優れることを示す。
A:割れは認められなかった
B:表面にひびが認められた
C:割れが発生し、剥離が生じた
(Adhesion: Electrode bending test)
The adhesion between the electrode coating film and the current collector was evaluated by the following method. The electrode was cut into a rectangle having a width of 25 mm and a length of 90 mm to obtain a test piece. The test piece was wound around a stainless steel rod having a diameter of 10 mm, and the presence or absence of cracks in the electrodes was visually evaluated according to the following criteria. The less cracked or peeled off, the more flexible the electrode is, and the better the adhesion between the electrode coating film and the current collector.
A: No cracks were found B: Cracks were found on the surface C: Cracks occurred and peeling occurred.

(実施例B-2)
コバルト酸リチウム(LiCoO)(日本化学工業製、セルシードC5H)100質量部、カーボンブラック(電気化学工業製、デンカブラック)2質量部、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(アルケマ(株)製)2質量部、及び実施例A-1により得られたジヒドロキシプロピルセルロース2質量部を、N-メチル-2-ピロリドンに分散させ、スラリー(言い換えれば、スラリー状の正極合剤)を調製した。N-メチル―2-ピロリドンの添加量はフッ化ビニリデン系共重合体とジヒドロキシプロピルセルロースのインヘレント粘度(極限粘度)に応じて適宜調整し、合剤の粘度が、E型粘度計を用いて、25℃、せん断速度2s-1で測定を行った際、5000~30000mPa・sとなるよう調整した。N-メチル-2-ピロリドンの添加量は、コバルト酸リチウム(LiCoO)、カーボンブラック、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、及び実施例A-1により得られたジヒドロキシプロピルセルロースの合計含量を100質量部に対し、135質量部となった。
(Example B-2)
Lithium cobaltate (LiCoO 2 ) (manufactured by Nippon Kagaku Kogyo, Celseed C5H) 100 parts by mass, carbon black (manufactured by Denka Kagaku Kogyo, Denka Black) 2 parts by mass, polyvinylidene fluoride-hexafluoropropylene copolymer (Alchema Co., Ltd.) Manufactured by) 2 parts by mass and 2 parts by mass of the dihydroxypropyl cellulose obtained in Example A-1 were dispersed in N-methyl-2-pyrrolidone to prepare a slurry (in other words, a slurry-like positive electrode mixture). .. The amount of N-methyl-2-pyrrolidone added was appropriately adjusted according to the intrinsic viscosity (extreme viscosity) of the vinylidene fluoride-based copolymer and dihydroxypropyl cellulose, and the viscosity of the mixture was adjusted using an E-type viscometer. When the measurement was performed at 25 ° C. and a shear rate of 2s -1 , the viscosity was adjusted to 5000 to 30,000 mPa · s. The amount of N-methyl-2-pyrrolidone added is the total content of lithium cobalt oxide (LiCoO 2 ), carbon black, polyvinylidene fluoride-hexafluoropropylene copolymer, and dihydroxypropyl cellulose obtained by Example A-1. Was 135 parts by mass with respect to 100 parts by mass.

前記スラリー(言い換えれば、正極合剤)を、厚み15μmのAl(アルミニウム)箔上にバーコーターで塗布し(バーコート法)、110℃で30分熱風乾燥し、片面目付け量が200g/mの片面塗工電極(正極)を作製した。得られた電極について、上記の方法で電極塗膜と集電体との密着性を評価した。結果は表2に示す。 The slurry (in other words, a positive electrode mixture) is applied on an Al (aluminum) foil having a thickness of 15 μm with a bar coater (bar coat method), dried with hot air at 110 ° C. for 30 minutes, and the amount of one-sided grain is 200 g / m 2 . A single-sided coated electrode (positive electrode) was prepared. With respect to the obtained electrode, the adhesion between the electrode coating film and the current collector was evaluated by the above method. The results are shown in Table 2.

(実施例B-3)
平均一次粒径14nm、比表面積290m/gのカーボンブラック(CB)25質量部、実施例A-1により得られたジヒドロキシプロピルセルロース3.75質量部、N-メチル2-ピロリドン(NMP)71.25質量部を混合し、体積87mlの混合物を得た。この混合物に対して媒体粒子として直径が0.25mmのジルコニアビーズを87cm使用し、サンドミルを用いてディスク回転周速10m/秒の速さで2時間、分散を行い、CBスラリーを得た。
(Example B-3)
25 parts by mass of carbon black (CB) having an average primary particle size of 14 nm and a specific surface area of 290 m 2 / g, 3.75 parts by mass of dihydroxypropyl cellulose obtained by Example A-1, N-methyl 2-pyrrolidone (NMP) 71. .25 parts by mass were mixed to obtain a mixture having a volume of 87 ml. 87 cm3 of zirconia beads having a diameter of 0.25 mm were used as medium particles for this mixture, and the mixture was dispersed using a sand mill at a disk rotation peripheral speed of 10 m / sec for 2 hours to obtain a CB slurry.

このときのジルコニアビーズの媒体粒子数Nは、CBスラリー体積あたり約81500個/mlであった。また、このCBスラリーの平均粒径をレーザー回折散乱法により測定したところ、202nmであった。 The number of medium particles N of the zirconia beads at this time was about 81500 particles / ml per CB slurry volume. Moreover, when the average particle diameter of this CB slurry was measured by the laser diffraction scattering method, it was 202 nm.

次いで、このCBスラリー40質量部と、正極活物質としてコバルト酸リチウム(LiCoO)(日本化学工業製、セルシードC5H)を85質量部と、ポリフッ化ビニリデン(PVDF)5質量部とを、溶媒としてN-メチル2-ピロリドン(NMP)を用いて、固形分濃度が45質量%となるように混合し、直径が0.25mmのジルコニアビーズを87cm使用し、サンドミルを用いてディスク回転周速7.5m/秒の速さで15分間、混合を行い、スラリー(言い換えれば、スラリー状の正極合剤)を調製した。 Next, 40 parts by mass of this CB slurry, 85 parts by mass of lithium cobalt oxide (LiCoO 2 ) (Celseed C5H manufactured by Nippon Chemical Industries, Ltd.) as a positive electrode active material, and 5 parts by mass of polyvinylidene fluoride (PVDF) as a solvent. Mix with N-methyl 2-pyrrolidone (NMP) so that the solid content concentration is 45% by mass, use 87 cm 3 of zirconia beads with a diameter of 0.25 mm, and use a sand mill to rotate the disk at a peripheral speed of 7. Mixing was carried out at a rate of .5 m / sec for 15 minutes to prepare a slurry (in other words, a slurry-like positive electrode mixture).

前記スラリー(言い換えれば、正極合剤)を、厚み15μmのAl(アルミニウム)箔上にバーコーターで塗布し(バーコート法)、110℃で30分熱風乾燥し、片面目付け量が200g/mの片面塗工電極(正極)を作製した。得られた電極について、上記の方法で電極塗膜と集電体との密着性を評価した。結果は表2に示す。 The slurry (in other words, a positive electrode mixture) is applied on an Al (aluminum) foil having a thickness of 15 μm with a bar coater (bar coat method), dried with hot air at 110 ° C. for 30 minutes, and the amount of one-sided grain is 200 g / m 2 . A single-sided coated electrode (positive electrode) was prepared. With respect to the obtained electrode, the adhesion between the electrode coating film and the current collector was evaluated by the above method. The results are shown in Table 2.

(比較例B-1)
ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(アルケマ(株)製)2質量部、及び実施例A-1により得られたジヒドロキシプロピルセルロース2質量部を用いる代わりに、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(アルケマ(株)製)4質量部を用いて、実施例B-2と同様な方法で、片面塗工電極(正極)を作製した。得られた電極について、上記の方法で電極塗膜と集電体との密着性を評価した。結果は表2に示す。
(Comparative Example B-1)
Instead of using 2 parts by mass of the polyvinylidene fluoride-hexafluoropropylene copolymer (manufactured by Arkema Co., Ltd.) and 2 parts by mass of the dihydroxypropyl cellulose obtained by Example A-1, both polyvinylidene fluoride and hexafluoropropylene. A single-sided coated electrode (positive electrode) was prepared by the same method as in Example B-2 using 4 parts by mass of a polymer (manufactured by Arkema Co., Ltd.). With respect to the obtained electrode, the adhesion between the electrode coating film and the current collector was evaluated by the above method. The results are shown in Table 2.

Figure 0007064399000002
Figure 0007064399000002

表2に示すように、本開示の非水電解質二次電池用正極は、柔軟性が高く、電極塗膜と集電体との密着性に優れる。
As shown in Table 2, the positive electrode for a non-aqueous electrolyte secondary battery of the present disclosure has high flexibility and excellent adhesion between the electrode coating film and the current collector.

Claims (4)

ジヒドロキシプロピルセルロースを含有し、
前記ジヒドロキシプロピルセルロースのジヒドロキシプロピル置換度(DS)が0.1以上である、非水電解質二次電池正極用添加剤。
Contains dihydroxypropyl cellulose,
An additive for a non-aqueous electrolyte secondary battery positive electrode having a dihydroxypropyl substitution degree (DS) of 0.1 or more for the dihydroxypropyl cellulose.
前記ジヒドロキシプロピルセルロースのグルコース単位あたりに結合したジヒドロキシプロピル基の平均数(MS)が、0.5以上10以下である、請求項1に記載の非水電解質二次電池正極用添加剤。 The additive for a non-aqueous electrolyte secondary battery positive electrode according to claim 1, wherein the average number (MS) of dihydroxypropyl groups bonded per glucose unit of the dihydroxypropyl cellulose is 0.5 or more and 10 or less. 請求項1又は2に記載の非水電解質二次電池正極用添加剤を含有する、非水電解質二次電池用正極。 A positive electrode for a non-aqueous electrolyte secondary battery containing the additive for the positive electrode for a non-aqueous electrolyte secondary battery according to claim 1 or 2. 請求項1又は2に記載の非水電解質二次電池正極用添加剤、正極活物質、導電助剤、及び有機溶媒を分散してスラリーを調製する工程と、
前記スラリーを箔状の集電体上に塗布する工程とを有する、非水電解質二次電池用正極の製造方法。
The step of preparing a slurry by dispersing the additive for the positive electrode of the non-aqueous electrolyte secondary battery, the positive electrode active material, the conductive auxiliary agent, and the organic solvent according to claim 1 or 2.
A method for manufacturing a positive electrode for a non-aqueous electrolyte secondary battery, which comprises a step of applying the slurry onto a foil-shaped current collector.
JP2018131037A 2018-07-10 2018-07-10 A method for manufacturing an additive for a positive electrode of a non-aqueous electrolyte secondary battery, a positive electrode for a non-aqueous electrolyte secondary battery, and a positive electrode for a non-aqueous electrolyte secondary battery. Active JP7064399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018131037A JP7064399B2 (en) 2018-07-10 2018-07-10 A method for manufacturing an additive for a positive electrode of a non-aqueous electrolyte secondary battery, a positive electrode for a non-aqueous electrolyte secondary battery, and a positive electrode for a non-aqueous electrolyte secondary battery.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018131037A JP7064399B2 (en) 2018-07-10 2018-07-10 A method for manufacturing an additive for a positive electrode of a non-aqueous electrolyte secondary battery, a positive electrode for a non-aqueous electrolyte secondary battery, and a positive electrode for a non-aqueous electrolyte secondary battery.

Publications (2)

Publication Number Publication Date
JP2020009680A JP2020009680A (en) 2020-01-16
JP7064399B2 true JP7064399B2 (en) 2022-05-10

Family

ID=69152203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018131037A Active JP7064399B2 (en) 2018-07-10 2018-07-10 A method for manufacturing an additive for a positive electrode of a non-aqueous electrolyte secondary battery, a positive electrode for a non-aqueous electrolyte secondary battery, and a positive electrode for a non-aqueous electrolyte secondary battery.

Country Status (1)

Country Link
JP (1) JP7064399B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289174A (en) 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
CN106374110A (en) 2016-11-23 2017-02-01 湖南三迅新能源科技有限公司 Lithium ion battery cathode composite cathode, preparation method thereof, and lithium ion battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3611656B2 (en) * 1994-11-22 2005-01-19 日清紡績株式会社 Ion conductive polymer solid electrolyte, composition and production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289174A (en) 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
CN106374110A (en) 2016-11-23 2017-02-01 湖南三迅新能源科技有限公司 Lithium ion battery cathode composite cathode, preparation method thereof, and lithium ion battery

Also Published As

Publication number Publication date
JP2020009680A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP5158396B2 (en) Electrode binder composition
JP5187791B1 (en) Method for producing composition for forming positive electrode mixture layer and method for producing lithium ion secondary battery
JP6659012B2 (en) Negative electrode slurry for secondary battery for improving dispersibility and decreasing resistance, negative electrode containing the same, lithium secondary battery, battery module and battery pack
CN107910502B (en) Manufacturing method of composite positive electrode of lithium battery and battery
JP6955780B2 (en) Flexible thin film for battery electrodes
WO2018135352A1 (en) Electrode slurry, electrode, manufacturing method thereof, and secondary battery
JP6922888B2 (en) Binder composition for non-aqueous secondary battery electrodes, conductive material paste composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, non-aqueous secondary battery electrodes and non-aqueous secondary batteries
TW201414068A (en) Method for producing current collectors for electrochemical elements
CN110098379B (en) Lithium metal negative electrode, preparation method thereof and lithium battery using negative electrode
JP2012119078A (en) Method for manufacturing electrode mixture for power storage device
WO2018135353A1 (en) Electrode slurry, electrode, manufacturing method thereof, and secondary battery
JP7094360B2 (en) Binder, electrodes containing it, and lithium secondary battery
WO2018168502A1 (en) Binder composition for nonaqueous secondary battery electrode, conductive-material paste composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2017069108A (en) Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery electrode and lithium ion secondary battery
KR20160073822A (en) Method for preparing negative electrode composition of lithium secondary battery, and negative electrode and lithium secondary battery prepared by using the same
EP2960968B1 (en) Slurry composition for positive electrodes of lithium ion secondary batteries, method for producing positive electrode for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2015005474A (en) Binding agent, electrode material slurry, electrode, manufacturing method thereof, and secondary battery
EP3989310A2 (en) Multilayer electrode for secondary battery and fabrication method thereof
JP2016021391A (en) Conductive material fluid dispersion for electrochemical devices, slurry for electrochemical device positive electrodes, positive electrode for electrochemical devices, and electrochemical device
JP4354214B2 (en) Positive electrode plate and non-aqueous electrolyte secondary battery including the same
JP2007234418A (en) Negative electrode mixture paste for nonaqueous secondary battery, negative electrode and nonaqueous secondary battery using it as well as manufacturing method of negative electrode mixture paste
JP4617886B2 (en) Non-aqueous secondary battery and method for producing positive electrode paste thereof
JP7064399B2 (en) A method for manufacturing an additive for a positive electrode of a non-aqueous electrolyte secondary battery, a positive electrode for a non-aqueous electrolyte secondary battery, and a positive electrode for a non-aqueous electrolyte secondary battery.
JP2015185229A (en) Electrode of lithium ion secondary battery
JP2018116820A (en) Method for manufacturing slurry for electrode, electrode, and method for manufacturing secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220422

R150 Certificate of patent or registration of utility model

Ref document number: 7064399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150