JP7048374B2 - Manufacturing method of modeled object and modeled object - Google Patents

Manufacturing method of modeled object and modeled object Download PDF

Info

Publication number
JP7048374B2
JP7048374B2 JP2018055850A JP2018055850A JP7048374B2 JP 7048374 B2 JP7048374 B2 JP 7048374B2 JP 2018055850 A JP2018055850 A JP 2018055850A JP 2018055850 A JP2018055850 A JP 2018055850A JP 7048374 B2 JP7048374 B2 JP 7048374B2
Authority
JP
Japan
Prior art keywords
cut
bead
base material
cutting
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018055850A
Other languages
Japanese (ja)
Other versions
JP2019166544A (en
Inventor
伸志 佐藤
岳史 山田
雄幹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018055850A priority Critical patent/JP7048374B2/en
Priority to PCT/JP2019/009280 priority patent/WO2019181556A1/en
Publication of JP2019166544A publication Critical patent/JP2019166544A/en
Application granted granted Critical
Publication of JP7048374B2 publication Critical patent/JP7048374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/006Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/16Working surfaces curved in two directions
    • B23C3/18Working surfaces curved in two directions for shaping screw-propellers, turbine blades, or impellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/032Seam welding; Backing means; Inserts for three-dimensional seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps

Description

本発明は、造形物の製造方法及び造形物に関する。 The present invention relates to a method for manufacturing a modeled object and a modeled object.

近年、生産手段として3Dプリンタを用いた造形のニーズが高まっており、金属材料を用いた造形の実用化に向けて研究開発が進められている。金属材料を造形する3Dプリンタは、レーザや電子ビーム、更にはアーク等の熱源を用いて、金属粉体や金属ワイヤを溶融させ、溶融金属を積層させることで造形物を作製する。 In recent years, there has been an increasing need for modeling using a 3D printer as a means of production, and research and development are being promoted toward the practical application of modeling using metal materials. A 3D printer for modeling a metal material uses a heat source such as a laser, an electron beam, or an arc to melt a metal powder or a metal wire, and laminates the molten metal to produce a model.

例えば、ポンプや圧縮機などの流体機械に設けられるインペラやロータ等の回転部材を製造する技術として、ハブとなるベース材の表面にビードを積層して複数のブレードとなる造形部を造形し、その後、造形部を切削してブレードを形成するものが知られている(例えば、特許文献1参照)。 For example, as a technology for manufacturing rotating members such as impellers and rotors installed in fluid machines such as pumps and compressors, beads are laminated on the surface of the base material to be a hub to form a molding part that becomes multiple blades. After that, it is known that a shaped portion is cut to form a blade (see, for example, Patent Document 1).

国際公開第2016/149774号International Publication No. 2016/149774

上記の製造技術によれば、材料からの削り出しと比べ、歩留りが高く、製造時間も短縮させることができる。また、複雑な鋳型を組み合わせて製造する鋳造と比べ、鋳型の組合せ部分に生じるバリの除去や鋳型のずれによる製造不良をなくすことができる。 According to the above-mentioned manufacturing technique, the yield is high and the manufacturing time can be shortened as compared with the cutting from the material. Further, as compared with casting manufactured by combining complicated molds, it is possible to remove burrs generated in the combined portion of the molds and eliminate manufacturing defects due to the displacement of the molds.

ところで、ビードを積層して造形部を造形し、その造形部を切削することで、曲面部を形成する場合、切削対象のビードの大部分を切削することとなると、無駄が多くなり、生産性が低下してしまう。このため、曲面部を有する造形物を製造する際の造形するビードの無駄を極力押させて生産性の向上を図ることが要求されている。 By the way, when a curved surface portion is formed by laminating beads to form a shaped portion and cutting the shaped portion, cutting most of the beads to be cut increases waste and productivity. Will drop. For this reason, it is required to improve productivity by suppressing waste of the bead to be modeled as much as possible when manufacturing a modeled object having a curved surface portion.

本発明の目的は、曲面部を有する部位を備えた造形物を無駄なく効率的に製造して生産性の向上を図ることが可能な造形物の製造方法及び造形物を提供することにある。 An object of the present invention is to provide a method for manufacturing a modeled object and a modeled object capable of efficiently producing a modeled object having a portion having a curved surface portion without waste and improving productivity.

本発明は下記構成からなる。
(1) ベース材に溶加材を溶融及び凝固させた溶着ビードを積層させて造形部を造形する造形工程と、
少なくとも前記造形部の表面を切削して凹状の曲面部を形成する切削工程と、
を含み、
前記造形工程において、前記溶着ビードのうちの前記ベース材の表面に造形されて前記切削工程で切削される切削対象溶着ビードを前記ベース材の表面に造形する際に、
前記切削対象溶着ビードの高さ寸法をH、前記切削対象溶着ビードの切削される最小幅寸法をA、前記切削対象溶着ビードの幅寸法をB、前記切削対象溶着ビードの底部を通り、前記切削対象溶着ビードの幅方向の中心線と直交する底面線をXA、前記底面線XAと前記曲面部との交点における前記曲面部の接線をXB、前記底面線XAと前記接線XBとのなす角をθとしたときに、
tanθ≧H/(B-A)
が成立する位置に前記切削対象溶着ビードを造形する
造形物の製造方法。
The present invention has the following configuration.
(1) A molding process in which a welded bead obtained by melting and solidifying a filler metal is laminated on a base material to form a shaped portion.
At least the cutting process of cutting the surface of the shaped portion to form a concave curved surface portion,
Including
In the molding process, when the welding bead to be cut, which is formed on the surface of the base material among the welding beads and is cut in the cutting process, is formed on the surface of the base material.
The height dimension of the welded bead to be cut is H, the minimum width dimension of the welded bead to be cut is A, the width dimension of the welded bead to be cut is B, and the cutting is performed through the bottom of the welded bead to be cut. The bottom line orthogonal to the center line in the width direction of the target weld bead is XA, the tangent line of the curved surface portion at the intersection of the bottom surface line XA and the curved surface portion is XB, and the angle formed by the bottom line XA and the tangent line XB is When set to θ,
tanθ ≧ H / (BA)
A method for manufacturing a modeled object in which the welded bead to be cut is formed at a position where is established.

本発明によれば、曲面部を有する部位を備えた造形物を無駄なく効率的に製造して生産性の向上を図ることができる。 According to the present invention, it is possible to efficiently manufacture a modeled object having a portion having a curved surface portion without waste and improve productivity.

本発明の製造方法で製造する造形物であるロータの斜視図である。It is a perspective view of the rotor which is a modeled object manufactured by the manufacturing method of this invention. 本発明の製造方法で製造する造形物であるロータの軸方向に直交する断面図である。It is sectional drawing orthogonal to the axial direction of the rotor which is a modeled object manufactured by the manufacturing method of this invention. 造形物を製造する製造システムの模式的な概略構成図である。It is a schematic schematic block diagram of the manufacturing system for manufacturing a modeled object. 本実施形態に係る造形物の製造方法における積層工程を説明するロータの一部の概略断面図である。It is a schematic cross-sectional view of a part of a rotor explaining the laminating process in the manufacturing method of the modeled article which concerns on this embodiment. 本実施形態に係る造形物の製造方法における積層工程を説明するロータの一部の概略断面図である。It is a schematic cross-sectional view of a part of a rotor explaining the laminating process in the manufacturing method of the modeled article which concerns on this embodiment. 本実施形態に係る造形物の製造方法における切削工程を説明するロータの一部の概略断面図である。It is a schematic cross-sectional view of a part of a rotor explaining the cutting process in the manufacturing method of the modeled object which concerns on this embodiment. 本実施形態に係る造形物の製造方法における切削工程を説明するロータの一部の概略拡大断面図である。It is a schematic enlarged cross-sectional view of a part of a rotor explaining the cutting process in the manufacturing method of the modeled object which concerns on this embodiment. 本実施形態に係る切削対象溶着ビードの造形位置の設定について説明する模式図である。It is a schematic diagram explaining the setting of the modeling position of the welding bead to be cut according to this embodiment. 参考例に係る切削対象溶着ビードの造形位置の設定について説明する模式図である。It is a schematic diagram explaining the setting of the modeling position of the welded bead to be cut according to the reference example.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1A及び図1Bは、それぞれ本発明の製造方法で製造する造形物であるロータを示す図であり、図1Aはロータの斜視図、図1Bはロータの軸方向に直交する断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1A and 1B are views showing a rotor which is a modeled object manufactured by the manufacturing method of the present invention, respectively, FIG. 1A is a perspective view of the rotor, and FIG. 1B is a cross-sectional view orthogonal to the axial direction of the rotor.

図1A及び図1Bに示すように、本実施形態に係る製造方法によって製造する造形物Wは、柱状の軸体51と、軸体51の外周に径方向外側へ突出する複数条(図示例では6条)の螺旋状のブレード53とを備える。この造形物Wは、例えば、圧縮機などの流体機械に設けられるロータ55である。 As shown in FIGS. 1A and 1B, the model W manufactured by the manufacturing method according to the present embodiment has a columnar shaft body 51 and a plurality of strips (in the illustrated example) protruding outward in the radial direction from the outer periphery of the shaft body 51. It is provided with the spiral blade 53 of Article 6). The model W is a rotor 55 provided in a fluid machine such as a compressor, for example.

ロータ55は、軸体51の軸方向中間部で、複数のブレード53が周方向に沿って等間隔に設けられたスクリュー形状となっている。このロータ55は、各ブレード53同士の間にU字状に凹んだ曲面形状の凹部57を有している。 The rotor 55 has a screw shape in which a plurality of blades 53 are provided at equal intervals along the circumferential direction at an axial intermediate portion of the shaft body 51. The rotor 55 has a curved concave portion 57 recessed in a U shape between the blades 53.

このロータ55は、軸体51となる棒状のベース材61の周面に、ブレード53となる溶着ビード63を形成して積層させ、その後、切削加工によって溶着ビード63及びベース材61を切削し、ブレード53及びブレード53の間の凹部57を形成することで得られる。 In this rotor 55, a welded bead 63 to be a blade 53 is formed and laminated on the peripheral surface of a rod-shaped base material 61 to be a shaft body 51, and then the welded bead 63 and the base material 61 are cut by cutting. It is obtained by forming a recess 57 between the blade 53 and the blade 53.

次に、上記のロータ55からなる造形物Wを製造する製造システムについて説明する。
図2は造形物を製造する製造システムの模式的な概略構成図である。
Next, a manufacturing system for manufacturing the model W made of the rotor 55 will be described.
FIG. 2 is a schematic schematic configuration diagram of a manufacturing system for manufacturing a modeled object.

図2に示すように、本構成の製造システム100は、積層造形装置11と、切削装置12と、積層造形装置11及び切削装置12を統括制御するコントローラ15と、を備える。 As shown in FIG. 2, the manufacturing system 100 having this configuration includes a laminated modeling device 11, a cutting device 12, and a controller 15 that controls the laminated modeling device 11 and the cutting device 12 in an integrated manner.

積層造形装置11は、先端軸にトーチ17を有する溶接ロボット19と、トーチ17に溶加材(溶接ワイヤ)Mを供給する溶加材供給部21とを有する。トーチ17は、溶加材Mを先端から突出した状態に保持する。 The laminated modeling device 11 has a welding robot 19 having a torch 17 on the tip shaft, and a filler material supply unit 21 that supplies a filler metal (welding wire) M to the torch 17. The torch 17 holds the filler metal M in a state of protruding from the tip.

溶接ロボット19は、多関節ロボットであり、先端軸に設けたトーチ17には、溶加材Mが連続供給可能に支持される。トーチ17の位置や姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。 The welding robot 19 is an articulated robot, and the filler metal M is continuously supplied to the torch 17 provided on the tip shaft. The position and posture of the torch 17 can be arbitrarily set three-dimensionally within the range of the degree of freedom of the robot arm.

トーチ17は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給される。本構成で用いられるアーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG溶接やプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する造形物Wに応じて適宜選定される。 The torch 17 has a shield nozzle (not shown), and shield gas is supplied from the shield nozzle. The arc welding method used in this configuration may be either a consumable electrode type such as shielded metal arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding. It will be selected as appropriate.

例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Mがコンタクトチップに保持される。トーチ17は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。溶加材Mは、ロボットアーム等に取り付けた不図示の繰り出し機構により、溶加材供給部21からトーチ17に送給される。そして、トーチ17を移動しつつ、連続送給される溶加材Mを溶融及び凝固させると、後述のベース材61上に溶加材Mの溶融凝固体である線状の溶着ビード63が形成される。 For example, in the case of the consumable electrode type, a contact tip is arranged inside the shield nozzle, and the filler metal M to which the melting current is supplied is held by the contact tip. The torch 17 generates an arc from the tip of the filler M in a shield gas atmosphere while holding the filler M. The filler material M is fed from the filler material supply unit 21 to the torch 17 by a feeding mechanism (not shown) attached to a robot arm or the like. Then, when the filler metal M that is continuously fed is melted and solidified while moving the torch 17, a linear welded bead 63 that is a molten solidified body of the filler metal M is formed on the base material 61 described later. Will be done.

なお、溶加材Mを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザとを併用した加熱方式、プラズマを用いる加熱方式、電子ビームやレーザを用いる加熱方式等、他の方式による熱源を採用してもよい。電子ビームやレーザにより加熱する場合、加熱量を更に細かく制御でき、溶着ビードの状態をより適正に維持して、造形物Wの更なる品質向上に寄与できる。 The heat source for melting the filler metal M is not limited to the above-mentioned arc. For example, a heat source by another method such as a heating method using both an arc and a laser, a heating method using plasma, and a heating method using an electron beam or a laser may be adopted. When heating by an electron beam or a laser, the amount of heating can be controlled more finely, the state of the welded bead can be maintained more appropriately, and the quality of the model W can be further improved.

溶加材Mは、あらゆる市販の溶接ワイヤを用いることができる。例えば、軟鋼,高張力鋼及び低温用鋼用のマグ溶接及びミグ溶接ソリッドワイヤ(JIS Z 3312)、軟鋼、高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ(JIS Z 3313)等で規定されるワイヤを用いることができる。 As the filler M, any commercially available welding wire can be used. For example, it is specified by MAG welding and MIG welding solid wire (JIS Z 3312) for mild steel, high tension steel and low temperature steel, arc welding flux containing wire for mild steel, high tension steel and low temperature steel (JIS Z 3313) and the like. Wire can be used.

切削装置12は、切削ロボット41を備えている。切削ロボット41は、溶接ロボット19と同様に、多関節ロボットであり、先端アーム43の先端部に、例えば、エンドミルや研削砥石などの金属加工工具45を備える。これにより、切削ロボット41は、コントローラ15により、その加工姿勢が任意の姿勢を取り得るように、3次元的に移動可能となっている。 The cutting device 12 includes a cutting robot 41. Like the welding robot 19, the cutting robot 41 is an articulated robot, and a metal processing tool 45 such as an end mill or a grinding wheel is provided at the tip of the tip arm 43. As a result, the cutting robot 41 can be moved three-dimensionally by the controller 15 so that the machining posture can take an arbitrary posture.

切削ロボット41は、積層造形装置11の溶接ロボット19によってベース材61に溶着ビード63が積層された造形物Wを金属加工工具45で切削してロータ55に加工する。 The cutting robot 41 cuts the model W in which the welded bead 63 is laminated on the base material 61 by the welding robot 19 of the laminated modeling device 11 with the metal processing tool 45 and processes it into the rotor 55.

コントローラ15は、CAD/CAM部31と、軌道演算部33と、記憶部35と、これらが接続される制御部37と、を有する。 The controller 15 has a CAD / CAM unit 31, an orbit calculation unit 33, a storage unit 35, and a control unit 37 to which these are connected.

CAD/CAM部31は、作製しようとする造形物Wの形状データを作成した後、複数の層に分割して各層の形状を表す層形状データを生成する。軌道演算部33は、生成された層形状データに基づいてトーチ17の移動軌跡を求める。また、軌道演算部33は、形状データに基づいて、金属加工工具45の移動軌跡を求める。記憶部35は、造形物Wの形状データ、生成された層形状データ、トーチ17の移動軌跡及び金属加工工具45の移動軌跡等のデータを記憶する。 The CAD / CAM unit 31 creates shape data of the modeled object W to be manufactured, and then divides the data into a plurality of layers to generate layer shape data representing the shape of each layer. The trajectory calculation unit 33 obtains the movement trajectory of the torch 17 based on the generated layer shape data. Further, the trajectory calculation unit 33 obtains the movement trajectory of the metal processing tool 45 based on the shape data. The storage unit 35 stores data such as the shape data of the modeled object W, the generated layer shape data, the movement locus of the torch 17, and the movement locus of the metal processing tool 45.

制御部37は、記憶部35に記憶された層形状データやトーチ17の移動軌跡に基づく駆動プログラムを実行して、溶接ロボット19を駆動する。つまり、溶接ロボット19は、コントローラ15からの指令により、軌道演算部33で生成したトーチ17の移動軌跡に基づき、溶加材Mをアークで溶融させながらトーチ17を移動する。また、制御部37は、記憶部35に記憶された形状データや金属加工工具45の移動軌跡に基づく駆動プログラムを実行して、切削ロボット41を駆動する。これにより、切削ロボット41の先端アーム43に設けられた金属加工工具45によって造形物Wに対して切削加工を行う。なお、図2においては、鉛直方向に立設させた断面視円形状の柱状のベース材61の周面に、ブレード53となる溶着ビード63を螺旋状に形成して造形物Wを造形し、その後、造形物Wに対して切削加工を行う様子を示している。 The control unit 37 drives the welding robot 19 by executing a drive program based on the layer shape data stored in the storage unit 35 and the movement locus of the torch 17. That is, the welding robot 19 moves the torch 17 while melting the filler metal M with an arc based on the movement locus of the torch 17 generated by the trajectory calculation unit 33 in response to a command from the controller 15. Further, the control unit 37 executes a drive program based on the shape data stored in the storage unit 35 and the movement locus of the metal processing tool 45 to drive the cutting robot 41. As a result, the model W is cut by the metal processing tool 45 provided on the tip arm 43 of the cutting robot 41. In FIG. 2, a welded bead 63 to be a blade 53 is spirally formed on the peripheral surface of a columnar base material 61 having a circular shape in a cross-sectional view, which is erected in the vertical direction, to form a model W. After that, a state in which cutting is performed on the modeled object W is shown.

次に、本実施形態に係る造形物の製造方法について説明する。
図3A及び図3Bは本実施形態に係る造形物の製造方法における積層工程を説明する図であり、図3A及び図3Bはそれぞれロータの一部の概略断面図である。図4A及び図4Bは本実施形態に係る造形物の製造方法における切削工程を説明する図であり、図4Aはロータの一部の概略断面図、図4Bはロータの一部の概略拡大断面図である。
Next, a method for manufacturing a modeled object according to the present embodiment will be described.
3A and 3B are diagrams illustrating a laminating process in the method for manufacturing a modeled object according to the present embodiment, and FIGS. 3A and 3B are schematic cross-sectional views of a part of a rotor, respectively. 4A and 4B are views for explaining a cutting process in the method for manufacturing a modeled object according to the present embodiment, FIG. 4A is a schematic cross-sectional view of a part of a rotor, and FIG. 4B is a schematic enlarged cross-sectional view of a part of the rotor. Is.

(造形工程)
図3Aに示すように、製造システム100に、軸体51となる断面視円形状の柱状のベース材61をセットする。次いで、設定された層形状データから生成されるトーチ17の移動軌跡に沿って、積層造形装置11のトーチ17を溶接ロボット19の駆動により移動させながら、溶加材Mを溶融させ、溶融した溶加材Mをベース材61の周面に供給する。これにより、ベース材61の周面に対して複数の溶着ビード63を螺旋状に形成する。その後、図3Bに示すように、形成した溶着ビード63の層に対してさらに溶着ビード63を順に積層させ、ブレード53となる造形部65を有する造形物Wを作製する。
(Modeling process)
As shown in FIG. 3A, a columnar base material 61 having a circular shape in cross section to be a shaft body 51 is set in the manufacturing system 100. Next, the filler metal M is melted and melted while the torch 17 of the laminated molding apparatus 11 is moved by the drive of the welding robot 19 along the movement locus of the torch 17 generated from the set layer shape data. The filler M is supplied to the peripheral surface of the base material 61. As a result, a plurality of welded beads 63 are spirally formed on the peripheral surface of the base material 61. Then, as shown in FIG. 3B, the welded beads 63 are further laminated in order on the formed layer of the welded beads 63 to produce a model W having a modeled portion 65 to be a blade 53.

(切削工程)
切削ロボット41を駆動させて金属加工工具45によって造形物Wを切削加工する。これにより、図4A及び図4Bに示すように、造形部65の表面及びベース材61の一部を切削し、ブレード53を形成するとともに、ブレード53間の凹部57を形成する。これにより、柱状の軸体51の外周に複数のブレード53を備えたロータ55を形成する。
(Cutting process)
The cutting robot 41 is driven to cut the modeled object W with the metal processing tool 45. As a result, as shown in FIGS. 4A and 4B, the surface of the modeling portion 65 and a part of the base material 61 are cut to form the blade 53 and the recess 57 between the blades 53 is formed. As a result, a rotor 55 having a plurality of blades 53 is formed on the outer periphery of the columnar shaft body 51.

ここで、本実施形態では、造形部65となる溶着ビード63のうちのベース材61の表面である周面に造形されて切削工程で切削される切削対象溶着ビード63Aの造形位置を以下のように設定する。 Here, in the present embodiment, the molding position of the welding bead 63A to be cut, which is formed on the peripheral surface of the surface of the base material 61 of the welding beads 63 serving as the molding portion 65 and is cut in the cutting process, is as follows. Set to.

図5は、切削対象溶着ビード63Aの造形位置の設定について説明する模式図である。図5に示すように、切削対象溶着ビード63Aの高さ寸法をH、切削対象溶着ビード63Aの切削される最小幅寸法をA、切削対象溶着ビード63Aの幅寸法をB、切削対象溶着ビード63Aの底部を通り、切削対象溶着ビード63Aの幅方向の中心線と直交する底面線をXA、底面線XAと凹部57の曲面部57aとの交点における曲面部57aの接線をXB、底面線XAと接線XBとのなす角をθとしたときに、次式(1)が成立する位置を、切削対象溶着ビード63Aの造形位置に設定する。 FIG. 5 is a schematic diagram illustrating the setting of the modeling position of the welded bead 63A to be cut. As shown in FIG. 5, the height dimension of the welded bead 63A to be cut is H, the minimum width dimension of the welded bead 63A to be cut is A, the width dimension of the welded bead 63A to be cut is B, and the welded bead 63A to be cut is The bottom line passing through the bottom of the cutting target welding bead 63A and orthogonal to the center line in the width direction is XA, the tangent line of the curved surface portion 57a at the intersection of the bottom surface line XA and the curved surface portion 57a of the recess 57 is XB, and the bottom line XA. When the angle formed by the tangent line XB is θ, the position where the following equation (1) is established is set at the modeling position of the welding bead 63A to be cut.

tanθ≧H/(B-A)…(1) tan θ ≧ H / (BA)… (1)

そして、切削対象溶着ビード63Aの造形位置が、上式(1)を満たす位置となるようにベース材61を選定し、造形しようとする造形物Wの形状データを作成して層形状データを生成する。 Then, the base material 61 is selected so that the modeling position of the welded bead 63A to be cut satisfies the above equation (1), the shape data of the modeled object W to be modeled is created, and the layer shape data is generated. do.

ここで、切削対象溶着ビード63Aの造形位置が上式(1)を満たさない場合について比較検討する。 Here, a case where the molding position of the welded bead 63A to be cut does not satisfy the above equation (1) will be compared and examined.

図6に示すように、切削対象溶着ビード63Aの造形位置が上式(1)を満たさない場合、つまり、tanθ<H/(B-A)となる場合では、切削対象溶着ビード63Aのかなり領域(図6におけるハッチング部分)が切削されることとなる。 As shown in FIG. 6, when the molding position of the welding target bead 63A to be cut does not satisfy the above equation (1), that is, when tan θ <H / (BA), a considerable region of the welding bead 63A to be cut is obtained. (The hatched portion in FIG. 6) will be cut.

これに対して、図5に示すように、切削対象溶着ビード63Aの造形位置がtanθ≧H/(B-A)を満たす本実施形態によれば、切削対象溶着ビード63Aは、実質的に切削される領域が、小さい領域(図5におけるハッチング部分)に抑えられることとなる。 On the other hand, as shown in FIG. 5, according to the present embodiment in which the molding position of the welding target welding bead 63A to be cut satisfies tan θ ≧ H / (BA), the welding target welding bead 63A to be cut is substantially cut. The area to be formed is suppressed to a small area (hatched portion in FIG. 5).

以上、説明したように、本実施形態に係る造形物の製造方法によれば、切削対象溶着ビードの高さ寸法をH、切削対象溶着ビードの切削される最小幅寸法をA、切削対象溶着ビードの幅寸法をB、切削対象溶着ビードの底部を通り、切削対象溶着ビードの幅方向の中心線と直交する底面線をXA、底面線XAと曲面部との交点における曲面部の接線をXB、底面線XAと接線XBとのなす角をθとしたときに、tanθ≧H/(B-A)を満たす位置に切削対象溶着ビードを造形する。 As described above, according to the method for manufacturing a modeled object according to the present embodiment, the height dimension of the welded bead to be cut is H, the minimum width dimension to be cut of the welded bead to be cut is A, and the welded bead to be cut is set to A. The width dimension of B, the bottom line passing through the bottom of the welding bead to be cut and orthogonal to the center line in the width direction of the welding bead to be cut is XA, and the tangent to the curved surface at the intersection of the bottom line XA and the curved surface is XB. When the angle formed by the bottom line XA and the tangent line XB is θ, the welding bead to be cut is formed at a position satisfying tan θ ≧ H / (BA).

これにより、溶着ビード63を形成するベース材61を適切に選定し、切削工程において、切削対象溶着ビード63Aにおける切削する領域を少なくすることができ、切削対象溶着ビード63Aの多くの部分を切削することによる無駄を極力抑えることができる。これにより、曲面部57aを有する部位を備えた造形物Wを無駄なく製造することができ、生産性を向上させることができる。 As a result, the base material 61 forming the welded bead 63 can be appropriately selected, the area to be cut in the welded bead 63A to be cut can be reduced in the cutting process, and many parts of the welded bead 63A to be cut can be cut. The waste caused by this can be suppressed as much as possible. As a result, the modeled object W having the portion having the curved surface portion 57a can be manufactured without waste, and the productivity can be improved.

そして、本実施形態によれば、例えば、ベース材61からなる軸体51の周囲に複数のブレード53が周方向へ間隔をあけたロータ55からなる造形物Wを、無駄なく効率的に製造することができる。 Then, according to this embodiment, for example, a model W made of a rotor 55 in which a plurality of blades 53 are spaced apart in the circumferential direction around a shaft body 51 made of a base material 61 is efficiently manufactured without waste. be able to.

また、本実施形態の製造方法で製造される造形物Wによれば、ベース材61の表面に造形した溶着ビード63の無駄な切削が極力抑えられるので、高い生産性で効率的に製造可能な造形物Wとすることができる。 Further, according to the modeled object W manufactured by the manufacturing method of the present embodiment, unnecessary cutting of the welded bead 63 formed on the surface of the base material 61 is suppressed as much as possible, so that it can be efficiently manufactured with high productivity. It can be a model W.

なお、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 It should be noted that the present invention is not limited to the above-described embodiment, and those skilled in the art may modify or apply the invention based on the mutual combination of the configurations of the embodiments, the description of the specification, and the well-known technique. Is also the subject of the present invention and is included in the scope for which protection is sought.

例えば、上記実施形態では、造形物Wを切削する切削装置12として、多関節ロボットの先端アーム43に金属加工工具45を備えた切削ロボット41を用いた場合を例示したが、使用可能な切削装置12としては、切削ロボット41に限らない。切削装置12としては、例えば、5軸加工機やロータ専用の加工機(歯切り加工機)などの切削加工機を用いてもよい。 For example, in the above embodiment, the case where the cutting robot 41 provided with the metal processing tool 45 on the tip arm 43 of the articulated robot is used as the cutting device 12 for cutting the modeled object W has been exemplified, but the cutting device can be used. 12 is not limited to the cutting robot 41. As the cutting device 12, for example, a cutting machine such as a 5-axis machine or a rotor-dedicated machine (tooth cutting machine) may be used.

また、上記実施形態では、複数のブレード53を有するロータ55を造形する場合を例示したが、本発明は、ロータ55に限らず、曲面形状を有する各種の造形物の製造に適用可能である。 Further, in the above embodiment, the case of modeling the rotor 55 having a plurality of blades 53 has been exemplified, but the present invention is not limited to the rotor 55 and can be applied to the production of various shaped objects having a curved surface shape.

以上の通り、本明細書には次の事項が開示されている。
(1) ベース材に溶加材を溶融及び凝固させた溶着ビードを積層させて造形部を造形する造形工程と、
少なくとも前記造形部の表面を切削して凹状の曲面部を形成する切削工程と、
を含み、
前記造形工程において、前記溶着ビードのうちの前記ベース材の表面に造形されて前記切削工程で切削される切削対象溶着ビードを前記ベース材の表面に造形する際に、
前記切削対象溶着ビードの高さ寸法をH、前記切削対象溶着ビードの切削される最小幅寸法をA、前記切削対象溶着ビードの幅寸法をB、前記切削対象溶着ビードの底部を通り、前記切削対象溶着ビードの幅方向の中心線と直交する底面線をXA、前記底面線XAと前記曲面部との交点における前記曲面部の接線をXB、前記底面線XAと前記接線XBとのなす角をθとしたときに、
tanθ≧H/(B-A)
が成立する位置に前記切削対象溶着ビードを造形する
造形物の製造方法。
この造形物の製造方法によれば、切削対象溶着ビードの高さ寸法をH、切削対象溶着ビードの切削される最小幅寸法をA、切削対象溶着ビードの幅寸法をB、切削対象溶着ビードの底部を通り、切削対象溶着ビードの幅方向の中心線と直交する底面線をXA、底面線XAと曲面部との交点における曲面部の接線をXB、底面線XAと接線XBとのなす角をθとしたときに、tanθ≧H/(B-A)を満たす位置に切削対象溶着ビードを造形する。
これにより、溶着ビードを形成するベース材を適切に選定し、切削工程において、切削対象溶着ビードにおける切削する領域を少なくすることができ、溶着ビードの多くの部分を切削することによる無駄を極力抑えることができる。これにより、曲面部を有する部位を備えた造形物を無駄なく製造することができ、生産性を向上させることができる。また、溶着ビードの溶着量を減らすことができ、これにより、溶着ビードの溶着量が多いことで生じる溶接変形による精度低下を抑制して精度向上を図ることができる。
As described above, the following matters are disclosed in this specification.
(1) A molding process in which a welded bead obtained by melting and solidifying a filler metal is laminated on a base material to form a shaped portion.
At least the cutting process of cutting the surface of the shaped portion to form a concave curved surface portion,
Including
In the molding process, when the welding bead to be cut, which is formed on the surface of the base material among the welding beads and is cut in the cutting process, is formed on the surface of the base material.
The height dimension of the welded bead to be cut is H, the minimum width dimension of the welded bead to be cut is A, the width dimension of the welded bead to be cut is B, and the cutting is performed through the bottom of the welded bead to be cut. The bottom line orthogonal to the center line in the width direction of the target weld bead is XA, the tangent line of the curved surface portion at the intersection of the bottom surface line XA and the curved surface portion is XB, and the angle formed by the bottom line XA and the tangent line XB is When set to θ,
tanθ ≧ H / (BA)
A method for manufacturing a modeled object in which the welded bead to be cut is formed at a position where is established.
According to this method of manufacturing a modeled object, the height dimension of the welded bead to be cut is H, the minimum width dimension of the welded bead to be cut is A, the width dimension of the welded bead to be cut is B, and the welded bead to be cut is. The bottom line that passes through the bottom and is orthogonal to the center line in the width direction of the weld bead to be cut is XA, the tangent line of the curved surface at the intersection of the bottom line XA and the curved surface is XB, and the angle between the bottom line XA and the tangent line XB is When θ is set, the welded bead to be cut is formed at a position where tan θ ≧ H / (BA).
As a result, the base material that forms the welded bead can be appropriately selected, the area to be cut in the welded bead to be cut can be reduced in the cutting process, and the waste caused by cutting many parts of the welded bead can be minimized. be able to. As a result, it is possible to manufacture a modeled object having a portion having a curved surface portion without waste, and it is possible to improve productivity. Further, the welding amount of the welded bead can be reduced, whereby the accuracy can be improved by suppressing the decrease in accuracy due to the welding deformation caused by the large welding amount of the welded bead.

(2) 前記造形工程において、断面視円形状の前記ベース材の周面に対して、周方向へ間隔をあけて前記溶着ビードを積層させて造形部を形成し、
前記切削工程において、前記造形部の表面及び前記ベース材の周面の一部を切削し、
前記ベース材からなる軸体の周囲に複数のブレードが周方向へ間隔をあけて設けられ、前記ブレードの間に曲面部を有する凹部を備えた造形物を製造する
(1)に記載の造形物の製造方法。
この造形物の製造方法によれば、ベース材からなる軸体の周囲に複数のブレードが周方向へ間隔をあけた造形物を、無駄なく効率的に製造することができる。
(2) In the modeling step, the welding beads are laminated on the peripheral surface of the base material having a circular cross-sectional view at intervals in the circumferential direction to form a modeling portion.
In the cutting process, a part of the surface of the modeling portion and the peripheral surface of the base material is cut.
The model according to (1), wherein a plurality of blades are provided around a shaft body made of the base material at intervals in the circumferential direction, and a model having a recess having a curved surface portion between the blades is manufactured. Manufacturing method.
According to this method for manufacturing a modeled object, it is possible to efficiently manufacture a modeled object in which a plurality of blades are spaced apart in the circumferential direction around a shaft body made of a base material without waste.

(3) (1)または(2)に記載の造形物の製造方法によって製造された
造形物。
この造形物によれば、ベース材の表面に造形した溶着ビードの無駄な切削が極力抑えられるので、高い生産性で効率的に製造可能な造形物とすることができる。
(3) A model manufactured by the method for manufacturing a model according to (1) or (2).
According to this modeled object, unnecessary cutting of the welded bead formed on the surface of the base material is suppressed as much as possible, so that it is possible to obtain a modeled object that can be efficiently manufactured with high productivity.

51 軸体
53 ブレード
55 ロータ
57 凹部
57a 曲面部
61 ベース材
63 溶着ビード
63A 切削対象溶着ビード
65 造形部
A 最小幅寸法
B 幅寸法
H 高さ寸法
M 溶加材
W 造形物
XA 底面線
XB 接線
θ なす角
51 Shaft 53 Blade 55 Rotor 57 Recess 57a Curved surface 61 Base material 63 Welding bead 63A Welding bead for cutting 65 Modeling part A Minimum width dimension B Width dimension H Height dimension M Welding material W Modeled object XA Bottom line XB Tangent line θ Crescent angle

Claims (3)

ベース材に溶加材を溶融及び凝固させた溶着ビードを積層させて造形部を造形する造形工程と、
少なくとも前記造形部の表面を切削して凹状の曲面部を形成する切削工程と、
を含み、
前記造形工程において、断面視円形状の前記ベース材の周面に対して、螺線状に配置される複数列の前記溶着ビードを互いに溶融及び凝固させた前記溶着ビードの層を積層した前記造形部を、前記ベース材の周方向に間隔をあけて複数形成し、
前記造形工程において、前記造形部の複数の前記溶着ビードのうち前記ベース材の表面に造形されて前記切削工程で切削される切削対象溶着ビードを前記ベース材の表面に造形する際に、前記切削対象溶着ビードの高さ寸法をH、前記切削対象溶着ビードの切削される最小幅寸法をA、前記切削対象溶着ビードの幅寸法をB、前記切削対象溶着ビードの底部を通り、前記切削対象溶着ビードの幅方向の中心線と直交する底面線をXA、前記底面線XAと前記曲面部との交点における前記曲面部の接線をXB、前記底面線XAと前記接線XBとのなす角をθとしたときに、
tanθ≧H/(B-A)
が成立する位置に前記切削対象溶着ビードを造形する
造形物の製造方法。
A modeling process in which a welded bead obtained by melting and solidifying a filler metal is laminated on a base material to form a modeling part.
At least the cutting process of cutting the surface of the shaped portion to form a concave curved surface portion,
Including
In the molding step, the molding is performed by laminating a layer of the welding beads obtained by melting and solidifying a plurality of rows of the welding beads arranged in a spiral shape on the peripheral surface of the base material having a circular cross-sectional view. A plurality of portions are formed at intervals in the circumferential direction of the base material, and a plurality of portions are formed.
When the welding bead to be cut, which is formed on the surface of the base material and is cut in the cutting step, is formed on the surface of the base material among the plurality of welding beads of the modeling portion in the modeling step. The height dimension of the welded bead to be cut is H, the minimum width dimension of the welded bead to be cut is A, the width dimension of the welded bead to be cut is B, and the cutting target passes through the bottom of the welded bead to be cut. The bottom line orthogonal to the center line in the width direction of the weld bead is XA, the tangent line of the curved surface portion at the intersection of the bottom surface line XA and the curved surface portion is XB, and the angle formed by the bottom line XA and the tangent line XB is θ. When
tanθ ≧ H / (BA)
A method for manufacturing a modeled object in which the welded bead to be cut is formed at a position where is established.
断面視円形状のベース材の周面に対して、溶加材を溶融及び凝固させた溶着ビードを、前記ベース材の周方向へ間隔をあけて積層させて造形部を造形する造形工程と、
前記造形部の表面及び前記ベース材の周面の一部を切削して凹状の曲面部を形成する切削工程と、
を含み、
前記造形物は、前記ベース材からなる軸体の周囲に複数のブレードが周方向へ間隔をあけて設けられ、前記ブレードの間に曲面部を有する凹部を備えており、
前記造形工程において、前記溶着ビードのうちの前記ベース材の表面に造形されて前記切削工程で切削される切削対象溶着ビードを前記ベース材の表面に造形する際に、前記切削対象溶着ビードの高さ寸法をH、前記切削対象溶着ビードの切削される最小幅寸法をA、前記切削対象溶着ビードの幅寸法をB、前記切削対象溶着ビードの底部を通り、前記切削対象溶着ビードの幅方向の中心線と直交する底面線をXA、前記底面線XAと前記曲面部との交点における前記曲面部の接線をXB、前記底面線XAと前記接線XBとのなす角をθとしたときに、
tanθ≧H/(B-A)
が成立する位置に前記切削対象溶着ビードを造形する
造形物の製造方法。
A molding process in which a welded bead obtained by melting and solidifying a filler metal is laminated on the peripheral surface of a base material having a circular cross-sectional view at intervals in the circumferential direction of the base material to form a modeling portion.
A cutting process of cutting a part of the surface of the shaped portion and the peripheral surface of the base material to form a concave curved surface portion.
Including
The modeled object is provided with a plurality of blades at intervals in the circumferential direction around a shaft body made of the base material, and has a recess having a curved surface portion between the blades.
In the molding step, when the welding bead to be cut, which is formed on the surface of the base material among the welding beads and is cut in the cutting step, is formed on the surface of the base material, the height of the welding bead to be cut is high. The dimension is H, the minimum width of the weld bead to be cut is A, the width of the weld bead to be cut is B, the bottom of the weld bead to be cut is passed, and the width of the weld bead to be cut is in the width direction. When the bottom line orthogonal to the center line is XA, the tangent line of the curved surface portion at the intersection of the bottom surface line XA and the curved surface portion is XB, and the angle formed by the bottom line XA and the tangent line XB is θ.
tanθ ≧ H / (BA)
A method for manufacturing a modeled object in which the welded bead to be cut is formed at a position where is established.
請求項1または請求項2に記載の造形物の製造方法によって製造された造形物。 A model manufactured by the method for manufacturing a model according to claim 1 or 2.
JP2018055850A 2018-03-23 2018-03-23 Manufacturing method of modeled object and modeled object Active JP7048374B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018055850A JP7048374B2 (en) 2018-03-23 2018-03-23 Manufacturing method of modeled object and modeled object
PCT/JP2019/009280 WO2019181556A1 (en) 2018-03-23 2019-03-08 Method for producing shaped article and shaped article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018055850A JP7048374B2 (en) 2018-03-23 2018-03-23 Manufacturing method of modeled object and modeled object

Publications (2)

Publication Number Publication Date
JP2019166544A JP2019166544A (en) 2019-10-03
JP7048374B2 true JP7048374B2 (en) 2022-04-05

Family

ID=67987149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018055850A Active JP7048374B2 (en) 2018-03-23 2018-03-23 Manufacturing method of modeled object and modeled object

Country Status (2)

Country Link
JP (1) JP7048374B2 (en)
WO (1) WO2019181556A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111112964A (en) * 2020-01-08 2020-05-08 长治市三耐铸业有限公司 Arc powder concentrator blade surfacing method
KR102487431B1 (en) * 2021-07-14 2023-01-11 한국생산기술연구원 Method for manufacturing aluminium die casting mold using wire-arc additive manufacturing process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160151833A1 (en) 2014-11-29 2016-06-02 National Tsing Hua University Flexible 3D Freeform Techniques
WO2017095785A1 (en) 2015-11-30 2017-06-08 The Gleason Works Additive manufacturing of gears

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657171A (en) * 1985-06-13 1987-04-14 General Electric Company Repair of a member having a projection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160151833A1 (en) 2014-11-29 2016-06-02 National Tsing Hua University Flexible 3D Freeform Techniques
WO2017095785A1 (en) 2015-11-30 2017-06-08 The Gleason Works Additive manufacturing of gears

Also Published As

Publication number Publication date
WO2019181556A1 (en) 2019-09-26
JP2019166544A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
US11772194B2 (en) Method for designing laminate molded article, production method, production device, and program
US11415962B2 (en) Additively-manufactured object by forming beads along a formation projected line of beads
JP6964544B2 (en) Manufacturing method of modeled object and modeled object
JP7120774B2 (en) Laminate-molded article modeling procedure design method, laminate-molded article modeling method, manufacturing apparatus, and program
JP7048374B2 (en) Manufacturing method of modeled object and modeled object
JP7123738B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP7160703B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP7181154B2 (en) Laminate-molded article manufacturing method
JP2022095534A (en) Molded object manufacturing method and molded object
JP6892542B1 (en) Manufacturing method of modeled object and modeled object
JP7258715B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP7010767B2 (en) Welded structure manufacturing method and welded structure
WO2022131037A1 (en) Molded object manufacturing method and molded object
JP2023040767A (en) Method for manufacturing molded article and molded article
JP2024058958A (en) Manufacturing method of molded object and lamination planning method
CN116457080A (en) Method for producing molded article and molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7048374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150