JP7056124B2 - Deterioration diagnosis method and deterioration diagnosis device for insulation - Google Patents

Deterioration diagnosis method and deterioration diagnosis device for insulation Download PDF

Info

Publication number
JP7056124B2
JP7056124B2 JP2017238703A JP2017238703A JP7056124B2 JP 7056124 B2 JP7056124 B2 JP 7056124B2 JP 2017238703 A JP2017238703 A JP 2017238703A JP 2017238703 A JP2017238703 A JP 2017238703A JP 7056124 B2 JP7056124 B2 JP 7056124B2
Authority
JP
Japan
Prior art keywords
insulation
insulator
resistance value
deterioration
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017238703A
Other languages
Japanese (ja)
Other versions
JP2019105557A (en
Inventor
宏隆 華表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2017238703A priority Critical patent/JP7056124B2/en
Publication of JP2019105557A publication Critical patent/JP2019105557A/en
Application granted granted Critical
Publication of JP7056124B2 publication Critical patent/JP7056124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、絶縁物の劣化診断方法及び劣化診断装置に関する。 The present invention relates to a deterioration diagnosis method and a deterioration diagnosis device for an insulating material.

高圧受配電機器は、高電圧構造物を一定サイズの盤に格納した装置である。配電盤内部の電位差が大きい箇所は、離隔距離を離したり、絶縁物を挟んだりして、所定の絶縁強度を確保している。絶縁物は、経年使用により絶縁性能が劣化すると、最終的には絶縁破壊し故障に至るため、故障を未然に防ぐ絶縁物の劣化診断技術が求められている。 A high-voltage power receiving and distributing device is a device in which a high-voltage structure is stored in a board of a certain size. In places where the potential difference is large inside the switchboard, a predetermined dielectric strength is secured by separating the separation distance or sandwiching an insulator. If the insulation performance of an insulating material deteriorates due to long-term use, the insulation will eventually break down and lead to a failure. Therefore, there is a demand for a deterioration diagnosis technique for an insulating material that prevents the failure.

ところで、絶縁劣化の進展過程は、環境条件(特に、湿度)が大きく影響する。このため、測定時環境では絶縁異常がなくても、高湿度条件では劣化が進展している危険性があった。そこで近年では、高湿度状態における絶縁物表面の抵抗値を推定したり、測定する様々な手法が提案されている。 By the way, environmental conditions (particularly humidity) have a great influence on the progress process of insulation deterioration. Therefore, even if there is no insulation abnormality in the measurement environment, there is a risk that deterioration will progress under high humidity conditions. Therefore, in recent years, various methods for estimating and measuring the resistance value of the surface of an insulator under high humidity conditions have been proposed.

特許文献1に記載の発明では、寿命判定として、「高湿度状態の表面抵抗値が10Ω以下」という基準値を提案している。 The invention described in Patent Document 1 proposes a reference value that "the surface resistance value in a high humidity state is 106 Ω or less" as a life determination.

また、特許文献2に記載の発明では、(低湿度絶縁抵抗値の桁数)/(高湿度絶縁抵抗値の桁数)により、絶縁材料の劣化度合いを判断できるとしている。 Further, in the invention described in Patent Document 2, it is stated that the degree of deterioration of the insulating material can be determined by (the number of digits of the low humidity insulation resistance value) / (the number of digits of the high humidity insulation resistance value).

また、特許文献3に記載の発明では、寿命判定として、「絶縁物沿面の等価回路モデルから推定した表面抵抗値以下」という基準を示している。寿命状態は、ドライバンドが生成された場合に放電し得る状態と定義されている。 Further, in the invention described in Patent Document 3, the standard of "less than or equal to the surface resistance value estimated from the equivalent circuit model along the insulation surface" is shown as the life determination. The lifetime condition is defined as the condition in which a dry band can be discharged if it is generated.

特開2000-356660号公報Japanese Unexamined Patent Publication No. 2000-356660 特開2015-227804号公報Japanese Unexamined Patent Publication No. 2015-227804 特開2005-61901号公報Japanese Unexamined Patent Publication No. 2005-61901

しかしながら、特許文献1に記載の発明では、寿命の判定基準は明確かつ簡易であるが、判定基準の根拠が示されていない。よって、高精度な寿命判定は困難である。 However, in the invention described in Patent Document 1, although the criterion for determining the life is clear and simple, the basis of the criterion is not shown. Therefore, it is difficult to determine the life with high accuracy.

また、特許文献2に記載の発明では、寿命の判定基準は明確であるものの、定量化がされておらず、絶縁物表面の湿度依存性を示しているに過ぎない。すなわち、絶縁物表面の湿度依存性から寿命状態を判定する根拠が示されておらず、高精度な寿命判定は困難である。 Further, in the invention described in Patent Document 2, although the criterion for determining the life is clear, it is not quantified and merely shows the humidity dependence of the surface of the insulator. That is, the basis for determining the life state from the humidity dependence of the surface of the insulator has not been shown, and it is difficult to determine the life state with high accuracy.

また、特許文献3に記載の発明では、提案された等価回路モデルの、等価回路定数である静電容量成分が材料や形状に依存するため、静電容量成分を容易に求めることが出来ない(ドライバンド部の高湿度表面抵抗は無限大と近似している)。よって、特許文献3の手法では、簡易に寿命判定することは困難である。 Further, in the invention described in Patent Document 3, since the capacitance component which is the equivalent circuit constant of the proposed equivalent circuit model depends on the material and the shape, the capacitance component cannot be easily obtained (). The high humidity surface resistance of the dry band is close to infinity). Therefore, it is difficult to easily determine the life by the method of Patent Document 3.

本発明は、これらのような問題点に鑑みてなされたものであり、特に、絶縁物の劣化診断を簡易且つ高精度に行うことが可能な、劣化診断方法及び劣化診断装置を提供することを目的とする。 The present invention has been made in view of these problems, and in particular, to provide a deterioration diagnosis method and a deterioration diagnosis device capable of performing deterioration diagnosis of an insulating material easily and with high accuracy. The purpose.

本発明は、高圧受配電機器に使用される絶縁物の劣化状態を診断する劣化診断方法において、前記絶縁物の表面における低抵抗帯と高抵抗帯との表面抵抗比、前記絶縁物の沿面絶縁長、及び前記絶縁物の沿面に生じる沿面電位差に基づいて、前記絶縁物の前記沿面上における前記高抵抗帯のギャップ長と発生電圧との関係曲線を求め、前記関係曲線と、前記ギャップ長と放電電圧との関係を示した基準曲線とを比較して、前記絶縁物の劣化状態を判断し、前記基準曲線として、パッシェン曲線を用いる、ことを特徴とする。 INDUSTRIAL APPLICABILITY The present invention is a deterioration diagnosis method for diagnosing a deterioration state of an insulator used in a high-voltage power receiving and distribution device, in which the surface resistance ratio between a low resistance band and a high resistance band on the surface of the insulation and the creeping insulation of the insulation. Based on the length and the creepage potential difference generated along the creepage of the insulation, the relational curve between the gap length of the high resistance band and the generated voltage on the creeping surface of the insulation is obtained, and the relational curve and the gap length are obtained. It is characterized in that the deterioration state of the insulating material is determined by comparing with a reference curve showing the relationship with the discharge voltage, and the passage curve is used as the reference curve .

本発明の上記劣化診断方法においては、前記関係曲線と、前記基準曲線との両曲線の交点有無で、前記絶縁物の劣化状態を判断することが好ましい。 In the deterioration diagnosis method of the present invention, it is preferable to determine the deterioration state of the insulation based on the presence or absence of an intersection between the relational curve and the reference curve.

また、本発明の上記劣化診断方法においては、前記絶縁物の表面の汚損堆積有無における表面抵抗比を、前記低抵抗帯と前記高抵抗帯の表面抵抗比として求めることが好ましい。 Further, in the deterioration diagnosis method of the present invention, it is preferable to determine the surface resistivity of the surface of the insulator with or without contamination as the surface resistivity ratio of the low resistance band and the high resistance band.

また、本発明の上記劣化診断方法においては、前記汚損堆積がある状態の表面抵抗値として、前記絶縁物の表面を清掃する前の表面抵抗値、前記汚損堆積が無い状態の表面抵抗値として、前記絶縁物の表面を清掃した後の表面抵抗値を夫々用いて、前記表面抵抗比を求めることができる。 Further, in the deterioration diagnosis method of the present invention, the surface resistance value in the state where the stain is deposited is the surface resistance value before cleaning the surface of the insulator, and the surface resistance value in the state where the stain is not deposited is set. The surface resistance ratio can be obtained by using the surface resistance values after cleaning the surface of the insulating material.

また、本発明の上記劣化診断方法においては、前記汚損堆積がない状態の表面抵抗値として、出荷時点での表面抵抗値、前記汚損堆積がある状態の表面抵抗値として、現在時点での表面抵抗値を夫々用いて、前記表面抵抗値を求めることができる。 Further, in the deterioration diagnosis method of the present invention, the surface resistance value at the time of shipment is the surface resistance value without the stain accumulation, and the surface resistance value at the present time is the surface resistance value with the stain accumulation. The surface resistance value can be obtained by using each value.

また、本発明の上記劣化診断方法においては、前記絶縁物の沿面絶縁長として、各種製品規格の絶縁設計寸法値を用い、前記絶縁物の沿面に生じる沿面電位差として、常規対地電圧を用いることができる。 Further, in the deterioration diagnosis method of the present invention, the insulation design dimensional value of various product standards may be used as the creepage insulation length of the insulator, and the normal ground voltage may be used as the creepage potential difference generated along the creepage of the insulator. can.

また、本発明の上記劣化診断方法においては、前記関係曲線と、前記基準曲線との比較に基づいて、6kV機種では前記表面抵抗比が150以上、3kV機種では前記表面抵抗比が230以上で、寿命到達状態、或いは要清掃状態と判断することができる。 Further, in the deterioration diagnosis method of the present invention, the surface resistivity of the 6 kV model is 150 or more and the surface resistivity of the 3 kV model is 230 or more based on the comparison between the relational curve and the reference curve. It can be determined that the product has reached the end of its useful life or requires cleaning.

また、本発明は、高圧受配電機器に使用される絶縁物の劣化状態を診断する劣化診断装置において、前記絶縁物の汚損堆積有無における表面抵抗値、前記絶縁物の沿面絶縁長、及び前記絶縁物の沿面に生じる沿面電位差を入力する入力部と、前記表面抵抗値に基づく前記絶縁物の表面における低抵抗帯と高抵抗帯との表面抵抗比、前記沿面絶縁長、及び前記沿面電位差に基づいて、前記絶縁物の前記沿面上における前記高抵抗帯のギャップ長と発生電圧との関係曲線を求める演算部と、前記関係曲線と、前記ギャップ長と放電電圧との関係を示した基準曲線とを比較する比較部と、前記比較部の結果に基づいて、前記絶縁物の劣化状態を診断する診断部と、を有し、前記基準曲線として、パッシェン曲線を用いる、ことを特徴とする。 Further, according to the present invention, in a deterioration diagnosis device for diagnosing a deterioration state of an insulator used in a high-voltage power receiving and distribution device, a surface resistance value in the presence or absence of fouling accumulation of the insulation, a creeping insulation length of the insulation, and the insulation thereof. Based on the input unit for inputting the creepage potential difference generated along the creepage of an object, the surface resistance ratio between the low resistance band and the high resistance band on the surface of the insulator based on the surface resistance value, the creepage insulation length, and the creepage potential difference. The calculation unit for obtaining the relationship curve between the gap length and the generated voltage of the high resistance band on the surface of the insulation, the relationship curve, and the reference curve showing the relationship between the gap length and the discharge voltage. It is characterized by having a comparison unit for comparing the above and a diagnostic unit for diagnosing the deterioration state of the insulation based on the result of the comparison unit, and using a pastion curve as the reference curve .

本発明の絶縁物の劣化診断方法によれば、簡易且つ高精度に劣化診断を行うことができる。 According to the deterioration diagnosis method for an insulating material of the present invention, deterioration diagnosis can be performed easily and with high accuracy.

本実施形態における絶縁物の沿面構造例である。It is an example of the creepage structure of the insulator in this embodiment. 図1に示す絶縁物の沿面の汚損状態例である。This is an example of a soiled state along the surface of the insulator shown in FIG. 図2に示す絶縁物の沿面の等価回路モデルである。It is an equivalent circuit model along the surface of the insulator shown in FIG. 沿面絶縁長の寸法規格(JEM)を示す表である。It is a table which shows the dimension standard (JEM) of the creeping insulation length. 高抵抗帯のギャップ長と発生電圧との関係曲線例である。This is an example of the relationship curve between the gap length in the high resistance band and the generated voltage. ギャップ長と放電電圧との基準曲線例としてのパッシェン曲線である。It is a Paschen curve as an example of a reference curve of a gap length and a discharge voltage. 関係曲線とパッシェン曲線とを比較した劣化診断例である。This is an example of deterioration diagnosis comparing the relation curve and the Paschen curve. 本実施形態における絶縁物の劣化診断方法のフローチャートである。It is a flowchart of the deterioration diagnosis method of the insulator in this embodiment. 本実施形態における劣化診断装置のブロック図である。It is a block diagram of the deterioration diagnosis apparatus in this embodiment. 放電発生時点における高抵抗帯のギャップ長と表面抵抗比との関係を示すグラフである。It is a graph which shows the relationship between the gap length of a high resistance band and the surface resistivity at the time of discharge generation.

以下、本発明の一実施形態に係る劣化診断方法及び劣化診断装置について、添付の図面を参照しながら詳細に説明する。なお、本発明に係る劣化診断方法及び劣化診断装置については、以下の実施形態に限定されるものではなく、その趣旨の範囲内で種々変形して実施することができる。 Hereinafter, the deterioration diagnosis method and the deterioration diagnosis apparatus according to the embodiment of the present invention will be described in detail with reference to the attached drawings. The deterioration diagnosis method and the deterioration diagnosis device according to the present invention are not limited to the following embodiments, and can be variously modified and implemented within the scope of the purpose.

本実施形態に係る劣化診断対象は、高圧受配電機器を構成する高電圧物体の保持や防壁に用いられる固体絶縁物である。固体絶縁物は、例えば、ポリエステル樹脂やエポキシ樹脂等である。これら絶縁物は、経年使用により絶縁性能が劣化すると、最終的には絶縁破壊故障に至る。このため、故障を未然に防ぐ絶縁物の劣化診断技術が求められている。 The object of deterioration diagnosis according to the present embodiment is a solid insulating material used for holding a high-voltage object constituting a high-voltage power receiving / distributing device or for a barrier. The solid insulator is, for example, a polyester resin, an epoxy resin, or the like. When the insulation performance of these insulators deteriorates due to long-term use, they eventually lead to dielectric breakdown failure. Therefore, there is a demand for a deterioration diagnosis technique for an insulating material that prevents failure.

固体絶縁物では、絶縁物内部を貫通破壊するバルク絶縁性能が非常に高く、絶縁物表面を沿面破壊する沿面絶縁性能が問題となる。一般的な絶縁物劣化による沿面絶縁破壊のメカニズムは、(1)絶縁物表面に汚損物質が付着、(2)汚損物質が湿潤して表面抵抗低下、(3)局所的な高抵抗帯(高抵抗部)に分担電圧上昇、(4)電圧集中により微小放電発生、(5)放電分解生成物で絶縁物表面が変質、(6)(1)~(5)を繰り返して炭化導電路が発生、(7)炭化導電路先端で放電を繰り返して導電路が成長、(8)絶縁破壊、となる。(3)の局所的な高抵抗帯とは、例えば、ジュール熱による乾燥帯生成や繊維状異物付着に伴う未汚損部残存を指している。 In solid insulation, the bulk insulation performance that penetrates and breaks the inside of the insulation is very high, and the creepage insulation performance that breaks the surface of the insulation in a creeping manner becomes a problem. The general mechanism of creepage dielectric breakdown due to insulation deterioration is (1) dirty substances adhere to the surface of the insulator, (2) the polluted substances get wet and the surface resistance decreases, and (3) local high resistance band (high). The shared voltage rises in the resistance part), (4) minute discharge is generated due to voltage concentration, (5) the insulation surface is altered by the discharge decomposition product, and (6) (1) to (5) are repeated to generate a carbonized conductive path. , (7) The conduction path grows by repeating discharge at the tip of the carbonized conductive path, and (8) dielectric breakdown occurs. The local high resistance zone in (3) refers to, for example, the formation of a dry zone due to Joule heat and the residual unstained portion due to the adhesion of fibrous foreign matter.

本実施形態は、(3)について測定し、絶縁物の劣化診断を行うものである。(3)に対する劣化診断は、特許文献3にも示されている。すなわち、特許文献3では、寿命判定として、「絶縁物沿面の等価回路モデルから推定した表面抵抗値以下」という基準を示している。しかしながら、特許文献3では、材料や形状に依存する静電容量成分を求めており、簡易且つ精度よく劣化診断を行うことができない。 In this embodiment, (3) is measured and deterioration diagnosis of the insulating material is performed. The deterioration diagnosis for (3) is also shown in Patent Document 3. That is, Patent Document 3 shows a standard of "less than or equal to the surface resistance value estimated from the equivalent circuit model along the insulation surface" as the life determination. However, Patent Document 3 requires a capacitance component that depends on the material and shape, and it is not possible to perform deterioration diagnosis easily and accurately.

そこで、本発明者は、鋭意研究を重ねた結果、絶縁物の形状として最悪条件を想定し、実際に測定した表面抵抗値を用いて寿命判定する手法を発明するに至った。 Therefore, as a result of diligent research, the present inventor has invented a method for determining the life by assuming the worst condition as the shape of the insulator and using the actually measured surface resistance value.

ここで、特許文献3の等価回路モデル(特許文献3の図8を参照)を引用すると、静電容量成分が小さいほど、高抵抗帯の負担電圧は大きくなる。よって、最悪条件として、絶縁物1の形状は、図1に示すような静電容量が小さい薄平板形状を想定した。図1Aは、絶縁物の平面図、図1Bは、図1Aに示す絶縁部をA―A線に沿って厚み方向に切断し矢印方向から見た断面図を示す。図1A及び、図1Bに示すように、絶縁物1の表面1aには、沿面絶縁長(電極間距離)Lを有する一対の金属電極2、3が設けられている。例えば、金属電極2、3は、金属ボルトであり、薄板状の絶縁物1を貫通している。 Here, citing the equivalent circuit model of Patent Document 3 (see FIG. 8 of Patent Document 3), the smaller the capacitance component, the larger the burden voltage in the high resistance band. Therefore, as the worst condition, the shape of the insulator 1 is assumed to be a thin flat plate shape having a small capacitance as shown in FIG. 1A is a plan view of an insulator, and FIG. 1B is a cross-sectional view of the insulating portion shown in FIG. 1A cut along the line AA in the thickness direction and viewed from the direction of an arrow. As shown in FIGS. 1A and 1B, a pair of metal electrodes 2 and 3 having a creepage insulation length (distance between electrodes) L is provided on the surface 1a of the insulator 1. For example, the metal electrodes 2 and 3 are metal bolts and penetrate the thin plate-shaped insulator 1.

図2は、図1に示す薄板状の絶縁物1の表面1aでの劣化モードである。図2に示すように、沿面絶縁長Lの大部分は、低抵抗帯4であり、微小なギャップ長gの部分のみ高抵抗帯5が生じる劣化モードを想定した。なお、図2に示す高抵抗帯5の位置や形状は一例であり、例えば、高抵抗帯5は、金属電極2、3の周囲を囲むように形成されていてもよい。 FIG. 2 is a deterioration mode on the surface 1a of the thin plate-shaped insulator 1 shown in FIG. As shown in FIG. 2, most of the creepage insulation length L is the low resistance band 4, and a deterioration mode in which the high resistance band 5 is generated only in the portion having a minute gap length g is assumed. The position and shape of the high resistance band 5 shown in FIG. 2 is an example. For example, the high resistance band 5 may be formed so as to surround the metal electrodes 2 and 3.

絶縁物1の経年運用により、絶縁物1の表面1aに、図2に示す低抵抗帯4と高抵抗帯5とが生じる現象について説明する。絶縁物1が屋外で使用される場合、絶縁物1の表面1aに付着した塵埃が、雨や結露により湿潤する。このとき、絶縁物1の表面1aの湿潤層を流れる漏れ電流によるジュール熱で、局所的な乾燥帯が生じる。その結果、表面1aのほぼ全域を占める湿潤層が低抵抗帯4であり、局所的な乾燥帯が高抵抗帯5となる。 A phenomenon in which the low resistance band 4 and the high resistance band 5 shown in FIG. 2 are formed on the surface 1a of the insulation 1 due to the aged operation of the insulation 1 will be described. When the insulator 1 is used outdoors, the dust adhering to the surface 1a of the insulator 1 becomes wet due to rain or dew condensation. At this time, a local dry zone is generated by Joule heat due to the leakage current flowing through the wet layer of the surface 1a of the insulator 1. As a result, the wet layer occupying almost the entire surface of the surface 1a is the low resistance zone 4, and the local dry zone is the high resistance zone 5.

また、別の現象としては、主に、屋内で使用される場合、絶縁物1の表面1aに塵埃が蓄積した部分と、遮蔽物や異物により塵埃が蓄積されなかった部分を想定する。この塵埃が蓄積されないギャップ長としては、例えば、髪の毛や繊維起因の数百μmオーダにて、表面1aを横断する状態を想定している。この状態で高湿度状態に曝されると、塵埃の蓄積部は、吸湿により低抵抗帯4となり、一方、塵埃の未蓄積部は、高抵抗帯5となる。 As another phenomenon, when used indoors, it is assumed that a portion where dust is accumulated on the surface 1a of the insulator 1 and a portion where dust is not accumulated due to a shield or a foreign substance. As the gap length at which this dust does not accumulate, it is assumed that the gap length crosses the surface 1a, for example, on the order of several hundred μm caused by hair or fibers. When exposed to a high humidity state in this state, the dust accumulation portion becomes a low resistance band 4 due to moisture absorption, while the dust non-accumulation portion becomes a high resistance zone 5.

図2に示す、低抵抗帯4の表面1aに、微小なギャップ長gの高抵抗帯5が生じた状態を等価モデル化すると、図3に示す抵抗分担回路になる。 When the state in which the high resistance band 5 having a minute gap length g is generated on the surface 1a of the low resistance band 4 shown in FIG. 2 is equivalently modeled, the resistance sharing circuit shown in FIG. 3 is obtained.

この等価回路では、「沿面電位差V」、「沿面絶縁長L」、「高抵抗帯の抵抗値R」、「低抵抗帯の抵抗値R」、及び、「高抵抗帯のギャップ長g」を用いて、高抵抗帯のギャップ長gにかかる発生電圧(発生電圧)Vを、下記の式(1)で求めることが出来る。

Figure 0007056124000001
In this equivalent circuit, "crevice potential difference VL ", "creepular insulation length L", "resistance value R g in the high resistance band", "resistance value R n in the low resistance band", and "gap length in the high resistance band". Using "g", the generated voltage (generated voltage) V g applied to the gap length g in the high resistance band can be obtained by the following equation (1).
Figure 0007056124000001

式(1)を整理すると、下記の式(2)となる。

Figure 0007056124000002
The following formula (2) can be obtained by rearranging the formula (1).
Figure 0007056124000002

ここで、式(2)に対して、「沿面電位差V」及び、「沿面絶縁長L」は、対象部材の仕様や寸法から入力することができる。 Here, with respect to the equation (2), the "crevice potential difference VL " and the "creeping insulation length L" can be input from the specifications and dimensions of the target member.

沿面電位差Vは、金属電極2、3間の電位差を示している。このため、結線図から沿面電位差Vを読み取ることができる。沿面絶縁長Lは、図1に示すように、金属電極2、3間の直線距離である。 The creepage potential difference VL indicates the potential difference between the metal electrodes 2 and 3. Therefore, the creepage potential difference VL can be read from the wiring diagram. As shown in FIG. 1, the creepage insulation length L is a linear distance between the metal electrodes 2 and 3.

ここで、沿面絶縁長Lの詳細な寸法が分からない場合には、対象製品が分類される製品規格を基に寸法を決定してもよい。図4に、参考規格として、JEM1103の「制御機器の絶縁距離」を掲載した。図4に示す規格機種の定格絶縁電圧に基づいて、沿面絶縁長Lである「沿面距離」を求めることができる。 Here, if the detailed dimensions of the creepage insulation length L are not known, the dimensions may be determined based on the product standard in which the target product is classified. In FIG. 4, "insulation distance of control equipment" of JEM1103 is shown as a reference standard. Based on the rated insulation voltage of the standard model shown in FIG. 4, the creepage distance, which is the creepage insulation length L, can be obtained.

「高抵抗帯と低抵抗帯の表面抵抗比R/R」は、高抵抗帯の抵抗値Rと、低抵抗帯の抵抗値Rとの比である。なお、式(2)では、表面抵抗比R/Rとなっており、表面抵抗比R/Rの逆数で示される。ここで、高抵抗帯の抵抗値R及び、低抵抗帯の抵抗値Rを夫々測定することは困難であるため、実際には、汚損堆積有無における表面抵抗比を、表面抵抗比R/Rとして求めることができる。 The “surface resistance ratio R g / R n of the high resistance band and the low resistance band” is the ratio of the resistance value R g of the high resistance band to the resistance value R n of the low resistance band. In the formula (2), the surface resistivity ratio is R n / R g , which is the reciprocal of the surface resistivity ratio R g / R n . Here, since it is difficult to measure the resistance value R g in the high resistance band and the resistance value R n in the low resistance band, respectively, the surface resistivity ratio in the presence or absence of fouling accumulation is actually used as the surface resistivity R g . It can be calculated as / R n .

具体的には、メガー等の1000V相当の直流電源と電流機構を有した測定装置を用い、同一条件下にて、汚損堆積がある状態の表面抵抗値と、汚損堆積が無い状態の表面抵抗値とを夫々、測定する。このとき、同一条件としては、高湿度状態(RH95%以上)とすることが好ましい。 Specifically, using a measuring device equipped with a DC power supply equivalent to 1000 V such as a megger and a current mechanism, the surface resistance value with fouling deposits and the surface resistance value without fouling deposits under the same conditions. And each are measured. At this time, it is preferable to set a high humidity state (RH 95% or more) as the same condition.

例えば、絶縁物1の表面1aを清掃する前に測定した表面抵抗値は、汚損堆積がある状態の表面抵抗値であり、絶縁物1の表面1aを清掃した後に測定した表面抵抗値は、汚損堆積がない状態の表面抵抗値である。そして、「高抵抗帯の抵抗値R」は、絶縁物1の表面1aを清掃する前に測定した表面抵抗値として評価できる。また、「低抵抗帯の抵抗値R」は、絶縁物1の表面1aを清掃した後に測定した表面抵抗値として評価できる。 For example, the surface resistance value measured before cleaning the surface 1a of the insulator 1 is the surface resistance value in a state where there is fouling accumulation, and the surface resistance value measured after cleaning the surface 1a of the insulator 1 is the fouling. The surface resistance value in the absence of deposition. Then, the “resistance value R g in the high resistance band” can be evaluated as the surface resistance value measured before cleaning the surface 1a of the insulator 1. Further, the “resistance value R n in the low resistance band” can be evaluated as the surface resistance value measured after cleaning the surface 1a of the insulator 1.

或いは、汚損堆積がない状態の表面抵抗値として、出荷時点での表面抵抗値を用い、汚損堆積がある状態の表面抵抗値として、現在時点での表面抵抗値を用いることができる。「高抵抗帯の抵抗値R」は、現在時点での表面抵抗値として評価できる。また、「低抵抗帯の抵抗値R」は、出荷時点での表面抵抗値として評価できる。この場合、出荷時点での表面抵抗値を、劣化診断の度に援用でき、劣化診断の際には、現時点での表面抵抗値を測定すれば足りる。 Alternatively, the surface resistance value at the time of shipment can be used as the surface resistance value without fouling accumulation, and the surface resistance value at present can be used as the surface resistance value with fouling accumulation. The “resistance value R g in the high resistance band” can be evaluated as the surface resistance value at the present time. Further, the “resistance value R n in the low resistance band” can be evaluated as the surface resistance value at the time of shipment. In this case, the surface resistance value at the time of shipment can be used for each deterioration diagnosis, and it is sufficient to measure the surface resistance value at the present time at the time of deterioration diagnosis.

沿面電位差V、沿面絶縁長L、及び、表面抵抗比R/R(表面抵抗比R/Rの逆数)が、式(2)に代入されると、式(2)は、高抵抗帯のギャップ長gにかかる発生電圧Vと、高抵抗帯のギャップ長gとの関係式となる。 When the creepage potential difference VL , the creepage insulation length L, and the surface resistivity ratio R n / R g (the reciprocal of the surface resistivity R g / R n ) are substituted into the equation (2), the equation (2) becomes. It is a relational expression between the generated voltage V g applied to the gap length g of the high resistance band and the gap length g of the high resistance band.

図5が、ギャップ長gと発生電圧Vとの関係曲線の一例である。ここで、図5は、三相6kV機種を想定して求めた関係曲線である。沿面絶縁長Lは、JEM1103に準拠して90mmとした。沿面電位差Vは、通電部と接地部間を想定して常規対地電圧5.39kVpeak(=6.6×20.5÷30.5)とした。また、図5の関係曲線は、Rg/Rn=150として求めた。図5に示すように、ギャップ長gが長いほど分担電圧は大きくなり、発生電圧Vは、飽和傾向を持った曲線となる。 FIG. 5 is an example of a relational curve between the gap length g and the generated voltage Vg. Here, FIG. 5 is a relational curve obtained assuming a three-phase 6 kV model. The creepage insulation length L was set to 90 mm in accordance with JEM1103. The creepage potential difference VL was set to the normal ground voltage of 5.39 kVpeek (= 6.6 × 2 0.5 ÷ 3 0.5 ) assuming the distance between the energized part and the grounded part. Further, the relational curve in FIG. 5 was obtained with R g / R n = 150. As shown in FIG. 5, the longer the gap length g is, the larger the shared voltage becomes, and the generated voltage V g becomes a curve having a tendency to saturate.

図6は、ギャップ長gと放電電圧の基準曲線である。図6に示す基準曲線は、雰囲気圧力を大気圧に固定した大気圧のギャップ長と、気中放電電圧との関係を示すパッシェン曲線である。 FIG. 6 is a reference curve of the gap length g and the discharge voltage. The reference curve shown in FIG. 6 is a Paschen curve showing the relationship between the gap length of the atmospheric pressure in which the atmospheric pressure is fixed to the atmospheric pressure and the air discharge voltage.

図6に示すように、ギャップ長gが短いほど、放電させるのに必要な電圧は低くなる傾向になる。なお、更にギャップ長gを数ミクロンレベル程度に短くしていくと、放電電圧の低下が収まる領域が現れるが、本実施形態では、この領域を対象としない。 As shown in FIG. 6, the shorter the gap length g, the lower the voltage required for discharging tends to be. If the gap length g is further shortened to the level of several microns, a region where the decrease in the discharge voltage is contained appears, but this region is not targeted in the present embodiment.

図6に示すパッシェン曲線の上領域が、放電が生じる電圧を示し、下領域が、放電が生じない電圧を示す。このため、図5に示すギャップ長gと発生電圧Vとの関係曲線と、図6に示すパッシェン曲線と比較した際、両曲線の交点の有無で、放電の有無を判別することができる。 The upper region of the Paschen curve shown in FIG. 6 shows the voltage at which discharge occurs, and the lower region shows the voltage at which discharge does not occur. Therefore, when the relationship curve between the gap length g and the generated voltage V g shown in FIG. 5 is compared with the Paschen curve shown in FIG. 6, the presence or absence of an intersection between the two curves can be used to determine the presence or absence of discharge.

図7Aは、表面抵抗比Rg/Rn=120としたときの両曲線を比較した結果である。図7Aでは、両曲線は、交点を有していない。すなわち、パッシェン曲線が常に、ギャップ長gと発生電圧Vとの関係曲線よりも高い電圧を有している。このような関係の状態では、絶縁物1は、寿命に達していない、或いは、絶縁物1を清掃する必要はないと判断できる。一方、図7Bは、表面抵抗比Rg/Rn=180としたときの両曲線を比較した結果である。図7Bでは、両曲線は、交点を有している。その交点のギャップ長gを持つ高抵抗帯が生じた場合に放電が発生するということを示すため、絶縁物1は、寿命に達している、或いは、絶縁物1を清掃の必要があると判断できる。 FIG. 7A is a result of comparing both curves when the surface resistivity ratio is R g / R n = 120. In FIG. 7A, both curves do not have an intersection. That is, the Paschen curve always has a voltage higher than the relational curve between the gap length g and the generated voltage V g . In such a state, it can be determined that the insulation 1 has not reached the end of its life or it is not necessary to clean the insulation 1. On the other hand, FIG. 7B is a result of comparing both curves when the surface resistivity ratio R g / R n = 180. In FIG. 7B, both curves have intersections. Since it is shown that a discharge is generated when a high resistance band having a gap length g at the intersection is generated, it is determined that the insulation 1 has reached the end of its life or the insulation 1 needs to be cleaned. can.

(劣化診断方法)
本実施形態の劣化診断方法のフローチャートを図8に示す。図8のステップST1では、汚損堆積有無における表面抵抗値、沿面絶縁長、及び沿面電位差を取得し、各値を、劣化診断装置に入力する。ここで、汚損堆積有無における表面抵抗値については、例えば、絶縁物1の表面1aを清掃する前の表面抵抗値と、絶縁物1の表面1aを清掃した後の表面抵抗値を測定し、各表面抵抗値を入力すれば足りる。このとき、各表面抵抗値を、高湿度状態(RH95%以上)とした同一条件で測定することが好ましい。或いは、出荷時点での表面抵抗値がわかっていれば、現時点での表面抵抗値を測定する。出荷時点での表面抵抗値が劣化診断装置に既に保存されていれば、現時点での表面抵抗値のみを測定し入力する。出荷時点での表面抵抗値が劣化診断装置に保存されていなければ、各表面抵抗値を入力する。現時点での表面抵抗値については、高湿度状態(RH95%以上)で測定することが好ましい。また、出荷時点での表面抵抗値の測定条件がわかっていれば、その条件に合わせて、現時点での表面抵抗値を測定し、測定条件を合わせてもよい。
(Deterioration diagnosis method)
FIG. 8 shows a flowchart of the deterioration diagnosis method of the present embodiment. In step ST1 of FIG. 8, the surface resistance value, the creepage insulation length, and the creepage potential difference in the presence or absence of fouling accumulation are acquired, and each value is input to the deterioration diagnosis device. Here, regarding the surface resistance value in the presence or absence of fouling accumulation, for example, the surface resistance value before cleaning the surface 1a of the insulator 1 and the surface resistance value after cleaning the surface 1a of the insulator 1 are measured, and each of them is measured. It is enough to enter the surface resistance value. At this time, it is preferable to measure each surface resistance value under the same conditions under a high humidity state (RH 95% or more). Alternatively, if the surface resistance value at the time of shipment is known, the surface resistance value at the present time is measured. If the surface resistance value at the time of shipment is already stored in the deterioration diagnosis device, only the current surface resistance value is measured and input. If the surface resistance value at the time of shipment is not stored in the deterioration diagnostic device, enter each surface resistance value. The current surface resistance value is preferably measured in a high humidity state (RH 95% or more). Further, if the measurement conditions of the surface resistance value at the time of shipment are known, the surface resistance value at the present time may be measured and the measurement conditions may be adjusted according to the conditions.

沿面絶縁長や沿面電位差を、測定することが困難である場合、図4に示すJEM規格の沿面絶縁長(沿面距離)と常規対地電圧とを用いることができる。 When it is difficult to measure the creepage insulation length and the creepage potential difference, the creepage insulation length (creeping distance) of the JEM standard shown in FIG. 4 and the normal ground voltage can be used.

ステップST2では、表面抵抗比Rg/Rn、沿面絶縁長L、及び沿面電位差Vに基づいて、図5に示すようなギャップ長gと発生電圧Vとの関係曲線を、劣化診断装置にて演算する。 In step ST2, the deterioration diagnosis device is used to determine the relationship curve between the gap length g and the generated voltage V g as shown in FIG. 5 based on the surface resistivity R g / R n , the creepage insulation length L, and the creepage potential difference VL . Calculate with.

続いて、ステップST3では、ギャップ長gと発生電圧Vとの関係曲線と、パッシェン曲線(大気圧状態におけるギャップ長と放電電圧の関係曲線:図6を参照)とを比較する。 Subsequently, in step ST3, the relational curve between the gap length g and the generated voltage Vg is compared with the Paschen curve (the relational curve between the gap length and the discharge voltage in the atmospheric pressure state: see FIG. 6).

両曲線を比較した結果、図7Aのように両曲線に交点が無い場合、ステップST4にて、絶縁物1は、寿命に達していない、或いは、絶縁物1を清掃する必要はないと診断される。或いは、両曲線を比較した結果、図7Bのように両曲線に交点がある場合、ステップST4にて、絶縁物1は、寿命に達している、或いは、絶縁物1を清掃する必要があると診断される。また、図7Aに示すように、両曲線が交点を有していない場合でも、両曲線間の、例えば、最短距離に基づいて、余寿命を診断することが可能である。 As a result of comparing both curves, if there is no intersection between the two curves as shown in FIG. 7A, it is diagnosed in step ST4 that the insulation 1 has not reached the end of its life or the insulation 1 does not need to be cleaned. To. Alternatively, as a result of comparing the two curves, when there is an intersection between the two curves as shown in FIG. 7B, it is determined that the insulation 1 has reached the end of its life or the insulation 1 needs to be cleaned in step ST4. Be diagnosed. Further, as shown in FIG. 7A, even when both curves do not have an intersection, it is possible to diagnose the remaining life based on, for example, the shortest distance between the two curves.

(劣化診断装置)
本実施形態の劣化診断装置10は、図9に示すように、入力部11、演算部12、比較部13、診断部14、及び保存部15を有して構成される。入力部11には、汚損堆積有無における表面抵抗値、沿面絶縁長、及び沿面電位差が入力される。また、保存部15には、出荷前の表面抵抗値やパッシェン曲線等が保存されている。
(Deterioration diagnostic equipment)
As shown in FIG. 9, the deterioration diagnosis device 10 of the present embodiment includes an input unit 11, a calculation unit 12, a comparison unit 13, a diagnosis unit 14, and a storage unit 15. The surface resistance value, the creepage insulation length, and the creepage potential difference depending on the presence or absence of fouling accumulation are input to the input unit 11. Further, the storage unit 15 stores the surface resistance value, the Paschen curve, and the like before shipment.

演算部12は、入力部11に入力された表面抵抗値、沿面絶縁長、及び沿面電位差に基づいて、ギャップ長gと発生電圧Vとの関係曲線(図5参照)が演算される。 The calculation unit 12 calculates a relational curve (see FIG. 5) between the gap length g and the generated voltage Vg based on the surface resistance value, the creepage insulation length, and the creepage potential difference input to the input unit 11.

比較部13は、演算部12にて演算されたギャップ長gと発生電圧Vとの関係曲線と、パッシェン曲線とを比較する(図7参照)。 The comparison unit 13 compares the relationship curve between the gap length g and the generated voltage Vg calculated by the calculation unit 12 with the Paschen curve (see FIG. 7).

診断部14は、比較部13による比較結果に基づいて、寿命判断、清掃判断、或いは余寿命判断を行う。寿命判断、清掃判断は、図7のように、両曲線を比較したときの交点の有無で判断することができる。余寿命判断は、図7Aに示すように両曲線が交点を有していない状態において、両曲線の例えば、最短距離から導き出すことができる。 The diagnosis unit 14 makes a life determination, a cleaning determination, or a remaining life determination based on the comparison result by the comparison unit 13. As shown in FIG. 7, the lifespan judgment and the cleaning judgment can be judged by the presence or absence of an intersection when comparing the two curves. The remaining life determination can be derived from, for example, the shortest distance between the two curves in a state where the two curves do not have an intersection as shown in FIG. 7A.

以上、詳述した本実施形態の絶縁物1の劣化診断方法によれば、簡易且つ高精度に劣化診断を行うことができる。すなわち、本実施形態では、絶縁物1の形状として最悪条件を想定し、実際に測定した表面抵抗値を用いて劣化診断する。このように、最悪条件を想定することで、精度を向上させることができる。また、例えば、清掃前後や出荷前後の表面抵抗値を用いて劣化診断を行うことができ、簡易に劣化診断できる。 According to the deterioration diagnosis method for the insulator 1 of the present embodiment described in detail above, deterioration diagnosis can be performed easily and with high accuracy. That is, in the present embodiment, the worst condition is assumed as the shape of the insulator 1, and the deterioration diagnosis is performed using the actually measured surface resistance value. In this way, the accuracy can be improved by assuming the worst conditions. Further, for example, deterioration diagnosis can be performed using the surface resistance values before and after cleaning and before and after shipment, and deterioration diagnosis can be easily performed.

また、上記のように、清掃前後の表面抵抗値を用いて劣化診断を行うことで、経年使用による表面状態変質の影響を反映し、より高精度な劣化診断を可能にする。 Further, as described above, by performing the deterioration diagnosis using the surface resistance value before and after cleaning, the influence of the surface condition deterioration due to the aging use is reflected, and the deterioration diagnosis with higher accuracy becomes possible.

また、出荷前後の表面抵抗値を用いて劣化診断を行うことで、測定作業を汚損状態における表面抵抗測定に絞ることができる。したがって、絶縁物1の表面1aの清掃作業が不要になり、より簡易な劣化診断を可能にする。 Further, by performing the deterioration diagnosis using the surface resistance values before and after shipment, the measurement work can be limited to the surface resistance measurement in the soiled state. Therefore, the cleaning work of the surface 1a of the insulator 1 becomes unnecessary, and a simpler deterioration diagnosis becomes possible.

また、図4に示すJEM規格を用いて、沿面絶縁長及び沿面電位差を固定値とすることで、沿面絶縁長及び沿面電位差の測定が不要になり、より簡易な寿命判定を可能にする。 Further, by setting the creepage insulation length and the creepage potential difference to fixed values by using the JEM standard shown in FIG. 4, the measurement of the creepage insulation length and the creepage potential difference becomes unnecessary, and the life can be determined more easily.

また、本実施形態では、使用電圧クラスに対して、常規対地電圧とJEM規格の絶縁寸法値から、寿命判定基準となる表面抵抗比Rg/Rnを規定することができる。例えば、日本国内でスタンダードになっている6kV機種と3kV機種に対して、常規対地電圧における絶縁寸法(沿面絶縁長L)と寿命状態の表面抵抗比Rg/Rnとの関係を図10に示す。図10より、6kV機種の標準最低絶縁寸法90mmでは、表面抵抗比R/R≒150以上、3kV機種の標準最低絶縁寸法50mmでは、表面抵抗比R/R≒230以上を夫々、寿命到達状態、或いは、要清掃状態と診断することができる。このように、電圧クラスごとに、放電を生じる、沿面絶縁長Lと表面抵抗比R/Rとの対応関係を保存しておくことで、より簡易な劣化診断を可能にする。 Further, in the present embodiment, the surface resistivity R g / R n , which is the life determination standard, can be specified from the normal ground voltage and the insulation dimension value of the JEM standard for the working voltage class. For example, Fig. 10 shows the relationship between the insulation dimension (creeping insulation length L) and the surface resistivity ratio R g / R n in the life state for the 6 kV model and the 3 kV model, which are standard in Japan. show. From FIG. 10, the surface resistivity ratio R g / R n ≈ 150 or more for the standard minimum insulation dimension of 90 mm for the 6 kV model or more, and the surface resistivity ratio R g / R n ≈ 230 or more for the standard minimum insulation dimension of 50 mm for the 3 kV model, respectively. It can be diagnosed as having reached the end of its useful life or requiring cleaning. In this way, by preserving the correspondence between the creepage insulation length L and the surface resistivity R g / R n that generate discharge for each voltage class, simpler deterioration diagnosis becomes possible.

図10のグラフに関しては、関係曲線とパッシェン曲線との比較により、図7Bのように交点を生じる沿面絶縁長Lと表面抵抗比R/Rとの対応値を保存し、このような対応値を複数得ることで、図10に示すグラフを生成することができる。図10から、放電を生じる沿面絶縁長Lと表面抵抗比R/Rとの対応関係がわかる。このため、図10を用いることで、図7に示す関係曲線とパッシェン曲線との比較を行わなくても劣化診断が可能になり、劣化診断を容易に行うことができる。 Regarding the graph of FIG. 10, by comparing the relational curve and the Paschen curve, the correspondence value between the creepage insulation length L that causes the intersection and the surface resistivity R g / R n is saved as shown in FIG. 7B, and such correspondence is preserved. By obtaining a plurality of values, the graph shown in FIG. 10 can be generated. From FIG. 10, the correspondence between the creepage insulation length L that causes discharge and the surface resistivity ratio R g / R n can be seen. Therefore, by using FIG. 10, deterioration diagnosis can be performed without comparing the relational curve shown in FIG. 7 with the Paschen curve, and deterioration diagnosis can be easily performed.

なお、本発明は上記実施形態に限定されず、さまざまに変更して実施可能である。上記の実施形態の処理などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更が可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施可能である。 The present invention is not limited to the above embodiment, and can be modified in various ways. The processing of the above-described embodiment is not limited to this, and can be appropriately changed within the range in which the effect of the present invention is exhibited. In addition, it can be appropriately modified and implemented as long as it does not deviate from the scope of the object of the present invention.

本発明の劣化診断方法によれば、簡易且つ高精度に劣化診断を行うことができるという効果を奏し、特に、高圧受配電機器の絶縁劣化の診断に好適に用いることができる。 According to the deterioration diagnosis method of the present invention, there is an effect that deterioration diagnosis can be performed easily and with high accuracy, and in particular, it can be suitably used for diagnosis of insulation deterioration of high-voltage power receiving and distribution equipment.

1 :絶縁物
1a :表面
2、3 :金属電極
4 :低抵抗帯
5 :高抵抗帯
10 :劣化診断装置
11 :入力部
12 :演算部
13 :比較部
14 :診断部
15 :保存部
L :沿面絶縁長
g :ギャップ長
1: Insulation 1a: Surface 2, 3: Metal electrode 4: Low resistance band 5: High resistance band 10: Deterioration diagnosis device 11: Input unit 12: Calculation unit 13: Comparison unit 14: Diagnosis unit 15: Storage unit L: Creeping insulation length g: Gap length

Claims (8)

高圧受配電機器に使用される絶縁物の劣化状態を診断する劣化診断方法において、
前記絶縁物の表面における低抵抗帯と高抵抗帯との表面抵抗比、前記絶縁物の沿面絶縁長、及び前記絶縁物の沿面に生じる沿面電位差に基づいて、前記絶縁物の前記沿面上における前記高抵抗帯のギャップ長と発生電圧との関係曲線を求め、
前記関係曲線と、前記ギャップ長と放電電圧との関係を示した基準曲線とを比較して、前記絶縁物の劣化状態を判断し、
前記基準曲線として、パッシェン曲線を用いる、
ことを特徴とする絶縁物の劣化診断方法。
In a deterioration diagnosis method for diagnosing the deterioration state of insulation used in high-voltage power receiving and distribution equipment,
The said on the surface of the insulator based on the surface resistance ratio between the low resistance band and the high resistance band on the surface of the insulator, the creepage insulation length of the insulator, and the creeping potential difference generated along the creeping surface of the insulator. Find the relationship curve between the gap length in the high resistance band and the generated voltage.
The deterioration state of the insulation is determined by comparing the relationship curve with the reference curve showing the relationship between the gap length and the discharge voltage.
A Paschen curve is used as the reference curve.
A method for diagnosing deterioration of an insulating material.
前記関係曲線と、前記基準曲線との両曲線の交点有無で、前記絶縁物の劣化状態を判断することを特徴とする請求項1に記載の絶縁物の劣化診断方法。 The method for diagnosing deterioration of an insulator according to claim 1, wherein the deterioration state of the insulation is determined based on the presence or absence of an intersection between the relational curve and the reference curve. 前記絶縁物の表面の汚損堆積有無における表面抵抗比を、前記低抵抗帯と前記高抵抗帯の表面抵抗比として求めることを特徴とする請求項1又は請求項2に記載の絶縁物の劣化診断方法。 The deterioration diagnosis of the insulator according to claim 1 or 2, wherein the surface resistivity of the surface of the insulator with or without fouling accumulation is obtained as the surface resistivity ratio of the low resistance band and the high resistance band. Method. 前記汚損堆積がある状態の表面抵抗値として、前記絶縁物の表面を清掃する前の表面抵抗値、前記汚損堆積が無い状態の表面抵抗値として、前記絶縁物の表面を清掃した後の表面抵抗値を夫々用いて、前記表面抵抗比を求めることを特徴とする請求項3に記載の絶縁物の劣化診断方法。 As the surface resistance value with the stain accumulation, the surface resistance value before cleaning the surface of the insulator, and as the surface resistance value without the stain accumulation, the surface resistance after cleaning the surface of the insulation. The method for diagnosing deterioration of an insulating material according to claim 3, wherein the surface resistivity ratio is obtained by using each value. 前記汚損堆積がない状態の表面抵抗値として、出荷時点での表面抵抗値、前記汚損堆積がある状態の表面抵抗値として、現在時点での表面抵抗値を夫々用いて、前記表面抵抗値を求めることを特徴とすることを特徴とする請求項3に記載の絶縁物の劣化診断方法。 The surface resistance value at the time of shipment is used as the surface resistance value without the stain accumulation, and the surface resistance value at the present time is used as the surface resistance value with the stain accumulation, respectively, to obtain the surface resistance value. The method for diagnosing deterioration of an insulator according to claim 3, wherein the method is characterized by the above. 前記絶縁物の沿面絶縁長として、各種製品規格の絶縁設計寸法値を用い、前記絶縁物の沿面に生じる沿面電位差として、常規対地電圧を用いるとを特徴とする請求項1から請求項のいずれかに記載の絶縁物の劣化診断方法。 5 . The method for diagnosing deterioration of an insulator according to any one. 前記関係曲線と、前記基準曲線との比較に基づいて、6kV機種では前記表面抵抗比が150以上、3kV機種では前記表面抵抗比が230以上で、寿命到達状態、或いは要清掃状態と判断することを特徴とする請求項1から請求項のいずれかに記載の絶縁物の劣化診断方法。 Based on the comparison between the relational curve and the reference curve, the surface resistivity of the 6 kV model is 150 or more, and the surface resistivity of the 3 kV model is 230 or more, and it is determined that the product has reached the end of its life or requires cleaning. The method for diagnosing deterioration of an insulator according to any one of claims 1 to 6 . 高圧受配電機器に使用される絶縁物の劣化状態を診断する劣化診断装置において、
前記絶縁物の汚損堆積有無における表面抵抗値、前記絶縁物の沿面絶縁長、及び前記絶縁物の沿面に生じる沿面電位差を入力する入力部と、
前記表面抵抗値に基づく前記絶縁物の表面における低抵抗帯と高抵抗帯との表面抵抗比、前記沿面絶縁長、及び前記沿面電位差に基づいて、前記絶縁物の前記沿面上における前記高抵抗帯のギャップ長と発生電圧との関係曲線を求める演算部と、
前記関係曲線と、前記ギャップ長と放電電圧との関係を示した基準曲線とを比較する比較部と、
前記比較部の結果に基づいて、前記絶縁物の劣化状態を診断する診断部と、
を有し、
前記基準曲線として、パッシェン曲線を用いる、
ことを特徴とする劣化診断装置。
In a deterioration diagnosis device that diagnoses the deterioration state of insulation used in high-voltage power receiving and distribution equipment.
An input unit for inputting the surface resistance value of the presence or absence of fouling accumulation of the insulation, the creepage insulation length of the insulation, and the creepage potential difference generated along the surface of the insulation.
The high resistance band on the surface of the insulator based on the surface resistance ratio between the low resistance band and the high resistance band on the surface of the insulator based on the surface resistance value, the creepage insulation length, and the creepage potential difference. The calculation unit that obtains the relational curve between the gap length and the generated voltage of
A comparison unit that compares the relationship curve with a reference curve showing the relationship between the gap length and the discharge voltage.
Based on the results of the comparison unit, the diagnostic unit that diagnoses the deterioration state of the insulation and
Have,
A Paschen curve is used as the reference curve.
Deterioration diagnostic equipment characterized by this.
JP2017238703A 2017-12-13 2017-12-13 Deterioration diagnosis method and deterioration diagnosis device for insulation Active JP7056124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017238703A JP7056124B2 (en) 2017-12-13 2017-12-13 Deterioration diagnosis method and deterioration diagnosis device for insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017238703A JP7056124B2 (en) 2017-12-13 2017-12-13 Deterioration diagnosis method and deterioration diagnosis device for insulation

Publications (2)

Publication Number Publication Date
JP2019105557A JP2019105557A (en) 2019-06-27
JP7056124B2 true JP7056124B2 (en) 2022-04-19

Family

ID=67061951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017238703A Active JP7056124B2 (en) 2017-12-13 2017-12-13 Deterioration diagnosis method and deterioration diagnosis device for insulation

Country Status (1)

Country Link
JP (1) JP7056124B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372865B2 (en) * 2020-03-27 2023-11-01 本田技研工業株式会社 Partial discharge prediction device and partial discharge prediction method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232637A (en) 2007-03-16 2008-10-02 Railway Technical Res Inst Deterioration state measuring device and deterioration state measuring method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131476A (en) * 1983-12-20 1985-07-13 Sumitomo Metal Ind Ltd Method and device for deciding on quality of insulator of electric equipment
JPS6069572A (en) * 1984-03-12 1985-04-20 Toshiba Corp Method and device for diagnosing insulation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232637A (en) 2007-03-16 2008-10-02 Railway Technical Res Inst Deterioration state measuring device and deterioration state measuring method

Also Published As

Publication number Publication date
JP2019105557A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP4937012B2 (en) Remaining life diagnosis method for power distribution equipment
JP7056124B2 (en) Deterioration diagnosis method and deterioration diagnosis device for insulation
Soltani et al. Impact of humidity on dielectric response of rotating machines insulation system
JP2020003277A (en) Method and system for diagnosing shorted residual life of power receiving/distributing apparatus
JP5836904B2 (en) Insulation material degradation diagnosis method and apparatus
Saldivar-Guerrero et al. Application of unusual techniques for characterizing ageing on polymeric electrical insulation
JP4045776B2 (en) Life diagnosis method for power distribution facilities
Ibrahim et al. Nanofilled nonlinear coating material for improving proactive flashover performance of high voltage insulators
JPH0611530A (en) Method and equipment for evaluating insulation reliability lifetime of electronic component
JP6763131B2 (en) Insulation characteristic measuring device, insulation characteristic measuring method using it, and remaining life diagnosis method
Notingher et al. Lifetime estimation of composite insulations by absorption/resorption currents method
Budiman et al. Estimation of particle initiated PD inception voltage around spacer in GIS
JP3720291B2 (en) Degradation diagnosis method for solid insulation materials
Ramirez-Vazquez et al. Diagnostic of nonceramic insulators aged in a salt fog chamber by using electric field sensor
Danikas et al. Analysis of polymer surface modifications due to discharges initiated by water droplets under high electric fields
WO2019124357A1 (en) Evaluation system, evaluation method, selection method, manufacturing method, insulating material, and package
JP7292419B2 (en) Diagnosis of dark discharge
Syakur et al. Leakage current monitoring for silane epoxy resin insulator under tropical climate conditions
Kumar et al. Condition assessment program on aged high voltage insulation of in-service turbine generator
JP7000219B2 (en) Diagnostic system, diagnostic device, and diagnostic method
Hanusrichter et al. Experimental Investigation of the Surface Current on Polluted HVDC Polymer Insulators
Syakur The electrical performance of epoxy resin insulator under rain contaminants
JP2006170882A (en) Insulation diagnostic device, and its diagnostic method
Venkataraman et al. A novel method for prediction of flashover of in-service EPDM insulators
Ng et al. Failure analysis on multilayer ceramic capacitor (MLCC) with leakage failure caused by silver (Ag) migration in molded plastic package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220321

R150 Certificate of patent or registration of utility model

Ref document number: 7056124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150