JP7048693B1 - Porous carbon material and its manufacturing method, precursor of porous carbon material, and electrode material using porous carbon material - Google Patents

Porous carbon material and its manufacturing method, precursor of porous carbon material, and electrode material using porous carbon material Download PDF

Info

Publication number
JP7048693B1
JP7048693B1 JP2020167228A JP2020167228A JP7048693B1 JP 7048693 B1 JP7048693 B1 JP 7048693B1 JP 2020167228 A JP2020167228 A JP 2020167228A JP 2020167228 A JP2020167228 A JP 2020167228A JP 7048693 B1 JP7048693 B1 JP 7048693B1
Authority
JP
Japan
Prior art keywords
carbon material
zinc
porous carbon
precursor
peaks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020167228A
Other languages
Japanese (ja)
Other versions
JP2022059456A (en
Inventor
成之 梅澤
剛 堂浦
幸治 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiwa Electric Mfg Co Ltd
Original Assignee
Seiwa Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiwa Electric Mfg Co Ltd filed Critical Seiwa Electric Mfg Co Ltd
Priority to JP2020167228A priority Critical patent/JP7048693B1/en
Application granted granted Critical
Publication of JP7048693B1 publication Critical patent/JP7048693B1/en
Publication of JP2022059456A publication Critical patent/JP2022059456A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

【課題】簡単な作業工程で製造でき、高比表面積で、電解質イオンの出し入れもスムーズに行うことができる多孔質炭素材料、およびその製造方法と、当該多孔質炭素材料を用いた電極材料を提供する。【解決手段】カルボキシル基を有する芳香族炭化水素化合物を有機溶媒に溶解してなる有機リガンド液、またはアルデヒド基を有する芳香族炭化水素化合物を有機溶媒に溶解してなる有機リガンド液と、亜鉛イオンを含む化合物を有機溶媒に溶解してなる亜鉛イオン溶液と、の合成反応により、EDS分析による亜鉛元素/炭素元素の比率が、0.1<Zn/Cとなされた前駆体を調製し、その後、当該前駆体を焼成し、700℃で焼成した際に検出されるX線回折の回折角度のピークが検出されなくなるまで高温で焼成して多孔質にする多孔質炭素材料の製造方法。【選択図】図3PROBLEM TO BE SOLVED: To provide a porous carbon material which can be manufactured by a simple work process, has a high specific surface area and can smoothly take in and out electrolyte ions, a manufacturing method thereof, and an electrode material using the porous carbon material. do. SOLUTION: An organic ligand solution obtained by dissolving an aromatic hydrocarbon compound having a carboxyl group in an organic solvent, or an organic ligand solution obtained by dissolving an aromatic hydrocarbon compound having an aldehyde group in an organic solvent, and zinc ions. A precursor having a zinc element / carbon element ratio of 0.1 <Zn / C by EDS analysis was prepared by a synthetic reaction with a zinc ion solution obtained by dissolving a compound containing the above in an organic solvent. A method for producing a porous carbon material, which is obtained by firing the precursor at a high temperature until the peak of the diffraction angle of X-ray diffraction detected when the precursor is fired at 700 ° C. is no longer detected to make the precursor porous. [Selection diagram] Fig. 3

Description

本発明は、高い比表面積値を得ることができる多孔質炭素材料およびその製造方法と、その多孔質炭素材料を用いた電極材料とに関するものである。 The present invention relates to a porous carbon material capable of obtaining a high specific surface area value, a method for producing the same, and an electrode material using the porous carbon material.

一般に、電気二重層キャパシタの分極性電極として、表面積が大きく導電性に優れている点から活性炭等の多孔質材料が用いられている。しかし、活性炭は、細孔が複雑に入り組んだ構造であるため、当該活性炭に吸着される電解質イオンの量が少なくなり、容量が有効に発現しなくなる。また、高出力領域において電解質イオンのスムーズな出し入れが困難になるため、高出力領域における容量が不足する。 Generally, as a polar electrode of an electric double layer capacitor, a porous material such as activated carbon is used because it has a large surface area and is excellent in conductivity. However, since the activated carbon has a structure in which the pores are complicated and intricate, the amount of electrolyte ions adsorbed on the activated carbon is reduced, and the capacity is not effectively expressed. In addition, since it becomes difficult to smoothly move the electrolyte ions in and out in the high output region, the capacity in the high output region is insufficient.

そこで、従来より、このような活性炭に変わるものとして、本発明者等は、三次元網目構造に構成された金属錯体を合成した後、それを焼成することによって、電解質イオンの吸脱着を容易に行うことをできるようにした多孔性金属錯体の焼成体を提案している(例えば、特許文献1参照)。 Therefore, conventionally, as an alternative to such activated carbon, the present inventors can easily absorb and desorb electrolyte ions by synthesizing a metal complex having a three-dimensional network structure and then calcining the metal complex. We have proposed a calcined body of a porous metal complex that can be used (see, for example, Patent Document 1).

特開2017-135196号公報Japanese Unexamined Patent Publication No. 2017-135196

しかし、上記従来の多孔性金属錯体の焼成体の場合、活性炭に替わる電極材料として有効な性能を発揮するものの、本来の性能を発揮させるために幾つかの工夫をすることで、さらに高性能となることの知見を得て、本発明者等は新たな発明を完成するに至った。 However, in the case of the above-mentioned fired body of the porous metal complex, although it exhibits effective performance as an electrode material in place of activated carbon, it can be further improved by devising some measures in order to exhibit the original performance. The present inventors have completed a new invention by obtaining the knowledge that the invention will be achieved.

本発明は、簡単な作業工程で製造でき、高比表面積で、電解質イオンの出し入れもスムーズに行うことができる多孔質炭素材料、およびその製造方法と、当該多孔質炭素材料を用いた電極材料を提供することを目的としている。 The present invention provides a porous carbon material that can be manufactured by a simple work process, has a high specific surface area, and can smoothly take in and out electrolyte ions, a manufacturing method thereof, and an electrode material using the porous carbon material. The purpose is to provide.

上記課題を解決するための本発明に係る多孔質炭素材料の製造方法は、カルボキシル基を有する芳香族炭化水素化合物を有機溶媒に溶解してなる有機リガンド液、またはアルデヒド基を有する芳香族炭化水素化合物を有機溶媒に溶解してなる有機リガンド液と、亜鉛イオンを含む化合物を有機溶媒に溶解してなる亜鉛イオン溶液と、の合成反応により、EDS分析による亜鉛元素/炭素元素の比率が、0.1<Zn/Cとなされた前駆体を調製し、その後、当該前駆体を焼成し、700℃で焼成した際に検出されるX線回折の回折角度のピークが検出されなくなるまで高温で焼成して多孔質にするものである。 The method for producing a porous carbon material according to the present invention for solving the above problems is an organic ligand solution obtained by dissolving an aromatic hydrocarbon compound having a carboxyl group in an organic solvent, or an aromatic hydrocarbon having an aldehyde group. By a synthetic reaction between an organic ligand solution in which a compound is dissolved in an organic solvent and a zinc ion solution in which a compound containing zinc ions is dissolved in an organic solvent, the ratio of zinc element / carbon element by EDS analysis is 0. .1 Prepare a precursor with <Zn / C, then fire the precursor and fire at high temperature until the peak of the diffraction angle of X-ray diffraction detected when firing at 700 ° C is no longer detected. To make it porous.

上記多孔質炭素材料の製造方法において、純ケイ素の回折角度のピーク(2θ)が28.2°、47.12°、55.9°に測定される条件で、X線回折した際、9.92°、11.47°、11.88°、16.52°、24.25°(何れのピークも誤差±0.3°)に相当する少なくとも5つの回折角度のピークが現れる前駆体を調製するものであってもよい。 In the above method for producing a porous carbon material, when X-ray diffraction is performed under the conditions that the peak (2θ) of the diffraction angle of pure silicon is measured at 28.2 °, 47.12 °, and 55.9 °, 9. Prepare precursors with peaks of at least 5 diffraction angles corresponding to 92 °, 11.47 °, 11.88 °, 16.52 °, and 24.25 ° (all peaks have an error of ± 0.3 °). It may be something to do.

上記多孔質炭素材料の製造方法において、カルボキシル基を有する芳香族炭化水素化合物としてテレフタル酸を用いるものであってもよい。 In the method for producing a porous carbon material, terephthalic acid may be used as an aromatic hydrocarbon compound having a carboxyl group.

上記多孔質炭素材料の製造方法において、亜鉛イオンを含む化合物として酢酸亜鉛を用い、有機溶媒としてNMP(N-メチル-2-ピロリドン)を用いるものであってもよい。 In the method for producing a porous carbon material, zinc acetate may be used as a compound containing zinc ions, and NMP (N-methyl-2-pyrrolidone) may be used as an organic solvent.

上記課題を解決するための本発明の多孔質炭素材料は、上記製造方法によって得られる多孔質炭素材料であって、X線回折による回折角度のピーク(2θ)が、31.7°、34.3°、36.2°、47.45°、56.5°(何れのピークも誤差±0.3)に検出されないものである。 The porous carbon material of the present invention for solving the above-mentioned problems is a porous carbon material obtained by the above-mentioned production method, and the peak (2θ) of the diffraction angle by X-ray diffraction is 31.7 °, 34. It is not detected at 3 °, 36.2 °, 47.45 °, and 56.5 ° (all peaks have an error of ± 0.3).

上記多孔質炭素材料は、比表面積が1468m/g以上となされたものであってもよい。 The porous carbon material may have a specific surface area of 1468 m 2 / g or more.

上記多孔質炭素材料は、窒素吸脱着等温線より得られた結果をBJH法により算出して得られる、全比表面積に占めるメソ孔(2~50nm)の比表面積の割合が、22%以上となされたものであってもよい。 In the porous carbon material, the ratio of the specific surface area of the mesopores (2 to 50 nm) to the total specific surface area obtained by calculating the result obtained from the nitrogen adsorption isotherm by the BJH method is 22% or more. It may be made.

上記多孔質炭素材料は、比表面積が2500m/g以上となされ、そのうち、メソ孔の比表面積が1400m2/g以上となされたものであってもよい。 The porous carbon material may have a specific surface area of 2500 m 2 / g or more, of which the specific surface area of the mesopores may be 1400 m 2 / g or more.

上記課題を解決するための本発明に係る多孔質炭素材料の前駆体は、焼成することで多孔質炭素材料として調製することができる前駆体であって、カルボキシル基を有する芳香族炭化水素化合物を有機溶媒に溶解してなる有機リガンド液、またはアルデヒド基を有する芳香族炭化水素化合物を有機溶媒に溶解してなる有機リガンド液と、亜鉛イオンを含む化合物を有機溶媒に溶解してなる亜鉛イオン溶液と、の合成反応により得られ、EDS分析による亜鉛元素/炭素元素の比率が、0.1<Zn/Cとなされたものである。 The precursor of the porous carbon material according to the present invention for solving the above problems is a precursor that can be prepared as a porous carbon material by firing, and is an aromatic hydrocarbon compound having a carboxyl group. An organic ligand solution prepared by dissolving an organic ligand solution in an organic solvent, or an organic ligand solution prepared by dissolving an aromatic hydrocarbon compound having an aldehyde group in an organic solvent, and a zinc ion solution prepared by dissolving a compound containing zinc ions in an organic solvent. The ratio of zinc element / carbon element obtained by the synthesis reaction of and was 0.1 <Zn / C by EDS analysis.

上記多孔質炭素材料の前駆体は、純ケイ素の回折角度のピーク(2θ)が28.2°、47.12°、55.9°に測定される条件で、X線回折した際、9.92°、11.47°、11.88°、16.52°、24.25°(何れのピークも誤差±0.3°)に相当する少なくとも5つの回折角度のピークが現れるものであってもよい。 The precursor of the porous carbon material was subjected to X-ray diffraction under the conditions that the peak (2θ) of the diffraction angle of pure silicon was measured at 28.2 °, 47.12 °, and 55.9 °. Peaks with at least five diffraction angles corresponding to 92 °, 11.47 °, 11.88 °, 16.52 °, and 24.25 ° (all peaks have an error of ± 0.3 °) appear. May be good.

上記課題を解決するための本発明の電極材料は、上記多孔質炭素材料を含むものである。 The electrode material of the present invention for solving the above-mentioned problems includes the above-mentioned porous carbon material.

上記多孔質炭素材料の製造方法において、カルボキシル基を有する芳香族炭化水素化合物としては、単数または複数のベンゼン環に、単数または複数のカルボキシル基が設けられたものを使用することができる。単数のベンゼン環に、単数または複数のカルボキシル基が設けられた芳香族炭化水素化合物としては、例えば、安息香酸、または、フタル酸、イソフタル酸、テレフタル酸等のベンゼンジカルボン酸、または、1,3,5-ベンゼントリカルボン酸、1,2,4-ベンゼントリカルボン酸、1,2,3-ベンゼントリカルボン酸、または、1,2,4,5-ベンゼンテトラカルボン酸等を使用することができる。前駆体の合成や、合成された前駆体の元素比率を考慮すると、ベンゼンジカルボン酸を使用することが好ましく、テレフタル酸を使用することがより好ましい。複数のベンゼン環に、単数または複数のカルボキシル基が設けられた芳香族炭化水素化合物としては、例えば、2,6-ナフタレンジカルボン酸、4,4-ビスフェニルジカルボン酸、4,4-スチルルベンジカルボン酸を使用することができる。 In the method for producing a porous carbon material, as the aromatic hydrocarbon compound having a carboxyl group, a compound having a single or a plurality of benzene rings provided with a single or a plurality of carboxyl groups can be used. Examples of the aromatic hydrocarbon compound in which a single or a plurality of carboxyl groups are provided on a single benzene ring include benzoic acid, benzenedicarboxylic acids such as phthalic acid, isophthalic acid, and terephthalic acid, or 1,3. , 5-Benzene tricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,2,3-benzenetricarboxylic acid, 1,2,4,5-benzenetetracarboxylic acid and the like can be used. Considering the synthesis of the precursor and the elemental ratio of the synthesized precursor, it is preferable to use benzenedicarboxylic acid, and it is more preferable to use terephthalic acid. Examples of the aromatic hydrocarbon compound in which a single or a plurality of carboxyl groups are provided on a plurality of benzene rings include 2,6-naphthalenedicarboxylic acid, 4,4-bisphenyldicarboxylic acid, and 4,4-styllubendicarboxylic acid. Acids can be used.

上記多孔質炭素材料の製造方法において、アルデヒド基を有する芳香族炭化水素化合物としては、単数または複数のベンゼン環に、単数または複数のアルデヒド基が設けられたものを使用することができる。単数のベンゼン環に、単数または複数のアルデヒド基が設けられた芳香族炭化水素化合物としては、例えば、ベンズアルデヒド、フタルアルデヒド、イソフタルアルデヒド、テレフタルアルデヒド、1,3,5-ベンゼントリカルボアルデヒド、1,2,4-ベンゼントリカルボアルデヒドを使用することができる。複数のベンゼン環に、単数または複数のアルデヒド基が設けられた芳香族炭化水素化合物としては、例えば、2,6-ナフタレンジカルボアルデヒドを使用することができる。 In the method for producing a porous carbon material, as the aromatic hydrocarbon compound having an aldehyde group, a compound having a single or a plurality of benzene rings provided with a single or a plurality of aldehyde groups can be used. Examples of the aromatic hydrocarbon compound in which a single or a plurality of aldehyde groups are provided on a single benzene ring include benzaldehyde, phthalaldehyde, isophthalaldehyde, terephthalaldehyde, 1,3,5-benzenetricarbaldehyde, 1, 2,4-Benzene tricarbaldehyde can be used. As the aromatic hydrocarbon compound in which a single or a plurality of aldehyde groups are provided on a plurality of benzene rings, for example, 2,6-naphthalenedicarbaldehyde can be used.

上記多孔質炭素材料の製造方法において、カルボキシル基を有する芳香族炭化水素化合物またはアルデヒド基を有する芳香族炭化水素化合物を溶解する有機溶媒としては、例えば、NMP(N-メチル-2-ピロリドン)、メタノール、エタノール、DMSO(ジメチルスルホキシド:C2H6SO)、DMF(ジメチルホルムアミド:C3H7NO)、DMA(ジメチルアセトアミド:C4H9NO)、DEF(N,N-ジエチルホルムアミド)などを用いることができる。これらは、単独溶媒であってもよいし、複数種類を混合した混合溶媒であってもよい。この有機溶媒5~500mlに、上記したカルボキシル基を有する芳香族炭化水素化合物またはアルデヒド基を有する芳香族炭化水素化合物0.05~0.5gを溶解することで、有機リガンド液が調製される。 In the method for producing a porous carbon material, examples of the organic solvent for dissolving the aromatic hydrocarbon compound having a carboxyl group or the aromatic hydrocarbon compound having an aldehyde group include NMP (N-methyl-2-pyrrolidone). Methanol, ethanol, DMSO (dimethyl sulfoxide: C2H6SO), DMF (dimethylformamide: C3H7NO), DMA (dimethylacetamide: C4H9NO), DEF (N, N-diethylformamide) and the like can be used. These may be a single solvent or a mixed solvent in which a plurality of types are mixed. An organic ligand solution is prepared by dissolving 0.05 to 0.5 g of the above-mentioned aromatic hydrocarbon compound having a carboxyl group or an aromatic hydrocarbon compound having an aldehyde group in 5 to 500 ml of this organic solvent.

上記多孔質炭素材料の製造方法において、亜鉛イオンを含む化合物としては、上記有機リガンド液のカルボキシル基を有する芳香族炭化水素化合物、または、アルデヒド基を有する芳香族炭化水素化合物、と配位結合して合成可能な化合物であれば、特に限定されるものではなく、例えば、酢酸亜鉛、酢酸亜鉛二水和物、硝酸亜鉛六水和物などを使用することができる。 In the method for producing a porous carbon material, the compound containing zinc ion is coordinate-bonded with an aromatic hydrocarbon compound having a carboxyl group or an aromatic hydrocarbon compound having an aldehyde group in the organic ligand solution. The compound is not particularly limited as long as it can be synthesized, and for example, zinc acetate, zinc acetate dihydrate, zinc nitrate hexahydrate and the like can be used.

上記多孔質炭素材料の製造方法において、亜鉛イオンを含む化合物を溶解する溶媒としては、上記有機リガンド液に使用されているものと同じものが使用される。この有機溶媒10~200mlに、上記した亜鉛イオンを含む化合物0.1~0.8gを溶解することで、亜鉛イオン溶液が調製される。 In the method for producing the porous carbon material, the same solvent used for the organic ligand solution is used as the solvent for dissolving the compound containing zinc ions. A zinc ion solution is prepared by dissolving 0.1 to 0.8 g of the above-mentioned zinc ion-containing compound in 10 to 200 ml of this organic solvent.

上記有機リガンド液と上記亜鉛イオン溶液との合成反応により、前駆体が調製される。
この際、合成に使用する、カルボキシル基を有する単環芳香族炭化水素化合物またはアルデヒド基を有芳香族炭化水素化合物、亜鉛イオンを含む化合物、溶媒、の各材料として上記したものを選定する。この選定をすることで、得られる前駆体は、純ケイ素の回折角度のピーク(2θ)が28.2°、47.12°、55.9°に測定される条件で、X線回折した際、9.92°、11.47°、11.88°、16.52°、24.25°(何れのピークも誤差±0.3°)に相当する少なくとも5つの回折角度のピークが現れる前駆体を調製することができる。例えば、酢酸亜鉛、NMP、テレフタル酸を用いて合成することで、上記5つの回折角度のピークを有し、多孔質ではない鱗片状の前駆体を調製することができる。この前駆体は、比表面積が15m/g以下となり、多孔質に形成されていない。
A precursor is prepared by a synthetic reaction between the organic ligand solution and the zinc ion solution.
At this time, the monocyclic aromatic hydrocarbon compound having a carboxyl group or the aldehyde group used for the synthesis is selected as each material of the aromatic hydrocarbon compound, the compound containing zinc ion, and the solvent. By making this selection, the obtained precursor is subjected to X-ray diffraction under the conditions that the peak (2θ) of the diffraction angle of pure silicon is measured at 28.2 °, 47.12 °, and 55.9 °. , 9.92 °, 11.47 °, 11.88 °, 16.52 °, 24.25 ° (all peaks have an error of ± 0.3 °). The body can be prepared. For example, by synthesizing with zinc acetate, NMP, and terephthalic acid, it is possible to prepare a scaly precursor having the peaks of the above five diffraction angles and not being porous. This precursor has a specific surface area of 15 m 2 / g or less and is not formed porous.

上記前駆体は、焼成することによって多孔質炭素材料とされる。この際、焼成は、前駆体を700℃で焼成した際に検出されるX線回折の回折角度のピークが検出されなくなるまで、当該前駆体を高温で焼成する。すなわち、上記前駆体は、亜鉛イオン溶液を用いて合成しているので、当該前駆体を700℃程度の温度で焼成すると、前駆体に入り込んでいた酸化亜鉛や亜鉛が、当該前駆体に残ってしまい、長時間焼成しても、回折角度のピークとして検出される。確認したピークは、31.7°、34.3°、36.2°、47.45°、56.5°(何れのピークも誤差±0.3)である。しかし、亜鉛の沸点である907℃以上の温度で焼成させると、酸化亜鉛を分解し、亜鉛を蒸発させることができるので、前駆体に入り込んでいた酸化亜鉛や亜鉛を消失させ、上記したピークも無くなり、当該酸化亜鉛や亜鉛が入り込んでいた跡に、細孔が形成され多孔質になる。この際、亜鉛の沸点である907℃以上で焼成すれば、確実に細孔を形成して多孔質にすることができるが、亜鉛の沸点以下の温度であっても、長時間焼成すれば、酸化亜鉛や亜鉛の入り込んでいた跡に細孔を形成して多孔質にすることができる。850℃以上で焼成した場合は、長時間の焼成で上記したピークを無くし、細孔を形成して多孔質にすることができることが確認できている。したがって、焼成条件としては、酸化亜鉛を分解し、亜鉛を蒸発させることができる条件であれば、特に限定されるものではなく、目安としては、30分~8時間、または前駆体1g当たり3.84時間~61.6時間の焼成を行うことが好ましい。焼成時間が、前駆体1g当たり30時間を超えると、または2時間を超えると、指数関数的またはn次関数(n>1)的に酸化亜鉛や亜鉛が消失し始め、その跡に細孔が形成されることとなるので、850℃以上であれば、前駆体1g当たり30時間以上、または2時間以上焼成すれば、上記したピークを無くすことができる。また、亜鉛の沸点である907℃以上の場合には、上記したピークを無くすことができるだけでなく、上記したピークとして検出されなかった非晶質(アモルファス)な酸化亜鉛や亜鉛も消失させることができるので、これら非晶質な酸化亜鉛や亜鉛が抜けた跡にも細孔を形成することができることとなり、より多孔質にして高非表面積の多孔質炭素材料を得ることができることとなる。 The precursor is made into a porous carbon material by firing. At this time, in the firing, the precursor is fired at a high temperature until the peak of the diffraction angle of the X-ray diffraction detected when the precursor is fired at 700 ° C. is no longer detected. That is, since the precursor is synthesized using a zinc ion solution, when the precursor is fired at a temperature of about 700 ° C., zinc oxide and zinc that have entered the precursor remain in the precursor. Even if it is fired for a long time, it is detected as a peak of the diffraction angle. The confirmed peaks are 31.7 °, 34.3 °, 36.2 °, 47.45 °, and 56.5 ° (all peaks have an error of ± 0.3). However, when zinc is fired at a temperature of 907 ° C. or higher, which is the boiling point of zinc, zinc oxide can be decomposed and zinc can be evaporated. It disappears, and pores are formed in the traces of the zinc oxide and zinc that have entered and become porous. At this time, if the zinc is fired at the boiling point of 907 ° C. or higher, pores can be surely formed and made porous. It is possible to form pores in the traces of zinc oxide and zinc to make them porous. When firing at 850 ° C. or higher, it has been confirmed that the above-mentioned peaks can be eliminated and pores can be formed to make the porosity by firing for a long time. Therefore, the calcination conditions are not particularly limited as long as they can decompose zinc oxide and evaporate zinc, and as a guide, 30 minutes to 8 hours, or 3. per 1 g of precursor. It is preferable to perform firing for 84 hours to 61.6 hours. When the firing time exceeds 30 hours per 1 g of the precursor, or more than 2 hours, zinc oxide and zinc begin to disappear exponentially or nth-order function (n> 1), and pores are formed in the traces. Since it is formed, if the temperature is 850 ° C. or higher, the above-mentioned peak can be eliminated by firing for 30 hours or longer or 2 hours or longer per 1 g of the precursor. Further, when the boiling point of zinc is 907 ° C. or higher, not only the above-mentioned peak can be eliminated, but also amorphous zinc oxide and zinc which are not detected as the above-mentioned peak can be eliminated. Therefore, it is possible to form pores even in the traces of these amorphous zinc oxides and zinc removed, and it is possible to obtain a more porous and high non-surface porous carbon material.

また、この焼成の際、前駆体は、EDS分析による亜鉛元素/炭素元素の比率が0.1<Zn/Cとしているので、酸化亜鉛や亜鉛が抜ける際に亜鉛や炭素が消耗されて抜けた跡の空隙が多く形成され、多孔質となる。 Further, at the time of this firing, since the zinc element / carbon element ratio of the precursor is 0.1 <Zn / C by EDS analysis, zinc and carbon are consumed and removed when zinc oxide and zinc are removed. Many trace voids are formed and become porous.

焼成は、不活性ガス雰囲気(窒素ガスもしくはアルゴンガス雰囲気)にて行うものであってもよい。この際、不活性ガス雰囲気は、0.1~1.0リットル/分のガス流量で焼成雰囲気を置換しながら行うものであってもよい。また、焼成時に所定の温度から5~10℃/分程度の昇温速度で昇温して所定温度にして焼成を行うものであってもよい。さらに、焼成は、減圧雰囲気下で行うものであってもよい。焼成する炉は、炉心管タイプ、ボックス炉、ロータリーキルン炉などを用いることができる。 The firing may be performed in an inert gas atmosphere (nitrogen gas or argon gas atmosphere). At this time, the inert gas atmosphere may be performed while replacing the firing atmosphere with a gas flow rate of 0.1 to 1.0 liter / min. Further, at the time of firing, the temperature may be raised from a predetermined temperature at a heating rate of about 5 to 10 ° C./min to a predetermined temperature for firing. Further, the firing may be performed in a reduced pressure atmosphere. As the firing furnace, a core tube type, a box furnace, a rotary kiln furnace, or the like can be used.

このようにして構成された多孔質炭素材料は、EDS分析による亜鉛元素/炭素元素の比率を0.1<Zn/Cとした、三次元網目構造で骨格形成がされた前駆体を調製し、この前駆体に取り込まれている酸化亜鉛や亜鉛を、当該酸化亜鉛が分解し、亜鉛が蒸発する温度で、当該酸化亜鉛や亜鉛に関連するX線回折の回折角度のピーク31.7°、34.3°、36.2°、47.45°、56.5°(何れのピークも誤差±0.3)が無くなるまで焼成することにより、酸化亜鉛や亜鉛を消失させ、当該酸化亜鉛や亜鉛が入り込んでいた跡に、細孔を形成して多孔質化を図ることができる。こうすることで、焼成の過程で前駆体の亜鉛イオンが酸化亜鉛を経てから抜け出ることとなり、抜け出た跡に細孔を生じて多孔質化を図ることができることとなる。しかも、酸化亜鉛や亜鉛を消失させることができる高温で焼成するため、余計な不純物等も同時に消失させることができるので、焼成後の水洗の必要も無くすことができ、焼成工程後に得られた焼成体をそのまま使用することができることとなり、簡単な作業工程で多孔質炭素材料を得ることができる。 For the porous carbon material thus constructed, a precursor having a skeleton formed with a three-dimensional network structure having a zinc element / carbon element ratio of 0.1 <Zn / C by EDS analysis was prepared. At the temperature at which zinc oxide decomposes zinc oxide and zinc incorporated in this precursor and zinc evaporates, the peak diffraction angle of X-ray diffraction related to zinc oxide and zinc is 31.7 °, 34. Zinc oxide and zinc are eliminated by firing until the 0.3 °, 36.2 °, 47.45 °, and 56.5 ° (all peaks have an error of ± 0.3) disappear, and the zinc oxide and zinc are eliminated. It is possible to form pores in the traces of zinc to make it porous. By doing so, the zinc ion of the precursor passes through zinc oxide in the process of firing and then escapes, and pores are formed in the escaped traces to make the precursor porous. Moreover, since zinc oxide and zinc are fired at a high temperature at which zinc oxide can be eliminated, unnecessary impurities and the like can be eliminated at the same time, so that the need for washing with water after firing can be eliminated, and the firing obtained after the firing step can be eliminated. The body can be used as it is, and a porous carbon material can be obtained by a simple work process.

しかも、このようにして構成された多孔質炭素材料は、元々、三次元網目構造で骨格形成された前駆体から、酸化亜鉛や亜鉛の部分を消失させて、当該酸化亜鉛や亜鉛が入り込んでいた跡に、細孔を形成しているため、細孔が規則正しく形成された多孔質炭素材料となる。したがって、電極材料として使用すれば、電解質イオンの出し入れをスムーズに行うことができることとなり、静電容量の高い高性能な電極材料とすることができる。また、このようにして形成される細孔は、上記酸化亜鉛や亜鉛が抜けた跡に形成されるものが多くなるため、IUPACで定義されるメソ孔(2~50nm)を多く形成できることとなり、全比表面積に占めるメソ孔の比表面積の割合を22%以上にすることができる。したがって、電解質イオンの出し入れを、よりスムーズに行うことができることとなる。さらに、このメソ孔は、亜鉛の沸点以上で、かつ、上記した長時間の焼成を行うことで、指数関数的またはn次関数(n>1)的に酸化亜鉛や亜鉛を消失させて、その跡に細孔を形成することができるので、比表面積を2500m/g以上とし、そのうち、メソ孔の比表面積を1400m/g以上とした超高性能な多孔質炭素材料を得ることができる。 Moreover, in the porous carbon material thus constructed, the zinc oxide and zinc portions were originally eliminated from the precursor whose skeleton was formed by the three-dimensional network structure, and the zinc oxide and zinc entered. Since the pores are formed in the trace, it becomes a porous carbon material in which the pores are regularly formed. Therefore, when used as an electrode material, electrolyte ions can be smoothly taken in and out, and a high-performance electrode material having a high capacitance can be obtained. Further, since many of the pores thus formed are formed in the traces of zinc oxide and zinc removed, many mesopores (2 to 50 nm) defined by IUPAC can be formed. The ratio of the specific surface area of the mesopores to the total specific surface area can be 22% or more. Therefore, the electrolyte ions can be taken in and out more smoothly. Further, this mesopore is extinguished by exponentially or nth-order function (n> 1) of zinc oxide and zinc by firing at a temperature higher than the boiling point of zinc and for a long time as described above. Since pores can be formed in the traces, an ultra-high performance porous carbon material having a specific surface area of 2500 m 2 / g or more and a specific surface area of mesopores of 1400 m 2 / g or more can be obtained. ..

以上述べたように、本発明によると、テレフタル酸NMP(N-メチル-2-ピロリドン)に溶解してなる有機リガンド液と、酢酸亜鉛NMP(N-メチル-2-ピロリドン)に溶解してなる亜鉛イオン溶液と、の合成反応により、EDS分析による亜鉛元素/炭素元素の比率が0.1<Zn/Cとなされ、純ケイ素の回折角度のピーク(2θ)が28.2°、47.12°、55.9°に測定される条件で、X線回折した際、9.92°、11.47°、11.88°、16.52°、24.25°(何れのピークも誤差±0.3°)に相当する少なくとも5つの回折角度のピークが現れる前駆体を調製し、その後、当該前駆体を焼成し、700℃で焼成した際にX線回折によって31.7°、34.3°、36.2°、47.45°、56.5°(何れのピークも誤差±0.3)に検出される酸化亜鉛や亜鉛の回折角度の回折ピーク(2θ)が検出されなくなるまで高温で焼成して多孔質にすることで、焼成時に酸化亜鉛や亜鉛を消失させ易くすることができ、酸化亜鉛や亜鉛が入り込んでいた跡に、細孔を形成して多孔質化を図った多孔質炭素材料を得ることができる。このようにして構成された多孔質炭素材料は、炭素元素に対して亜鉛元素を所定量以上含む前記前駆体の構造から酸化亜鉛や亜鉛を消失させて当該酸化亜鉛や亜鉛の跡に細孔を形成した高比表面積の多孔質炭素材料となるため、スムーズな電解質イオンの出し入れを可能にして静電容量の高い高性能な電極材料とすることができる。 As described above, according to the present invention, an organic ligand solution obtained by dissolving terephthalic acid in NMP (N-methyl-2-pyrrolidone) and zinc acetate dissolved in NMP (N-methyl-2-pyrrolidone) are dissolved. By the synthetic reaction with the zinc ion solution, the ratio of zinc element / carbon element was 0.1 <Zn / C by EDS analysis, and the peak (2θ) of the diffraction angle of pure silicon was 28.2 °, 47. When X-ray diffraction was performed under the conditions measured at .12 ° and 55.9 °, 9.92 °, 11.47 °, 11.88 °, 16.52 ° and 24.25 ° (all peaks). A precursor having peaks of at least 5 diffraction angles corresponding to an error of ± 0.3 °) was prepared, and then the precursor was fired, and when fired at 700 ° C., 31.7 ° by X-ray diffraction. Zinc oxide and zinc oxide diffraction angle diffraction peaks (2θ) detected at 34.3 °, 36.2 °, 47.45 °, and 56.5 ° (all peaks have an error of ± 0.3) are detected. By firing at a high temperature until it disappears to make it porous, zinc oxide and zinc can be easily eliminated during firing, and pores are formed in the traces where zinc oxide and zinc have entered to make it porous. The planned porous carbon material can be obtained. The porous carbon material thus constructed eliminates zinc oxide and zinc from the structure of the precursor containing a predetermined amount or more of zinc element with respect to the carbon element, and creates pores in the traces of the zinc oxide and zinc. Since it is a formed porous carbon material with a high specific surface area, it can be made into a high-performance electrode material with a high capacitance by enabling smooth loading and unloading of electrolyte ions.

本発明に係る多孔質炭素材料の製造方法に使用する前駆体および純ケイ素の粉末X線回折の回折データを示すグラフである。It is a graph which shows the diffraction data of the powder X-ray diffraction of the precursor and pure silicon used in the manufacturing method of the porous carbon material which concerns on this invention. 本発明に係る多孔質炭素材料の製造方法に使用する前駆体と、この製造方法によって得られた多孔質炭素材料のそれぞれの窒素吸脱着等温曲線を示すグラフであって、(a)は1時間焼成の実施例および比較例、(b)は5時間焼成の実施例および比較例を示している。It is a graph showing the nitrogen adsorption / desorption isothermal curve of each of the precursor used in the method for producing a porous carbon material according to the present invention and the porous carbon material obtained by this production method, and (a) is 1 hour. Examples and comparative examples of firing, (b) shows examples and comparative examples of 5-hour firing. 本発明に係る多孔質炭素材料の粉末X線回折の回折データを示すグラフである。It is a graph which shows the diffraction data of the powder X-ray diffraction of the porous carbon material which concerns on this invention. 本発明に係る多孔質炭素材料の製造方法に使用する前駆体の電子顕微鏡写真である。It is an electron micrograph of a precursor used in the manufacturing method of the porous carbon material which concerns on this invention. 本発明に係る多孔質炭素材料を使用した電極試験片による静電容量、および活性炭を使用した電極試験片による静電容量の測定試験の結果を示すグラフである。It is a graph which shows the result of the measurement test of the capacitance by the electrode test piece using the porous carbon material which concerns on this invention, and the capacitance by the electrode test piece which used activated carbon. 本発明に係る多孔質炭素材料を使用した電極試験片による各電流値での静電容量と、活性炭を使用した電極試験片による各電流値での静電容量との比較を示すグラフである。It is a graph which shows the comparison between the capacitance at each current value by the electrode test piece using the porous carbon material which concerns on this invention, and the capacitance at each current value by the electrode test piece using activated carbon.

以下、本発明に係る実施の形態について説明する。 Hereinafter, embodiments according to the present invention will be described.

[実施例1-3、比較例1-3]
(前駆体の調製)
酢酸亜鉛・二水和物をNMP(N-メチル-2-ピロリドン)に溶解させたものを亜鉛イオン溶液として調製した。
テレフタル酸をNMP(N-メチル-2-ピロリドン)に溶解させたものを有機リガンド液として調製した。
質量比にて、テレフタル酸/酢酸亜鉛・二水和物=3.0となるように、上記亜鉛イオン溶液と、上記有機リガンド液とを混合し、合成反応により前駆体を得た。
[Example 1-3, Comparative Example 1-3]
(Preparation of precursor)
A zinc acetate dihydrate dissolved in NMP (N-methyl-2-pyrrolidone) was prepared as a zinc ion solution.
Terephthalic acid was dissolved in NMP (N-methyl-2-pyrrolidone) and prepared as an organic ligand solution.
The zinc ion solution and the organic ligand solution were mixed so that the mass ratio was terephthalic acid / zinc acetate / dihydrate = 3.0, and a precursor was obtained by a synthetic reaction.

(前駆体のZn/Cの元素比率)
上記した前駆体の調製方法を複数回繰り返して複数の前駆体a~fを調製し、下記装置によりEDS分析を行い、前駆体のZn/Cの元素比率を求めた。結果を表1に示す。
測定機種:JEM-2100F(日本電子株式会社製)
測定条件:加速電圧200kV
(Elemental ratio of Zn / C of precursor)
The above-mentioned method for preparing the precursor was repeated a plurality of times to prepare a plurality of precursors a to f, and EDS analysis was performed using the following apparatus to determine the element ratio of Zn / C of the precursor. The results are shown in Table 1.
Measurement model: JEM-2100F (manufactured by JEOL Ltd.)
Measurement conditions: Acceleration voltage 200kV

Figure 0007048693000002
Figure 0007048693000002

(前駆体の粉末X線回折)
上記の方法でそれぞれ調製したうちの2つの前駆体を使用し、各前駆体を、高純度化学社製の純ケイ素と混ぜ合わせ、これら混合物の粉末約0.02gを、サンプルホルダーに乗せて整地し、回折を行った。純ケイ素のみの回折も行い、純ケイ素のピーク位置に対して、前駆体のピークがどこに出るのかを特定した。測定機種、測定条件などは下記の通りである。結果を図1に示す。
測定機種:X線回折装置SmartLab SE(株式会社リガク社製)
測定条件:測定角度の範囲は2θ=2°~60°
スキャンスピード10°/min
X線源;Cu(Kα)
(Powder X-ray diffraction of precursor)
Using two precursors prepared by the above method, each precursor is mixed with pure silicon manufactured by High Purity Chemical Co., Ltd., and about 0.02 g of the powder of these mixtures is placed on a sample holder to level the ground. And diffraction was performed. Diffraction of pure silicon only was also performed to identify where the precursor peak appears with respect to the peak position of pure silicon. The measurement models and measurement conditions are as follows. The results are shown in FIG.
Measurement model: X-ray diffractometer SmartLab SE (manufactured by Rigaku Co., Ltd.)
Measurement conditions: The measurement angle range is 2θ = 2 ° to 60 °.
Scan speed 10 ° / min
X-ray source; Cu (Kα)

図1の結果から、調製された前駆体は、純ケイ素の回折角度のピーク(2θ)が28.2°、47.12°、55.9°に測定される条件で、X線回折した際、9.92°、11.47°、11.88°、16.52°、24.25°に相当する少なくとも5つの回折角度のピークが現れることが確認できた。また、前駆体のピークを測定する際、当該前駆体に混合した純ケイ素のピークと、純ケイ素のみを測定したピークとが大きくずれることもなかった。 From the results shown in FIG. 1, the prepared precursor was subjected to X-ray diffraction under the conditions that the peak (2θ) of the diffraction angle of pure silicon was measured at 28.2 °, 47.12 °, and 55.9 °. , 9.92 °, 11.47 °, 11.88 °, 16.52 °, 24.25 °, it was confirmed that peaks of at least 5 diffraction angles appear. Further, when measuring the peak of the precursor, the peak of pure silicon mixed with the precursor and the peak of measuring only pure silicon did not deviate significantly.

(前駆体の焼成)
上記の方法で調製した前駆体を複数個に分け、それぞれを異なる条件で焼成して多孔質炭素材料を得た。
(Baking of precursor)
The precursor prepared by the above method was divided into a plurality of pieces, and each of them was calcined under different conditions to obtain a porous carbon material.

上記前駆体の焼成条件は、窒素ガス雰囲気にて、ガス流量0.2リットル/分、室温25℃から昇温速度10℃/分で昇温し、700℃到達後、その温度で1時間の焼成を行った場合(比較例1)と5時間焼成を行った場合(比較例2)、同じく昇温し、850℃到達後、その温度で1時間の焼成を行った場合(比較例3)と5時間焼成を行った場合(実施例1)、同じく昇温し、1000℃到達後、その温度で1時間焼成を行った場合(実施例2)と5時間焼成を行った場合(実施例3)についてそれぞれ焼成を行い、それぞれの多孔質炭素材料を得た。 The firing conditions for the precursor are as follows: in a nitrogen gas atmosphere, the temperature is raised from a gas flow rate of 0.2 liter / min and a room temperature of 25 ° C to a temperature rise rate of 10 ° C / min, and after reaching 700 ° C, the temperature is 1 hour. When firing was performed (Comparative Example 1) and when firing was performed for 5 hours (Comparative Example 2), the temperature was raised in the same manner, and after reaching 850 ° C., firing was performed at that temperature for 1 hour (Comparative Example 3). When firing for 5 hours (Example 1), the temperature was raised in the same manner, and after reaching 1000 ° C., firing was performed at that temperature for 1 hour (Example 2) and firing for 5 hours (Example 1). Each of 3) was calcined to obtain each porous carbon material.

(窒素吸脱着測定(比表面積/細孔分布測定))
上記の方法で調製した前駆体および多孔質炭素材料のそれぞれを200℃で24時間減圧乾燥させ、室温雰囲気中で前駆体および多孔質炭素材料に吸着した水分を脱着させた後、当該前駆体および多孔質炭素材料のそれぞれの粉末0.02gをサンプル管に入れ、液体窒素雰囲気下で比表面積/細孔分布測定装置(BELLSORP-miniII:マイクロトラックベル株式会社製)によって窒素吸脱着等温曲線を測定した。また、同装置の解析プログラム(I型(ISO9277)BET自動解析)により比表面積を算出した。さらに、得られた窒素吸脱着等温線をBJH(Barrett-Joyner-Halenda)法により処理してIUPACで定義されているメソ孔(2~50nm)のサイズの比表面積を算出した。また、全比表面積に占めるメソ孔の比表面積の割合を算出した。前駆体および活性炭(クラレケミカル社製:YP50F)のデータと合わせて結果を表2および図2に示す。なお、図2は、1時間焼成した比較例1、比較例3、実施例2と(図2(a))、5時間焼成した比較例2、実施例1、実施例3と(図2(b))に分けて表示した。
(Nitrogen adsorption / desorption measurement (specific surface area / pore distribution measurement))
Each of the precursor and the porous carbon material prepared by the above method is dried under reduced pressure at 200 ° C. for 24 hours to desorb the water adsorbed on the precursor and the porous carbon material in an atmosphere at room temperature, and then the precursor and the porous carbon material are desorbed. 0.02 g of each powder of the porous carbon material is placed in a sample tube, and the nitrogen absorption / desorption isothermal curve is measured with a specific surface area / pore distribution measuring device (BELLSORP-miniII: manufactured by Microtrac Bell Co., Ltd.) under a liquid nitrogen atmosphere. bottom. In addition, the specific surface area was calculated by the analysis program of the same device (type I (ISO9277) BET automatic analysis). Further, the obtained nitrogen adsorption isotherm was treated by the BJH (Barrett-Joyner-Halenda) method to calculate the specific surface area of the mesopore (2 to 50 nm) size defined by IUPAC. In addition, the ratio of the specific surface area of the mesopores to the total specific surface area was calculated. The results are shown in Table 2 and FIG. 2 together with the data of the precursor and activated carbon (manufactured by Kuraray Chemical Co., Ltd .: YP50F). In addition, FIG. 2 shows Comparative Example 1, Comparative Example 3, Example 2 and (FIG. 2 (a)) fired for 1 hour, Comparative Example 2, Example 1, and Example 3 and (FIG. 2 (FIG. 2)) fired for 5 hours. b)) was displayed separately.

Figure 0007048693000003
Figure 0007048693000003

(焼成体の粉末X線回折)
上記の方法で調製した多孔質炭素材料のそれぞれの粉末約0.02gを、サンプルホルダーに乗せて整地し、回折を行った。測定機種、測定条件などは下記の通りである。結果を図3に示す。
測定機種:X線回折装置SmartLab SE(株式会社リガク社製)
測定条件:測定角度の範囲は2θ=2°~60°
スキャンスピード10°/min
X線源;Cu(Kα)
(Powder X-ray diffraction of fired body)
About 0.02 g of each powder of the porous carbon material prepared by the above method was placed on a sample holder, leveled, and diffracted. The measurement models and measurement conditions are as follows. The results are shown in FIG.
Measurement model: X-ray diffractometer SmartLab SE (manufactured by Rigaku Co., Ltd.)
Measurement conditions: The measurement angle range is 2θ = 2 ° to 60 °.
Scan speed 10 ° / min
X-ray source; Cu (Kα)

(電子顕微鏡写真)
上記の方法で調製した前駆体の形状を電子顕微鏡で撮影した。撮像の測定条件は、下記の通りとした。結果を図4に示す。
測定機種:JSM-6010LA(日本電子株式会社製)
測定条件:加速電圧15kV、ワーキングディスタンス11mm、スポットサイズ30測定倍率:10000倍
(Electron micrograph)
The shape of the precursor prepared by the above method was photographed with an electron microscope. The measurement conditions for imaging were as follows. The results are shown in FIG.
Measurement model: JSM-6010LA (manufactured by JEOL Ltd.)
Measurement conditions: Acceleration voltage 15 kV, working distance 11 mm, spot size 30 Measurement magnification: 10000 times

以上の結果から、前駆体の状態では、多孔質になっておらず、比表面積も15m/gと小さく、無細孔であることが確認できるが、焼成することにより、多孔質化して比表面積が増加していることが確認できる。また、焼成温度が低いと酸化亜鉛や亜鉛などの元素が残存するが、亜鉛の沸点である907℃を超える1000℃度で焼成すると、1時間で多孔質化した高比表面積の多孔質炭素材料を得ることができることが確認できた。亜鉛の沸点である907℃よりも低い700℃では5時間焼成しても多孔質化することができなかったが、850℃の場合は、1時間では多孔質化することが難しかったが、5時間焼成した場合は、多孔質化して比表面積を増加させることができることが確認できた。つまり、亜鉛の沸点以下の温度の場合であっても、850℃位の温度であれば、長時間焼成した場合には、酸化亜鉛や亜鉛を消失させて多孔質化した高比表面積の多孔質炭素材料を得ることができることが確認できた。また、1000℃で5時間焼成した場合、比表面積が飛躍的に増大することが確認できた。これは、X線回折の回折角度のピークとしては現れないが、前駆体中に存在する非晶質な酸化亜鉛や亜鉛が、当該酸化亜鉛や亜鉛の沸点を超える温度での長時間の焼成によって指数関数的またはn次関数(n>1)的に処理されて消失し、その跡に細孔が形成されてさらに多孔質化したことにより、比表面積が飛躍的に増大したものと推測される。 From the above results, it can be confirmed that the precursor is not porous, has a small specific surface area of 15 m 2 / g, and has no pores. It can be confirmed that the surface area is increased. In addition, elements such as zinc oxide and zinc remain when the firing temperature is low, but when fired at 1000 ° C, which exceeds the boiling point of zinc, 907 ° C, a porous carbon material with a high specific surface area becomes porous in 1 hour. It was confirmed that it was possible to obtain. At 700 ° C, which is lower than the boiling point of zinc, 907 ° C, it was not possible to make it porous even after firing for 5 hours, but at 850 ° C, it was difficult to make it porous in 1 hour, but 5 It was confirmed that when calcined for a long time, it became porous and the specific surface area could be increased. That is, even if the temperature is below the boiling point of zinc, if the temperature is around 850 ° C., when the product is fired for a long time, zinc oxide and zinc are eliminated to make the material porous, which has a high specific surface area. It was confirmed that a carbon material could be obtained. Further, it was confirmed that the specific surface area increased dramatically when firing at 1000 ° C. for 5 hours. This does not appear as the peak of the diffraction angle of X-ray diffraction, but the amorphous zinc oxide or zinc present in the precursor is burned for a long time at a temperature exceeding the boiling point of the zinc oxide or zinc. It is presumed that the specific surface area increased dramatically due to the extinction after being treated exponentially or in an nth-order function (n> 1), and pores were formed in the traces to make it more porous. ..

(三電極法による電極試験片の作製)
実施例3で得られた多孔質炭素材料を活物質として用い、当該活物質と、導電助剤(アセチレンブラック)と、結着剤(PVDF(ポリフッ化ビニリデン樹脂))とを、8:1:1の重量比で混練した。この混練物をチタンメッシュに塗布乾燥させて電極試験片を調製した。この電極試験片を作用極とし、Ag/AgClを参照電極とし、白金を対極とし、1M希硫酸を電解液として三電極法による三極セルを構成した。
(Preparation of electrode test pieces by the three-electrode method)
Using the porous carbon material obtained in Example 3 as an active material, the active material, a conductive auxiliary agent (acetylene black), and a binder (PVDF (polyvinylidene fluoride resin)) were mixed at 8: 1: 1: It was kneaded at a weight ratio of 1. This kneaded product was applied to a titanium mesh and dried to prepare an electrode test piece. A triode cell was constructed by a triode method using this electrode test piece as a working electrode, Ag / AgCl as a reference electrode, platinum as a counter electrode, and 1M dilute sulfuric acid as an electrolytic solution.

(電極試験片の容量測定)
上記で調製したそれぞれの電極試験片の活物質重量あたり、50mA/gとなるように定電流を流して、参照電極に対して電位を0~0.8Vまで充電し、到達後、0.8~0Vまで放電し、その放電電気量から静電容量を算出した。静電容量は、電気化学計測器(VSP300 Biologic社製)を用いて測定した。また、比較対象として、実施例3で得られた多孔質炭素材料を、活性炭(クラレケミカル社製:YP50F)に変更して調製した電極試験片を用いて同様の測定を行った。その結果を表3および図5に示す。
(Capacity measurement of electrode test piece)
A constant current is applied so as to be 50 mA / g per active material weight of each electrode test piece prepared above, and the potential of the reference electrode is charged to 0 to 0.8 V. It was discharged to ~ 0V, and the capacitance was calculated from the amount of discharged electricity. The capacitance was measured using an electrochemical measuring instrument (manufactured by VSP300 Biological). Further, as a comparison target, the same measurement was carried out using an electrode test piece prepared by changing the porous carbon material obtained in Example 3 to activated carbon (manufactured by Kuraray Chemical Co., Ltd .: YP50F). The results are shown in Table 3 and FIG.

Figure 0007048693000004
Figure 0007048693000004

(電気容量維持率の測定)
上記の容量測定を、50、100、200、500、1000、2000、5000mA/gでそれぞれ行い、各電流密度における容量をプロットした。結果を図6に示す。
(Measurement of electric capacity maintenance rate)
The above capacitance measurements were performed at 50, 100, 200, 500, 1000, 2000 and 5000 mA / g, respectively, and the capacitance at each current density was plotted. The results are shown in FIG.

以上の結果から、本発明に係る多孔質炭素材料は、電極材料として、従来の活性炭を大きく上回る静電容量を得ることができ、電極材料として非常に高性能であることが確認できた。 From the above results, it was confirmed that the porous carbon material according to the present invention can obtain a capacitance significantly higher than that of the conventional activated carbon as an electrode material, and has very high performance as an electrode material.

なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲に属する変形や変更は、全て本発明の範囲内のものである。
It should be noted that the present invention can be practiced in various other forms without departing from its spirit or major features. Therefore, the above examples are merely exemplary in all respects and should not be construed in a limited way. The scope of the present invention is shown by the scope of claims, and is not bound by the text of the specification. Furthermore, all modifications and modifications that fall within the scope of the claims are within the scope of the present invention.

Claims (4)

テレフタル酸NMP(N-メチル-2-ピロリドン)に溶解してなる有機リガンド液と、
酢酸亜鉛NMP(N-メチル-2-ピロリドン)に溶解してなる亜鉛イオン溶液と、
の合成反応により、EDS分析による亜鉛元素/炭素元素の比率が、0.1<Zn/Cとなされ、純ケイ素の回折角度のピーク(2θ)が28.2°、47.12°、55.9°に測定される条件で、X線回折した際、9.92°、11.47°、11.88°、16.52°、24.25°(何れのピークも誤差±0.3°)に相当する少なくとも5つの回折角度のピークが現れる前駆体を調製し、
その後、当該前駆体を焼成し、700℃で焼成した際にX線回折によって31.7°、34.3°、36.2°、47.45°、56.5°(何れのピークも誤差±0.3)に検出される酸化亜鉛や亜鉛の回折角度の回折ピーク(2θ)が検出されなくなるまで高温で焼成して多孔質にする
ことを特徴とする多孔質炭素材料の製造方法。
An organic ligand solution prepared by dissolving terephthalic acid in NMP (N-methyl-2-pyrrolidone) , and
A zinc ion solution prepared by dissolving zinc acetate in NMP (N-methyl-2-pyrrolidone) and
The ratio of zinc element / carbon element by EDS analysis was 0.1 <Zn / C, and the peak (2θ) of the diffraction angle of pure silicon was 28.2 °, 47.12 °, 55. When X-ray diffraction is performed under the condition measured at 9 °, 9.92 °, 11.47 °, 11.88 °, 16.52 °, 24.25 ° (all peaks have an error of ± 0.3 °). ), And prepare a precursor in which peaks of at least 5 diffraction angles appear .
After that, the precursor was calcined, and when calcined at 700 ° C., 31.7 °, 34.3 °, 36.2 °, 47.45 °, 56.5 ° (all peaks were errors) by X-ray diffraction. A method for producing a porous carbon material, which comprises firing at a high temperature until the diffraction peak (2θ) of the diffraction angle of zinc oxide or zinc detected in ± 0.3) is no longer detected to make the material porous.
請求項1に記載の製造方法によって得られる多孔質炭素材料であって、A porous carbon material obtained by the production method according to claim 1.
X線回折による回折角度のピーク(2θ)が、31.7°、34.3°、36.2°、47.45°、56.5°(何れのピークも誤差±0.3)に検出されず、窒素吸脱着等温線より得られた結果をBJH法により算出して得られる、全比表面積が2500m Diffraction angle peaks (2θ) due to X-ray diffraction are detected at 31.7 °, 34.3 °, 36.2 °, 47.45 °, and 56.5 ° (all peaks have an error of ± 0.3). The total specific surface area is 2500 m, which is obtained by calculating the result obtained from the nitrogen adsorption / desorption isotherm by the BJH method. 22 /g以上となされ、そのうち、メソ孔の比表面積が1400mIt is set to / g or more, of which the specific surface area of the mesopore is 1400 m. 22 /g以上となされた多孔質炭素材料。Porous carbon material made of / g or more.
焼成することで多孔質炭素材料として調製することができる前駆体であって、A precursor that can be prepared as a porous carbon material by firing.
テレフタル酸を有機溶媒NMP(N-メチル-2-ピロリドン)に溶解してなる有機リガンド液と、 An organic ligand solution prepared by dissolving terephthalic acid in an organic solvent NMP (N-methyl-2-pyrrolidone), and
酢酸亜鉛をNMP(N-メチル-2-ピロリドン)に溶解してなる亜鉛イオン溶液と、 A zinc ion solution prepared by dissolving zinc acetate in NMP (N-methyl-2-pyrrolidone) and
の合成反応により得られ、 Obtained by the synthetic reaction of
EDS分析による亜鉛元素/炭素元素の比率が、0.1<Zn/Cとなされ、純ケイ素の回折角度のピーク(2θ)が28.2°、47.12°、55.9°に測定される条件で、X線回折した際、9.92°、11.47°、11.88°、16.52°、24.25°(何れのピークも誤差±0.3°)に相当する少なくとも5つの回折角度のピークが現れることを特徴とする多孔質炭素材料の前駆体。 The ratio of zinc element / carbon element was set to 0.1 <Zn / C by EDS analysis, and the peak (2θ) of the diffraction angle of pure silicon was measured at 28.2 °, 47.12 °, and 55.9 °. At least corresponding to 9.92 °, 11.47 °, 11.88 °, 16.52 °, and 24.25 ° (all peaks have an error of ± 0.3 °) when X-ray diffracted under the above conditions. A precursor of a porous carbon material characterized by the appearance of peaks at five diffraction angles.
請求項2に記載の多孔質炭素材料を含む電極材料。An electrode material containing the porous carbon material according to claim 2.
JP2020167228A 2020-10-01 2020-10-01 Porous carbon material and its manufacturing method, precursor of porous carbon material, and electrode material using porous carbon material Active JP7048693B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020167228A JP7048693B1 (en) 2020-10-01 2020-10-01 Porous carbon material and its manufacturing method, precursor of porous carbon material, and electrode material using porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020167228A JP7048693B1 (en) 2020-10-01 2020-10-01 Porous carbon material and its manufacturing method, precursor of porous carbon material, and electrode material using porous carbon material

Publications (2)

Publication Number Publication Date
JP7048693B1 true JP7048693B1 (en) 2022-04-05
JP2022059456A JP2022059456A (en) 2022-04-13

Family

ID=81124353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020167228A Active JP7048693B1 (en) 2020-10-01 2020-10-01 Porous carbon material and its manufacturing method, precursor of porous carbon material, and electrode material using porous carbon material

Country Status (1)

Country Link
JP (1) JP7048693B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023079774A (en) * 2021-11-29 2023-06-08 星和電機株式会社 Porous carbon material and method for producing the same, precursor of porous carbon material, and electrode material using porous carbon material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218603A (en) 2013-05-09 2014-11-20 独立行政法人産業技術総合研究所 Porous metal coordination polymer compound and production method of porous carbon material
CN104229768A (en) 2014-07-01 2014-12-24 江西师范大学 Method for preparing porous carbon with three-dimensional structure
US20200259168A1 (en) 2017-09-28 2020-08-13 Lg Chem, Ltd. Carbon-sulfur composite, preparation method therefor, and lithium secondary battery comprising same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102639663B1 (en) * 2018-08-20 2024-02-21 주식회사 엘지에너지솔루션 Metal Organic Framework, Method for Preparing the Same and Method for Preparing Porous Carbon Structure Using the Same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218603A (en) 2013-05-09 2014-11-20 独立行政法人産業技術総合研究所 Porous metal coordination polymer compound and production method of porous carbon material
CN104229768A (en) 2014-07-01 2014-12-24 江西师范大学 Method for preparing porous carbon with three-dimensional structure
US20200259168A1 (en) 2017-09-28 2020-08-13 Lg Chem, Ltd. Carbon-sulfur composite, preparation method therefor, and lithium secondary battery comprising same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023079774A (en) * 2021-11-29 2023-06-08 星和電機株式会社 Porous carbon material and method for producing the same, precursor of porous carbon material, and electrode material using porous carbon material
JP7293320B2 (en) 2021-11-29 2023-06-19 星和電機株式会社 Porous carbon material, method for producing the same, precursor of porous carbon material, and electrode material using porous carbon material

Also Published As

Publication number Publication date
JP2022059456A (en) 2022-04-13

Similar Documents

Publication Publication Date Title
Huang et al. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst
Chen et al. Trapping [PMo 12 O 40] 3− clusters into pre-synthesized ZIF-67 toward Mo x Co x C particles confined in uniform carbon polyhedrons for efficient overall water splitting
Shi et al. Porous nanoMoC@ graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction
Li et al. MOF derived Co 3 O 4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR
Lee et al. A transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties
JP6071261B2 (en) Porous carbon material, method for producing the same, and electric double layer capacitor using the same
Wu et al. Three-dimensional Co 3 O 4/flocculent graphene hybrid on Ni foam for supercapacitor applications
Jin et al. Supercapacitive hybrid materials from the thermolysis of porous coordination nanorods based on a catechol porphyrin
Wang et al. A green and robust solid catalyst facilitating the magnesium sulfite oxidation in the magnesia desulfurization process
KR102560964B1 (en) Catalyst of synthesis of multi-walled carbon nanotube and multi-walled carbon nanotube using the same and method of manufacturing multi-walled carbon nanotube
US10388967B2 (en) Porous carbon catalyst, method for producing same, electrode and battery
JP2014218603A (en) Porous metal coordination polymer compound and production method of porous carbon material
JP7048693B1 (en) Porous carbon material and its manufacturing method, precursor of porous carbon material, and electrode material using porous carbon material
JP7086152B2 (en) Porous carbon material and its manufacturing method, precursor of porous carbon material, and electrode material using porous carbon material
JP2017016853A (en) Carrier material for electrode and production method therefor
KR101735337B1 (en) Three-dimensional mesoporous graphene derived from Ni(II) complexes and preparation method thereof
Wang et al. Glycerol-controlled synthesis of a series of cobalt acid composites and their catalytic decomposition toward several energetic materials
Fink et al. Experimental correlation of Mn 3+ cation defects and electrocatalytic activity of α-MnO 2–an X-ray photoelectron spectroscopy study
Li et al. In situ synthesis of well crystallized rhodium sulfide/carbon composite nanospheres as catalyst for hydrochloric acid electrolysis
GB2570485A (en) Porous carbonaceous materials and methods for their manufacture
Li et al. Novel high-entropy layered double hydroxide microspheres as an effective and durable electrocatalyst for oxygen evolution
JP7293320B2 (en) Porous carbon material, method for producing the same, precursor of porous carbon material, and electrode material using porous carbon material
Zhao et al. Magnetic MnxCo3-xO4 microboxes fabricated from Prussian blue analogue templates for electrochemical applications
Pacuła et al. Preparation and characterization of the electroactive composites containing nickel nanoparticles and carbon nanotubes
Ramani et al. Engineering surface and morphology of La/WO 3 for electrochemical oxygen reduction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7048693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150