JP7055688B2 - Shielded metal arc welding rod for austenitic stainless steel welding - Google Patents

Shielded metal arc welding rod for austenitic stainless steel welding Download PDF

Info

Publication number
JP7055688B2
JP7055688B2 JP2018080425A JP2018080425A JP7055688B2 JP 7055688 B2 JP7055688 B2 JP 7055688B2 JP 2018080425 A JP2018080425 A JP 2018080425A JP 2018080425 A JP2018080425 A JP 2018080425A JP 7055688 B2 JP7055688 B2 JP 7055688B2
Authority
JP
Japan
Prior art keywords
welding
core wire
total
stainless steel
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018080425A
Other languages
Japanese (ja)
Other versions
JP2019188402A (en
Inventor
寛規 水田
飛史 行方
正明 鳥谷部
貴之 大塚
Original Assignee
日鉄溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄溶接工業株式会社 filed Critical 日鉄溶接工業株式会社
Priority to JP2018080425A priority Critical patent/JP7055688B2/en
Publication of JP2019188402A publication Critical patent/JP2019188402A/en
Application granted granted Critical
Publication of JP7055688B2 publication Critical patent/JP7055688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

本発明は、化学機器、容器、プラント等に用いられる耐粒界腐食性が良好な低炭素のオーステナイト系ステンレス鋼の溶接に用いる被覆アーク溶接棒に関し、交流電源又は直流電源の何れが印加された場合においても、強度及び靭性に優れた溶接金属が得られ、耐溶接欠陥性及び耐高温割れ性に優れ、かつ、全姿勢溶接でスラグ剥離性及びビード形状等の溶接作業性が良好オーステナイト系ステンレス鋼溶接用被覆アーク溶接棒に関する。 In the present invention, either an AC power source or a DC power source is applied to a coated arc welding rod used for welding low carbon austenite-based stainless steel having good intergranular corrosion resistance used in chemical equipment, containers, plants and the like. Even in this case, a welded metal with excellent strength and toughness can be obtained, excellent welding defect resistance and high temperature crack resistance, and good welding workability such as slag peeling property and bead shape in all-position welding. Regarding coated arc welding rods for steel welding.

低炭素のオーステナイト系ステンレス鋼は、ステンレス鋼の中で耐粒界腐食等の耐食性が優れていることから化学プラントや原子力関連施設に利用されている。近年では、国内ならず外国においてもオーステナイト系ステンレス鋼が広く使用されており、それに伴い、オーステナイト系ステンレス鋼溶接用被覆アーク溶接棒の需要が増加している。また、日本の溶接施工では交流溶接電源が主に使用されているが、外国の溶接施工では直流溶接電源も広く使用されており、交流溶接電源及び直流溶接電源両方で母材並みの強度及び靭性の溶接金属性能が得られ、耐溶接欠陥性及び耐高温割れ性に優れるとともに、全姿勢溶接で溶接作業性が良好なオーステナイト系ステンレス鋼溶接用被覆アーク溶接棒の開発が要望されている。 Low-carbon austenitic stainless steel is used in chemical plants and nuclear-related facilities because it has excellent corrosion resistance such as intergranular corrosion resistance among stainless steels. In recent years, austenitic stainless steel has been widely used not only in Japan but also in foreign countries, and along with this, the demand for shielded metal arc welding rods for welding austenitic stainless steel is increasing. In addition, AC welding power supply is mainly used in Japanese welding work, but DC welding power supply is also widely used in foreign welding work, and both AC welding power supply and DC welding power supply have the same strength and toughness as the base metal. There is a demand for the development of a coated arc welding rod for austenite-based stainless steel welding, which has excellent welding defect resistance and high-temperature crack resistance, and has good welding workability in all-position welding.

従来から、優れた溶接金属特性が得られ、かつ、溶接作業性にも優れるステンレス鋼溶接用被覆アーク溶接棒は研究されており、例えば、特許文献1には、スラグ剥離性等の溶接作業性に優れたオーステナイト系ステンレス鋼溶接用被覆アーク溶接棒が開示されている。しかし、特許文献1に記載のオーステナイト系ステンレス鋼溶接用被覆アーク溶接棒は、交流溶接電源を用いた場合では良好なスラグ剥離性が得られるものの、直流溶接電源を用いて溶接した場合には十分なスラグ剥離性が得られず、溶接作業性の面で満足できるものではない。 Conventionally, shielded metal arc welding rods for welding stainless steel, which can obtain excellent weld metal properties and have excellent welding workability, have been studied. For example, Patent Document 1 describes welding workability such as slag peelability. Disclosed are excellent shielded metal arc welding rods for austenite-based stainless steel welding. However, although the shielded metal arc welding rod for austenite-based stainless steel welding described in Patent Document 1 can obtain good slag peelability when an AC welding power source is used, it is sufficient when welding is performed using a DC welding power source. No slag peeling property can be obtained, and the welding workability is not satisfactory.

また、特許文献2及び特許文献3には、良好なビード形状が得られるなど全姿勢溶接での溶接作業性が良好なオーステナイト系ステンレス鋼溶接用被覆アーク溶接棒が開示されている。特許文献2及び特許文献3に開示されたオーステナイト系ステンレス鋼溶接用被覆アーク溶接棒によれば、良好な溶接作業性は得られるものの、何れも直流溶接電源での使用を想定したものでなく、仮に直流溶接電源で溶接した場合には、十分な溶接作業性が得られないという問題点があった。 Further, Patent Document 2 and Patent Document 3 disclose a shielded metal arc welding rod for welding austenitic stainless steel, which has good welding workability in omnidirectional welding such that a good bead shape can be obtained. According to the coated arc welding rods for welding of austenite-based stainless steel disclosed in Patent Documents 2 and 3, although good welding workability can be obtained, none of them is intended for use in a DC welding power source. If welding is performed with a DC welding power source, there is a problem that sufficient welding workability cannot be obtained.

特開平10-230390号公報Japanese Unexamined Patent Publication No. 10-230390 特開平11-192585号公報Japanese Unexamined Patent Publication No. 11-192585 特開2001-334395号公報Japanese Unexamined Patent Publication No. 2001-334395

本発明は、上述した問題点を鑑みて案出されてものであり、オーステナイト系ステンレス鋼溶接用被覆アーク溶接棒に関し、交流溶接電源及び直流溶接電源の両方において、強度及び靭性に優れた溶接金属が得られ、耐溶接欠陥性及び耐高温割れ性に優れ、かつ、全姿勢溶接でスラグ剥離性及びビード形状等の溶接作業性が良好なオーステナイト系ステンレス鋼溶接用被覆アーク溶接棒を提供することを目的とする。 The present invention has been devised in view of the above-mentioned problems, and is a welded metal having excellent strength and toughness in both an AC welding power source and a DC welding power source with respect to a coated arc welding rod for austenite-based stainless steel welding. To provide a coated arc welding rod for austenite-based stainless steel welding, which is excellent in welding defect resistance and high temperature crack resistance, and has good welding workability such as slag peeling property and bead shape in all-position welding. With the goal.

本発明者らは、交流電源及び直流電源両方に適用可能なオーステナイト系ステンレス鋼溶接用被覆アーク溶接棒の溶接金属性能の向上、耐溶接欠陥性及び耐高温割れ性、全姿勢溶接で溶接作業性を改善するべく、オーステナイト系ステンレス鋼溶接用被覆アーク溶接棒の成分組成について種々検討した。 The present inventors have improved the weld metal performance of the shielded metal arc welding rod for austenite-based stainless steel welding, which can be applied to both AC power supply and DC power supply, welding defect resistance and high temperature crack resistance, and welding workability in all-position welding. Various studies were conducted on the composition of the shielded metal arc welding rod for welding austenite-based stainless steel in order to improve the above.

その結果、溶接作業性については、スラグ剥離性はBi、Ti酸化物及びSi酸化物の適量添加で、スラグ被包性はTi酸化物及びSi酸化物の適量添加で、ビード形状はSiの適量添加で、アークの安定性はNa化合物及びK化合物の適量添加で改善できる知見を得た。また、立向姿勢溶接時に溶融金属の垂れ(以下、メタル垂れという。)の防止にはAl及びAl酸化物の適正添加が効果的であることを知見した。 As a result, regarding welding workability, the slag peelability is the addition of an appropriate amount of Bi, Ti oxide and Si oxide, the slag encapsulation property is the addition of an appropriate amount of Ti oxide and Si oxide, and the bead shape is an appropriate amount of Si. With the addition, it was found that the stability of the arc can be improved by adding appropriate amounts of Na compound and K compound. It was also found that proper addition of Al and Al oxide is effective in preventing molten metal dripping (hereinafter referred to as metal dripping) during vertical posture welding.

ブローホール等の耐溶接欠陥性はCaCO3を適正添加することで、耐高温割れ性はMnを適量とすることで改善できる知見を得た。 We found that the welding defect resistance of blow holes and the like can be improved by appropriately adding CaCO 3 and the high temperature crack resistance by using an appropriate amount of Mn.

さらに、溶接金属性能は、C、Si、Mn、Ni及びCrを適量とすることで向上できる知見を得た。 Furthermore, it was found that the weld metal performance can be improved by using appropriate amounts of C, Si, Mn, Ni and Cr.

本発明は、以上の知見を基に構成されたものであり、その要旨とするところは、オーステナイト系ステンレス鋼溶接用被覆アーク溶接棒において、オーステナイト系ステンレス鋼を心線とし、前記心線と被覆剤の一方または両方の合計で、下記式に示す心線質量比で、C:0.04%以下であり、Si:0.3~1.0%、Mn:2.63~5%、Ni:9~12%、Cr:18~24%、Al:0.01~0.30%、Bi:0.005~0.050%を含有し、前記被覆剤は、当該被覆剤全質量に対する質量%で、Ti酸化物のTiO2換算値の合計:20~40%、Si酸化物のSiO2換算値の合計:18~35%、Al酸化物のAl23換算値の合計:3~10%、金属弗化物のF換算値の合計:0.1~5.0%、CaCO3:5~20%、Na化合物及びK化合物のNa換算値及びK換算値の合計:1~10%を含有し、前記被覆剤の残部が塗装剤、前記心線のFe、被覆剤の鉄合金からのFe分及び不可避不純物からなることを特徴とするオーステナイト系ステンレス鋼溶接用被覆アーク溶接棒にある。 The present invention has been constructed based on the above findings, and the gist thereof is that in a shielded metal arc welding rod for austenite-based stainless steel welding, austenite-based stainless steel is used as a core wire, and the core wire is coated with the core wire. The total of one or both of the agents is C: 0.04% or less, Si: 0.3 to 1.0%, Mn: 2.63 to 5%, Ni in the core wire mass ratio shown in the following formula. : 9 to 12%, Cr: 18 to 24%, Al: 0.01 to 0.30%, Bi: 0.005 to 0.050%, and the coating material is the mass of the coating material with respect to the total mass. %, Total of Ti oxide converted to TiO 2 : 20-40%, Total of Si oxide converted to SiO 2 : 18 to 35%, Total of Al oxide converted to Al 2 O 3 : 3 to 10%, total F conversion value of metal fluoride: 0.1 to 5.0%, CaCO 3 : 5 to 20%, total Na conversion value and K conversion value of Na compound and K compound: 1 to 10% The shielded metal arc welding rod for austenite-based stainless steel is characterized in that the balance of the coating agent is composed of a coating agent, Fe of the core wire, Fe content from an iron alloy of the coating agent, and unavoidable impurities. ..

心線質量比=心線中の含有量%+被覆剤中の含有量%×被覆率%/100・・・式
(但し、心線中の含有量%は心線全質量に対する質量%、被覆剤中の含有量%は被覆剤全質量に対する質量%、被覆率は、当該オーステナイト系ステンレス鋼溶接用被覆アーク溶接棒全質量に対する前記被覆剤の質量%
Core wire mass ratio = content% in the core wire + content% in the coating agent x coverage% / 100 ... formula (However, the content% in the core wire is mass% with respect to the total mass of the core wire, and the coating The content% in the agent is the mass% with respect to the total mass of the coating agent, and the coverage is the mass% of the coating agent with respect to the total mass of the shielded metal arc welding rod for welding the austenite-based stainless steel.

本発明のオーステナイト系ステンレス鋼溶接用被覆アーク溶接棒によれば、交流溶接電源及び直流溶接電源の両方において、全姿勢溶接でスラグ剥離性及びビード形状等の溶接作業性が良好で、耐溶接欠陥性及び耐高温割れ性に優れ、強度及び靭性に優れた溶接金属が得られるので、溶接作業能率の向上及び溶接部の品質向上に大いに貢献できる。 According to the coated arc welding rod for austenite-based stainless steel welding of the present invention, in both AC welding power supply and DC welding power supply, welding workability such as slag peeling property and bead shape is good in all-position welding, and welding defect resistance is good. Since a welded metal having excellent properties and high temperature crack resistance and excellent strength and toughness can be obtained, it can greatly contribute to the improvement of welding work efficiency and the quality of welded portions.

以下、本発明を適用したオーステナイト系ステンレス鋼溶接用被覆アーク溶接棒の各成分組成と、その成分組成の数値限定理由について詳細に説明をする。なお、各成分組成の含有量は、質量%で表すこととし、その質量%を表すときには単に%と記載することとする。本発明を適用したオーステナイト系ステンレス鋼溶接用被覆アーク溶接棒は、オーステナイト系ステンレス鋼からなる心線(以下、心線という。)に被覆剤を被覆することにより構成されている。まず、心線と被覆剤の一方または両方の合計で、下記式に示す心線質量比の数値限定理由を述べる。 Hereinafter, the composition of each component of the shielded metal arc welding rod for welding austenitic stainless steel to which the present invention is applied and the reason for limiting the numerical value of the component composition will be described in detail. The content of each component composition shall be expressed in mass%, and when the mass% is expressed, it shall be simply described as%. The shielded metal arc welding rod for welding austenitic stainless steel to which the present invention is applied is configured by coating a core wire made of austenitic stainless steel (hereinafter referred to as a core wire) with a coating agent. First, the reason for limiting the numerical value of the core wire mass ratio shown in the following formula for the sum of one or both of the core wire and the coating agent will be described.

心線質量比=心線中の含有量%+被覆剤中の含有量%×被覆率%/100・・・式
(但し、心線中の含有量は%心線全質量に対する質量%、被覆剤中の含有量%は被覆剤全質量に対する質量%)
Core wire mass ratio = content% in the core wire + content% in the coating agent x coverage% / 100 ... formula (However, the content in the core wire is% mass% with respect to the total mass of the core wire, covering Content% in the agent is mass% with respect to the total mass of the coating agent)

また被覆率%は、被覆率は、当該オーステナイト系ステンレス鋼溶接用被覆アーク溶接棒全質量に対する前記被覆剤の質量%である。 The coverage% is the mass% of the coating agent with respect to the total mass of the coated arc welding rod for welding the austenitic stainless steel.

〔心線と被覆剤の心線質量比でC:0.04%以下〕
Cは、心線、被覆剤のFe-Mn及びFe-Cr等から添加され、溶接金属の強度を向上させる効果を有するが、心線質量比で0.04%を超える程度に過剰な添加をすると、Cr炭化物及びTi炭化物を生成して粗大化して溶接金属の強度を過剰に高くして靭性を低下させる。このため、Cは、心線と被覆剤の心線質量比で0.04%以下とし、望ましくは0.02%以下とする。
[C: 0.04% or less in the mass ratio of the core wire to the core wire of the coating agent]
C is added from the core wire, the coating materials Fe-Mn and Fe-Cr, etc., and has the effect of improving the strength of the weld metal, but it is excessively added to the extent that the core wire mass ratio exceeds 0.04%. Then, Cr carbide and Ti carbide are generated and coarsened to excessively increase the strength of the weld metal and reduce the toughness. Therefore, C is 0.04% or less, preferably 0.02% or less, in terms of the mass ratio of the core wire to the core wire of the coating agent.

〔心線と被覆剤の心線質量比でSi:0.3~1.0%〕
Siは、心線、被覆剤の金属Si及びFe-Si等から添加され、溶融金属の粘性を下げ、ビード形状を改善させる効果を有する。心線質量比でSiが0.3%未満では、その効果が得られず、溶融金属の粘性が高くなり、ビード形状が悪くなる。一方、心線質量比でSiが1.0%を超えると、スラグ被包性が悪くなる。従って、心線と被覆剤の心線質量比でSiは0.3~1.0%とする。
[Si: 0.3 to 1.0% by mass ratio of core wire to coating material]
Si is added from the core wire, the metal Si of the coating agent, Fe—Si, etc., and has the effect of lowering the viscosity of the molten metal and improving the bead shape. If Si is less than 0.3% by mass ratio of the core wire, the effect cannot be obtained, the viscosity of the molten metal becomes high, and the bead shape becomes poor. On the other hand, if Si exceeds 1.0% in terms of core mass ratio, the slag encapsulation property deteriorates. Therefore, the mass ratio of the core wire to the core wire of the coating material is 0.3 to 1.0%.

〔心線と被覆剤の心線質量比でMn:2.63~5%〕
Mnは、心線、被覆剤の金属Mn及びFe-Mn等から添加され、溶接金属の靭性を向上させるとともに、MnSを形成して溶接金属中のS等の低融点化合物の偏析を抑え、耐
高温割れ性を改善する効果を有する。心線質量比でMnが2.63%未満では、その効果が得られず、溶接金属の靭性が低下するとともに、オーステナイト粒界にS等の低融点化合物が偏析して高温割れが発生しやすくなる。一方、心線質量比でMnが5%を超えると、オーステナイトの晶出量が増加して高温割れが発生しやすくなる。従って、心線と被覆剤の心線質量比でMnは2.63~5%とする。
[Mn: 2.63 to 5% by mass ratio of core wire to coating material]
Mn is added from the core wire, the metal Mn and Fe-Mn of the coating agent, etc., to improve the toughness of the weld metal, and to form MnS to suppress segregation of low melting point compounds such as S in the weld metal, and tolerate it. It has the effect of improving high temperature crackability. If Mn is less than 2.63 % by mass ratio of the core wire, the effect cannot be obtained, the toughness of the weld metal is lowered, and low melting point compounds such as S are segregated at the austenite grain boundaries, and high temperature cracking is likely to occur. Become. On the other hand, when Mn exceeds 5% in terms of core mass ratio, the amount of austenite crystallized increases and high-temperature cracking is likely to occur. Therefore, Mn is set to 2.63 to 5% in terms of the mass ratio of the core wire to the core wire of the coating agent.

〔心線と被覆剤の心線質量比でNi:9~12%〕
Niは、心線、被覆剤の金属Ni及びFe-Ni等から添加され、オーステナイト相を安定させて溶接金属の靭性を向上させる効果を有する。心線質量比でNiが9%未満では、フェライトの晶出量が増加して結晶粒が粗大化するため、溶接金属の靭性が低下する。一方、心線質量比でNiが12%を超えると、オーステナイトの晶出量が過剰に増加し、高温割れが発生しやすくなる。従って、心線と被覆剤の心線質量比でNiは9~12%とする。
[Ni: 9-12% by mass ratio of core wire to coating material]
Ni is added from the core wire, the metal Ni and Fe—Ni of the coating agent, and has the effect of stabilizing the austenite phase and improving the toughness of the weld metal. When Ni is less than 9% by mass ratio of the core wire, the amount of ferrite crystallization increases and the crystal grains become coarse, so that the toughness of the weld metal decreases. On the other hand, when Ni exceeds 12% in the core mass ratio, the amount of austenite crystallization increases excessively, and high-temperature cracking is likely to occur. Therefore, the mass ratio of the core wire to the core wire of the coating material is 9 to 12% for Ni.

〔心線と被覆剤の心線質量比でCr:18~24%〕
Crは、心線、被覆剤の金属Cr及びFe-Cr等から添加され、溶接金属の強度を向上させる効果を有する。心線質量比でCrが18%未満では、オーステナイトの晶出量が過剰に増加し、溶接金属の強度が低下する。一方、心線質量比でCrが24%を超えると、フェライトの晶出量が増加し、結晶粒が粗大化して溶接金属の靭性が低下する。従って、心線と被覆剤の心線質量比でCrは18~24%とする。
[Cr: 18 to 24% by mass ratio of core wire to coating material]
Cr is added from the core wire, the metal Cr of the coating material, Fe—Cr, and the like, and has the effect of improving the strength of the weld metal. When Cr is less than 18% in terms of core mass ratio, the amount of austenite crystallization increases excessively and the strength of the weld metal decreases. On the other hand, when Cr exceeds 24% in terms of core mass ratio, the amount of ferrite crystallization increases, the crystal grains become coarse, and the toughness of the weld metal decreases. Therefore, Cr is set to 18 to 24% in terms of the mass ratio of the core wire to the core wire of the coating agent.

〔心線と被覆剤の心線質量比でAl:0.01~0.30%〕
Alは、心線、被覆剤の金属Al及びFe-Al等から添加され、溶融スラグの融点を上げ、立向姿勢溶接での耐メタル垂れ性を改善する効果を有する。心線質量比でAlが0.01%未満では、溶融スラグの融点が低くなるので、立向姿勢溶接でメタル垂れが発生しやすくなる。一方、心線質量比でAlが0.30%を超えると、アークの吹付けが過剰に強くなり、スパッタ発生量が多くなる。従って、心線と被覆剤の心線質量比でAlは0.01~0.30%とする。
[Al: 0.01-0.30% by mass ratio of core wire to coating material]
Al is added from the core wire, the metal Al of the coating material, Fe—Al, and the like, and has the effect of raising the melting point of the molten slag and improving the metal sagging resistance in vertical posture welding. If Al is less than 0.01% by mass ratio of the core wire, the melting point of the molten slag becomes low, so that metal sagging is likely to occur in vertical posture welding. On the other hand, when Al exceeds 0.30% in the core mass ratio, the arc spraying becomes excessively strong and the amount of spatter generated increases. Therefore, Al is 0.01 to 0.30% in terms of the mass ratio of the core wire to the core wire of the coating agent.

〔心線と被覆剤の心線質量比でBi:0.005~0.050%〕
Biは、心線及び被覆剤の金属Bi等から添加され、スラグ剥離性を改善する効果を有する。心線質量比でBiが0.005%未満では、その効果を得られず、スラグ剥離性が悪くなる。一方、心線質量比でBiが0.050%を超えると、高温割れが発生しやすくなり、また溶接金属の靭性が低下する。従って、心線と被覆材の心線質量比でBiは0.005~0.050%とする。
[Bi: 0.005 to 0.050% by mass ratio of core wire to coating material]
Bi is added from the core wire and the metal Bi of the coating agent, and has the effect of improving the slag peelability. If Bi is less than 0.005% in terms of core mass ratio, the effect cannot be obtained and the slag peeling property is deteriorated. On the other hand, when Bi exceeds 0.050% in terms of core mass ratio, high-temperature cracking is likely to occur and the toughness of the weld metal is lowered. Therefore, Bi is 0.005 to 0.050% in terms of the mass ratio of the core wire to the core wire of the covering material.

次に被覆剤中に含まれる各成分組成の被覆剤全質量に対する各成分組成の限定理由を述べる。以下の被覆剤中の各成分組成は、被覆剤全質量に対する質量%で表すこととし、その質量%を表すときには単に%と記載することとする。 Next, the reason for limiting each component composition to the total mass of the coating agent contained in the coating agent will be described. The composition of each component in the following coating agents shall be expressed in% by mass with respect to the total mass of the coating agent, and when expressing the mass%, it shall be simply described as%.

〔被覆剤中のTi酸化物のTiO2換算値の合計:20~40%〕
Ti酸化物は、ルチール、酸化チタン及びチタンスラグ等から添加され、スラグ生成剤として作用し、スラグ被包性及びスラグ剥離性を改善するとともに、立向姿勢溶接でメタル垂れを防止する効果を有する。Ti酸化物のTiO2換算値の合計が20%未満では、スラグ生成量が少なくなり、スラグ被包性及びスラグ剥離性が悪くなる。またTi酸化物のTiO2換算値の合計が20%未満では、立向姿勢溶接でメタル垂れが発生しやすくなる。一方、Ti酸化物のTiO2換算値の合計が40%を超えると、スラグ生成量が過多となり、アークが不安定になる。従って、被覆剤中のTi酸化物のTiO2換算値の合計は20~40%とする。
[Total of TIO 2 conversion values of Ti oxide in the coating agent: 20-40%]
Ti oxide is added from rutile, titanium oxide, titanium slag, etc., acts as a slag generator, improves slag encapsulation and slag peelability, and has the effect of preventing metal sagging in vertical posture welding. .. When the total of the TIO 2 conversion values of the Ti oxide is less than 20%, the amount of slag produced is small, and the slag encapsulation property and the slag exfoliation property are deteriorated. Further, if the total of the TIO 2 conversion values of the Ti oxide is less than 20%, metal sagging is likely to occur in the vertical position welding. On the other hand, if the total of the TiO 2 conversion values of the Ti oxide exceeds 40%, the amount of slag produced becomes excessive and the arc becomes unstable. Therefore, the total TiO 2 conversion value of the Ti oxide in the coating material is set to 20 to 40%.

〔被覆剤中のSi酸化物のSiO2換算値の合計:18~35%〕
Si酸化物は、カリ長石、珪砂、合成マイカ及び水ガラス等から添加され、スラグ生成剤として作用し、スラグ被包性及びスラグ剥離性を改善する効果を有する。Si酸化物のSiO2換算値の合計が18%未満では、スラグ生成量が少なくなり、スラグ被包性及びスラグ剥離性が悪くなる。一方、Si酸化物のSiO2換算値の合計が35%を超えると、溶融スラグの融点が過剰に下がるため、立向姿勢溶接でメタル垂れが発生しやすくなる。従って、被覆剤中のSi酸化物のSiO2換算値の合計は18~35%とする。
[Total SiO 2 conversion value of Si oxide in the coating agent: 18 to 35%]
The Si oxide is added from potassium feldspar, silica sand, synthetic mica, water glass and the like, acts as a slag generator, and has an effect of improving slag encapsulation and slag exfoliation. When the total SiO 2 conversion value of the Si oxide is less than 18%, the amount of slag produced is small, and the slag encapsulation property and the slag peelability are deteriorated. On the other hand, when the total SiO 2 conversion value of the Si oxide exceeds 35%, the melting point of the molten slag is excessively lowered, so that metal sagging is likely to occur in the vertical position welding. Therefore, the total value of Si oxides in the coating material in terms of SiO 2 is 18 to 35%.

〔被覆剤中のAl酸化物のAl23換算値の合計:3~10%〕
Al酸化物は、カリ長石及びアルミナ等から添加され、溶融スラグの融点を高くし、立向姿勢溶接でのビード形状を改善する効果を有する。Al酸化物のAl23換算値の合計が3%未満では、溶融スラグの融点が過剰に低くなり、立向姿勢溶接でのビード形状が悪くなる。一方、Al酸化物のAl23換算値の合計が10%を超えると、溶融スラグの融点が過剰に高くなりスラグ剥離性が悪くなる。従って、被覆剤中のAl酸化物のAl23換算値の合計は3~10%とする。
[Total Al 2 O 3 conversion value of Al oxide in the coating agent: 3 to 10%]
Al oxide is added from potassium feldspar, alumina and the like, and has the effect of increasing the melting point of molten slag and improving the bead shape in vertical position welding. If the total Al 2 O 3 conversion value of the Al oxide is less than 3%, the melting point of the molten slag becomes excessively low, and the bead shape in the vertical position welding becomes poor. On the other hand, when the total Al 2 O 3 conversion value of the Al oxide exceeds 10%, the melting point of the molten slag becomes excessively high and the slag peelability deteriorates. Therefore, the total Al 2 O 3 conversion value of Al oxide in the coating agent is 3 to 10%.

〔被覆剤中の金属弗化物のF換算値の合計:0.1~5.0%〕
金属弗化物は、蛍石、弗化ソーダ、弗化アルミ、珪弗化カリウム及び氷晶石等から添加され、アークの吹付けを強くする効果を有する。金属弗化物のF換算値の合計が0.1%未満では、アークの吹付けが弱くなり、アークが不安定になるとともに、ブローホール等の溶接欠陥が発生しやすくなる。一方、金属弗化物のF換算値の合計が5.0%を超えると、アークの吹付けが過剰に強くなり、スパッタ発生量が多くなる。また金属弗化物のF換算値の合計が5.0%を超えると、溶融スラグの融点が過剰に低くなり、ビード形状が悪くなる。従って、被覆剤中の金属弗化物のF換算値の合計は0.1~5.0%とする。
[Total F conversion value of metal fluoride in the coating agent: 0.1 to 5.0%]
The metal fluoride is added from fluorite, sodium fluoride, aluminum fluoride, potassium silica fluoride, cryolite and the like, and has the effect of strengthening the spraying of arcs. If the total F conversion value of the metal fluoride is less than 0.1%, the spraying of the arc becomes weak, the arc becomes unstable, and welding defects such as blow holes are likely to occur. On the other hand, when the total F conversion value of the metal fluoride exceeds 5.0%, the spraying of the arc becomes excessively strong and the amount of spatter generated increases. Further, when the total F conversion value of the metal fluoride exceeds 5.0%, the melting point of the molten slag becomes excessively low and the bead shape deteriorates. Therefore, the total F conversion value of the metal fluoride in the coating material is 0.1 to 5.0%.

〔被覆剤中のCaCO3:5~20%〕
CaCO3は、炭酸石灰及びドロマイト等から添加され、アークの吹付けを強くする効果を有する。CaCO3が5%未満では、アークの吹付けが弱くなるとともに、シールド不足となり、ピットやブローホール等の溶接欠陥が発生しやすくなる。一方、CaCO3が20%を超えると、アークの吹付けが過剰に強くなりスパッタ発生量が多くなり、またスラグ剥離性も悪くなる。従って、被覆剤中のCaCO3は5~20%とする。
[CaCO 3 : 5 to 20% in the coating agent]
CaCO 3 is added from lime carbonate, dolomite and the like, and has the effect of strengthening the spraying of arcs. If CaCO 3 is less than 5%, the arc spraying becomes weak, the shield becomes insufficient, and welding defects such as pits and blow holes are likely to occur. On the other hand, when CaCO 3 exceeds 20%, the arc spraying becomes excessively strong, the amount of spatter generated increases, and the slag peeling property also deteriorates. Therefore, CaCO 3 in the coating is 5 to 20%.

〔被覆剤中のNa化合物及びK化合物のNa換算値及びK換算値の合計:1~10%〕
Na化合物及びK化合物は、カリ長石、珪弗化カリウム及び水ガラス等から添加され、アーク安定性を改善する効果を有する。Na化合物及びK化合物のNa換算値及びK換算値の合計が1%未満では、アークが不安定になり、ビード形状が悪くなる。一方、Na化合物及びK化合物のNa換算値及びK換算値の合計が10%を超えると、かえってアークが不安定になり、スパッタ発生量が多くなる。従って、被覆剤中のNa化合物及びK化合物のNa換算値及びK換算値の合計は1~10%とする。
[Total of Na conversion value and K conversion value of Na compound and K compound in the coating agent: 1 to 10%]
The Na compound and the K compound are added from potassium feldspar, potassium silicate fluoride, water glass and the like, and have an effect of improving arc stability. If the sum of the Na-converted value and the K-converted value of the Na compound and the K compound is less than 1%, the arc becomes unstable and the bead shape deteriorates. On the other hand, if the total of the Na-converted value and the K-converted value of the Na compound and the K compound exceeds 10%, the arc becomes unstable and the amount of spatter generated increases. Therefore, the total of the Na-converted value and the K-converted value of the Na compound and the K compound in the coating agent is 1 to 10%.

なお、本発明のオーステナイト系ステンレス鋼溶接用被覆アーク溶接棒の残部は、Ti酸化物、Si酸化物及びAl酸化物中に微量含まれる酸化物のZrO2とMgOの合計で1%以下、塗装剤として、合成マイカやヘクトライト等の1種以上を合計で5%以下含有することができ、その他は、心線のFe、被覆剤のFe-MnやFe-Cr、Fe-Al等の鉄合金からのFe分及び不可避不純物である。 The rest of the coated arc welding rod for austenite-based stainless steel welding of the present invention is coated with a total of 1% or less of the oxides ZrO 2 and MgO contained in Ti oxide, Si oxide and Al oxide. As an agent, one or more of synthetic mica, hectrite, etc. can be contained in a total of 5% or less, and the others are Fe of the core wire, iron such as Fe-Mn, Fe-Cr, and Fe-Al of the coating material. Fe content and unavoidable impurities from the alloy.

また、使用するオーステナイト系ステンレス鋼の心線は、特に限定しないが、JIS G 4316を用いることが好ましい。さらに、被覆剤の心線への被覆率は、被覆アーク溶接棒全質量に対する被覆剤の質量%で25~50%であることが好ましい。 The core wire of the austenitic stainless steel used is not particularly limited, but it is preferable to use JIS G 4316. Further, the coverage of the coating material on the core wire is preferably 25 to 50% by mass of the coating agent with respect to the total mass of the shielded metal arc welding rod.

以下、本発明のオーステナイト系ステンレス鋼溶接用被覆アーク溶接棒について具体的に説明する。表1に示す各種成分組成の直径3.2mm、長さ350mmのオーステナイト系ステンレス鋼からなる心線を用い、表2に示す各種成分組成の被覆剤を被覆率30~40%で塗装した後に乾燥させた各種オーステナイト系ステンレス鋼溶接用被覆アーク溶接棒を試作した。 Hereinafter, the shielded metal arc welding rod for welding austenitic stainless steel of the present invention will be specifically described. Using a core wire made of austenitic stainless steel with a diameter of 3.2 mm and a length of 350 mm shown in Table 1, the coating agent having various component compositions shown in Table 2 is coated with a coverage ratio of 30 to 40% and then dried. We made prototypes of shielded metal arc welding rods for welding various austenitic stainless steels.

Figure 0007055688000001
Figure 0007055688000001

Figure 0007055688000002
Figure 0007055688000002

これら試作した各種オーステナイト系ステンレス鋼溶接用溶接棒を用い、溶接作業性、溶着金属性能、耐割れ及び耐溶接欠陥性について調査を行った。 Using these various austenitic stainless steel welding rods that were prototyped, we investigated welding workability, weld metal performance, crack resistance, and welding defect resistance.

溶接作業性の評価は、板厚6mm、幅90mm、長さ400mmのJIS G 4305 SUS304Lに準拠したオーステナイト系ステンレス鋼をT字に組んだ試験体を用い、交流溶接電源及び直流溶接電源を使用し、溶接電流90~110Aで水平すみ肉溶接、溶接電流70~90Aで立向上進すみ肉溶接を行い、アーク安定性、スパッタ発生量、メタル垂れの有無、スラグ剥離性、ビード形状について目視にて評価した。 For the evaluation of welding workability, a test piece made of austenitic stainless steel conforming to JIS G 4305 SUS304L with a plate thickness of 6 mm, width of 90 mm, and length of 400 mm was used as a T-shaped test piece, and an AC welding power supply and a DC welding power supply were used. Horizontal fillet welding with a welding current of 90 to 110A, vertical fillet welding with a welding current of 70 to 90A, and visual inspection of arc stability, spatter generation amount, presence or absence of metal sagging, slag peelability, and bead shape. evaluated.

溶着金属性能の評価は、板厚20mmのJIS G 4305 SUS304Lに準拠したオーステナイト系ステンレス鋼を用い、直流溶接電源を使用し、JIS Z 3111に準じて溶着金属試験を行い、引張試験(A0号)と衝撃試験片(Vノッチ)を採取して引張試験及び衝撃試験を行った。 To evaluate the weld metal performance, use austenitic stainless steel conforming to JIS G 4305 SUS304L with a plate thickness of 20 mm, use a DC welding power supply, perform a weld metal test according to JIS Z 3111, and perform a tensile test (A0). And an impact test piece (V notch) was collected and subjected to a tensile test and an impact test.

引張試験の評価は、引張強さが510~700MPaを良好とした。また、靭性の評価は、試験温度-20℃でシャルピー衝撃試験を行い、吸収エネルギーが3本の平均値が45J以上を良好とした。 In the evaluation of the tensile test, the tensile strength was good at 510 to 700 MPa. The toughness was evaluated by conducting a Charpy impact test at a test temperature of −20 ° C., and the average value of three absorbed energies was 45 J or more.

高温割れの評価は、板厚20mmのJIS G 4305 SUS304Lに準拠したオーステナイト系ステンレス鋼を用い、JIS Z 3155に準じてC形ジグ拘束突合せ溶接割れ試験を実施し、高温割れの有無及び割れの長さを測定して評価した。 For the evaluation of high temperature cracking, austenitic stainless steel conforming to JIS G 4305 SUS304L with a plate thickness of 20 mm was used, and a C-shaped jig restraint butt weld cracking test was conducted according to JIS Z 3155. Was measured and evaluated.

溶接欠陥の評価は、溶着金属試験後の試験体を、JIS Z 3106に準じてX線透過試験を実施し、溶着金属中のブローホール等の溶接欠陥の有無を調査した。それらの調査結果を表3にまとめて示す。 For the evaluation of welding defects, the test piece after the weld metal test was subjected to an X-ray transmission test according to JIS Z 3106, and the presence or absence of welding defects such as blow holes in the weld metal was investigated. The results of these surveys are summarized in Table 3.

Figure 0007055688000003
Figure 0007055688000003

表2及び表3中、溶接棒記号R1、R4~14は本発明例、溶接棒記号R15~27は比較例である。 In Tables 2 and 3, the welding rod symbols R1 and R4 to 14 are examples of the present invention, and the welding rod symbols R15 to 27 are comparative examples.

本発明例である溶接棒記号R1、R4~14は、心線と被覆剤の心線質量比で、C、Si、Mn、Ni、Cr、Al及びBiが適正で、被覆剤中のTi酸化物のTiO2換算値の合計、Si酸化物のSiO2換算値の合計、Al酸化物のAl23換算値の合計、金属弗化物のF換算値の合計、CaCO3、Na化合物及びK化合物のNa換算値及びK換算値の合計が適正であるので、水平すみ肉溶接及び立向上進溶接でアークは安定しており、アークの吹付けも良好で、スパッタ発生量は少なく、スラグ剥離性、スラグ被包性及びビード形状が良好であった。また、溶接われ試験での高温割れやX線透過試験での溶接欠陥の発生も無く、溶着金属の引張強さ及び吸収エネルギーも良好であり、極めて満足な結果であった。 In the welding rod symbols R1 and R4 to 14 which are examples of the present invention, C, Si, Mn, Ni, Cr, Al and Bi are appropriate in the core wire mass ratio of the core wire and the coating material, and Ti in the coating material. Total TiO 2 conversion value of oxide, total SiO 2 conversion value of Si oxide, total Al 2 O 3 conversion value of Al oxide, total F conversion value of metal fluoride, CaCO 3 , Na compound and Since the sum of the Na conversion value and the K conversion value of the K compound is appropriate, the arc is stable in horizontal fillet welding and vertical improvement welding, the arc spraying is good, the amount of spatter generated is small, and slag is generated. The peelability, slag encapsulation property and bead shape were good. In addition, there were no high-temperature cracks in the weld crack test or welding defects in the X-ray transmission test, and the tensile strength and absorption energy of the weld metal were good, which was an extremely satisfactory result.

比較例中溶接棒記号R15は、心線質量比のCが多いので、溶着金属の引張強さが高く、吸収エネルギーが低かった。 In the comparative example, the welding rod symbol R15 had a large core wire mass ratio C, so that the tensile strength of the weld metal was high and the absorption energy was low.

溶接棒記号R16は、心線質量比のSiが多いので、スラグ被包性が悪かった。また、心線質量比のMnが少ないので、溶着金属の吸収エネルギーが低かった。さらに、割れ試験でクレータ部に高温割れが発生した。 The welding rod symbol R16 has a large amount of Si in the core mass ratio, so that the slag encapsulation property is poor. Further, since the Mn of the core wire mass ratio was small, the absorption energy of the weld metal was low. Furthermore, high temperature cracking occurred in the crater part in the cracking test.

溶接棒記号R17は、心線質量比のSiが少ないので、ビード形状が不良であった。また、心線質量比のMnが多いので、割れ試験でクレータ部に高温割れが発生した。 Since the welding rod symbol R17 has a small amount of Si in the core mass ratio, the bead shape is poor. Further, since Mn of the core wire mass ratio is large, high temperature cracking occurred in the crater portion in the cracking test.

溶接棒記号R18は、心線質量比のNiが多いので、割れ試験でクレータ部に高温割れが発生した。また、心線質量比のAlが少ないので、立向上進溶接でメタル垂れが発生した。 Since the welding rod symbol R18 has a large amount of Ni in the core mass ratio, high-temperature cracking occurred in the crater portion in the cracking test. In addition, since the core wire mass ratio Al is small, metal sagging occurred in the vertical welding.

溶接棒記号R19は、心線質量比のNiが少ないので、溶着金属の吸収エネルギーが低かった。また、心線質量比のAlが多いので、アークの吹付けが強く、スパッタ発生量が多かった。 Since the welding rod symbol R19 has a small amount of Ni in the core mass ratio, the absorption energy of the weld metal is low. Further, since the core wire mass ratio of Al was large, the arc was strongly sprayed and the amount of spatter generated was large.

溶接棒記号R20は、心線質量比のCrが多いので、溶着金属の吸収エネルギーが低かった。また、Ti酸化物のTiO2換算値の合計が少ないので、スラグ剥離性及びスラグ被包性が不良であった。さらに、立向上進溶接でメタル垂れが発生した。 Since the welding rod symbol R20 has a large amount of Cr in the core mass ratio, the absorption energy of the weld metal is low. Further, since the total of the TIO 2 conversion values of the Ti oxide was small, the slag peeling property and the slag encapsulation property were poor. In addition, metal sagging occurred during the vertical welding.

溶接棒記号R21は、心線質量比のCrが少ないので、溶着金属の引張強さが低かった。また、Ti酸化物のTiO2換算値の合計が多いので、アークが不安定だった。 Since the welding rod symbol R21 has a small amount of Cr in the core mass ratio, the tensile strength of the weld metal is low. In addition, the arc was unstable because the total of the TiO 2 conversion values of the Ti oxide was large.

溶接棒記号R22は、心線質量比のBiが多いので、溶着金属の吸収エネルギーが低かった。また、割れ試験でクレータ部に高温割れが発生した。さらに、金属弗化物のF換算値の合計が少ないので、アークの吹付けが弱く、アークが不安定で、溶着金属中にブローホールが発生した。 Since the welding rod symbol R22 has a large Bi of the core wire mass ratio, the absorption energy of the weld metal is low. In addition, high temperature cracking occurred in the crater part in the cracking test. Further, since the total F conversion value of the metal fluoride is small, the spraying of the arc is weak, the arc is unstable, and blow holes are generated in the weld metal.

溶接棒記号R23は、心線質量比のBiが少ないので、スラグ剥離性が不良であった。また、金属弗化物のF換算値の合計が多いので、アークの吹付けが強く、スパッタ発生量が多く、ビード形状が不良であった。 Since the welding rod symbol R23 has a small Bi of the core wire mass ratio, the slag peelability is poor. Further, since the total F conversion value of the metal fluoride was large, the arc was strongly sprayed, the amount of spatter generated was large, and the bead shape was poor.

溶接棒記号R24は、Si酸化物のSiO2換算値の合計が多いので、立向上進溶接でメタル垂れが発生した。また、Na化合物及びK化合物のNa換算値及びK換算値の合計が少ないので、アークが不安定で、ビード形状が不良であった。 Since the welding rod symbol R24 has a large total of the SiO 2 conversion values of the Si oxide, metal sagging occurred in the vertical improvement welding. Further, since the total of the Na-converted value and the K-converted value of the Na compound and the K compound was small, the arc was unstable and the bead shape was poor.

溶接棒記号R25は、Si酸化物のSiO2換算値の合計が少ないので、スラグ被包性及びスラグ剥離性が不良であった。また、Na化合物及びK化合物のNa換算値及びK換算値の合計が多いので、アークが不安定で、スパッタ発生量が多かった。 Since the total of the SiO 2 conversion values of the Si oxide is small in the welding rod symbol R25, the slag encapsulation property and the slag peeling property are poor. Further, since the total of the Na-converted value and the K-converted value of the Na compound and the K compound was large, the arc was unstable and the amount of spatter generated was large.

溶接棒記号R26は、Al酸化物のAl23換算値の合計が多いので、スラグ剥離性が不良であった。また、CaCO3が少ないので、アークの吹付けが弱く、ブローホールが発生した。 Since the welding rod symbol R26 has a large total of Al 2 O 3 conversion values of Al oxide, the slag peelability was poor. In addition, since the amount of CaCO 3 was low, the arc was weakly sprayed and blow holes were generated.

溶接棒記号R27は、Al酸化物のAl23換算値の合計が少ないので、立向上進溶接でビード形状が不良であった。また、CaCO3が多いので、アークの吹付けが強く、スパッタ発生量が多くかった。さらに、スラグ剥離性も不良であった。 Since the total of Al 2 O 3 conversion values of Al oxide is small in the welding rod symbol R27, the bead shape was poor in the vertical improvement welding. In addition, since there was a large amount of CaCO 3 , the arc was strongly sprayed and the amount of spatter generated was large. Furthermore, the slag peelability was also poor.

Claims (1)

オーステナイト系ステンレス鋼溶接用被覆アーク溶接棒において、オーステナイト系ステンレス鋼を心線とし、前記心線と被覆剤の一方または両方の合計で、下記式に示す心線質量比で、
C:0.04%以下であり、
Si:0.3~1.0%、
Mn:2.63~5%、
Ni:9~12%、
Cr:18~24%、
Al:0.01~0.30%、
Bi:0.005~0.050%を含有し、
前記被覆剤は、当該被覆剤全質量に対する質量%で、
Ti酸化物のTiO2換算値の合計:20~40%、
Si酸化物のSiO2換算値の合計:18~35%、
Al酸化物のAl23換算値の合計:3~10%、
金属弗化物のF換算値の合計:0.1~5.0%、
CaCO3:5~20%、
Na化合物及びK化合物のNa換算値及びK換算値の合計:1~10%を含有し、前記被覆剤の残部が塗装剤、前記心線のFe、被覆剤の鉄合金からのFe分及び不可避不純物からなることを特徴とするオーステナイト系ステンレス鋼溶接用被覆アーク溶接棒。

心線質量比=心線中の含有量%+被覆剤中の含有量%×被覆率%/100・・・式
(但し、心線中の含有量%は心線全質量に対する質量%、被覆剤中の含有量%は被覆剤全質量に対する質量%、被覆率は、当該オーステナイト系ステンレス鋼溶接用被覆アーク溶接棒全質量に対する前記被覆剤の質量%)
In a shielded metal arc welding rod for welding austenitic stainless steel, austenitic stainless steel is used as a core wire, and the total of one or both of the core wire and the coating agent is the core wire mass ratio shown in the following formula.
C: 0.04% or less,
Si: 0.3-1.0%,
Mn: 2.63-5 %,
Ni: 9-12%,
Cr: 18-24%,
Al: 0.01-0.30%,
Bi: Contains 0.005 to 0.050%,
The coating material is in mass% with respect to the total mass of the coating material.
Total of TIO 2 conversion values of Ti oxide: 20-40%,
Total SiO 2 conversion value of Si oxide: 18-35%,
Total Al 2 O 3 conversion value of Al oxide: 3-10%,
Total F conversion value of metal fluoride: 0.1-5.0%,
CaCO 3 : 5-20%,
The total of Na conversion value and K conversion value of Na compound and K compound is 1 to 10%, and the balance of the coating agent is the coating agent, Fe of the core wire, Fe content from the iron alloy of the coating agent and unavoidable. A shielded metal arc welding rod for welding austenitic stainless steel, characterized by being composed of impurities.

Core wire mass ratio = content% in the core wire + content% in the coating agent x coverage% / 100 ... formula (However, the content% in the core wire is mass% with respect to the total mass of the core wire, and the coating The content% in the agent is the mass% with respect to the total mass of the coating agent, and the coverage is the mass% of the coating agent with respect to the total mass of the shielded metal arc welding rod for welding the austenite-based stainless steel).
JP2018080425A 2018-04-19 2018-04-19 Shielded metal arc welding rod for austenitic stainless steel welding Active JP7055688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018080425A JP7055688B2 (en) 2018-04-19 2018-04-19 Shielded metal arc welding rod for austenitic stainless steel welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018080425A JP7055688B2 (en) 2018-04-19 2018-04-19 Shielded metal arc welding rod for austenitic stainless steel welding

Publications (2)

Publication Number Publication Date
JP2019188402A JP2019188402A (en) 2019-10-31
JP7055688B2 true JP7055688B2 (en) 2022-04-18

Family

ID=68388504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018080425A Active JP7055688B2 (en) 2018-04-19 2018-04-19 Shielded metal arc welding rod for austenitic stainless steel welding

Country Status (1)

Country Link
JP (1) JP7055688B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223816A (en) 2011-04-07 2012-11-15 Nippon Steel & Sumikin Welding Co Ltd Coated electrode for duplex stainless steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4821708B1 (en) * 1969-03-31 1973-06-30
JP3441821B2 (en) * 1994-12-12 2003-09-02 新日本製鐵株式会社 Covered arc welding rod for austenitic stainless steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223816A (en) 2011-04-07 2012-11-15 Nippon Steel & Sumikin Welding Co Ltd Coated electrode for duplex stainless steel

Also Published As

Publication number Publication date
JP2019188402A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP6216642B2 (en) Low hydrogen coated arc welding rod
JP6437327B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2010110817A (en) Low-hydrogen coated electrode
JP6437471B2 (en) Low hydrogen coated arc welding rod
JP6177177B2 (en) Low hydrogen coated arc welding rod
JP2018153853A (en) Flux-cored wire for gas shield arc welding
JP5706354B2 (en) Coated arc welding rod for duplex stainless steel
JP6051086B2 (en) Low hydrogen coated arc welding rod
JP6502887B2 (en) Flux-cored wire for gas shielded arc welding
JP2014028390A (en) Coated arc-welding bar
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6939508B2 (en) Corrosion-resistant steel gas shield arc welding flux-cored wire and welding joint manufacturing method
JP6641084B2 (en) Low hydrogen coated arc welding rod with excellent resistance to bar burn during welding
JP7055688B2 (en) Shielded metal arc welding rod for austenitic stainless steel welding
JP2020168651A (en) COATED ARC WELDING ELECTRODE FOR 9% Ni STEEL WELDING
JP5938375B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP2017164772A (en) Flux-cored wire for carbon dioxide gas shield arc welding
JP2019171473A (en) Flux-cored wire
JP6669680B2 (en) Lime titania coated arc welding rod
JP2021109200A (en) Iron powder low hydrogen type coated arc welding electrode
JP2017217670A (en) Ilmenite type covered arc welding rod
JP6786431B2 (en) Carbon-based flux-cored wire for carbon dioxide shield arc welding
JP2020131234A (en) Stainless steel flux-cored wire for self-shielded arc-welding
JP6999461B2 (en) High titanium oxide-based shielded metal arc welding rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220406

R150 Certificate of patent or registration of utility model

Ref document number: 7055688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150