JP7053167B2 - Adsorbent aggregate and its manufacturing method and adsorption method - Google Patents

Adsorbent aggregate and its manufacturing method and adsorption method Download PDF

Info

Publication number
JP7053167B2
JP7053167B2 JP2017109819A JP2017109819A JP7053167B2 JP 7053167 B2 JP7053167 B2 JP 7053167B2 JP 2017109819 A JP2017109819 A JP 2017109819A JP 2017109819 A JP2017109819 A JP 2017109819A JP 7053167 B2 JP7053167 B2 JP 7053167B2
Authority
JP
Japan
Prior art keywords
adsorbent
resin
aggregate
gap
resin structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017109819A
Other languages
Japanese (ja)
Other versions
JP2018202317A5 (en
JP2018202317A (en
Inventor
敏文 加藤
周 染谷
拓 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOMEYA MANUFACTURING CO., LTD.
Nippon Filcon Co Ltd
Original Assignee
SOMEYA MANUFACTURING CO., LTD.
Nippon Filcon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOMEYA MANUFACTURING CO., LTD., Nippon Filcon Co Ltd filed Critical SOMEYA MANUFACTURING CO., LTD.
Priority to JP2017109819A priority Critical patent/JP7053167B2/en
Priority to PCT/JP2018/020515 priority patent/WO2018221502A1/en
Publication of JP2018202317A publication Critical patent/JP2018202317A/en
Publication of JP2018202317A5 publication Critical patent/JP2018202317A5/ja
Application granted granted Critical
Publication of JP7053167B2 publication Critical patent/JP7053167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/018Granulation; Incorporation of ion-exchangers in a matrix; Mixing with inert materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • B01J47/127Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes in the form of filaments or fibres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、被処理流体中に含まれる有価物質及び有害物質を吸着する吸着材集合体及びその製法並びに吸着法に関連する。 The present invention relates to an adsorbent aggregate that adsorbs valuable substances and harmful substances contained in a fluid to be treated, a method for producing the same, and an adsorption method.

近年、レアメタルのリサイクル技術が注目を集めている。稀有金属又は希少金属とも呼ばれるレアメタルは、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、ガリウム(Ga)、セレン(Se)、モリブデン(Mo)、パラジウム(Pd)、インジウム(In)等の非鉄金属及びランタン(La)、セリウム(Ce)等の希土類元素を指称する。レアメタルを産出できない国では、外国からの輸入に頼らざるを得ず、効率良く回収して再利用する技術の開発が急務である。 In recent years, rare metal recycling technology has been attracting attention. Rare metals, also called rare metals or rare metals, are titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), gallium (Ga), cerium (Se), It refers to non-ferrous metals such as molybdenum (Mo), palladium (Pd) and indium (In) and rare earth elements such as lanthanum (La) and cerium (Ce). In countries where rare metals cannot be produced, there is no choice but to rely on imports from foreign countries, and there is an urgent need to develop technology for efficient collection and reuse.

メッキ工場、電子部品製造工場、金属精錬工場等の廃液中に溶解し又は含まれる金(Au)、白金(Pt)、パラジウム(Pd)、ニッケル(Ni)、コバルト(Co)等の有価金属の回収と再利用は、循環型社会の構築、持続可能な環境の実現に必要不可欠である。また、工場排水中に有害金属として含まれるヒ素(As)、カドミウム(Cd)、鉛(Pb)等は水質汚濁防止法により排除基準値が定められており、適正な処理なしには排水を河川に放流できない。排水中に溶解する特定の貴金属、有価金属及び有害金属を効率よく除去しかつ回収して、除去回収作用の寿命が持続する金属捕捉技術が望まれる。 Valuable metals such as gold (Au), platinum (Pt), palladium (Pd), nickel (Ni), and cobalt (Co) that are dissolved or contained in the waste liquid of plating factories, electronic parts manufacturing factories, metal refining factories, etc. Recovery and reuse are essential for building a sound material-cycle society and realizing a sustainable environment. In addition, arsenic (As), cadmium (Cd), lead (Pb), etc. contained as harmful metals in factory wastewater have exclusion standard values set by the Water Pollution Control Law, and wastewater is discharged into rivers without proper treatment. Cannot be released to. A metal trapping technique that efficiently removes and recovers specific precious metals, valuable metals, and toxic metals that dissolve in wastewater and maintains the life of the removal and recovery action is desired.

溶液中に溶媒和する金属及び/又は錯体を形成して溶解する金属の回収及び除去技術として、例えばイオン交換樹脂、キレート樹脂等の金属吸着材に金属含有被処理液を通液して金属を捕捉させる技術が知られる。溶媒和とは、金属が電離した金属イオンと溶媒分子とが静電気力又は水素結合により結合し、金属が溶媒中に拡散した状態である。金属吸着材は、多数の微細孔を有する表面位置で吸着するか、又は金属吸着材内部に配合した吸着性物質により被処理液中の特定金属を吸着する。 As a technique for recovering and removing a metal that is neutralized in a solution and / or a metal that dissolves by forming a complex, a metal-containing material to be treated is passed through a metal adsorbent such as an ion exchange resin or a chelate resin to obtain a metal. The technique of capturing is known. Solvation is a state in which metal ions ionized by a metal and solvent molecules are bonded by electrostatic force or hydrogen bonds, and the metal is diffused into the solvent. The metal adsorbent adsorbs at a surface position having a large number of micropores, or adsorbs a specific metal in a liquid to be treated by an adsorptive substance blended inside the metal adsorbent.

他方、粒状又は粉状のキレート樹脂及びイオン交換樹脂は、液体処理用途だけでなく、気体中の特定物質吸着除去にも使用できる。例えば、大気汚染原因物質の窒素酸化物、硫黄酸化物、ホルムアルデヒド等の除去、建材由来の揮発性有機化合物、ホルマリン、ホルムアルデヒド等の有害物質除去、工場排気中の有害又は有臭成分除去、防臭又は防毒マスクフィルタによる有害物質除去等、様々な用途に使用される。 On the other hand, granular or powdery chelate resins and ion exchange resins can be used not only for liquid treatment but also for adsorption and removal of specific substances in gas. For example, removal of nitrogen oxides, sulfur oxides, formaldehyde, etc., which are substances that cause air pollution, removal of harmful substances such as volatile organic compounds, formalin, formaldehyde, etc. derived from building materials, removal of harmful or odorous components in factory exhaust, deodorization or It is used for various purposes such as removing harmful substances with a poison-proof mask filter.

粒状又は粉状のキレート樹脂及びイオン交換樹脂は、被処理流体の処理量及び用途並びに処理装置の設置環境に応じて、容器充填によりあらゆる形状に変形して利用できる。また、粒径及び充填量を選択し、被処理物質の吸着率及び吸着速度を調整できる。 Granular or powdery chelate resins and ion exchange resins can be transformed into any shape by filling in a container and used depending on the treatment amount and application of the fluid to be treated and the installation environment of the treatment equipment. Further, the particle size and the filling amount can be selected, and the adsorption rate and the adsorption rate of the substance to be treated can be adjusted.

しかし、キレート樹脂及びイオン交換樹脂の微細な粒状体又は粉状体は、容器充填の際、激しく舞い上がり飛散し、作業者は、粒状体又は粉状体を吸引し又は目に入れるおそれがある。また、容器充填後は、自己荷重、搬送時の振動、使用時の流体の流動又は圧力により、充填した粒状体又は粉状体の空隙が詰まり充填物全体が圧縮する。圧縮すると、流体の透過性が低下し処理量が著しく減少し、長時間使用により、目詰り及び閉塞が早期に生じる。更に、容器に充填した多数の粒状体又は粉状体は、互いに固定されていないため、処理流体と共に容器外部に流出し吸着特性が低下する。このため、粒状体又は粉状体充填物の圧縮防止のため、充填後は、運搬時の振動等、十分注意して取り扱う必要があった。また、処理速度を下げて粒状体又は粉状体の離脱流出を防止する必要があった。 However, the fine granules or powders of the chelate resin and the ion exchange resin may violently fly up and scatter when the container is filled, and the operator may suck the granules or powders or put them in the eyes. In addition, after filling the container, the voids of the filled granules or powders are clogged by the self-load, vibration during transportation, flow or pressure of the fluid during use, and the entire filling is compressed. When compressed, the permeability of the fluid is reduced and the treatment amount is significantly reduced, and long-term use causes early clogging and clogging. Further, since a large number of granules or powders filled in the container are not fixed to each other, they flow out to the outside of the container together with the processing fluid and the adsorption characteristics are deteriorated. Therefore, in order to prevent compression of the granular or powdered material filling, it is necessary to handle it with sufficient care such as vibration during transportation after filling. In addition, it was necessary to reduce the treatment speed to prevent the outflow of granules or powders.

これに対し、吸着材粒子を熱可塑性樹脂粉体に融着固定した金属吸着性焼結体が知られる(引用文献1)。また、ポリマー系吸着剤と多孔質バインダとを備える成型体による気体有機物除去技術が知られる(引用文献2)。何れも吸着材をバインダ樹脂に融着固定するため高強度であり、空隙を製造時の状態に維持できる。このため、振動、圧力又は長期使用によっても吸着材間の空隙容積が縮小しない。 On the other hand, a metal-adsorbent sintered body in which adsorbent particles are fused and fixed to thermoplastic resin powder is known (Reference 1). Further, a technique for removing gaseous organic substances by a molded body including a polymer-based adsorbent and a porous binder is known (Reference 2). In each case, the adsorbent is fused and fixed to the binder resin, so that the strength is high and the voids can be maintained in the state at the time of manufacture. Therefore, the void volume between the adsorbents does not decrease even with vibration, pressure, or long-term use.

図11は、ほぼ球形の多数の吸着材51を固定した従来の吸着材集合体60を概略示する。吸着材集合体60は、被処理流体中の金属等の特定物質を吸着する吸着材51と、吸着材51を固定する樹脂構造体52と、樹脂構造体52間に形成されかつ被処理流体が通過する空間53とを備える。樹脂構造体52には、複数の空間53同士を流体接続する間隙52aを備え、間隙52aを通り流体が空間53に導入され吸着材51と接触する。 FIG. 11 schematically shows a conventional adsorbent assembly 60 to which a large number of substantially spherical adsorbents 51 are fixed. The adsorbent aggregate 60 is formed between the adsorbent 51 that adsorbs a specific substance such as a metal in the fluid to be treated, the resin structure 52 that fixes the adsorbent 51, and the resin structure 52, and the fluid to be treated is formed. It has a space 53 through which it passes. The resin structure 52 is provided with a gap 52a that fluidly connects a plurality of spaces 53 to each other, and the fluid is introduced into the space 53 through the gap 52a and comes into contact with the adsorbent 51.

図11の吸着材集合体60の製法では、最初に、ほぼ球形のキレート樹脂又はイオン交換樹脂吸製の吸着材51と熱可塑性のバインダ樹脂とを混合する。吸着材51は乾燥状態である。次に、その混合物をバインダ樹脂が十分溶解する温度で加熱し、吸着材51と樹脂構造体52とを接合部51aを通じて強固に融着する。 In the method for producing the adsorbent aggregate 60 of FIG. 11, first, the adsorbent 51 made of a substantially spherical chelate resin or ion exchange resin absorption and the thermoplastic binder resin are mixed. The adsorbent 51 is in a dry state. Next, the mixture is heated at a temperature at which the binder resin is sufficiently dissolved, and the adsorbent 51 and the resin structure 52 are firmly fused through the joint portion 51a.

図11の吸着材集合体60は、吸着材51を樹脂構造体52に完全に固定するため、被処理流体を高速処理しても吸着材51が吸着材集合体60から処理流体と共に離脱しない。しかし、吸着材集合体60の吸着材51は、樹脂構造体52との接合部51aを有する。接合部51aは、吸着の損失となるデッドスペース(無吸着領域)を形成し、流体との接触面積を著しく減少するため、図11の吸着材集合体60では吸着性能が明らかに低下する。 In the adsorbent assembly 60 of FIG. 11, since the adsorbent 51 is completely fixed to the resin structure 52, the adsorbent 51 does not separate from the adsorbent aggregate 60 together with the treated fluid even when the fluid to be treated is treated at high speed. However, the adsorbent 51 of the adsorbent aggregate 60 has a joint portion 51a with the resin structure 52. Since the joint portion 51a forms a dead space (non-adsorption region) that causes adsorption loss and significantly reduces the contact area with the fluid, the adsorption performance of the adsorbent aggregate 60 in FIG. 11 is clearly reduced.

これに対し、図12の吸着材集合体60’のように、吸着材51を増量し空間53に吸着材51を高密充填して固定すれば、接触面積減少の前記課題を改善できる。この場合、使用初期は高吸着能を維持するが、次第に圧力損失が増加し、目詰まりが早期に生じて処理速度が急激に低下する。従って、吸着材と樹脂構造体との接合部に起因する吸着能低下が発生せずかつ処理速度を安定的に維持できる新たな吸着材集合体が望まれる。 On the other hand, as in the case of the adsorbent aggregate 60'in FIG. 12, if the adsorbent 51 is increased in quantity and the adsorbent 51 is densely filled and fixed in the space 53, the above-mentioned problem of reducing the contact area can be improved. In this case, the high adsorption capacity is maintained at the initial stage of use, but the pressure loss gradually increases, clogging occurs early, and the processing speed drops sharply. Therefore, a new adsorbent aggregate that can stably maintain the processing speed without causing a decrease in adsorption capacity due to the joint portion between the adsorbent and the resin structure is desired.

また、図11及び図12に示す吸着材51が樹脂構造体52に固着された吸着材集合体60,60’では、吸着材51が接合部51aを通じて固定状態を維持するため、再利用前に、洗浄流体を逆方向に高速流動しても、吸着材51細部に侵入して吸着した有価又は有害物質の脱着が困難である。また、図12の吸着材集合体60’では、複数の吸着材51間の間隙や細部に、酸又はアルカリ洗浄液が十分に浸透せず、十分な量の有価金属を回収できないおそれもある。この場合、吸着材集合体60,60’の焼却が唯一の有価金属回収手段となり、焼却工程及び新たな吸着材集合体購入のコストが増加する。従って、有害及び有価物質の脱着が容易で再利用可能な吸着材集合体の開発が望まれる。 Further, in the adsorbent aggregates 60, 60'in which the adsorbent 51 shown in FIGS. 11 and 12 is fixed to the resin structure 52, the adsorbent 51 maintains a fixed state through the joint portion 51a, so that the adsorbent 51 maintains a fixed state before reuse. Even if the cleaning fluid flows at high speed in the opposite direction, it is difficult to desorb valuable or harmful substances that have penetrated into the details of the adsorbent 51 and adsorbed. Further, in the adsorbent aggregate 60'in FIG. 12, the acid or alkaline cleaning liquid may not sufficiently permeate into the gaps and details between the plurality of adsorbents 51, and a sufficient amount of valuable metal may not be recovered. In this case, incineration of the adsorbent aggregates 60,60'is the only means for recovering valuable metals, which increases the cost of the incinerator process and the purchase of a new adsorbent aggregate. Therefore, it is desired to develop an adsorbent aggregate that is easy to desorb harmful and valuable substances and can be reused.

更に、図11及び図12の吸着材集合体60,60’では、吸着材51と樹脂構造体52とが固着が不十分であると、長期間の使用により、吸着材51が間隙52aから樹脂構造体52間を離脱流出55するおそれがある。吸着材51が離脱流出55すると吸着性能が低下すると共に、処理流体に吸着材51が混入し好ましくない。また、処理流体には、吸着材51と共に、吸着材51に吸着された有害金属が流出するおそれもある。従って、吸着材が樹脂構造体から離脱流出しない吸着材集合体を形成する必要がある。 Further, in the adsorbent aggregates 60, 60'of FIGS. 11 and 12, if the adsorbent 51 and the resin structure 52 are not sufficiently adhered, the adsorbent 51 is made of resin from the gap 52a by long-term use. There is a risk of leaving and flowing out between the structures 52. When the adsorbent 51 separates and flows out 55, the adsorption performance deteriorates and the adsorbent 51 is mixed in the processing fluid, which is not preferable. Further, the harmful metal adsorbed on the adsorbent 51 may flow out to the processing fluid together with the adsorbent 51. Therefore, it is necessary to form an adsorbent aggregate in which the adsorbent does not separate from the resin structure and flow out.

特開2010-254841公報JP-A-2010-254841 特開平11-147983公報Japanese Unexamined Patent Publication No. 11-147983

そこで本発明は、被処理流体中に含有する被処理物質を効率良く吸着し、吸着性能を長期間持続する吸着材集合体及びその製法並びに吸着法を提供することを目的とする。また、樹脂構造体の可動領域に遊動可能に吸着材を収容する構造により、吸着性能及び処理速度を向上しかつ維持する吸着材集合体及びその製法並びに吸着法を提供することを目的とする。また、吸着材が樹脂構造体から離脱しない吸着材集合体及びその製法並びに吸着法を提供することを目的とする。更に、本発明は、吸着材から容易に吸着物質を分離する再利用可能な吸着材集合体及びその製法並びに吸着法を提供することを目的とする。 Therefore, an object of the present invention is to provide an adsorbent aggregate which efficiently adsorbs a substance to be treated contained in a fluid to be treated and maintains the adsorption performance for a long period of time, a method for producing the same, and a method for adsorbing the adsorbent. Another object of the present invention is to provide an adsorbent aggregate which improves and maintains the adsorbent performance and the processing speed by a structure in which the adsorbent is movably accommodated in a movable region of the resin structure, a method for producing the adsorbent, and a method for adsorbing the adsorbent. Another object of the present invention is to provide an adsorbent aggregate in which the adsorbent does not separate from the resin structure, a method for producing the same, and a method for adsorbing the adsorbent. Furthermore, it is an object of the present invention to provide a reusable adsorbent aggregate that easily separates an adsorbent from an adsorbent, a method for producing the same, and a method for adsorbing the adsorbent.

本発明の吸着材集合体(10)は、粒状又は粉状の吸着材(1)と、吸着材(1)を少なくとも部分的に包囲しかつポリエチレン樹脂が固化された三次元網目構造の樹脂構造体(2)とを備える。吸着材(1)は、球形のエチレンジアミン含有キレート樹脂、又は球形の陰イオン交換樹脂であり、樹脂構造体(2)は、流体が通過する間隙(2a)を有し表面(2c)が房状の区画壁(4)と、区画壁(4)により形成され、区画壁(4)の房状表面(2c)に非接合又は非固着状態で吸着材(1)が自由に遊動できる多数の可動領域(3)とを備える。球形の吸着材(1)の径(1d)は、間隙(2a)の開口(2b)の径(1d)の最大値より大きい。 The adsorbent aggregate (10) of the present invention has a resin structure having a three-dimensional network structure in which a granular or powdery adsorbent (1) and an adsorbent (1) are at least partially enclosed and a polyethylene resin is solidified. Equipped with body (2). The adsorbent (1) is a spherical ethylenediamine-containing chelate resin or a spherical anion exchange resin, and the resin structure (2) has a gap (2a) through which a fluid passes and the surface (2c) is tufted. A large number of movable adsorbents (1) formed by the partition wall (4) and the partition wall (4) so that the adsorbent (1) can freely move to the tufted surface (2c) of the partition wall (4) in a non-bonded or non-fixed state. It has an area (3). The diameter (1d) of the spherical adsorbent (1) is larger than the maximum value of the diameter (1d) of the opening (2b) of the gap (2a).

吸着材集合体(10)の樹脂構造体(2)は、三次元網目構造を形成し、吸着材(1)は、樹脂構造体(2)に固定されずに遊動可能に可動領域(3)に収容される。即ち、吸着材(1)は、可動領域(3)を自由に遊動できるため、被処理流体を吸着材集合体(10)に通液又は通気すると、樹脂構造体(2)に固定されない吸着材(1)は、球状の全吸着面で被処理流体に接触するので、接合部(51a)を有する従来の吸着材集合体(60,60’)に比べ、無吸着領域が無く格段に吸着面積が増加し吸着効率を向上できる。 The resin structure (2) of the adsorbent aggregate (10) forms a three-dimensional network structure, and the adsorbent (1) is not fixed to the resin structure (2) and can move freely (3). Is housed in. That is, since the adsorbent (1) can freely move in the movable region (3), the adsorbent that is not fixed to the resin structure (2) when the fluid to be treated is passed through or aerated through the adsorbent aggregate (10). Since (1) is in contact with the fluid to be treated on the entire spherical adsorption surface, there is no non-adsorption region and the adsorption area is significantly larger than that of the conventional adsorbent aggregate (60,60') having a joint (51a). Can be increased and the adsorption efficiency can be improved.

可動領域(3)では、従来の吸着材集合体(60’)と異なり、吸着材(1)を緊密充填せず、比較的大きい自由空間にて吸着材(1)が流動できるため、吸着材集合体(10)に流体が通過するとき、圧力損失が増加せず、樹脂構造体(2)の間隙(2a)の目詰り及び可動領域(3)の目詰りが発生し難く、長期間継続的に流体中の被吸着物質を吸着できる。更に、吸着材(1)が可動領域(3)を自由に流動するため、吸着材(1)が捕捉した有価物質の脱着が容易である。吸着及び脱着を繰り返し使用しても劣化せず、高吸着能を有する吸着材集合体(10)を何度も再利用できる。吸着材(1)は、可動領域(3)を自由に流動するが、樹脂構造体(2)により包囲されるため、吸着材(1)の外部への流出を防止できる。 In the movable region (3), unlike the conventional adsorbent aggregate (60'), the adsorbent (1) is not tightly filled and the adsorbent (1) can flow in a relatively large free space. When the fluid passes through the aggregate (10), the pressure loss does not increase, the gap (2a) of the resin structure (2) is less likely to be clogged and the movable region (3) is less likely to be clogged, and it continues for a long period of time. The substance to be adsorbed in the fluid can be adsorbed. Further, since the adsorbent (1) freely flows in the movable region (3), the valuable substances captured by the adsorbent (1) can be easily attached and detached. The adsorbent aggregate (10) having high adsorption ability can be reused many times without deterioration even after repeated use of adsorption and desorption. The adsorbent (1) freely flows in the movable region (3), but is surrounded by the resin structure (2), so that the adsorbent (1) can be prevented from flowing out to the outside.

本発明の吸着材集合体(10)の製法は、球形のエチレンジアミン含有キレート樹脂又は陰イオン交換樹脂から選択される粒状又は粉状の複数の吸着材(1)を、アルコール溶液に浸漬し膨張させた後、粉状、粒状又はペレット状の複数の熱可塑性樹脂(2)としてのポリエチレン樹脂と混合して、吸着材混合物を形成する工程と、熱可塑性樹脂(2)の軟化点より高くかつ吸着材(1)の融点より低い温度で吸着材混合物を加熱し、複数の熱可塑性樹脂(2)を三次元的網目状に融着して、吸着材(1)を少なくとも部分的に包囲する樹脂構造体(2)を形成する工程と、樹脂構造体(2)を冷却固化する工程とを含む。冷却固化された樹脂構造体(2)は、流体が通過する間隙(2a)を有し表面(2c)が房状の区画壁(4)と、区画壁(4)により形成され、区画壁(4)の房状表面(2c)に非接合又は非固着状態で吸着材(1)が自由に遊動できる多数の可動領域(3)とを備え、球形の吸着材(1)の径(1d)は、間隙(2a)の開口(2b)の径(2d)の最大値より大きい。 In the method for producing the adsorbent aggregate (10) of the present invention, a plurality of granular or powdery adsorbents (1) selected from a spherical ethylenediamine-containing chelate resin or an anion exchange resin are immersed in an alcohol solution and expanded. After that, a step of forming an adsorbent mixture by mixing with a plurality of powdery, granular or pellet-like polyethylene resins as the thermoplastic resin (2), and a step higher than the softening point of the thermoplastic resin (2) and adsorbing. A resin that heats the adsorbent mixture at a temperature lower than the melting point of the material (1), fuses a plurality of thermoplastic resins (2) in a three-dimensional network, and at least partially surrounds the adsorbent (1). It includes a step of forming the structure (2) and a step of cooling and solidifying the resin structure (2). The cooled and solidified resin structure (2) has a gap (2a) through which a fluid passes, and the surface (2c) is formed by a tufted partition wall (4) and a partition wall (4). The tufted surface (2c) of 4) is provided with a large number of movable regions (3) through which the adsorbent (1) can freely move in a non-bonded or non-fixed state, and the diameter (1d) of the spherical adsorbent (1). Is greater than the maximum value of the diameter (2d) of the opening (2b) of the gap (2a).

熱可塑性樹脂の軟化点より高温かつ吸着材(1)の融点より低温により、吸着材混合物を加熱するため、熱可塑性樹脂のみ溶融し、吸着材(1)は溶融しない。これにより、粉状、粒状又はペレット状の熱可塑性樹脂同士が三次元的に融着し、吸着材(1)を収容する可動領域(3)を備える樹脂構造体(2)を形成できる。 Since the adsorbent mixture is heated at a temperature higher than the softening point of the thermoplastic resin and lower than the melting point of the adsorbent (1), only the thermoplastic resin melts and the adsorbent (1) does not melt. As a result, the powdery, granular or pelletized thermoplastic resins are three-dimensionally fused to each other to form a resin structure (2) having a movable region (3) for accommodating the adsorbent (1).

本発明の吸着法は、前記吸着材集合体(10)を準備する過程と、吸着材集合体(10)の樹脂構造体(2)の区画壁(4)に設けられた間隙(2a)を通じて、可動領域(3)の外部から内部に流入する流体が可動領域(3)に動作可能に収容された吸着材(1)の表面全体に接触する過程と、流体に接触した吸着材(1)が流体中の被処理物質を吸着する過程と、可動領域(3)の流体が間隙(2a)を通じて可動領域(3)の内部から外部に流出する過程とを含む。本発明では、前記流入、接触、吸着及び流出の各過程を可動領域(3)にて実行した後、他の可動領域(3)でも流入、接触、吸着及び流出の各過程を同様に繰り返す。これにより、流体と動作可能な吸着材(1)とは、複数の可動領域(3)で何度も接触し、流体中の被処理物質を大量かつ高効率に吸着捕捉できる。 The adsorption method of the present invention passes through the process of preparing the adsorbent aggregate (10) and the gap (2a) provided in the partition wall (4) of the resin structure (2) of the adsorbent aggregate (10). , The process in which the fluid flowing from the outside to the inside of the movable region (3) comes into contact with the entire surface of the adsorbent (1) operably contained in the movable region (3), and the adsorbent (1) in contact with the fluid. Includes a process in which the fluid adsorbs the substance to be treated in the fluid and a process in which the fluid in the movable region (3) flows out from the inside of the movable region (3) through the gap (2a). In the present invention, after each process of inflow, contact, adsorption and outflow is executed in the movable region (3), each process of inflow, contact, adsorption and outflow is similarly repeated in the other movable region (3). As a result, the fluid and the operable adsorbent (1) can be in contact with each other many times in a plurality of movable regions (3), and a large amount of the substance to be treated in the fluid can be adsorbed and captured with high efficiency.

本発明では、吸着材が樹脂構造体との接合部を有さないため、充填した吸着材が被処理物質を効率良く吸着し吸着性能を長期間持続できる。また、吸着材が遊動するため、圧力損失が上昇せず所定の処理速度を維持でき、安定的かつ連続的な処理運転を可能にする。有価物質又は有害物質を吸着材から容易かつ安価に脱着でき、何度も再利用できるため吸着材交換を必要とせず、処理コストを大幅に低減できる。更に、高速処理しても吸着材が流出せず、常に安全な処理流体が安定的に得られ、高吸着性能を長期間維持できる。 In the present invention, since the adsorbent does not have a joint with the resin structure, the filled adsorbent efficiently adsorbs the substance to be treated and the adsorption performance can be maintained for a long period of time. Further, since the adsorbent is idle, the pressure loss does not increase and a predetermined processing speed can be maintained, enabling stable and continuous processing operation. Since valuable substances or harmful substances can be easily and inexpensively desorbed from the adsorbent and can be reused many times, the adsorbent does not need to be replaced and the processing cost can be significantly reduced. Further, the adsorbent does not flow out even in high-speed treatment, a safe treatment fluid can always be stably obtained, and high adsorption performance can be maintained for a long period of time.

本発明による吸着材集合体を示す部分概略断面図Partial schematic cross-sectional view showing the adsorbent aggregate according to the present invention. 原料樹脂を示す電子顕微鏡写真Electron micrograph showing raw material resin 本発明による吸着材集合体の製法を示す概略断面図Schematic cross-sectional view showing the manufacturing method of the adsorbent aggregate according to the present invention. 本発明による吸着材集合体の製法を示す概略断面図Schematic cross-sectional view showing the manufacturing method of the adsorbent aggregate according to the present invention. 本発明による吸着材集合体を示す電子顕微鏡写真Electron micrograph showing the adsorbent aggregate according to the present invention 本発明による吸着材集合体を拡大した電子顕微鏡写真An electron micrograph of an aggregate of adsorbents according to the present invention. 吸着試験装置を示す概略図Schematic diagram showing an adsorption test device 吸着材が遊動する状態を示す概略断面図Schematic cross-sectional view showing a state in which the adsorbent is idle 吸着材が遊動する状態を示す概略断面図Schematic cross-sectional view showing a state in which the adsorbent is idle 通液試験による金属吸着率の結果を示すグラフGraph showing the result of metal adsorption rate by the liquid flow test 従来の吸着材集合体を示す部分概略断面図Partial schematic cross-sectional view showing a conventional adsorbent aggregate 従来の吸着材集合体を示す部分概略断面図Partial schematic cross-sectional view showing a conventional adsorbent aggregate

本発明による吸着材集合体及びその製法並びに吸着法の実施の形態を図1~図10について以下説明する。図1、図3、図4、図8及び図9は、発明の理解を容易にするため、各構成要素を概略的にかつ簡略化して本発明の吸着材集合体(10)を示す。 The adsorbent aggregate according to the present invention, a method for producing the same, and an embodiment of the adsorption method will be described below with reference to FIGS. 1 to 10. 1, FIG. 3, FIG. 4, FIG. 8 and FIG. 9 show the adsorbent aggregate (10) of the present invention in a schematic and simplified manner in order to facilitate understanding of the invention.

図1に示す本発明による吸着材集合体(10)は、粒状又は粉状材料で形成されたほぼ球形の吸着材(1)と、吸着材(1)を少なくとも部分的に包囲する樹脂構造体(2)とを備える。吸着材(1)は、液体又は気体中に含まれる特定の被吸着物質を選択的に吸着捕捉でき、エチレンアミンを含有するキレート樹脂、並びにアミン、スルホン酸及びカルボン酸を少なくとも1種含有するイオン交換樹脂の1又は2以上から選択される。吸着材(1)のエチレンアミン、アミン、スルホン酸及びカルボン酸は、親水基であるため、疎水性の樹脂構造体(2)の樹脂とは融着が比較的困難である。吸着材(1)により吸着可能な金属は、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ヒ素、イットリウム、ジルコニウム、モリブデン、ルテニウム、パラジウム、銀、カドミウム、インジウム、ハフニウム、タングステン、レニウム、白金、金、鉛、ランタノイド系列及びアクチノイド系列から選択される1又は2以上の金属である。 The adsorbent aggregate (10) according to the present invention shown in FIG. 1 is a substantially spherical adsorbent (1) formed of a granular or powdery material and a resin structure that at least partially surrounds the adsorbent (1). It is equipped with (2). The adsorbent (1) can selectively adsorb and capture a specific substance to be adsorbed contained in a liquid or gas, and is a chelate resin containing ethyleneamine and an ion containing at least one amine, sulfonic acid and carboxylic acid. It is selected from one or two or more of the exchange resins. Since ethyleneamine, amine, sulfonic acid and carboxylic acid of the adsorbent (1) are hydrophilic groups, it is relatively difficult to fuse with the resin of the hydrophobic resin structure (2). The metals that can be adsorbed by the adsorbent (1) are scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, arsenic, yttrium, zirconium, molybdenum, ruthenium, palladium, silver, cadmium, etc. One or more metals selected from the indium, hafnium, tungsten, rhenium, platinum, gold, lead, lanthanoid series and actinoid series.

キレート樹脂のエチレンアミンは、エチレンジアミン(H2NC24NH2)、ジエチレントリアミン(H(NHC24)2NH2)、トリエチレンテトラミン(H(NHC24)3NH2)、テトラエチレンペンタミン(H(NHC24)4NH2)、ペンタエチレンヘキサミン(H(NHC24)5NH2)、テトラエチレントリアミン(C8173)及びエチレンイミン(第二級アミン)(NHCH2CH2)並びにその誘導体の1又は2以上から選択される。アミン、スルホン酸及びカルボン酸を少なくとも1種含有するイオン交換樹脂は、強酸性、弱酸性、強塩基性及び弱塩基性のイオン交換樹脂の1又は2以上を含み、具体的には、エチレンジアミン、ジメチルアミノエタノール((CH3)2NCH2CH2OH)、コハク酸(HOOC(CH2)2COOH)、酢酸、硫酸及びそれらの官能基の1又は2以上を含む。 Ethyleneamine in the chelating resin is ethylenediamine (H 2 NC 2 H 4 NH 2 ), diethylenetriamine (H (NHC 2 H 4 ) 2 NH 2 ), triethylenetetramine (H (NHC 2 H 4 ) 3 NH 2 ), tetra. Ethylenepentamine (H (NHC 2 H 4 ) 4 NH 2 ), pentaethylenehexamine (H (NHC 2 H 4 ) 5 NH 2 ), tetraethylenetriamine (C 8 H 17 N 3 ) and ethyleneimine (secondary) Amine) (NHCH 2 CH 2 ) and one or more of its derivatives are selected. The ion exchange resin containing at least one of amine, sulfonic acid and carboxylic acid contains one or more of strongly acidic, weakly acidic, strongly basic and weakly basic ion exchange resins, and specifically includes ethylenediamine. Includes dimethylaminoethanol ((CH 3 ) 2 NCH 2 CH 2 OH), succinic acid (HOOC (CH 2 ) 2 COOH), acetic acid, sulfuric acid and one or more of their functional groups.

樹脂構造体(2)は、網状に形成された区画壁(4)により、吸着材(1)を遊動可能に収容し又は封入する多数の可動領域(3)を形成する。図1の実施の形態では、各可動領域(3)に1個及び2個の吸着材(1)を収容するが、遊動できる限り、3個以上の吸着材(1)を各可動領域(3)に収容してもよい。樹脂構造体(2)は、ポリプロピレン(PP)、ポリエチレン(PE)、ポリフッ化ビニリデン(PVDF)及びエチレン酢酸ビニル(EVA)共重合体から選択される1又は2以上の熱可塑性樹脂を含む。熱可塑性樹脂を使用するため、加熱により、用途に応じて吸着材集合体(10)の形状を容易に変形できる。 The resin structure (2) forms a large number of movable regions (3) for movably accommodating or enclosing the adsorbent (1) by the partition wall (4) formed in a mesh pattern. In the embodiment of FIG. 1, one and two adsorbents (1) are accommodated in each movable region (3), but three or more adsorbents (1) are accommodated in each movable region (3) as long as they can be idled. ) May be housed. The resin structure (2) contains one or more thermoplastic resins selected from polypropylene (PP), polyethylene (PE), polyvinylidene fluoride (PVDF) and ethylene vinyl acetate (EVA) copolymers. Since a thermoplastic resin is used, the shape of the adsorbent aggregate (10) can be easily deformed by heating according to the application.

樹脂構造体(2)は、多数の可動領域(3)同士を流体接続しかつ被処理流体が通過する間隙(2a)を区画壁(4)に備える。間隙(2a)は、複数樹脂同士が融着していない隙間又は空間であり、図1では、区画壁(4)を貫通するほぼ直線形状の複数の間隙(2a)を概略示する。間隙(2a)により被処理流体の通液性及び通気性を向上すると共に、樹脂構造体(2)間の可動領域(3)に存在する吸着材(1)に被処理流体が効率良く接触して、被処理物質を有効に吸着できる。また、間隙(2a)は、樹脂構造体(2)の区画壁(4)に形成された多数の貫通孔でもよい。 The resin structure (2) fluidly connects a large number of movable regions (3) to each other and provides a gap (2a) through which the fluid to be processed passes in the partition wall (4). The gap (2a) is a gap or space in which the plurality of resins are not fused to each other, and FIG. 1 schematically shows a plurality of substantially linear gaps (2a) penetrating the partition wall (4). The gap (2a) improves the liquid permeability and air permeability of the fluid to be treated, and the fluid to be treated efficiently contacts the adsorbent (1) existing in the movable region (3) between the resin structures (2). Therefore, the substance to be treated can be effectively adsorbed. Further, the gap (2a) may be a large number of through holes formed in the partition wall (4) of the resin structure (2).

吸着材(1)は、間隙(2a)の開口(2b)の径(2d)の最大値より大きい粒径(1d)を有する。流体は樹脂構造体(2)の間隙(2a)を通過するが、吸着材(1)は開口(2b)の径(2d)を通過できない。このため、被処理流体を吸着材集合体(10)に通すとき、吸着材(1)は、可動領域(3)で自由に遊動しても、可動領域(3)内に保持され、他の可動領域(3)又は吸着材集合体(10)外部に流出しない。吸着材(1)が流出しないため、長期間使用しても吸着材集合体(10)の吸着能は低下しない。また、吸着材(1)に吸着した有害又は有価金属が吸着材(1)と共に可動領域(3)から流出することを防止できる。 The adsorbent (1) has a particle size (1d) larger than the maximum value of the diameter (2d) of the opening (2b) of the gap (2a). The fluid passes through the gap (2a) of the resin structure (2), but the adsorbent (1) cannot pass through the diameter (2d) of the opening (2b). Therefore, when the fluid to be treated is passed through the adsorbent aggregate (10), the adsorbent (1) is retained in the movable region (3) even if it freely floats in the movable region (3), and other Movable area (3) or adsorbent aggregate (10) does not flow out. Since the adsorbent (1) does not flow out, the adsorption capacity of the adsorbent aggregate (10) does not decrease even after long-term use. In addition, it is possible to prevent harmful or valuable metals adsorbed on the adsorbent (1) from flowing out from the movable region (3) together with the adsorbent (1).

本発明の実施の形態では、樹脂構造体(2)の吸着材(1)と対向する表面(2c)は、房状、凹凸状又は起伏状に形成される。即ち、平面状に形成されない。これにより、樹脂構造体(2)は、吸着材(1)に対し面接触ではなく点接触するため、樹脂構造体(2)と吸着材(1)との密着又は固定を防止すると共に、可動領域(3)での吸着材(1)の自由な遊動、回転又は振動を促進する。樹脂構造体(2)の表面(2c)を多孔質状に形成してもよい。 In the embodiment of the present invention, the surface (2c) of the resin structure (2) facing the adsorbent (1) is formed in a tufted, uneven or undulating shape. That is, it is not formed in a plane. As a result, the resin structure (2) makes point contact with the adsorbent (1) instead of surface contact, so that the resin structure (2) and the adsorbent (1) are prevented from being in close contact with each other or fixed, and are movable. Promotes free movement, rotation or vibration of the adsorbent (1) in region (3). The surface (2c) of the resin structure (2) may be formed in a porous form.

吸着材集合体(10)を焼成体又は焼結体として形成できる。これにより、吸着材集合体(10)を高強度に維持できる。また、振動及び圧力を受けて長期間使用しても、樹脂構造体(2)が損壊せず、可動領域(3)を崩壊又は縮小せずに製造時の形状及び空間容積を維持するので、通気性又は通液性を長期間安定的に維持できる。 The adsorbent aggregate (10) can be formed as a fired body or a sintered body. As a result, the adsorbent aggregate (10) can be maintained at high strength. In addition, even if the resin structure (2) is used for a long period of time under vibration and pressure, the resin structure (2) is not damaged, and the movable region (3) is not collapsed or shrunk, and the shape and space volume at the time of manufacture are maintained. Breathability or liquid permeability can be stably maintained for a long period of time.

次に、本発明による吸着材集合体(10)の製法の実施の形態を図2~図6を参照して説明する。 Next, an embodiment of the method for producing the adsorbent aggregate (10) according to the present invention will be described with reference to FIGS. 2 to 6.

最初に、キレート樹脂又はイオン交換樹脂から成るほぼ球形の吸着材原料をアルコールに浸漬し十分に膨潤させ、-30kPa以下で減圧濾過し余分なアルコールを除去する。次に、風乾等により乾燥減量が10%以下となるように吸着材(1)を調製する(膨潤度は1より大きい)。調製した粒状又は粉状のほぼ球形の複数の吸着材(1)と、粉状、粒状又はペレット状の複数の熱可塑性樹脂とをほぼ均一になるまで混合し吸着材混合物を形成する。吸着材(1)は、平均粒径20~200μmの範囲に分級して使用される。平均粒径が20μm未満では、樹脂構造体(2)の間隙(2a)から吸着材(1)が流出する。平均粒径が小さ過ぎると、取扱いが困難であると共に、通液及び通気抵抗が増加し処理効率が早期に悪化する。平均粒径が200μmを超えると、被処理流体との接触面積が減少し処理効率が低下する。本実施の形態に使用する粉状熱可塑性樹脂のポリエチレン表面を電子顕微鏡写真により示す(図2)。ポリエチレン樹脂の表面(2c)は、図2の通り、複数の房状物の集合体である。 First, a substantially spherical adsorbent raw material made of a chelate resin or an ion exchange resin is immersed in alcohol to sufficiently swell it, and then filtered under reduced pressure at -30 kPa or less to remove excess alcohol. Next, the adsorbent (1) is prepared so that the dry weight loss is 10% or less by air drying or the like (the degree of swelling is larger than 1). A plurality of prepared granular or powdery substantially spherical adsorbents (1) and a plurality of powdery, granular or pellet-like thermoplastic resins are mixed until substantially uniform to form an adsorbent mixture. The adsorbent (1) is classified into a range of an average particle size of 20 to 200 μm and used. When the average particle size is less than 20 μm, the adsorbent (1) flows out from the gap (2a) of the resin structure (2). If the average particle size is too small, it is difficult to handle, the liquid passage and aeration resistance increase, and the treatment efficiency deteriorates at an early stage. When the average particle size exceeds 200 μm, the contact area with the fluid to be treated decreases and the treatment efficiency decreases. The polyethylene surface of the powdery thermoplastic resin used in this embodiment is shown by an electron micrograph (FIG. 2). As shown in FIG. 2, the surface (2c) of the polyethylene resin is an aggregate of a plurality of tufts.

次に、吸着材混合物を、例えば型に挿入し、熱可塑性樹脂の軟化点より高くかつ吸着材(1)の融点より低い温度で加熱する。具体的には、吸着材混合物を90~180℃に加熱し、熱可塑性樹脂のみ溶融して焼結する。吸着材(1)の融点は、熱可塑性樹脂の軟化点より20℃以上高温であるため、吸着材(1)は溶融しない。このとき、熱可塑性樹脂は内部まで完全には溶融せず、表面のみ溶融し、吸着材(1)を包囲した状態で複数の熱可塑性樹脂を三次元的網目状に融着固定する。これにより、吸着材(1)が自由に動く可動領域(3)を備えた樹脂構造体(2)が形成される。また、図2の通り、熱可塑性樹脂は、房状表面を有するため、加熱溶融の際、面結合せず、互いに点結合して、樹脂間を結合する結合部と結合の無い空隙部とが複雑に絡み合う三次元的な融着形状を形成する。この空隙部は、最終的に、流体が通過する樹脂構造体(2)の間隙(2a)となる。 Next, the adsorbent mixture is inserted into a mold, for example, and heated at a temperature higher than the softening point of the thermoplastic resin and lower than the melting point of the adsorbent (1). Specifically, the adsorbent mixture is heated to 90 to 180 ° C., and only the thermoplastic resin is melted and sintered. Since the melting point of the adsorbent (1) is 20 ° C. or higher higher than the softening point of the thermoplastic resin, the adsorbent (1) does not melt. At this time, the thermoplastic resin is not completely melted to the inside, but only the surface is melted, and a plurality of thermoplastic resins are fused and fixed in a three-dimensional network while surrounding the adsorbent (1). As a result, a resin structure (2) having a movable region (3) in which the adsorbent (1) moves freely is formed. Further, as shown in FIG. 2, since the thermoplastic resin has a tufted surface, it does not face-bond when it is heated and melted, but it is point-bonded to each other, and a bonding portion that bonds between the resins and a void portion that does not bond are formed. It forms a three-dimensional fused shape that is intricately intertwined. This void finally becomes a gap (2a) of the resin structure (2) through which the fluid passes.

吸着材(1)の膨潤度は1より大きく2以下であり、好ましくは、1.1~1.8である。膨潤度とは、物質が液体を吸収する前後の体積の変化率で表される物質固有の値である。熱可塑性樹脂の軟化点より高くかつ吸着材(1)の融点より低い温度で吸着材混合物を加熱すると、熱可塑性樹脂が溶融して樹脂構造体(2)の区画壁(4)が吸着材(1)に接近して形成される(図3)。接近するが、区画壁(4)の表面(2c)と吸着材(1)とは固着していない。区画壁(4)に接近して配置された例えば膨潤度1.8で水又はアルコールを含有する吸着材(1)は、加熱により徐々に水分又はアルコール分を失い膨潤度1の体積まで収縮(S)するまで徐々に区画壁(4)から離間する。最終的には、収縮(S)して小型化した吸着材(1)と区画壁(4)との距離(L)がある程度有し、吸着材(1)が遊動できる隙間として可動領域(3)を形成する(図4)。即ち、吸着材(1)は、加熱による自己収縮(S)により、自らが動く空間を確保する。また、吸着材(1)を加熱したとき、水又はアルコールを含有する吸着材(1)は水分又はアルコール分を蒸発するため、吸着材(1)の表面温度が加熱温度に比べ低下し、対向する熱可塑性樹脂の近接部分(2f)の表面温度も低下して、熱可塑性樹脂の近接部分(2f)の溶融を阻害し、これにより吸着材(1)との固着も阻害する。また、親水性の吸着材(1)と疎水性の熱可塑性樹脂とは、その低親和性及び低結合性により、互いに結合の相性が悪く反発し合い結着しない。従って、吸着材(1)と樹脂構造体(2)とは、互いに固着せず分離する。 The degree of swelling of the adsorbent (1) is larger than 1 and 2 or less, preferably 1.1 to 1.8. The degree of swelling is a value peculiar to a substance expressed by the rate of change in volume before and after the substance absorbs a liquid. When the adsorbent mixture is heated at a temperature higher than the softening point of the thermoplastic resin and lower than the melting point of the adsorbent (1), the thermoplastic resin melts and the partition wall (4) of the resin structure (2) becomes the adsorbent (4). It is formed close to 1) (Fig. 3). Although they approach each other, the surface (2c) of the partition wall (4) and the adsorbent (1) are not fixed. An adsorbent (1) containing water or alcohol with a swelling degree of 1.8, which is placed close to the partition wall (4), gradually loses water or alcohol by heating and shrinks to a volume of swelling degree 1 ( Gradually separate from the partition wall (4) until S). Eventually, there is a certain distance (L) between the adsorbent (1) that has shrunk (S) and become smaller, and the partition wall (4), and the movable region (3) is a gap through which the adsorbent (1) can move. ) Is formed (Fig. 4). That is, the adsorbent (1) secures a space in which it moves by self-shrinking (S) due to heating. Further, when the adsorbent (1) is heated, the adsorbent (1) containing water or alcohol evaporates water or alcohol, so that the surface temperature of the adsorbent (1) is lower than the heating temperature and faces the adsorbent (1). The surface temperature of the close portion (2f) of the thermoplastic resin is also lowered, which hinders the melting of the close portion (2f) of the thermoplastic resin, thereby preventing the adhesion to the adsorbent (1). Further, the hydrophilic adsorbent (1) and the hydrophobic thermoplastic resin have poor binding compatibility with each other due to their low affinity and low binding property, and do not repel each other and bind to each other. Therefore, the adsorbent (1) and the resin structure (2) are separated from each other without sticking to each other.

最後に、樹脂構造体(2)を冷却固化し、図5及び図6の電子顕微鏡写真に示す本発明の吸着材集合体(10)が得られる。図6の拡大写真より、球状の吸着材(1)は、溶融せずに原形を維持して白色房状の樹脂構造体(2)間の可動領域(3)に動作可能に収容される。また、樹脂構造体(2)の房状表面(2c)と吸着材(1)とは、非接合状態であることが図6から分かる。更に、複数の房状表面(2c)の樹脂構造体(2)は、流体が通過する間隙(2a)を有しながら互いに融着し、吸着材(1)を少なくとも部分的に包囲する樹脂構造体(2)の区画壁(4)を形成する。図6の房状区画壁(4)間に球形吸着材(1)が配置された図6の写真の暗い部分は、可動領域(3)を表す。以上の構成より、本発明の吸着材集合体(10)は、吸着材(1)の吸着能力を損なわず、低圧力損失で通液及び通気できる作用効果が得られる。 Finally, the resin structure (2) is cooled and solidified to obtain the adsorbent aggregate (10) of the present invention shown in the electron micrographs of FIGS. 5 and 6. From the enlarged photograph of FIG. 6, the spherical adsorbent (1) is operably housed in the movable region (3) between the white tufted resin structures (2) while maintaining its original shape without melting. Further, it can be seen from FIG. 6 that the tufted surface (2c) of the resin structure (2) and the adsorbent (1) are in a non-bonded state. Further, the resin structure (2) of the plurality of tufted surfaces (2c) fuses with each other while having a gap (2a) through which the fluid passes, and the resin structure (1) surrounds the adsorbent (1) at least partially. Form the partition wall (4) of the body (2). The dark portion of the photograph of FIG. 6 in which the spherical adsorbent (1) is arranged between the tufted partition walls (4) of FIG. 6 represents the movable region (3). From the above configuration, the adsorbent aggregate (10) of the present invention has the effect of allowing liquid passage and aeration with low pressure loss without impairing the adsorption capacity of the adsorbent (1).

前記実施の形態では、粒状又は粉状材料のほぼ球形の吸着材(1)を例示したが、繊維状の吸着材も使用できる。 In the above embodiment, the substantially spherical adsorbent (1) of a granular or powdery material is exemplified, but a fibrous adsorbent can also be used.

以下、被処理液中に溶媒和する金属及び/又は錯体形成して溶解する金属の吸着に本発明の吸着法を適用した実施の形態を図7~図9により説明する。 Hereinafter, embodiments in which the adsorption method of the present invention is applied to the adsorption of a metal that is solvated in the liquid to be treated and / or a metal that forms a complex and dissolves will be described with reference to FIGS. 7 to 9.

図7では、吸着材集合体(10)を内部に配置した筒状の吸着試験装置(20)を示す。例えば、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ヒ素、イットリウム、ジルコニウム、モリブデン、ルテニウム、パラジウム、銀、カドミウム、インジウム、ハフニウム、タングステン、レニウム、白金、金、鉛、ランタノイド系列、アクチノイド系列から選択される1又は2以上の金属成分を含有する被処理液(15)を空間速度5~500h-1で吸着試験装置(20)に通液する。吸着材集合体(10)により金属を吸着し、吸着後の液体を処理液(16)とする。吸着材集合体(10)の吸着材(1)として、エチレンアミンを含むキレート樹脂を用いる。 FIG. 7 shows a tubular adsorption test apparatus (20) in which the adsorbent aggregate (10) is arranged inside. For example, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, arsenic, yttrium, zirconium, molybdenum, ruthenium, palladium, silver, cadmium, indium, hafnium, tungsten, rhenium, platinum, A liquid to be treated (15) containing one or more metal components selected from gold, lead, a lanthanoid series, and an actinoid series is passed through an adsorption test apparatus (20) at a space velocity of 5 to 500 h -1 . The metal is adsorbed by the adsorbent aggregate (10), and the liquid after the adsorption is used as the treatment liquid (16). A chelate resin containing ethyleneamine is used as the adsorbent (1) of the adsorbent aggregate (10).

通液された被処理液体(15)は、図8に示す吸着材集合体(10)の区画壁(4)に設けられた間隙(2a)を通り、可動領域(3)の外部から内部に流入したとき、可動領域(3)に収容された吸着材(1)と接触してキレート樹脂により金属成分を吸着する。吸着材(1)は、被処理液体(15)により若干膨潤するが、樹脂構造体(2)に非固着状態で可動領域(3)を自由に動くため、被処理液体(15)は、吸着材(1)の球面全体と均等に接触する。 The liquid to be treated (15) passed through the gap (2a) provided in the partition wall (4) of the adsorbent aggregate (10) shown in FIG. 8 passes from the outside to the inside of the movable region (3). When it flows in, it comes into contact with the adsorbent (1) contained in the movable region (3) and adsorbs the metal component by the chelate resin. The adsorbent (1) is slightly swollen by the liquid to be treated (15), but the liquid to be treated (15) is adsorbed because it freely moves in the movable region (3) without being fixed to the resin structure (2). Evenly contact the entire spherical surface of the material (1).

吸着材(1)が間隙(2a)の開口(2b)を閉塞しそうな状況(図8)でも、吸着材(1)は、可動領域(3)を自由に移動するため、被処理液体(15)の流れにより、例えば図9のように吸着材(1)は移動可能(17)である。即ち、吸着材(1)は、樹脂構造体(2)に固定されていないため、一定の場所に留まらず、開口(2b)を閉塞せずに間隙(2a)の流路を確保する。また、吸着材(1)が間隙(2a)付近に配置されて間隙(2a)の開口(2b)から流出しそうな状況でも、吸着材(1)の径(1d)は、間隙(2a)の開口(2b)の径(2d)の最大値より大きいため、吸着材(1)が可動領域(3)から間隙(2a)を通り離脱することは無い。 Even in a situation where the adsorbent (1) is likely to block the opening (2b) of the gap (2a) (FIG. 8), the adsorbent (1) freely moves in the movable region (3), so that the liquid to be treated (15) ), For example, as shown in FIG. 9, the adsorbent (1) is movable (17). That is, since the adsorbent (1) is not fixed to the resin structure (2), it does not stay in a fixed place and secures the flow path of the gap (2a) without closing the opening (2b). Further, even in a situation where the adsorbent (1) is arranged near the gap (2a) and is likely to flow out from the opening (2b) of the gap (2a), the diameter (1d) of the adsorbent (1) is the same as that of the gap (2a). Since it is larger than the maximum value of the diameter (2d) of the opening (2b), the adsorbent (1) does not separate from the movable region (3) through the gap (2a).

可動領域(3)の被処理液体(15)は、間隙(2a)を通じて可動領域(3)の内部から外部に流出する。被処理液体(15)が可動領域(3)に流入する限り、図8及び図9の通り、吸着材(1)は停止せず流動するため、吸着材(1)に金属を吸着しても、可動領域(3)及び間隙(2a)を閉塞せず、吸着材集合体(10)の圧力損失が上昇しない。本発明の吸着材集合体(10)では、比表面積を十分確保して吸着性能を低下せずに連続運転でき、十分な量の金属を吸着材(1)の全表面に吸着できる。吸着した金属は、吸着材(1)の遊動により、全表面から酸等の洗浄剤で容易に脱着して、有価金属を回収できる。また、吸着材(1)表面に吸着した有害金属を同様に除去できる。 The liquid (15) to be treated in the movable region (3) flows out from the inside of the movable region (3) through the gap (2a). As long as the liquid to be treated (15) flows into the movable region (3), the adsorbent (1) flows without stopping as shown in FIGS. 8 and 9, so that even if the metal is adsorbed on the adsorbent (1). , The movable region (3) and the gap (2a) are not blocked, and the pressure loss of the adsorbent aggregate (10) does not increase. In the adsorbent aggregate (10) of the present invention, a sufficient specific surface area can be secured for continuous operation without deteriorating the adsorption performance, and a sufficient amount of metal can be adsorbed on the entire surface of the adsorbent (1). The adsorbed metal can be easily desorbed from the entire surface with a cleaning agent such as acid by the floating of the adsorbent (1), and the valuable metal can be recovered. In addition, the harmful metal adsorbed on the surface of the adsorbent (1) can be removed in the same manner.

前記実施の形態では、被処理液中に溶媒和する金属及び/又は錯体形成して溶解する金属の吸着法の実施の形態を示したが、液体の金属処理に限定されず、例えば、被処理気体中の有害物質除去にも本発明による吸着法を適用できる。 In the above-described embodiment, the embodiment of the method of adsorbing a metal that is solvated in a liquid to be treated and / or a metal that forms a complex and dissolves is shown, but the method is not limited to the metal treatment of a liquid, and is, for example, a treatment. The adsorption method according to the present invention can also be applied to the removal of harmful substances in a gas.

本発明の吸着材集合体(10)について通液試験を行った実施例を以下説明する。吸着材(1)としてエチレンジアミン含有キレート樹脂を用いた(第1の実施例)。 An example in which a liquid passing test was performed on the adsorbent aggregate (10) of the present invention will be described below. An ethylenediamine-containing chelate resin was used as the adsorbent (1) (first example).

<第1の実施例>
[吸着材集合体(10)焼結体(実施例1)の製造]
最初に、エチレンジアミン含有キレート樹脂30部をアルコール溶液に浸漬し約1.2倍に膨潤させた後、熱可塑性樹脂として粉状ポリエチレン樹脂(重合度:約18万)70部と混合し吸着材混合物を形成した。吸着材混合物を型に挿入し約125℃で加熱しポリエチレン樹脂を溶融した。更に冷却固化し本発明の吸着材集合体(10)の焼結体(実施例1)を製造した(図5及び図6)。
<First Example>
[Manufacturing of Adsorbent Aggregate (10) Sintered Body (Example 1)]
First, 30 parts of an ethylenediamine-containing chelate resin is immersed in an alcohol solution to swell about 1.2 times, and then mixed with 70 parts of a powdered polyethylene resin (polymerization degree: about 180,000) as a thermoplastic resin to form an adsorbent mixture. Formed. The adsorbent mixture was inserted into a mold and heated at about 125 ° C. to melt the polyethylene resin. Further, it was cooled and solidified to produce a sintered body (Example 1) of the adsorbent aggregate (10) of the present invention (FIGS. 5 and 6).

[吸着材集合体(60)焼結体(比較例1)の製造]
乾燥したエチレンジアミン含有キレート樹脂30部と粉状ポリエチレン樹脂(重合度:約18万)70部とを混合し吸着材混合物を形成した。吸着材混合物を型に挿入し約125℃で加熱しポリエチレン樹脂を溶融した。更に冷却固化し従来技術の吸着材集合体(60)の焼結体(比較例1)を製造した。
[Manufacturing of Adsorbent Aggregate (60) Sintered Body (Comparative Example 1)]
30 parts of the dried ethylenediamine-containing chelate resin and 70 parts of the powdery polyethylene resin (polymerization degree: about 180,000) were mixed to form an adsorbent mixture. The adsorbent mixture was inserted into a mold and heated at about 125 ° C. to melt the polyethylene resin. Further, it was cooled and solidified to produce a sintered body (Comparative Example 1) of the adsorbent aggregate (60) of the prior art.

[通液試験の方法]
得られた吸着材集合体(10)の焼結体(実施例1)を図7の吸着試験装置(20)に充填し、空間速度約300h-1に調整して、既知の金属濃度[mg/l]の被処理液体(15)100mlの通液試験を行った。被処理液体(15)のpH値を2、3、4、5、6、7、8及び9として一金属につき8回通液試験を行い、通液後の処理液体(16)の金属濃度[mg/l]を各々測定した。
[Liquid flow test method]
The obtained sintered body of the adsorbent aggregate (10) (Example 1) was filled in the adsorption test apparatus (20) of FIG. 7, and the space velocity was adjusted to about 300 h -1 , and the known metal concentration [mg] was adjusted. A liquid flow test of 100 ml of the liquid to be treated (15) of / l] was carried out. The pH value of the liquid to be treated (15) was set to 2, 3, 4, 5, 6, 7, 8 and 9, and the liquid passing test was performed 8 times per metal, and the metal concentration of the treated liquid (16) after passing the liquid [16]. mg / l] was measured respectively.

他方、従来の吸着材集合体(60)の焼結体(比較例1)を図7の吸着試験装置(20)に充填し、空間速度約300h-1に調整して、既知の金属濃度[mg/l]の被処理液体(15)100mlの通液試験を行った。前記同様に、被処理液体(15)のpH値を2、3、4、5、6、7、8及び9として一金属につき8回通液試験を行い、通液後の処理液体(16)の金属濃度[mg/l]を各々測定した。 On the other hand, the sintered body (Comparative Example 1) of the conventional adsorbent aggregate (60) was filled in the adsorption test device (20) of FIG. 7, and the space velocity was adjusted to about 300h -1 , and the known metal concentration [ A liquid flow test of 100 ml of the liquid to be treated (15) of mg / l] was carried out. Similarly, the pH value of the liquid to be treated (15) is set to 2, 3, 4, 5, 6, 7, 8 and 9, and the liquid passing test is performed 8 times per metal, and the liquid to be treated (16) is passed. The metal concentration [mg / l] of each was measured.

実施例1及び比較例1について、ヒ素、モリブデン、チタン、鉛、マンガン及びニッケルの吸着率の結果をそれぞれ図10の(a)~(f)のグラフに示す。図10の横軸はpH値を示し、縦軸は吸着率[%]を示す。処理液体(16)の金属濃度を被処理液体(15)の金属濃度で除した値の百分率を吸着率[%]とした。 For Example 1 and Comparative Example 1, the results of the adsorption rates of arsenic, molybdenum, titanium, lead, manganese and nickel are shown in the graphs (a) to (f) of FIG. 10, respectively. The horizontal axis of FIG. 10 shows the pH value, and the vertical axis shows the adsorption rate [%]. The percentage of the value obtained by dividing the metal concentration of the treated liquid (16) by the metal concentration of the liquid to be treated (15) was defined as the adsorption rate [%].

図10(a)~(f)の各グラフに示す通り、全金属元素について、比較例1に比べ実施例1が高吸着率を示した。特に、モリブデン(b)及びチタン(c)は、pH2~9の広範囲で実施例1の吸着率が比較例1を大きく上回った。ヒ素(a)は、pH4~9の範囲で実施例1の吸着率が比較例1より高い。マンガン(e)は、pH2~7の範囲で実施例1の吸着率が比較例1より高い。また、pH3~9の範囲では、実施例1のマンガン吸着率がほぼ100%であった。鉛(d)及びニッケル(f)のpH2では、実施例1の吸着率が比較例1を大きく上回った。鉛(d)及びニッケル(f)に対する実施例1では、pH2~9の広範囲で高吸着率を示し、特に、実施例1による鉛(d)の吸収率は、ほぼ100%であった。 As shown in the graphs of FIGS. 10A to 10F, Example 1 showed a higher adsorption rate than Comparative Example 1 for all metal elements. In particular, for molybdenum (b) and titanium (c), the adsorption rate of Example 1 was significantly higher than that of Comparative Example 1 in a wide range of pH 2-9. The adsorption rate of arsenic (a) in Example 1 is higher than that in Comparative Example 1 in the range of pH 4 to 9. Manganese (e) has a higher adsorption rate of Example 1 than Comparative Example 1 in the range of pH 2 to 7. Further, in the pH range of 3 to 9, the manganese adsorption rate of Example 1 was almost 100%. At pH 2 of lead (d) and nickel (f), the adsorption rate of Example 1 was much higher than that of Comparative Example 1. In Example 1 with respect to lead (d) and nickel (f), a high adsorption rate was exhibited in a wide range of pH 2 to 9, and in particular, the absorption rate of lead (d) according to Example 1 was almost 100%.

以上より、本発明の吸着材集合体(10)の焼結体(実施例1)は、同一量のエチレンジアミン含有キレート樹脂を使用した従来の吸着材集合体(60)の焼結体(比較例1)に比べ、吸着能力を顕著に改善できた。即ち、本発明の吸着材集合体(10)は、吸着材(1)と樹脂構造体(2)とが結着せず(図5及び図6)、吸着材(1)の全表面により金属吸着するため、従来の吸着材集合体(60)に比べ、高い吸着性能を発揮できると確認できた。 Based on the above, the sintered body of the adsorbent aggregate (10) of the present invention (Example 1) is a sintered body of the conventional adsorbent aggregate (60) using the same amount of ethylenediamine-containing chelate resin (Comparative Example). Compared with 1), the adsorption capacity could be significantly improved. That is, in the adsorbent aggregate (10) of the present invention, the adsorbent (1) and the resin structure (2) do not bind (FIGS. 5 and 6), and metal is adsorbed by the entire surface of the adsorbent (1). Therefore, it was confirmed that higher adsorption performance can be exhibited as compared with the conventional adsorbent aggregate (60).

次に、吸着材(1)としてイオン交換樹脂を用いた第2の実施例を説明する。 Next, a second embodiment using an ion exchange resin as the adsorbent (1) will be described.

<第2の実施例>
[吸着材集合体(10)イオン交換樹脂焼結体(実施例2)の製造]
アルコール溶液に浸漬し約1.6倍に膨潤させた陰イオン交換樹脂(吸着材(1))25部と、熱可塑性樹脂として粉状ポリエチレン樹脂(重合度:約18万)25部とを混合した吸着材混合物を、振動する焼結用金型のキャビティに充填した。吸着材混合物を充填した金型を125℃の恒温槽中で加熱焼結した。恒温槽から金型を取り出し冷却固化し、円柱形状の吸着材集合体(10)のイオン交換樹脂焼結体(実施例2)を製造した。
<Second Example>
[Manufacturing of Adsorbent Aggregate (10) Ion Exchange Resin Sintered Body (Example 2)]
25 parts of anion exchange resin (adsorbent (1)) immersed in an alcohol solution and swollen about 1.6 times and 25 parts of powdered polyethylene resin (polymerization degree: about 180,000) as a thermoplastic resin are mixed. The adsorbent mixture was filled into the cavity of the vibrating sintering mold. The mold filled with the adsorbent mixture was heated and sintered in a constant temperature bath at 125 ° C. The mold was taken out from the constant temperature bath and cooled and solidified to produce an ion exchange resin sintered body (Example 2) of a cylindrical adsorbent aggregate (10).

[比較例2の製造]
熱可塑性樹脂を含有せずかつ未焼結の陰イオン交換樹脂のみの比較例2を準備した。
[Manufacturing of Comparative Example 2]
Comparative Example 2 containing only an unsintered anion exchange resin containing no thermoplastic resin was prepared.

[流速試験方法及び結果]
実施例2のイオン交換樹脂焼結体と、それと同量の未焼結陰イオン交換樹脂(比較例2)とをそれぞれカートリッジに挿入し、-30kPaの減圧下、純水を通水し流速試験をした。この結果、実施例2及び比較例2では、それぞれ32ml/分及び31ml/分であった。本発明による実施例2は、未焼結の比較例2と比べ同等以上の流速で処理でき、イオン交換樹脂が樹脂に固着せず可動領域(3)を閉塞せず、液体流動領域の十分な確保を確認できた。
[Flow velocity test method and results]
The ion exchange resin sintered body of Example 2 and the same amount of unsintered anion exchange resin (Comparative Example 2) were inserted into the cartridges, and pure water was passed under a reduced pressure of -30 kPa to perform a flow velocity test. Did. As a result, in Example 2 and Comparative Example 2, the values were 32 ml / min and 31 ml / min, respectively. Example 2 according to the present invention can be treated at a flow rate equal to or higher than that of unsintered Comparative Example 2, the ion exchange resin does not adhere to the resin and does not block the movable region (3), and the liquid flow region is sufficient. I was able to confirm the securing.

[実施例2の吸着試験方法及び結果]
本発明の吸着材集合体(10)を用いたイオン交換樹脂焼結体(実施例2)を充填した図7の試験装置(カートリッジ)(20)に、酢酸アンモニウム溶液により希釈したカフェイン溶液(5μg/ml)(15)10mlを被処理液として流量5、10、20及び30ml/分で通液した。また、酢酸アンモニウム溶液により希釈したアセトアミノフェン溶液(5μg/ml)(15)10mlを被処理液として流量5、10、20及び30ml/分で通液した。通液後のカートリッジをメタノール溶出させカフェイン及びアセトアミノフェンの濃度をそれぞれ測定した。測定濃度を被処理液(15)濃度で除した値の百分率[%]を回収率とし、結果を下表に示す。尚、回収率100%を超える数値は、試験の誤差であり妥当な数値である。
[Adsorption test method and results of Example 2]
A caffeine solution diluted with an ammonium acetate solution (20) in the test apparatus (cartridge) (20) of FIG. 7 filled with an ion exchange resin sintered body (Example 2) using the adsorbent aggregate (10) of the present invention. 5 μg / ml) (15) 10 ml was used as a solution to be treated, and the solution was passed at a flow rate of 5, 10, 20 and 30 ml / min. Further, 10 ml of an acetaminophen solution (5 μg / ml) (15) diluted with an ammonium acetate solution was used as a liquid to be treated, and the liquid was passed at a flow rate of 5, 10, 20 and 30 ml / min. After passing the liquid, the cartridge was eluted with methanol and the concentrations of caffeine and acetaminophen were measured. The recovery rate is the percentage [%] of the value obtained by dividing the measured concentration by the concentration of the liquid to be treated (15), and the results are shown in the table below. A value exceeding 100% of the recovery rate is a test error and is a reasonable value.

Figure 0007053167000001
Figure 0007053167000001

表1より、流量5~30ml/分の全流量範囲でカフェイン及びアセトアミノフェンの回収率が95%を超えた。即ち、吸着材(1)としてイオン交換樹脂を用いた本発明の吸着材集合体(10)でも、被吸着物質の高い吸着特性による高回収率を実現できた。 From Table 1, the recovery rate of caffeine and acetaminophen exceeded 95% in the entire flow rate range of 5 to 30 ml / min. That is, even in the adsorbent aggregate (10) of the present invention using an ion exchange resin as the adsorbent (1), a high recovery rate could be realized due to the high adsorption characteristics of the substance to be adsorbed.

本発明の吸着材集合体及びその製法並びに吸着法は、レアメタル及び有価金属のリサイクル、工場排水処理、飲料水製造、純水製造、地下汚染水浄化、大気汚染浄化、工場排気処理、防臭又は防毒フィルタにも適用可能である。 The adsorbent aggregate of the present invention and its manufacturing method and adsorbing method include recycling of rare metals and valuable metals, factory wastewater treatment, drinking water production, pure water production, underground contaminated water purification, air pollution purification, factory exhaust treatment, deodorization or detoxification. It can also be applied to filters.

(1)・・吸着材、 (2)・・樹脂構造体、 (2a)・・間隙、 (2b)・・開口、 (2c)・・表面(2c)、 (3)・・可動領域、 (10)・・吸着材集合体、 (1) ・ ・ Adsorbent, (2) ・ ・ Resin structure, (2a) ・ ・ Gap, (2b) ・ ・ Opening, (2c) ・ ・ Surface (2c), (3) ・ ・ Movable area, ( 10) ・ ・ Adsorbent aggregate,

Claims (11)

粒状又は粉状の吸着材と、
吸着材を少なくとも部分的に包囲しかつポリエチレン樹脂が固化された三次元網目構造の樹脂構造体とを備え、
吸着材は、球形のエチレンジアミン含有キレート樹脂であり、
樹脂構造体は、流体が通過する間隙を有し表面が房状の区画壁と、区画壁により形成され、区画壁の房状表面に非接合又は非固着状態で吸着材が自由に遊動できる多数の可動領域とを備え、
球形の吸着材の径は、間隙の開口の径の最大値より大きいことを特徴とする吸着材集合体。
Granular or powdery adsorbents and
It comprises a resin structure having a three-dimensional network structure in which the adsorbent is at least partially enclosed and the polyethylene resin is solidified.
The adsorbent is a spherical ethylenediamine-containing chelate resin.
The resin structure is formed by a partition wall having a gap through which a fluid passes and having a tufted surface, and a large number of adsorbents that can freely move freely on the tufted surface of the compartment wall in a non-bonded or non-fixed state. With a movable area of
An adsorbent aggregate characterized in that the diameter of the spherical adsorbent is larger than the maximum diameter of the opening of the gap.
粒状又は粉状の吸着材と、
吸着材を少なくとも部分的に包囲しかつポリエチレン樹脂が固化された三次元網目構造の樹脂構造体とを備え、
吸着材は、球形の陰イオン交換樹脂であり、
樹脂構造体は、流体が通過する間隙を有し表面が房状の区画壁と、区画壁により形成され、区画壁の房状表面に非接合又は非固着状態で吸着材が自由に遊動できる多数の可動領域とを備え、
球形の吸着材の径は、間隙の開口の径の最大値より大きいことを特徴とする吸着材集合体。
Granular or powdery adsorbents and
It comprises a resin structure having a three-dimensional network structure in which the adsorbent is at least partially enclosed and the polyethylene resin is solidified.
The adsorbent is a spherical anion exchange resin,
The resin structure is formed by a partition wall having a gap through which a fluid passes and having a tufted surface, and a large number of adsorbents that can freely move freely on the tufted surface of the compartment wall in a non-bonded or non-fixed state. With a movable area of
An adsorbent aggregate characterized in that the diameter of the spherical adsorbent is larger than the maximum diameter of the opening of the gap.
吸着材の平均粒径は、20~200μmである請求項1又は2に記載の吸着材集合体。 The adsorbent aggregate according to claim 1 or 2, wherein the average particle size of the adsorbent is 20 to 200 μm. 樹脂構造体は、多数の可動領域を形成する網状の区画壁を備え、
区画壁は、可動領域の外部から内部に流体を導入する間隙を備える請求項1又は2に記載の吸着材集合体。
The resin structure comprises a reticulated partition wall that forms a large number of movable areas.
The adsorbent aggregate according to claim 1 or 2, wherein the partition wall has a gap for introducing a fluid from the outside to the inside of the movable region.
焼結体で形成される請求項1又は2に記載の吸着材集合体。 The adsorbent aggregate according to claim 1 or 2, which is formed of a sintered body. 吸着材に吸着される金属は、ヒ素、モリブデン、チタン、鉛、マンガン及びニッケルから選択される請求項1に記載の吸着材集合体。 The adsorbent aggregate according to claim 1, wherein the metal adsorbed on the adsorbent is selected from arsenic, molybdenum, titanium, lead, manganese and nickel. 吸着材に吸着される物質は、カフェイン及びアセトアミノフェンから選択される請求項2に記載の吸着材集合体。 The adsorbent aggregate according to claim 2, wherein the substance adsorbed on the adsorbent is selected from caffeine and acetaminophen. 球形のエチレンジアミン含有キレート樹脂又は陰イオン交換樹脂から選択される粒状又は粉状の複数の吸着材を、アルコール溶液に浸漬し膨張させた後、粉状、粒状又はペレット状の複数の熱可塑性樹脂としてのポリエチレン樹脂と混合して、吸着材混合物を形成する工程と、
熱可塑性樹脂の軟化点より高くかつ吸着材の融点より低い温度で吸着材混合物を加熱し、複数の熱可塑性樹脂を三次元的網目状に融着して、吸着材を少なくとも部分的に包囲する樹脂構造体を形成する工程と、
樹脂構造体を冷却固化する工程とを含み、
冷却固化された樹脂構造体は、流体が通過する間隙を有し表面が房状の区画壁と、区画壁により形成され、区画壁の房状表面に非接合又は非固着状態で吸着材が自由に遊動できる多数の可動領域とを備え、
球形の吸着材の径は、間隙の開口の径の最大値より大きいことを特徴とする吸着材集合体の製法。
A plurality of granular or powdery adsorbents selected from a spherical ethylenediamine-containing chelate resin or an anion exchange resin are immersed in an alcohol solution and expanded, and then as a plurality of powdery, granular or pellet-shaped thermoplastic resins. To form an adsorbent mixture by mixing with the polyethylene resin of
The adsorbent mixture is heated at a temperature higher than the softening point of the thermoplastic resin and lower than the melting point of the adsorbent, and the plurality of thermoplastic resins are fused in a three-dimensional network to enclose the adsorbent at least partially. The process of forming the resin structure and
Including the process of cooling and solidifying the resin structure
The cooled and solidified resin structure is formed by a partition wall having a tufted surface and a partition wall having a gap through which a fluid passes, and the adsorbent is free in a non-bonded or non-fixed state to the tufted surface of the partition wall. Equipped with a large number of movable areas that can be freely moved to
A method for producing an adsorbent aggregate, wherein the diameter of the spherical adsorbent is larger than the maximum diameter of the opening of the gap.
樹脂構造体を形成する工程は、熱可塑性樹脂の軟化点より高くかつ吸着材の融点より低い温度で吸着材混合物を加熱して、吸着材が収縮する工程を含む請求項8に記載の吸着材集合体の製法。 The adsorbent according to claim 8, wherein the step of forming the resin structure includes a step of heating the adsorbent mixture at a temperature higher than the softening point of the thermoplastic resin and lower than the melting point of the adsorbent to shrink the adsorbent. How to make an aggregate. 樹脂構造体を形成する工程は、
吸着材混合物を型に挿入する工程と、
型内で吸着材混合物を90~180℃に加熱し熱可塑性樹脂を溶融し、焼結する工程とを含む請求項8に記載の吸着材集合体の製法。
The process of forming the resin structure is
The process of inserting the adsorbent mixture into the mold and
The method for producing an adsorbent aggregate according to claim 8, further comprising a step of heating the adsorbent mixture to 90 to 180 ° C. in a mold to melt the thermoplastic resin and sintering the resin.
請求項1~7の何れか1項に記載の吸着材集合体を準備する過程と、
吸着材集合体の樹脂構造体の区画壁に設けられた間隙を通じて、可動領域の外部から内部に流入する流体が可動領域に動作可能に収容された吸着材の表面全体に接触する過程と、
流体に接触した吸着材が流体中の被処理物質を吸着する過程と、
可動領域の流体が間隙を通じて可動領域の内部から外部に流出する過程とを含むことを特徴とする吸着法。
The process of preparing the adsorbent aggregate according to any one of claims 1 to 7, and the process of preparing the adsorbent aggregate.
The process in which the fluid flowing from the outside to the inside of the movable region comes into contact with the entire surface of the adsorbent operably contained in the movable region through the gap provided in the partition wall of the resin structure of the adsorbent aggregate.
The process by which the adsorbent in contact with the fluid adsorbs the substance to be treated in the fluid,
An adsorption method comprising a process in which a fluid in a movable region flows out from the inside of the movable region through a gap.
JP2017109819A 2017-06-02 2017-06-02 Adsorbent aggregate and its manufacturing method and adsorption method Active JP7053167B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017109819A JP7053167B2 (en) 2017-06-02 2017-06-02 Adsorbent aggregate and its manufacturing method and adsorption method
PCT/JP2018/020515 WO2018221502A1 (en) 2017-06-02 2018-05-29 Adsorbing material aggregate and production method therefor, and adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017109819A JP7053167B2 (en) 2017-06-02 2017-06-02 Adsorbent aggregate and its manufacturing method and adsorption method

Publications (3)

Publication Number Publication Date
JP2018202317A JP2018202317A (en) 2018-12-27
JP2018202317A5 JP2018202317A5 (en) 2020-07-09
JP7053167B2 true JP7053167B2 (en) 2022-04-12

Family

ID=64456188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017109819A Active JP7053167B2 (en) 2017-06-02 2017-06-02 Adsorbent aggregate and its manufacturing method and adsorption method

Country Status (2)

Country Link
JP (1) JP7053167B2 (en)
WO (1) WO2018221502A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210096665A (en) * 2018-12-05 2021-08-05 아지노모토 가부시키가이샤 Sintered compact for adsorption, manufacturing method thereof, and adsorption device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524017A (en) 1996-10-15 2001-11-27 キャリア コーポレイション Manufacturing method of filter material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155642A (en) * 1978-05-29 1979-12-07 Nippon Shiyatsutaa Gijiyutsu K Electromotive shutter
JPS56155642A (en) * 1980-05-06 1981-12-01 Nhk Spring Co Ltd Preparation of water-absorbing foamed material
JPH01301732A (en) * 1988-05-31 1989-12-05 Sumitomo Bakelite Co Ltd Highly functional formed product and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524017A (en) 1996-10-15 2001-11-27 キャリア コーポレイション Manufacturing method of filter material

Also Published As

Publication number Publication date
WO2018221502A1 (en) 2018-12-06
JP2018202317A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
Ma et al. Electrospun nanofibrous membrane for heavy metal ion adsorption
JP5252653B2 (en) Method for manufacturing sintered body
Salehi et al. Dynamic adsorption of Ni (II) and Cd (II) ions from water using 8-hydroxyquinoline ligand immobilized PVDF membrane: Isotherms, thermodynamics and kinetics
US20130032529A1 (en) Rare earth-containing filter block and method for making and using the same
US20090159531A1 (en) Composite adsorbent block for the treatment of contaminated fluids
JP5435708B2 (en) Metal adsorbent sintered porous body and method for producing the same
EP2004301A2 (en) Layered filter for treatment of contaminated fluids
JP7053167B2 (en) Adsorbent aggregate and its manufacturing method and adsorption method
JP2010256225A (en) Sintered-type adsorbent for solid phase extraction, and cartridge
US7229552B1 (en) Water purification apparatus and system
Zhang et al. Synthesis of polyethyleneimine modified polyurethane foam for removal of Pb (II) ion from aqueous solution
WO2003072221A1 (en) Filter cartridge
WO2021005212A1 (en) Method for producing a porous, plastics-polymer-based material element, and the use thereof as an adsorbent
JP2019515785A (en) Water treatment equipment
Chen et al. Preparation and performance of UiO‐66‐(COOH) 2‐based mixed matrix membranes for efficient separation of Sr2+ ions from aqueous solutions
CN112261981B (en) Fastening media device with thermoplastic polymer binder system
Xin et al. Highly permeable nanofibrous polyamide membranes for multi-component wastewater treatment: Exploration of multiple separation mechanism
JP2007117923A (en) Anion adsorbing material, its manufacturing method, method for removing anion, method for regenerating anion adsorbing material and method for recovering element
JP6727935B2 (en) Scavenger aggregate, production method thereof, and trapping method
Nie et al. Efficient removal of Cr (VI) from wastewater by composite adsorptive membrane modified with polyethyleneimine (PEI)
US20150182898A1 (en) Ridgid porous plastic filters incorporating polymeric particles and polymeric fibers
JP2007160269A (en) Molding and purification method using it
Koli et al. Surface modified ultrafiltration and nanofiltration membranes for selective removal of heavy metals and inorganic groundwater contaminants: A review
CN106415733A (en) Method and system for removing radioactive nuclides from water
Dutta et al. Polythiophene incorporated polysulfone blend membranes for effective removal of zinc and iron from electroplating effluent: Experimental studies and performance modelling

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200525

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7053167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150