JP7055765B2 - 9Cr-1Mo Shielded metal arc welding rod for steel welding - Google Patents

9Cr-1Mo Shielded metal arc welding rod for steel welding Download PDF

Info

Publication number
JP7055765B2
JP7055765B2 JP2019071145A JP2019071145A JP7055765B2 JP 7055765 B2 JP7055765 B2 JP 7055765B2 JP 2019071145 A JP2019071145 A JP 2019071145A JP 2019071145 A JP2019071145 A JP 2019071145A JP 7055765 B2 JP7055765 B2 JP 7055765B2
Authority
JP
Japan
Prior art keywords
core wire
total
coating agent
mass ratio
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019071145A
Other languages
Japanese (ja)
Other versions
JP2019188471A (en
Inventor
飛史 行方
貴之 大塚
将 高橋
Original Assignee
日鉄溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄溶接工業株式会社 filed Critical 日鉄溶接工業株式会社
Publication of JP2019188471A publication Critical patent/JP2019188471A/en
Application granted granted Critical
Publication of JP7055765B2 publication Critical patent/JP7055765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

本発明は、Cr-Mo鋼の溶接に使用され、溶接作業性が良好で、溶接後熱処理(以下、PWHTという。)温度が750℃以上でも、良好な強度及び靭性が得られ、かつ、500℃以上での高温強度が良好な溶接金属が得られる9Cr-1Mo鋼溶接用被覆アーク溶接棒に関する。 The present invention is used for welding Cr-Mo steel, has good welding workability, and can obtain good strength and toughness even when the post-weld heat treatment (hereinafter referred to as PWHT) temperature is 750 ° C. or higher, and 500. The present invention relates to a coated arc welding rod for welding 9Cr-1Mo steel, which can obtain a welded metal having good high temperature strength at ℃ or higher.

東日本大震災に伴う原子力発電所の長期停止の影響によって、化石燃料である石炭、天然ガス及び石油を燃料とする火力発電ボイラによる発電が2011年以降高まっている。このような火力発電プラントは、石炭の燃焼による熱で高温の蒸気を作るボイラと蒸気で発電機を廻すタービンからなる。ボイラ部分は、水を予熱する節炭器、蒸気を作る水壁とも呼ばれる蒸発器、蒸発器を過熱する過熱器、タービンを廻した後、圧力の下がった蒸気を再度炉内で過熱する再熱器、高温の主蒸気及び再熱蒸気を集めてタービンに送る主蒸気管及び高温再熱蒸気管で構成され、その殆どの構造部材が鋼管である。鋼管に用いられる材料には、高温で大径厚肉部材となる主蒸気管や高温再熱蒸気管では、軌道停止に伴う熱疲労が問題となるため、線熱膨張係数が比較的小さく、熱疲労に対して有利な9~12Cr質量%含有の高Crフェライト系耐熱鋼が適用されている。 Due to the long-term shutdown of nuclear power plants due to the Great East Japan Earthquake, power generation by thermal power generation boilers using fossil fuels such as coal, natural gas and oil has increased since 2011. Such a thermal power plant consists of a boiler that produces high-temperature steam from the heat generated by burning coal and a turbine that uses steam to turn a generator. The boiler part is a coal saver that preheats water, an evaporator called a water wall that produces steam, a superheater that overheats the evaporator, and a reheat that reheats the steam whose pressure has dropped in the furnace after turning the turbine. It consists of a vessel, a main steam pipe that collects high-temperature main steam and reheated steam and sends them to a turbine, and a high-temperature reheated steam pipe, and most of the structural members are steel pipes. As for the materials used for steel pipes, the main steam pipe and high-temperature reheated steam pipe, which are thick members with a large diameter at high temperature, have a problem of thermal fatigue due to track stop, so the coefficient of linear thermal expansion is relatively small and heat is generated. A high Cr ferrite heat-resistant steel containing 9 to 12 Cr mass%, which is advantageous against fatigue, is applied.

また、このような火力発電は、発電に伴い温暖化ガスである二酸化炭素を多く排出するため、発電効率の向上が求められている。特に、石炭火力は他の化石燃料に比較して単位発電量当たりの二酸化炭素排出量が多く、これまでに蒸気条件の高温高圧化により発電効率の向上が図られている。 Further, since such thermal power generation emits a large amount of carbon dioxide, which is a greenhouse gas, along with the power generation, improvement in power generation efficiency is required. In particular, coal-fired power generation emits more carbon dioxide per unit power generation than other fossil fuels, and so far, power generation efficiency has been improved by increasing the temperature and pressure of steam conditions.

蒸気条件の高温高圧化には、材料の高温強度や耐食性を高める必要があり、さまざまな材料が開発されてきた。近年では、これら事業の効率化を目的に更なる高温条件での操業が望まれており、より高温強度特性に優れた溶接金属が得られる溶接材料として、9Cr-1Mo鋼被覆アーク溶接材料の開発が進められている。 In order to increase the high temperature and pressure of steam conditions, it is necessary to increase the high temperature strength and corrosion resistance of the materials, and various materials have been developed. In recent years, it has been desired to operate under higher high temperature conditions for the purpose of improving the efficiency of these businesses, and the development of 9Cr-1Mo steel shielded metal arc welding material as a welding material that can obtain weld metal with better high temperature strength characteristics. Is underway.

9Cr-1Mo鋼は、Cr-Mo鋼の中で特に高温強度特性に優れている耐熱鋼である。9Cr-1Mo鋼は、火力発電ボイラの圧力容器に広く使用されており、それに使用される被覆アーク溶接棒が特許文献1に開示されている。特許文献1には、低水素系被覆アーク溶接棒中のC、Si、Mn、Ni、Cr、Mo、Fe、Ti、V、Nb、Co、W及びNを規定し、被覆剤中のCO2換算値、金属弗化物及びSiO2を規定することで、耐棒焼け性及び塗装性に優れると共に、耐欠陥性に優れた溶接金属を得ることができる低水素系被覆アーク溶接棒が開示されている。 9Cr-1Mo steel is a heat-resistant steel having excellent high-temperature strength characteristics among Cr-Mo steels. 9Cr-1Mo steel is widely used in a pressure vessel of a thermal power generation boiler, and a shielded metal arc welding rod used therein is disclosed in Patent Document 1. Patent Document 1 defines C, Si, Mn, Ni, Cr, Mo, Fe, Ti, V, Nb, Co, W and N in a low hydrogen-based shielded metal arc welding rod, and CO 2 in the coating agent. A low hydrogen-based shielded metal arc welding rod capable of obtaining a weld metal having excellent bar burn resistance and paintability and excellent defect resistance by specifying a converted value, a metal fluoride, and SiO 2 is disclosed. There is.

特許文献1に開示された低水素系被覆アーク溶接棒によれば、耐棒焼け性、塗装性に優れると共に、耐欠陥性に優れた溶接金属を得ることができるが、PWHTを750℃で行った際の機械的性質が明確でなく、特に高温強度や靭性を確保するには、オーステナイト安定化元素としてCr当量を調整してδフェライトの生成を抑える必要がある。 According to the low hydrogen-based shielded metal arc welding rod disclosed in Patent Document 1, a weld metal having excellent rod burn resistance and coating property and also excellent defect resistance can be obtained, but PWHT is performed at 750 ° C. The mechanical properties at the time are not clear, and in particular, in order to secure high-temperature strength and toughness, it is necessary to adjust the Cr equivalent as an austenite stabilizing element to suppress the formation of δ-ferrite.

また、特許文献2には、被覆アーク溶接棒中のC、Si、Mn、V、Nb、Cr、Ni、Mo、W、Ta、Nb、V、N及びTa/Nbを規定し、かつCoを有し、0.5Co+Mn+Ni≦3.5を規定することで、740℃×4時間のPWHT後の溶接金属部の高温特性を確保することができる高Crフェライト系耐熱鋼用被覆アーク溶接棒が開示されている。 Further, Patent Document 2 defines C, Si, Mn, V, Nb, Cr, Ni, Mo, W, Ta, Nb, V, N and Ta / Nb in the shielded metal arc welding rod, and Co. Disclosed is a shielded metal arc welding rod for high Cr ferrite heat resistant steel that can secure the high temperature characteristics of the weld metal part after PWHT at 740 ° C. × 4 hours by specifying 0.5Co + Mn + Ni ≦ 3.5. Has been done.

しかし、9Cr-1Mo鋼を溶接する上では、構造部材の殆どが鋼管であり、溶接は全姿勢溶接性が求められる。特許文献2に記載されている高Crフェライト系耐熱鋼用被覆アーク溶接棒では、Ca換算値とF換算値が適正ではないため、円周溶接の際にビード形状が凸になりやすく全姿勢溶接性に課題がある。また、溶接金属部の靭性確保の観点から、δフェライトを抑制するオーステナイト安定化元素を規定してはいるものの、脱酸反応を促進させ耐欠陥性を向上させる脱酸元素の添加が不十分であり、溶接金属中にブローホール等の溶接欠陥が発生しやすいという問題点がある。 However, when welding 9Cr-1Mo steel, most of the structural members are steel pipes, and welding is required to have full-posture weldability. In the shielded metal arc welding rod for high Cr ferrite heat resistant steel described in Patent Document 2, since the Ca conversion value and the F conversion value are not appropriate, the bead shape tends to be convex during circumferential welding, and all attitude welding is performed. There is a problem with sex. Further, from the viewpoint of ensuring the toughness of the weld metal part, although the austenite stabilizing element that suppresses δ ferrite is specified, the addition of the deoxidizing element that promotes the deoxidizing reaction and improves the defect resistance is insufficient. There is a problem that welding defects such as blow holes are likely to occur in the weld metal.

一方、特許文献3には、被覆アーク溶接棒中のC、Si、Mn、Ni、Cr、Mo、W、V、Nb、B、Al、Co及びNを規定し、かつ、当該Cr、C及びCoが14Cr-220C-7Coを100以下を満たすことによって、δフェライトが抑制され、高温強度を維持しながら耐圧性に優れた健全な溶接金属が得られる高Crフェライト系耐熱鋼用溶接材料が開示されている。 On the other hand, Patent Document 3 defines C, Si, Mn, Ni, Cr, Mo, W, V, Nb, B, Al, Co and N in the shielded metal arc welding rod, and the Cr, C and Disclosed is a welding material for high Cr ferritic heat-resistant steel that suppresses δ ferritic steel by satisfying 14Cr-220C-7Co with Co of 100 or less, and can obtain a sound weld metal with excellent pressure resistance while maintaining high temperature strength. Has been done.

しかし、特許文献3に記載された溶接材料として被覆アーク溶接棒を用いた場合、ティグ溶接と比較して溶接金属中の酸素量が高く、靭性等に問題がある。また、Si、Mn等の脱酸元素の添加が不十分であり、溶接金属中にブローホール等の溶接欠陥が発生しやすいといった問題点があった。 However, when a shielded metal arc welding rod is used as the welding material described in Patent Document 3, the amount of oxygen in the weld metal is higher than that in TIG welding, and there is a problem in toughness and the like. Further, there is a problem that the addition of deoxidizing elements such as Si and Mn is insufficient, and welding defects such as blow holes are likely to occur in the weld metal.

特開2016-120519号公報Japanese Unexamined Patent Publication No. 2016-120719 特開平10-175091号公報Japanese Unexamined Patent Publication No. 10-175091 特開2000-271785Japanese Patent Laid-Open No. 2000-271785

本発明は、上述した問題点を解決するために案出されたものであり、9Cr-1Mo鋼の溶接において、溶接作業性が良好で、PWHT温度が750℃以上でも、良好な強度及び靭性が得られ、かつ、500℃以上での高温強度が良好な溶接金属が得られる9Cr-1Mo鋼溶接用被覆アーク溶接棒を提供することを目的とする。 The present invention has been devised to solve the above-mentioned problems, and has good welding workability in welding 9Cr-1Mo steel, and good strength and toughness even when the PWHT temperature is 750 ° C. or higher. It is an object of the present invention to provide a shielded metal arc welding rod for 9Cr-1Mo steel welding which can be obtained and can obtain a weld metal having good high temperature strength at 500 ° C. or higher.

本発明に係る9Cr-1Mo鋼用被覆アーク溶接棒の要旨は、9Cr-1Mo鋼溶接用被覆アーク溶接棒において、9%Cr鋼を心線とし、前記心線と被覆剤の一方または両方の合計で、下記式に示す心線質量比で、C:0.05~0.15%、Si:0.1~1.0%、Mn:0.7~1.5%、Ni:0.1~0.6%、Cr:9.0~11.0%、Mo:0.5~1.5%、Nb:0.02~0.20%、Cu:0.01~0.15%、Al:0.1~0.8%、V:0.1~0.4%、Mg:0.3~1.5%、N:0.02~0.10%を含有し、前記被覆剤は、当該被覆剤全質量に対して質量%で、Si酸化物のSiO2換算値の合計:3~10%、Zr酸化物のZrO2換算値の合計:3~8%、Al酸化物のAl23換算値の合計:0.01~0.50%、CaCO3、CaF2、CaOのCa換算値の合計:15~40%、金属弗化物のF換算値の合計:6~17%、MgO:0.1~1.0%、Na化合物及びK化合物のNa換算値及びK換算値の合計:1~3%を含有し、かつ、CaCO3、CaF2、CaOのCa換算値の合計/金属弗化物のF換算値の合計で算出されるD値が2.0~3.0であり、残部が前記心線のFe、被覆剤の塗装剤、鉄合金からのFe分及び不可避不純物からなることを特徴とする。
心線質量比=心線中の含有量%+被覆剤中の含有量%×被覆率/100・・・(式)
(但し、心線中の含有量は心線全質量に対する質量%、被覆剤の含有量%は被覆剤全質量に対する質量%、被覆率は、当該9Cr-1Mo鋼溶接用被覆アーク溶接棒全質量に対する前記被覆剤の質量%)
The gist of the shielded metal arc welding rod for 9Cr-1Mo steel according to the present invention is that in the shielded metal arc welding rod for 9Cr-1Mo steel welding, 9% Cr steel is used as a core wire, and one or both of the core wire and the coating agent are totaled. Then, in the core wire mass ratio shown in the following formula, C: 0.05 to 0.15%, Si: 0.1 to 1.0%, Mn: 0.7 to 1.5%, Ni: 0.1. ~ 0.6%, Cr: 9.0 ~ 11.0%, Mo: 0.5 ~ 1.5%, Nb: 0.02 ~ 0.20%, Cu: 0.01 ~ 0.15%, The coating agent contains Al: 0.1 to 0.8%, V: 0.1 to 0.4%, Mg: 0.3 to 1.5%, N: 0.02 to 0.10%. Is the total weight of the Si oxide in terms of SiO 2 : 3 to 10%, the total value of the Zr oxide in terms of ZrO 2 : 3 to 8%, and the total of the Al oxide. Total of Al 2 O 3 conversion values: 0.01 to 0.50%, total of Ca CO 3 , CaF 2 , and Ca O conversion values: 15 to 40%, total of metal fluoride F conversion values: 6 to 17 %, MgO: 0.1 to 1.0%, total of Na conversion value and K conversion value of Na compound and K compound: 1 to 3%, and Ca conversion value of CaCO 3 , CaF 2 , and CaO. The D value calculated by the total of F conversion values of the metal fluoride is 2.0 to 3.0, and the balance is Fe of the core wire, the coating agent of the coating agent, Fe content from the iron alloy, and It is characterized by being composed of unavoidable impurities.
Core wire mass ratio = content% in core wire + content% in coating agent x coverage rate / 100 ... (Equation)
(However, the content in the core wire is mass% with respect to the total mass of the core wire, the content% in the coating agent is mass% with respect to the total mass of the coating agent, and the coverage is the entire coated arc welding rod for 9Cr-1Mo steel welding. (Mass% of the coating agent by mass)

本発明の9Cr-1Mo鋼用被覆アーク溶接棒によれば、溶接作業性が良好で、PWHTが750℃以上でも、良好な強度ならびに靭性が得られ、かつ、500℃以上での高温強度が良好な溶接金属が得られるなど高品質の溶接金属を得ることができる。 According to the shielded metal arc welding rod for 9Cr-1Mo steel of the present invention, welding workability is good, good strength and toughness can be obtained even when PWHT is 750 ° C. or higher, and high temperature strength at 500 ° C. or higher is good. It is possible to obtain high-quality weld metal, such as obtaining a high-quality weld metal.

本発明者らは、9Cr-1Mo鋼の溶接に用いられる被覆アーク溶接棒において、前記課題を解決するために種々の被覆アーク溶接棒を試作し、溶接試験体の作製を行った。その溶接試験体を760℃で2時間のPWHTを行った後、溶接金属の強度、靭性及び500℃での高温強度について調査を行った。その結果、被覆アーク溶接棒中のC、Si、Mn、Ni、Cr、Mo、Cu、Al、Mg及びNの各含有量を規定することにより、PWHTが750℃以上でもδフェライトの生成を抑制し、マルテンサイトの単相組織とすることで、PWHT後の溶接金属性能は強度及び靭性ともに良好であったものの、500℃での十分な高温強度が得られなかった。 The present inventors have prototyped various shielded metal arc welding rods in order to solve the above-mentioned problems in the shielded metal arc welding rods used for welding 9Cr-1Mo steel, and manufactured welding test pieces. The welded specimen was subjected to PWHT at 760 ° C. for 2 hours, and then the strength, toughness and high temperature strength of the weld metal at 500 ° C. were investigated. As a result, by defining the contents of C, Si, Mn, Ni, Cr, Mo, Cu, Al, Mg and N in the shielded metal arc welding rod, the formation of δ ferrite is suppressed even when the PWHT is 750 ° C or higher. However, by using a single-phase structure of martensite, the weld metal performance after PWHT was good in both strength and toughness, but sufficient high-temperature strength at 500 ° C. could not be obtained.

そこで、得られた溶着金属の化学成分を再度検討した結果、フェライト安定化元素であるNb及びVを調整することによって、炭化物及び窒化物として微細析出させ、析出強化により、500℃以上でも十分な高温強度が得られるという知見が得られた。一方、フェライト安定化元素であるNbの添加量によって、δフェライトの生成量が多くなり靭性が低下するという新たな問題点が明らかとなった。 Therefore, as a result of reexamining the chemical composition of the obtained weld metal, fine precipitation was performed as carbides and nitrides by adjusting Nb and V, which are ferrite stabilizing elements, and precipitation strengthening was sufficient even at 500 ° C. or higher. It was found that high temperature strength can be obtained. On the other hand, a new problem has been clarified that the amount of δ-ferrite produced increases and the toughness decreases depending on the amount of Nb added, which is a ferrite stabilizing element.

そこで、フェライト安定化元素であるCr及びMoを最適化することによって、PWHTが750℃以上でも良好な溶接金属の強度及び靭性が得られ、かつ、500℃以上での高温強度が良好な溶接金属が得られることを見出した。 Therefore, by optimizing the ferrite stabilizing elements Cr and Mo, good weld metal strength and toughness can be obtained even when the PWHT is 750 ° C or higher, and the weld metal has good high-temperature strength at 500 ° C or higher. Was found to be obtained.

また、溶接作業性については、アークの安定性及びスパッタ発生量はSi酸化物、Zr酸化物、金属弗化物、Na化合物及びK化合物の適量添加で、スラグ被包性はAl酸化物及びCaCO3、CaF2、CaO適量添加で、スラグ剥離性はMgO及びCaCO3、CaF2、CaOと金属弗化物の割合を規定することで改善できることを見出した。 Regarding welding workability, arc stability and spatter generation amount are appropriate amounts of Si oxide, Zr oxide, metal fluoride, Na compound and K compound, and slag encapsulation is Al oxide and CaCO 3 . , CaF 2 , CaO, and CaO, it was found that the slag releasability can be improved by specifying the ratio of MgO and CaCO 3 , CaF 2 , CaO and the metal fluoride by adding an appropriate amount.

以下に、本発明の9Cr-1Mo鋼用被覆アーク溶接棒の各成分組成と、その成分組成の数値限定理由について説明する。なお、各成分組成の含有量は質量%で表し、単に%として記載する。 Hereinafter, the composition of each component of the shielded metal arc welding rod for 9Cr-1Mo steel of the present invention and the reason for limiting the numerical value of the component composition will be described. The content of each component composition is expressed in% by mass and is simply described as%.

まず、9%Cr鋼心線(以下、心線という。)と被覆剤の一方または両方の合計で、下記式に示す心線質量比の数値限定理由を述べる。 First, the reason for limiting the numerical value of the core wire mass ratio shown in the following formula for the total of one or both of the 9% Cr steel core wire (hereinafter referred to as core wire) and the coating agent will be described.

心線質量比=心線中の含有量%+被覆剤中の含有量%×被覆率/100・・・(式)
(但し、心線中の含有量は心線全質量に対する質量%、被覆剤の含有量%は被覆剤全質量に対する質量%、被覆率は、当該9Cr-1Mo鋼溶接用被覆アーク溶接棒全質量に対する前記被覆剤の質量%)
Core wire mass ratio = content% in core wire + content% in coating agent x coverage rate / 100 ... (Equation)
(However, the content in the core wire is mass% with respect to the total mass of the core wire, the content% in the coating agent is mass% with respect to the total mass of the coating agent, and the coverage is the entire coated arc welding rod for 9Cr-1Mo steel welding. (Mass% of the coating agent by mass)

[心線と被覆剤の心線質量比でC:0.05~0.15%]
Cは、心線、被覆剤のFe-Si、Fe-Mn及びFe-Cr等から添加され、溶接金属の焼入れ性とPWHT時の炭化物の析出に影響を及ぼし、溶接金属の高温強度を確保するために必須の元素である。心線質量比でCが0.05%未満では、PWHT時に炭化物の析出が不十分となってPWHT後の溶接金属の高温強度が低下する。一方、心線質量比でCが0.15%を超えると、炭化物の析出が過剰となり、溶接金属の靭性が低下する。したがって、心線と被覆剤の心線質量比でCは0.05~0.15%とする。なお、Cは溶接金属の強度と靭性のバランスの観点から0.10%以下が望ましい。
[C: 0.05 to 0.15% by mass ratio of core wire to coating material]
C is added from the core wire, the coating materials Fe-Si, Fe-Mn, Fe-Cr, etc., and affects the hardenability of the weld metal and the precipitation of carbides during PWHT, ensuring the high temperature strength of the weld metal. It is an essential element for this. If C is less than 0.05% in terms of core mass ratio, the precipitation of carbides becomes insufficient during PWHT, and the high-temperature strength of the weld metal after PWHT decreases. On the other hand, when C exceeds 0.15% by mass ratio of the core wire, the precipitation of carbide becomes excessive and the toughness of the weld metal is lowered. Therefore, C is set to 0.05 to 0.15% in terms of the mass ratio of the core wire to the core wire of the coating agent. It is desirable that C is 0.10% or less from the viewpoint of the balance between the strength and toughness of the weld metal.

[心線と被覆剤の心線質量比でSi:0.1~1.0%]
Siは、心線、金属Si及びFe-Si等から添加され、脱酸反応を促進させ溶接金属の耐欠陥性を向上させる効果を有する。心線質量比でSiが0.1%未満では、その効果が十分に得られず、ブローホール等の溶接欠陥が発生しやすく、耐欠陥性が低下する。一方、心線質量比でSiが1.0%を超えると、Laves相の析出を促進させ、溶接金属の靭性が低下する。したがって、心線と被覆剤の心線質量比でSiは0.1~1.0%とする。
[Si: 0.1-1.0% by mass ratio of core wire to coating material]
Si is added from core wire, metal Si, Fe—Si and the like, and has the effect of accelerating the deoxidation reaction and improving the defect resistance of the weld metal. If Si is less than 0.1% by mass ratio of the core wire, the effect cannot be sufficiently obtained, welding defects such as blow holes are likely to occur, and the defect resistance is lowered. On the other hand, when Si exceeds 1.0% in terms of core mass ratio, precipitation of the Laves phase is promoted and the toughness of the weld metal is lowered. Therefore, the mass ratio of the core wire to the core wire of the coating agent is 0.1 to 1.0% for Si.

[心線と被覆剤の心線質量比でMn:0.7~1.5%]
Mnは、心線、金属Mn及びFe-Mn等から添加され、Si同様に脱酸元素であり、脱酸反応を促進させ溶接金属の耐欠陥性を向上させる効果を有する。心線質量比でMnが0.7%未満では、その効果が十分に得られず、ブローホール等の溶接欠陥が発生しやすく、耐欠陥性が低下する。一方、心線質量比でMnが1.5%を超えると、窒化物を析出し、溶接金属の靭性が低下する。したがって、心線と被覆剤の心線質量比でMnは0.7~1.5%とする。
[Mn: 0.7 to 1.5% by mass ratio of core wire to coating material]
Mn is added from a core wire, a metal Mn, Fe-Mn, etc., and is a deoxidizing element like Si, and has an effect of promoting a deoxidizing reaction and improving the defect resistance of the weld metal. If Mn is less than 0.7% in terms of core mass ratio, the effect cannot be sufficiently obtained, welding defects such as blow holes are likely to occur, and defect resistance is lowered. On the other hand, when Mn exceeds 1.5% in terms of core mass ratio, nitride is deposited and the toughness of the weld metal is lowered. Therefore, Mn is set to 0.7 to 1.5% in terms of the mass ratio of the core wire to the core wire of the coating agent.

[心線と被覆剤の心線質量比でNi:0.1~0.6%]
Niは、心線、金属Ni及びFe-Ni等から添加され、オーステナイト安定化元素としてCr当量を調整し、δフェライトの生成を抑制して溶接金属の靭性を向上させる効果を有する。心線質量比でNiが0.1%未満では、その効果が十分に得られず、溶接金属の靭性が低下する。一方、心線質量比でNiが0.6%を超えると、PWHT後の溶接金属の高温強度が低下する。したがって、心線と被覆剤の心線質量比でNiは0.1~0.6%とする。
[Ni: 0.1-0.6% by mass ratio of core wire to coating material]
Ni is added from core wire, metal Ni, Fe-Ni, etc., and has the effect of adjusting the Cr equivalent as an austenite stabilizing element, suppressing the formation of δ-ferrite, and improving the toughness of the weld metal. If Ni is less than 0.1% by mass ratio of the core wire, the effect cannot be sufficiently obtained and the toughness of the weld metal is lowered. On the other hand, when Ni exceeds 0.6% in the core mass ratio, the high temperature strength of the weld metal after PWHT decreases. Therefore, the mass ratio of the core wire to the core wire of the coating agent is 0.1 to 0.6% for Ni.

[心線と被覆剤の心線質量比でCr:9.0~11.0%]
Crは、心線、金属Cr及びFe-Cr等から添加され、フェライト安定化元素であり、高温での耐食性や耐酸化性の向上とともに、PWHT後の溶接金属の高温強度を向上させる効果を有する。心線質量比でCrが9.0%未満では、炭窒化物の析出が不十分となり、PWHT後の溶接金属の高温強度が低下する。一方、心線質量比でCrが11.0%を超えると、δフェライト及び炭窒化物の析出が促進され、溶接金属の靭性が低下する。したがって、心線と被覆剤の心線質量比でCrは9.0~11.0%とする。
[Cr: 9.0 to 11.0% by mass ratio of core wire to coating material]
Cr is a ferrite stabilizing element added from core wire, metal Cr, Fe-Cr, etc., and has the effect of improving corrosion resistance and oxidation resistance at high temperatures as well as improving the high temperature strength of the weld metal after PWHT. .. If Cr is less than 9.0% by mass ratio of the core wire, the precipitation of carbonitride becomes insufficient, and the high temperature strength of the weld metal after PWHT decreases. On the other hand, when Cr exceeds 11.0% in terms of core mass ratio, precipitation of δ-ferrite and carbonitride is promoted, and the toughness of the weld metal is lowered. Therefore, Cr is set to 9.0 to 11.0% in terms of the mass ratio of the core wire to the core wire of the coating agent.

[心線と被覆剤の心線質量比でMo:0.5~1.5%]
Moは、心線、金属Mo及びFe-Mo等から添加され、フェライト安定化元素であるとともに固溶強化により溶接金属の強度を高める効果を有する。心線質量比でMoが0.5%未満では、その効果が十分に得られず、溶接金属の強度が低下する。一方、心線質量比でMoが1.5%を超えると、δフェライトの析出が促進され溶接金属の靭性が低下する。したがって、心線と被覆剤の心線質量比でMoは0.5~1.5%とする。
[Mo: 0.5-1.5% by mass ratio of core wire to coating material]
Mo is added from core wire, metal Mo, Fe-Mo, etc., is a ferrite stabilizing element, and has the effect of increasing the strength of the weld metal by strengthening the solid solution. If Mo is less than 0.5% in terms of core mass ratio, the effect cannot be sufficiently obtained and the strength of the weld metal is lowered. On the other hand, when Mo exceeds 1.5% in terms of core mass ratio, precipitation of δ ferrite is promoted and the toughness of the weld metal is lowered. Therefore, Mo is 0.5 to 1.5% in terms of the mass ratio of the core wire to the core wire of the coating agent.

[心線と被覆剤の心線質量比でNb:0.02~0.20%]
Nbは、心線及びFe-Nb等から添加され、フェライト安定化元素であるとともに炭化物もしくは窒化物を微細析出し、析出強化によってPWHT後の溶接金属の高温強度を向上させる効果を有する。心線質量比でNbが0.02%未満では、炭窒化物の析出が不足し、PWHT後の溶接金属の高温強度が低下する。一方、心線質量比でNbが0.20%を超えると、溶接金属中の炭窒化物の析出が過剰となり、溶接金属の靭性が低下する。したがって、心線と被覆剤の心線質量比でNbは0.02~0.20%とする。
[Nb: 0.02 to 0.20% by mass ratio of core wire to coating material]
Nb is added from a core wire, Fe-Nb, etc., is a ferrite stabilizing element, and has the effect of finely precipitating carbides or nitrides and improving the high temperature strength of the weld metal after PWHT by strengthening the precipitation. If Nb is less than 0.02% in terms of core mass ratio, precipitation of carbonitride is insufficient and the high temperature strength of the weld metal after PWHT decreases. On the other hand, when Nb exceeds 0.20% in terms of core mass ratio, the precipitation of carbonitride in the weld metal becomes excessive, and the toughness of the weld metal decreases. Therefore, Nb is set to 0.02 to 0.20% in terms of the mass ratio of the core wire to the core wire of the coating agent.

[心線と被覆剤の心線質量比でCu:0.01~0.15%]
Cuは、心線及び金属Cu等から添加され、オーステナイト安定化元素であるとともに固溶強化により溶接金属の強度を高める効果を有する。心線質量比でCuが0.01%未満では、その効果が十分に得られず、溶接金属の強度が低下する。一方、心線質量比でCuが0.15%を超えると、δフェライトの析出が促進され溶接金属の靭性が低下する。したがって、Cuは0.01~0.15%とする。
[Cu: 0.01-0.15% by mass ratio of core wire to coating material]
Cu is added from a core wire, a metal Cu, or the like, and is an austenite stabilizing element and has an effect of increasing the strength of the weld metal by strengthening the solid solution. If Cu is less than 0.01% by mass ratio of the core wire, the effect cannot be sufficiently obtained and the strength of the weld metal is lowered. On the other hand, when Cu exceeds 0.15% in terms of core mass ratio, precipitation of δ ferrite is promoted and the toughness of the weld metal is lowered. Therefore, Cu is set to 0.01 to 0.15%.

[心線と被覆剤の心線質量比でAl:0.1~0.8%]
Alは、心線、金属Al及びFe-Al等から添加され、脱酸反応を促進させ溶接金属の耐欠陥性を向上させる効果を有する。心線質量比でAlが0.1%未満では、その効果が十分に得られず、ブローホール等の溶接欠陥が発生しやすく、耐欠陥性が低下する。一方、心線質量比でAlが0.8%を超えると、脱酸反応が促進されスラグ量が多くなりスラグ被包性が悪くなる。したがって、心線と被覆剤の心線質量比でAlは0.1~0.8%とする。
[Al: 0.1-0.8% by mass ratio of core wire to coating material]
Al is added from core wire, metal Al, Fe—Al and the like, and has an effect of accelerating the deoxidation reaction and improving the defect resistance of the weld metal. If Al is less than 0.1% by mass ratio of the core wire, the effect cannot be sufficiently obtained, welding defects such as blow holes are likely to occur, and the defect resistance is lowered. On the other hand, when Al exceeds 0.8% in terms of core mass ratio, the deoxidation reaction is promoted, the amount of slag increases, and the slag encapsulation property deteriorates. Therefore, Al is 0.1 to 0.8% in terms of the mass ratio of the core wire to the core wire of the coating agent.

[心線と被覆剤の心線質量比でV:0.1~0.4%]
Vは、心線及びFe-V等から添加され、Nbと同様にフェライト安定化元素であるとともに、炭化物もしくは窒化物を微細析出し、析出強化によりPWHT後の溶接金属の高温強度を向上させる効果を有する。心線質量比でVが0.1%未満では、炭窒化物の析出が不足し、PWHT後の溶接金属の高温強度が低下する。一方、心線質量比でVが0.4%を超えると、溶接金属中の炭窒化物の析出が過剰となり、溶接金属の靭性が低下する。したがって、心線と被覆剤の心線質量比でVは0.1~0.4%とする。
[V: 0.1-0.4% by mass ratio of core wire to coating material]
V is added from a core wire, Fe-V, etc., and is a ferrite stabilizing element like Nb. It also has the effect of finely precipitating carbides or nitrides and improving the high temperature strength of the weld metal after PWHT by strengthening the precipitation. Has. If V is less than 0.1% by mass ratio of the core wire, the precipitation of carbonitride is insufficient, and the high temperature strength of the weld metal after PWHT decreases. On the other hand, when V exceeds 0.4% in terms of core mass ratio, the precipitation of carbonitride in the weld metal becomes excessive, and the toughness of the weld metal decreases. Therefore, V is set to 0.1 to 0.4% in terms of the mass ratio of the core wire to the core wire of the coating agent.

[心線と被覆剤の心線質量比でMg:0.3~1.5%]
Mgは、心線及び金属Mg等から添加され、脱酸反応を促進させ溶接金属の耐欠陥性を向上させる効果を有する。心線質量比でMgが0.3%未満では、その効果が十分に得られず、ブローホール等の溶接欠陥が発生しやすく、耐欠陥性が低下する。一方、心線質量比でMgが1.5%を超えると、保護筒が不均一に溶融し、かつ、溶滴が大きく成長して移行するため、アークが不安定になる。したがって、心線と被覆剤の心線質量比でMgは、0.3~1.5%とする。
[Mg: 0.3-1.5% by mass ratio of core wire to coating material]
Mg is added from the core wire, metal Mg and the like, and has the effect of accelerating the deoxidation reaction and improving the defect resistance of the weld metal. If Mg is less than 0.3% by mass ratio of the core wire, the effect cannot be sufficiently obtained, welding defects such as blow holes are likely to occur, and the defect resistance is lowered. On the other hand, when Mg exceeds 1.5% in the core mass ratio, the protective cylinder melts non-uniformly, and the droplets grow large and migrate, so that the arc becomes unstable. Therefore, Mg is set to 0.3 to 1.5% in the core wire mass ratio of the core wire and the coating agent.

[心線と被覆剤の心線質量比でN:0.02~0.10%]
Nは、心線、窒化Mn及び窒化Cr等から添加され、Cr、Nb、V等と結合して溶接金属中に窒化物を形成し、溶接金属の強度を高める効果を有する。心線質量比でNが0.02%未満では、溶接金属中の窒化物の形成が不十分となり、溶接金属の強度が低下する。一方、心線質量比でNが0.10%を超えると、溶接金属中に固溶せず、ブローホール等の溶接欠陥が発生する。したがって、心線と被覆剤の心線質量比でNは0.02~0.10%とする。
[N: 0.02 to 0.10% by mass ratio of core wire to coating material]
N is added from the core wire, Mn nitride, Cr nitride and the like, and has the effect of combining with Cr, Nb, V and the like to form a nitride in the weld metal and increasing the strength of the weld metal. If N is less than 0.02% in terms of core mass ratio, the formation of nitrides in the weld metal becomes insufficient, and the strength of the weld metal decreases. On the other hand, if N exceeds 0.10% in terms of core mass ratio, it does not dissolve in the weld metal and welding defects such as blow holes occur. Therefore, N is 0.02 to 0.10% in the mass ratio of the core wire to the core wire of the coating agent.

次に、被覆剤中の各成分組成の数値限定理由について説明刷る。以下の被覆剤中の各成分組成は、被覆剤全質量に対する質量%で表すこととし、その質量%を表すときには単に%と記載することとする。 Next, the reason for limiting the numerical value of each component composition in the coating agent will be described and printed. The composition of each component in the following coating agents shall be expressed in% by mass with respect to the total mass of the coating agent, and when expressing the mass%, it shall be simply described as%.

[被覆剤中のSi酸化物のSiO2換算値の合計:3~10%]
Si酸化物は、カリ長石、珪砂、合成マイカ及び水ガラス等から添加され、被覆剤の融点を調整して保護筒を均一に溶融し、溶滴移行を規則的にしてアークを安定させる目的で添加する。Si酸化物のSiO2換算値の合計が3%未満では、保護筒が不均一に溶融し、アークが不安定になる。一方、Si酸化物のSiO2換算値の合計が10%を超えると、スラグ量が過多となり、スラグ被包性が悪くなる。したがって、被覆剤中のSi酸化物のSiO2換算値の合計は3~10%とする。
[Total SiO 2 conversion value of Si oxide in the coating agent: 3 to 10%]
Si oxide is added from potash feldspar, silica sand, synthetic mica, water glass, etc., and the purpose is to adjust the melting point of the coating agent to uniformly melt the protective cylinder, and to regulate the droplet transfer and stabilize the arc. Added. If the total SiO 2 conversion value of the Si oxide is less than 3%, the protective cylinder melts unevenly and the arc becomes unstable. On the other hand, if the total SiO 2 conversion value of the Si oxide exceeds 10%, the amount of slag becomes excessive and the slag encapsulation property deteriorates. Therefore, the total value of Si oxides in the coating material in terms of SiO 2 is set to 3 to 10%.

[被覆剤中のZr酸化物のZrO2換算値の合計:3~8%]
Zr酸化物は、ジルコンサンド、ジルコンフラワー及び酸化ジルコニウム等から添加され、被覆剤の融点を調整して保護筒を均一に溶融し、溶滴移行を規則的にしてアークを安定させる目的で添加する。Zr酸化物のZrO2換算値の合計が、3%未満では、保護筒が不均一に溶融し、アークが不安定になる。一方、Zr酸化物のZrO2換算値の合計が、8%を超えると、スラグの流動性が悪くなり、スラグ被包性が悪くなる。したがって、被覆剤中のZr酸化物のZrO2換算値の合計は3~8%とする。
[Total ZrO 2 conversion value of Zr oxide in the coating agent: 3 to 8%]
Zr oxide is added from zircon sand, zircon flower, zirconium oxide, etc., and is added for the purpose of adjusting the melting point of the coating agent to uniformly melt the protective cylinder, regularizing the droplet transfer, and stabilizing the arc. .. If the total ZrO 2 conversion value of the Zr oxide is less than 3%, the protective cylinder melts unevenly and the arc becomes unstable. On the other hand, when the total of the ZrO 2 conversion values of the Zr oxide exceeds 8%, the fluidity of the slag deteriorates and the slag encapsulation property deteriorates. Therefore, the total ZrO 2 conversion value of the Zr oxide in the coating material is 3 to 8%.

[被覆剤中のAl酸化物のAl23換算値の合計:0.01~0.50%]
Al酸化物は、カリ長石及びAl23等から添加され、被覆剤の融点及び粘性を調整し、スラグ流動性を向上させ、かつ均一にスラグを被包させる効果を有する。Al酸化物のAl23換算値の合計が0.01%未満では、その効果は得られず、スラグ被包性が悪くなる。一方、Al酸化物のAl23換算値の合計が0.50%を超えると、スラグ剥離性が悪くなる。したがって、被覆剤中のAl酸化物のAl23換算値の合計は0.01~0.50%とする。
[Total Al 2 O 3 conversion value of Al oxide in the coating agent: 0.01 to 0.50%]
Al oxide is added from potassium feldspar, Al 2 O 3 and the like, and has the effect of adjusting the melting point and viscosity of the coating agent, improving the slag fluidity, and uniformly encapsulating the slag. If the total Al 2 O 3 conversion value of the Al oxide is less than 0.01%, the effect cannot be obtained and the slag encapsulation property deteriorates. On the other hand, when the total Al 2 O 3 conversion value of Al oxide exceeds 0.50%, the slag peeling property deteriorates. Therefore, the total Al 2 O 3 conversion value of Al oxide in the coating agent is 0.01 to 0.50%.

[被覆剤中のCaCO3、CaF2、CaOのCa換算値の合計:15~40%]
CaCO3、CaF2、CaOは、Al酸化物と同様に被覆剤の融点及び粘性を調整し、スラグ流動性を向上させ、かつ均一にスラグを被包させる効果を有する。CaCO3、CaF2、CaOのCa換算値の合計が15%未満では、その効果は得られず、スラグ被包性が悪くなる。一方、CaCO3、CaF2、CaOのCa換算値の合計が40%を超えると、スパッタ発生量が多くなる。したがって、被覆剤中のCaCO3、CaF2、CaOのCa換算値の合計は15~40%とする。
[Total Ca conversion values of CaCO 3 , CaF 2 , and CaO in the coating agent: 15-40%]
Like Al oxide, CaCO 3 , CaF 2 , and CaO have the effect of adjusting the melting point and viscosity of the coating agent, improving the slag fluidity, and uniformly encapsulating the slag. If the total Ca conversion value of CaCO 3 , CaF 2 , and CaO is less than 15%, the effect cannot be obtained and the slag encapsulation property deteriorates. On the other hand, when the total Ca conversion value of CaCO 3 , CaF 2 and CaO exceeds 40%, the amount of spatter generated increases. Therefore, the total Ca conversion value of CaCO 3 , CaF 2 , and CaO in the coating agent is 15 to 40%.

[被覆剤中の金属弗化物のF換算値の合計:6~17%]
金属弗素物は、NaF、LiF、CaF2、AlF3、K2ZrF6、K2SiF6、BaF2等から添加でき、フラックスの融点を調整し、保護筒を均一に溶融し、溶滴移行を安定させアーク安定性を改善する効果を有する。金属弗化物のF換算値の合計が6%未満では、その効果は得られず、アークが不安定になる。一方、金属弗化物のF換算値の合計が17%を超えると、スラグ剥離性が悪くなる。したがって、被覆剤中の金属弗化物のF換算値は6~17%とする。
[Total F conversion value of metal fluoride in the coating agent: 6 to 17%]
Metal fluoride can be added from NaF, LiF, CaF 2 , AlF 3 , K 2 ZrF 6 , K 2 SiF 6 , BaF 2 , etc., the melting point of the flux is adjusted, the protective cylinder is uniformly melted, and droplet transfer is performed. Has the effect of stabilizing and improving arc stability. If the total F conversion value of the metal fluoride is less than 6%, the effect cannot be obtained and the arc becomes unstable. On the other hand, when the total F conversion value of the metal fluoride exceeds 17%, the slag peelability deteriorates. Therefore, the F conversion value of the metal fluoride in the coating agent is set to 6 to 17%.

[被覆剤中のMgO:0.1~1.0%]
被覆剤中のMgOは、マグネシアクリンカー等から添加され、スラグ剥離性を改善する効果を有する。MgOが0.1%未満では、その効果が得られず、スラグ剥離性が悪くなる。一方、MgOが1.0%を超えると、溶滴移行が悪くなり、スパッタ発生量が多くなる。したがって、被覆剤中のMgOは0.1~1.0%とする。
[MgO in coating agent: 0.1 to 1.0%]
MgO in the coating agent is added from magnesia clinker or the like and has an effect of improving slag peelability. If the MgO content is less than 0.1%, the effect cannot be obtained and the slag peelability is deteriorated. On the other hand, when MgO exceeds 1.0%, the droplet transfer becomes poor and the amount of spatter generated increases. Therefore, MgO in the coating agent is set to 0.1 to 1.0%.

[被覆剤中のNa化合物及びK化合物のNa換算値及びK換算値の合計:1~3%]
Na化合物及びK化合物は、カリ長石、NaF、K2SiF6及び水ガラスの固質成分等から添加され、溶滴を細かく成長させて溶滴移行を調整し、スパッタ発生量を低減する効果を有する。Na化合物及びK化合物のNa換算値及びK換算値の合計が1%未満では、その効果が得られず、スパッタ発生量が多くなる。一方、Na化合物及びK化合物のNa換算値及びK換算値の合計が3%を超えると、保護筒の融点が低くなって不均一に溶融され、アークが不安定になる。したがって、被覆剤中のNa化合物及びK化合物のNa換算値及びK換算値の合計は1~3%とする。
[Total of Na conversion value and K conversion value of Na compound and K compound in the coating agent: 1 to 3%]
Na compound and K compound are added from potassium feldspar, NaF, K 2 SiF 6 , solid components of water glass, etc., and have the effect of finely growing droplets to adjust droplet migration and reduce the amount of spatter generated. Have. If the total of the Na-converted value and the K-converted value of the Na compound and the K compound is less than 1%, the effect cannot be obtained and the amount of spatter generated increases. On the other hand, when the total of the Na-converted value and the K-converted value of the Na compound and the K compound exceeds 3%, the melting point of the protective cylinder becomes low, the melting point becomes uneven, and the arc becomes unstable. Therefore, the total of the Na-converted value and the K-converted value of the Na compound and the K compound in the coating agent is 1 to 3%.

[D値=被覆剤中のCaCO3、CaF2、CaOのCa換算値の合計/金属弗化物のF換算値の合計:2.0~3.0]
D値は、被覆剤中のCaCO3、CaF2、CaOのCa換算値を金属弗化物のF換算値の合計で除した値であり、スラグ融点及びスラグ生成量を調整し、形成される溶接金属とスラグの融点を調整しスラグ剥離性を表す指標となる。D値が2.0未満では、その効果が得られず、スラグ剥離性が悪くなる。一方、D値が3.0を超えると、アークが不安定になる。したがって、D値は2.0~3.0とする。
[D value = total of Ca CO 3 , CaF 2 , and Ca O converted values in the coating agent / total F converted values of metal fluoride: 2.0 to 3.0]
The D value is a value obtained by dividing the Ca conversion values of CaCO 3 , CaF 2 , and CaO in the coating material by the sum of the F conversion values of the metal fluoride, and the slag melting point and the amount of slag produced are adjusted to form the weld. It adjusts the melting point of metal and slag and is an index showing slag peelability. If the D value is less than 2.0, the effect cannot be obtained and the slag peelability deteriorates. On the other hand, if the D value exceeds 3.0, the arc becomes unstable. Therefore, the D value is set to 2.0 to 3.0.

以上、本発明の9Cr-1Mo鋼用被覆アーク溶接棒の構成要件の数値限定理由を述べたが、残部は、塗装剤としてヘクトライト等の1種以上を合計で5%以下添加することができ、その他は、前記心線のFe、被覆剤のFe-Mn、Fe-Si、Fe-Al、Fe-Cr、Fe-Ni等の鉄合金のFe分及び不可避不純物である。なお、不可避不純物であるP及びSは、溶接金属の靭性及び耐割れ性の観点からできるかぎり低くすることが好ましい。 The reason for limiting the numerical values of the constituent requirements of the shielded metal arc welding rod for 9Cr-1Mo steel of the present invention has been described above. Others are Fe of the core wire, Fe content of iron alloys such as Fe—Mn, Fe—Si, Fe—Al, Fe—Cr, and Fe—Ni of the coating agent, and unavoidable impurities. The unavoidable impurities P and S are preferably as low as possible from the viewpoint of toughness and crack resistance of the weld metal.

なお、被覆アーク溶接棒の製造方法は特に限定しないが、心線と配合・混合した被覆剤を準備し、被覆剤に水ガラスを添加しながら湿式混合を行い、心線周囲に被覆剤を塗装した塗装した後150~450℃で1~3時間乾燥・焼成を行うことにより製造することが好ましい。 The method for manufacturing the shielded metal arc welding rod is not particularly limited, but a coating agent mixed and mixed with the core wire is prepared, and wet mixing is performed while adding water glass to the coating agent, and the coating agent is applied around the core wire. It is preferable to produce the product by drying and firing at 150 to 450 ° C. for 1 to 3 hours after coating.

以下、実施例により本発明の効果をさらに詳細に説明する。 Hereinafter, the effects of the present invention will be described in more detail by way of examples.

表1に示す各種成分組成の直径3.2mm、長さ350mmの9%Cr鋼からなる心線を用い、表2に示す各種成分組成の被覆剤を被覆して乾燥させた各種9Cr-1Mo鋼溶接用被覆アーク溶接棒を試作した。 Various 9Cr-1Mo steels made by using a core wire made of 9% Cr steel having a diameter of 3.2 mm and a length of 350 mm shown in Table 1 and coated with a coating agent having various component compositions shown in Table 2 and dried. We made a prototype of a shielded metal arc welding rod for welding.

Figure 0007055765000001
Figure 0007055765000001

Figure 0007055765000002
Figure 0007055765000002

試作した各種9Cr-1Mo鋼溶接用被覆アーク溶接棒を用い、溶着金属性能、耐欠陥性、溶接作業性について調査した。なお、各調査には、表3に示すASME SA387 Grade91に準拠した9Cr-1Mo鋼を母材として適用した。 Welded metal performance, defect resistance, and welding workability were investigated using various prototype 9Cr-1Mo steel welding coated arc welding rods. In each survey, 9Cr-1Mo steel conforming to ASME SA387 Grade91 shown in Table 3 was applied as a base material.

Figure 0007055765000003
Figure 0007055765000003

溶着金属性能の評価は、板厚20mmの上記鋼板を用い、AWS A5.5に従い、溶接電流140Aで溶着金属試験を行い、760℃で2時間PWHTを行った後、溶着金属部から引張試験片、高温引張試験片及び衝撃試験片を採取し、常温での引張試験、高温での引張試験及び衝撃試験を実施した。 To evaluate the performance of the weld metal, use the above steel plate with a thickness of 20 mm, perform a weld metal test at a welding current of 140 A according to AWS A5.5, perform PWHT at 760 ° C. for 2 hours, and then perform a tensile test piece from the weld metal part. , High temperature tensile test pieces and impact test pieces were collected and subjected to tensile test at room temperature, tensile test at high temperature and impact test.

常温での引張試験の評価は、室温での引張強さが620MPa以上を良好とした。高温での引張試験の評価は、試験温度500℃での引張強さが350MPa以上を良好とした。靭性の評価は、試験温度0℃でシャルピー衝撃試験を実施し、各々繰り返し3回の吸収エネルギーの平均値が15J以上を良好とした。 In the evaluation of the tensile test at room temperature, the tensile strength at room temperature was 620 MPa or more. In the evaluation of the tensile test at a high temperature, the tensile strength at a test temperature of 500 ° C. was good at 350 MPa or more. For the evaluation of toughness, a Charpy impact test was carried out at a test temperature of 0 ° C., and the average value of absorbed energy three times each was set to be good at 15 J or more.

耐欠陥性の評価は、上記鋼板を用い、溶接電流140Aで溶接継手の作製し、JIS Z 3106に準じてX線透過試験実施し、等級分類にて判定して1類を良好とした。 For the evaluation of defect resistance, a welded joint was manufactured using the above steel plate with a welding current of 140 A, an X-ray transmission test was carried out according to JIS Z 3106, and the grade 1 was judged to be good.

溶接作業性の評価は、上記鋼板を用い、溶接電流140A、溶接速度10cm/minの溶接条件で水平すみ肉溶接を行い、アーク安定性、スパッタ発生量、スラグ被包性及びスラグ剥離性を目視で調査した。それらの結果を表4にまとめて示す。 To evaluate the welding workability, perform horizontal fillet welding using the above steel plate under welding conditions of welding current 140A and welding speed 10cm / min, and visually check the arc stability, spatter generation amount, slag encapsulation property and slag peeling property. I investigated in. The results are summarized in Table 4.

Figure 0007055765000004
Figure 0007055765000004

表4の溶接棒記号1~20が本発明例、溶接棒記号21~40は比較例である。本発明例である溶接棒記号1~20は、9%Cr鋼からなる心線と被覆剤の心線質量比で、C、Si、Mn、Ni、Cr、Mo、Nb、Cu、Al、V、Mg及びNが適正で、被覆剤中のSi酸化物のSiO2換算値の合計、Zr酸化物のZrO2換算値の合計、Al酸化物のAl23換算値の合計、CaCO3、CaF2、CaOのCa換算値の合計、金属弗化物のF換算値の合計、MgO、Na化合物及びK化合物のNa換算値及びK換算値の合計及びD値がいずれも本発明において規定した含有量の範囲内にあるので、常温での溶着金属の引張強さ及び吸収エネルギーが良好で、高温での引張強さも良好で、X線透過試験の結果も良好であった。また、溶接作業性に関しては、アーク安定性が良好でスパッタ発生量が少なく、スラグ被包性及びスラグ剥離性いずれも良好であり、極めて満足な結果であった。 The welding rod symbols 1 to 20 in Table 4 are examples of the present invention, and the welding rod symbols 21 to 40 are comparative examples. The welding rod symbols 1 to 20 which are examples of the present invention are the core wire mass ratios of the core wire made of 9% Cr steel and the core wire of the coating agent, and are C, Si, Mn, Ni, Cr, Mo, Nb, Cu, Al, V. , Mg and N are appropriate, total SiO 2 conversion value of Si oxide in the coating, total ZrO 2 conversion value of Zr oxide, total Al 2 O 3 conversion value of Al oxide, CaCO 3 , CaF 2 , the total Ca conversion value of CaO, the total F conversion value of the metal fluoride, the total Na conversion value and the total K conversion value of MgO, Na compound and K compound, and the D value are all contained as specified in the present invention. Since the amount was within the range, the tensile strength and absorption energy of the weld metal at room temperature were good, the tensile strength at high temperature was also good, and the result of the X-ray transmission test was also good. Further, regarding the welding workability, the arc stability was good, the amount of spatter generated was small, and both the slag encapsulation property and the slag peeling property were good, and the results were extremely satisfactory.

溶接棒記号21は、心線質量比のCが少ないため、溶着金属の高温での引張強さが低値であった。また、心線質量比のAlが少ないため、ブローホールが発生し、耐欠陥性が低下していた。溶接棒記号22は、心線質量比のCが多いので、溶着金属の吸収エネルギーが低値であった。また、心線質量比のAlが多いので、スラグ被包性が不良であった。 Since the welding rod symbol 21 has a small core wire mass ratio C, the tensile strength of the weld metal at a high temperature is low. In addition, since the core wire mass ratio of Al is small, blow holes are generated and the defect resistance is lowered. Since the welding rod symbol 22 has a large core wire mass ratio C, the absorption energy of the weld metal is low. In addition, since the core wire mass ratio of Al is large, the slag encapsulation property is poor.

溶接棒記号23は、心線質量比のSiが少ないので、ブローホールが発生し、耐欠陥性が低下していた。また、被覆剤中のSi酸化物のSiO2換算値の合計が少ないので、アーク安定性が不安定であった。 Since the welding rod symbol 23 has a small amount of Si in the core mass ratio, blow holes are generated and the defect resistance is lowered. In addition, since the total value of Si oxides in the coating material in terms of SiO 2 was small, the arc stability was unstable.

溶接棒記号24は、心線質量比のSiが多いので、溶着金属の吸収エネルギーが低値であった。また、被覆剤中のSi酸化物のSiO2換算値の合計が多いので、スラグ被包性が不良であった。 Since the welding rod symbol 24 has a large amount of Si in the core mass ratio, the absorption energy of the weld metal is low. In addition, since the total value of Si oxides in the coating material in terms of SiO 2 is large, the slag encapsulation property is poor.

溶接棒記号25は、心線質量比のMnが少ないので、ブローホールが発生し、耐欠陥性が低下していた。また、被覆剤中のAl酸化物のAl23換算値の合計が少ないので、スラグ被包性が不良であった。 Since the welding rod symbol 25 has a small Mn of the core wire mass ratio, blow holes are generated and the defect resistance is lowered. In addition, since the total Al 2 O 3 conversion value of Al oxide in the coating agent was small, the slag encapsulation property was poor.

溶接棒記号26は、心線質量比のMnが多いので、溶着金属の吸収エネルギーが低値であった。また、被覆剤中のAl酸化物のAl23換算値の合計が多いので、スラグ剥離性が不良であった。 Since the welding rod symbol 26 has a large amount of Mn in the core mass ratio, the absorption energy of the weld metal is low. In addition, since the total Al 2 O 3 conversion value of the Al oxide in the coating agent was large, the slag peelability was poor.

溶接棒記号27は、心線質量比のNiが少ないので、溶着金属の吸収エネルギーが低値であった。また、D値が低いので、スラグ剥離性が不良であった。 Since the welding rod symbol 27 has a small amount of Ni in the core mass ratio, the absorption energy of the weld metal is low. Moreover, since the D value was low, the slag peelability was poor.

溶接棒記号28は、心線質量比のNiが多いので、溶着金属の高温での引張強さが低値であった。また、D値が高いので、アーク安定性が不安定であった。 Since the welding rod symbol 28 has a large amount of Ni in the core mass ratio, the tensile strength of the weld metal at a high temperature was low. Moreover, since the D value was high, the arc stability was unstable.

溶接棒記号29は、心線質量比のCrが少ないので、溶着金属の高温での引張強さが低値であった。また、心線質量比のNが少ないので、溶着金属の常温での引張強さが低値であった。 Since the welding rod symbol 29 has a small amount of Cr in the core mass ratio, the tensile strength of the weld metal at a high temperature is low. Further, since the core wire mass ratio N was small, the tensile strength of the weld metal at room temperature was low.

溶接棒記号30は、心線質量比のCrが多いので、溶着金属の吸収エネルギーが低値であった。また、心線質量比のNが多いので、ブローホールが発生し、耐欠陥性が低下していた。 Since the welding rod symbol 30 has a large amount of Cr in the core mass ratio, the absorption energy of the weld metal is low. Further, since the core wire mass ratio N is large, blow holes are generated and the defect resistance is lowered.

溶接棒記号31は、心線質量比のMoが少ないので、溶着金属の常温での引張強さが低値であった。また、被覆剤中の金属弗化物のF換算値の合計が少ないので、アーク安定性が不安定であった。 Since the welding rod symbol 31 has a small amount of Mo in the core mass ratio, the tensile strength of the weld metal at room temperature was low. Moreover, since the total F conversion value of the metal fluoride in the coating material was small, the arc stability was unstable.

溶接棒記号32は、心線質量比のMoが多いので、溶着金属の吸収エネルギーが低値であった。また、被覆剤中の金属弗化物のF換算値の合計が多いので、スラグ剥離性が不良であった。 Since the welding rod symbol 32 has a large amount of Mo in the core mass ratio, the absorption energy of the weld metal is low. In addition, since the total F-converted value of the metal fluoride in the coating agent was large, the slag peelability was poor.

溶接棒記号33は、心線質量比のNbが少ないので、溶着金属の高温での引張強さが低値であった。また、被覆剤中のNa化合物及びK化合物のNa換算値及びK換算値の合計が少ないので、スパッタ発生量が多かった。 Since the welding rod symbol 33 has a small core wire mass ratio Nb, the tensile strength of the weld metal at a high temperature is low. Further, since the total of the Na-converted value and the K-converted value of the Na compound and the K compound in the coating agent was small, the amount of spatter generated was large.

溶接棒記号34は、心線質量比のNbが多いので、溶着金属の吸収エネルギーが低値であった。また、被覆剤中のNa化合物及びK化合物のNa換算値及びK換算値の合計が多いので、アーク安定性が不安定であった。 Since the welding rod symbol 34 has a large Nb of the core wire mass ratio, the absorption energy of the weld metal is low. Further, since the total of the Na-converted value and the K-converted value of the Na compound and the K compound in the coating agent was large, the arc stability was unstable.

溶接棒記号35は、心線質量比のCuが少ないので、溶着金属の常温での引張強さが低値であった。また、被覆剤中のCaCO3、CaF2、CaOのCa換算値の合計が少ないので、スラグ被包性が不良であった。 Since the welding rod symbol 35 has a small amount of Cu in the core mass ratio, the tensile strength of the weld metal at room temperature was low. In addition, since the total Ca conversion values of CaCO 3 , CaF 2 , and CaO in the coating agent were small, the slag encapsulation property was poor.

溶接棒記号36は、心線質量比のCuが多いので、溶着金属の吸収エネルギーが低値であった。また、被覆剤中のCaCO3、CaF2、CaOのCa換算値の合計が多いので、スパッタ発生量が多かった。 Since the welding rod symbol 36 has a large amount of Cu in the core mass ratio, the absorption energy of the weld metal is low. In addition, since the total Ca conversion values of CaCO 3 , CaF 2 , and CaO in the coating agent were large, the amount of spatter generated was large.

溶接棒記号37は、被覆剤中のZr酸化物のZrO2換算値の合計が少ないので、アーク安定性が不安定であった。また、被覆剤中のMgOが少ないので、スラグ剥離性が不良であった。 The arc stability of the welding rod symbol 37 was unstable because the total ZrO 2 conversion value of the Zr oxide in the coating material was small. Further, since the amount of MgO in the coating agent was small, the slag peelability was poor.

溶接棒記号38は、被覆剤中のZr酸化物のZrO2換算値の合計が多いので、スラグ被包性が不良であった。また、被覆剤中のMgOが多いので、スパッタ発生量が多かった。 The welding rod symbol 38 had a poor slag encapsulation property because the total ZrO 2 conversion value of the Zr oxide in the coating material was large. Further, since the amount of MgO in the coating material was large, the amount of spatter generated was large.

溶接棒記号39は、心線質量比のVが少ないので、溶着金属の高温での引張強さが低値であった。また、心線質量比のMgが少ないので、ブローホールが発生し、耐欠陥性が低下していた。 Since the welding rod symbol 39 has a small V of the core wire mass ratio, the tensile strength of the weld metal at a high temperature is low. In addition, since the amount of Mg in the core mass ratio was small, blowholes were generated and the defect resistance was lowered.

溶接棒記号40は、心線質量比のVが多いので、溶着金属の吸収エネルギーが低値であった。また、心線質量比のMgが多いため、アーク安定性が不安定であった。 Since the welding rod symbol 40 has a large V of the core wire mass ratio, the absorption energy of the weld metal is low. In addition, the arc stability was unstable due to the large amount of Mg in the core mass ratio.

Claims (1)

9Cr-1Mo鋼溶接用被覆アーク溶接棒において、9%Cr鋼を心線とし、前記心線と被覆剤の一方または両方の合計で、下記式に示す心線質量比で、
C:0.05~0.15%、
Si:0.1~1.0%、
Mn:0.7~1.5%、
Ni:0.1~0.6%、
Cr:9.0~11.0%、
Mo:0.5~1.5%、
Nb:0.02~0.20%、
Cu:0.01~0.15%、
Al:0.1~0.8%、
V:0.1~0.4%、
Mg:0.3~1.5%、
N:0.02~0.10%を含有し、
前記被覆剤は、当該被覆剤全質量に対して質量%で、
Si酸化物のSiO2換算値の合計:3~10%、
Zr酸化物のZrO2換算値の合計:3~8%、
Al酸化物のAl23換算値の合計:0.01~0.50%、
CaCO3、CaF2、CaOのCa換算値の合計:15~40%、
金属弗化物のF換算値の合計:6~17%、
MgO:0.1~1.0%、
Na化合物及びK化合物のNa換算値及びK換算値の合計:1~3%を含有し、
かつ、CaCO3、CaF2、CaOのCa換算値の合計/金属弗化物のF換算値の合計で算出されるD値が2.0~3.0であり、残部が前記心線のFe、被覆剤の塗装剤、鉄合金からのFe分及び不可避不純物からなることを特徴とする9Cr-1Mo鋼溶接用被覆アーク溶接棒。
心線質量比=心線中の含有量%+被覆剤中の含有量%×被覆率/100・・・(式)
(但し、心線中の含有量は心線全質量に対する質量%、被覆剤の含有量%は被覆剤全質量に対する質量%、被覆率は、当該9Cr-1Mo鋼溶接用被覆アーク溶接棒全質量に対する前記被覆剤の質量%)
In a 9Cr-1Mo steel welding coated arc welding rod, 9% Cr steel is used as the core wire, and the total of one or both of the core wire and the coating agent is the core wire mass ratio shown in the following formula.
C: 0.05 to 0.15%,
Si: 0.1-1.0%,
Mn: 0.7-1.5%,
Ni: 0.1-0.6%,
Cr: 9.0 to 11.0%,
Mo: 0.5-1.5%,
Nb: 0.02 to 0.20%,
Cu: 0.01-0.15%,
Al: 0.1-0.8%,
V: 0.1-0.4%,
Mg: 0.3-1.5%,
N: Containing 0.02 to 0.10%,
The coating agent is in mass% with respect to the total mass of the coating agent.
Total SiO 2 conversion value of Si oxide: 3-10%,
Total ZrO 2 conversion value of Zr oxide: 3-8%,
Total Al 2 O 3 conversion value of Al oxide: 0.01-0.50%,
Total Ca conversion values of CaCO 3 , CaF 2 , and CaO: 15-40%,
Total F conversion value of metal fluoride: 6-17%,
MgO: 0.1-1.0%,
The total of Na conversion value and K conversion value of Na compound and K compound: 1 to 3% is contained.
Moreover, the D value calculated by the total of the Ca conversion values of CaCO 3 , CaF 2 , and CaO / the total of the F conversion values of the metal fluoride is 2.0 to 3.0, and the balance is Fe of the core wire. A shielded metal arc welding rod for 9Cr-1Mo steel welding, which comprises a coating agent as a coating agent, Fe content from an iron alloy, and unavoidable impurities.
Core wire mass ratio = content% in core wire + content% in coating agent x coverage rate / 100 ... (Equation)
(However, the content in the core wire is mass% with respect to the total mass of the core wire, the content% in the coating agent is mass% with respect to the total mass of the coating agent, and the coverage is the entire coated arc welding rod for 9Cr-1Mo steel welding. (Mass% of the coating agent by mass)
JP2019071145A 2018-04-19 2019-04-03 9Cr-1Mo Shielded metal arc welding rod for steel welding Active JP7055765B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018080420 2018-04-19
JP2018080420 2018-04-19

Publications (2)

Publication Number Publication Date
JP2019188471A JP2019188471A (en) 2019-10-31
JP7055765B2 true JP7055765B2 (en) 2022-04-18

Family

ID=68388535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019071145A Active JP7055765B2 (en) 2018-04-19 2019-04-03 9Cr-1Mo Shielded metal arc welding rod for steel welding

Country Status (1)

Country Link
JP (1) JP7055765B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700496B (en) * 2022-03-18 2023-09-12 广东潮艺金属实业有限公司 Preparation method of high-strength stainless steel powder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230241A (en) * 1975-09-03 1977-03-07 Kobe Steel Ltd Low hydrogen type electrode
JPH03291190A (en) * 1990-04-06 1991-12-20 Nippon Steel Corp Coated arc welding electrode for welding 9cr-1mo steel
JPH0542390A (en) * 1991-08-12 1993-02-23 Nippon Steel Corp Low hydrogen type coated electrode for welding 9cr steel
JPH05161993A (en) * 1991-12-11 1993-06-29 Kobe Steel Ltd Coated electrode for cr-mo base low alloy steel
JPH07268562A (en) * 1994-03-30 1995-10-17 Nippon Steel Corp Coated rod for arc welding used for high cr ferritic heat resistant steel

Also Published As

Publication number Publication date
JP2019188471A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
KR101568515B1 (en) Welding material for heat resistant steel
TW201217544A (en) Welding process and corrosion-resistant filler alloy and consumables therefor
JP5928726B2 (en) Covered arc welding rod
JP6110800B2 (en) Stainless steel flux cored wire
JP6140069B2 (en) Stainless steel flux cored wire
JP7055765B2 (en) 9Cr-1Mo Shielded metal arc welding rod for steel welding
JP2018130762A (en) Flux-cored wire for welding duplex stainless steel
KR102197134B1 (en) Ni based alloy flux cored wire
KR102658542B1 (en) Covered arc welding rod for high Cr ferritic heat-resistant steel
JP5899007B2 (en) Flux-cored wire for hardfacing arc welding
KR101657836B1 (en) Flux cored arc weld material having excellent low temperature toughness, thermostability and crack resistance
JP6282190B2 (en) Single submerged arc welding method for high Cr system CSEF steel
KR101760828B1 (en) Ni-BASE FLUX CORED WIRE WELDING CONSUMABLE
JP4309172B2 (en) Low hydrogen coated arc welding rod for low alloy heat resistant steel
JP6641084B2 (en) Low hydrogen coated arc welding rod with excellent resistance to bar burn during welding
JP3527640B2 (en) Weld metal for high Cr ferritic heat resistant steel
JP6688344B2 (en) Low-hydrogen coated arc welding rod
JPH0825060B2 (en) Low-hydrogen coated arc welding rod
JPS62220300A (en) Low hydrogen type coated arc electrode
JP6908539B2 (en) 9Cr-1Mo Steel Welding TIG Wire
WO2022172666A1 (en) Flux-cored wire
KR20240035904A (en) Bond fluxes and weld metals for submerged arc welding
JP2023038836A (en) Bond flux for submerged arc welding and weld metal
TW201318756A (en) Submerged arc material for heat resistant steel
JP2019104043A (en) Coated arc welding electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220406

R150 Certificate of patent or registration of utility model

Ref document number: 7055765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150