JP7046689B2 - Thermally conductive composite particles and resin composition containing them - Google Patents
Thermally conductive composite particles and resin composition containing them Download PDFInfo
- Publication number
- JP7046689B2 JP7046689B2 JP2018077809A JP2018077809A JP7046689B2 JP 7046689 B2 JP7046689 B2 JP 7046689B2 JP 2018077809 A JP2018077809 A JP 2018077809A JP 2018077809 A JP2018077809 A JP 2018077809A JP 7046689 B2 JP7046689 B2 JP 7046689B2
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- resin
- resin composition
- composite particles
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
特許法第30条第2項適用 平成29年10月17日 株式会社KRI主催のクライアントコンファレンスポスターセッションに発表Application of Article 30, Paragraph 2 of the Patent Act October 17, 2017 Announced at the client conference poster session sponsored by KRI Co., Ltd.
本発明は、形態異方性が小さい有機樹脂製の土台微粒子表面に高い熱伝導性を有する微粒子群を固定化して層状となした2相からなる複合粒子とその製造方法およびこれを含む樹脂組成物とその成形品に関するものである。 In the present invention, a composite particle composed of two phases in which fine particles having high thermal conductivity are immobilized on the surface of a base fine particle made of an organic resin having small morphological anisotropy to form a layer, a method for producing the same, and a resin composition containing the same. It is about objects and their molded products.
樹脂材料はその良好な賦形性から構造材的用途からパッケージや意匠性を必要とする用途まで多様な分野で利用されている。しかし、成形材料としての高分子物質の機械特性や熱特性のみでは必要とされる性能を満足しえない場合、不足している性能を補うために補強材(フィラー)を混合した樹脂組成物が必要となる。特に有機高分子材料は本質的に熱伝導性に乏しいため、長期にわたる高温環境下での使用には対策が必要となる。より高い融点を持つエンプラやスーパーエンプラはそのための回答の一つである一方で、補強性フィラー配合による熱変形性の改良や高熱伝導性フィラー配合による樹脂組成物全体としての低熱容量化等は公知の対策である。 Resin materials are used in various fields from their good shapeability to structural material applications to applications that require packaging and design. However, if the required performance cannot be satisfied only by the mechanical properties and thermal properties of the polymer material as a molding material, a resin composition mixed with a reinforcing material (filler) to compensate for the insufficient performance is available. You will need it. In particular, organic polymer materials have inherently poor thermal conductivity, so measures are required for long-term use in high-temperature environments. While engineering plastics and super engineering plastics with higher melting points are one of the answers for that purpose, it is known that the heat deformability is improved by blending a reinforcing filler and the heat capacity of the resin composition as a whole is lowered by blending a highly thermally conductive filler. It is a measure of.
樹脂材料に混合される熱伝導性フィラーには、導電性も兼ねた金属、金属酸化物やカーボン系素材のものや絶縁性を有する一部の金属酸化物や窒化ケイ素、窒化ホウ素、高い結晶化度を有する一部の有機物等がある。これらはの材料は大なり小なりその基本となる分子構造に形態異方性を内包しており、工業的に取り扱う原料の大きさでは明確なアスペクト比(微粒子の長径と短径の比)を持つ非球状の形態を有することが多い。 Thermally conductive fillers mixed with resin materials include metals that also have conductivity, metal oxides and carbon-based materials, some metal oxides that have insulating properties, silicon nitride, boron nitride, and high crystallization. There are some organic substances with a degree. These materials are larger or smaller and contain morphological anisotropy in their basic molecular structure, and the size of the raw materials handled industrially has a clear aspect ratio (ratio of major axis to minor axis of fine particles). Often has a non-spherical morphology.
このような非球状の形態異方性を有する熱伝導性フィラーは、樹脂組成物中におけるの分散状態が外部因子によって変化しやすく、特に当該樹脂組成物の成形を射出成形や注入成形等によって行う際に、樹脂成分(マトリクス)の流動に伴い、その流動方向に沿うように配向する。これにより熱伝導性フィラーを混合した樹脂組成物成形品の熱伝導性には方向性が生じすることは周知であり、熱伝導性フィラー同士が接触して形成される熱伝導パスが、この配向によってより形成されにくくなるためと理解されている。これによる一番の問題は、熱伝導性フィラーを混合した樹脂組成物成形品が組み込まれる部品あるいは使用環境において、最も熱伝導性が必要とされる方向がしばしば熱伝導性フィラーの配向方向とは垂直の向きにあり、流動配向によって熱伝導パスが切断される可能性が高い点にある。 In such a thermally conductive filler having a non-spherical morphological anisotropy, the dispersed state in the resin composition is liable to be changed by an external factor, and in particular, the resin composition is molded by injection molding, injection molding or the like. At that time, as the resin component (matrix) flows, it is oriented along the flow direction. It is well known that this gives direction to the thermal conductivity of the molded product of the resin composition mixed with the thermally conductive filler, and the thermal conduction path formed by the contact between the thermally conductive fillers has this orientation. It is understood that it is less likely to be formed by. The biggest problem with this is that in the parts where the resin composition molded product mixed with the heat conductive filler is incorporated or in the usage environment, the direction in which the heat conductivity is most required is often the orientation direction of the heat conductive filler. It is oriented vertically and is likely to cut the heat transfer path due to flow orientation.
係る不具合を解消するための最も一般的な対策は、熱伝導性フィラーの配合量を増やし、樹脂マトリクス中で熱伝導性フィラー同士が直接コンタクトする確率を高めるというものである。しかし、期待される効果を得るには熱伝導性フィラー配合量は少なくとも30~40vol%を超える量は必要であり、熱伝導性フィラーを混合した樹脂組成物の材料物性は樹脂マトリクス本来の性能とは大きく異なるものとなる。特に機械物性や耐衝撃性などが大幅に低下し、賦形性にも影響を及ぼすことは公知である。 The most common measure to solve such a problem is to increase the blending amount of the heat conductive filler and increase the probability that the heat conductive fillers are in direct contact with each other in the resin matrix. However, in order to obtain the expected effect, the amount of the heat conductive filler compounded must be at least 30 to 40 vol% or more, and the material physical characteristics of the resin composition mixed with the heat conductive filler are the same as the original performance of the resin matrix. Will be very different. In particular, it is known that the mechanical properties and impact resistance are significantly reduced, which also affects the shapeability.
そこで熱伝導性フィラーの配合量増大を伴わずに、フィラー同士の接触頻度を上げるための考え方として、既製の粒径が異なる熱伝導性フィラーを混合して粒度分布を変えること(特許文献1)、熱伝導性フィラーと樹脂マトリクス成分との濡れ性を上げ両者間の熱抵抗を下げる(特許文献2)、熱伝導性フィラーの凝集構造を崩し樹脂組成物内での分散状態を改変する(特許文献3)や熱伝導性を有する繊維状フィラーと塊状フィラーの混合物を用いて樹脂組成物内にネットワーク構造を形成する(特許文献4)等のフィラー種類や構造面からの改善検討がなされている。 Therefore, as a concept for increasing the contact frequency between the fillers without increasing the blending amount of the thermally conductive filler, the ready-made thermally conductive fillers having different particle sizes are mixed to change the particle size distribution (Patent Document 1). , Increases the wettability between the heat conductive filler and the resin matrix component and lowers the heat resistance between them (Patent Document 2), breaks the aggregated structure of the heat conductive filler, and modifies the dispersed state in the resin composition (Patent). Improvements have been studied in terms of filler type and structure, such as document 3) and forming a network structure in a resin composition using a mixture of a fibrous filler and a lumpy filler having thermal conductivity (Patent Document 4). ..
一方、熱伝導性フィラーを単一素材から準備するのではなく、熱伝導性フィラー表面に異なる無機化合物を付着させた無機フィラー複合体(特許文献5)や熱伝導性フィラーそのものの形態異方性を低減する方法(特許文献6)等のアプローチも提案されている。 On the other hand, instead of preparing the heat conductive filler from a single material, the morphological anisotropy of the inorganic filler composite (Patent Document 5) in which different inorganic compounds are attached to the surface of the heat conductive filler or the heat conductive filler itself. Approaches such as a method for reducing the amount of heat (Patent Document 6) have also been proposed.
前記した数々の改良検討では、成形後の樹脂組成物中での熱伝導パス、特に流動方向と垂直方向での熱伝導パスの再現性に乏しく、必ずしも熱伝導性フィラー配合量を低減できないため良好な対策とは言い難いがないのが現状である。さらにパワーエレクトロニクス分野の発展により、熱伝導性樹脂組成物成形品が接触する熱源温度も上昇しており、より確実な熱伝導パスの確保とそれによる高い放熱特性の発現が求められる環境になってきた。 In the above-mentioned numerous improvement studies, the reproducibility of the heat conduction path in the resin composition after molding, particularly the heat conduction path in the direction perpendicular to the flow direction is poor, and the amount of the heat conductive filler compounded cannot always be reduced, which is good. The current situation is that it is not difficult to say that it is a countermeasure. Furthermore, with the development of the field of power electronics, the temperature of the heat source that the molded product of the heat conductive resin composition comes into contact with is also rising, and it is becoming an environment where it is required to secure a more reliable heat conduction path and to exhibit high heat dissipation characteristics. rice field.
樹脂組成物成形品とした際に、成形時の樹脂マトリクス成分の流動方向と垂直な方向における高い熱伝導性を発現するために効果的な熱伝導フィラーとしての複合粒子を提供することを目的とする。 It is an object of the present invention to provide composite particles as a heat conductive filler that is effective for exhibiting high heat conductivity in a direction perpendicular to the flow direction of the resin matrix component at the time of molding when the resin composition is molded. do.
本願発明者等は、上記目的を達成するために鋭意検討した結果、下記に示す発明を完成するに至った。 As a result of diligent studies to achieve the above object, the inventors of the present application have completed the invention shown below.
〔1〕 土台微粒子Aの表面に熱伝導性を有する微粒子Bを固定化した熱伝導性複合粒子であって、前記土台微粒子Aが、有機樹脂であり、前記微粒子Bが、セルロースナノファイバー、炭素繊維、アルミニウム酸化物、窒化アルミニウム、窒化ホウ素、酸化亜鉛、酸化マグネシウム、酸化ベリリウム、ダイヤモンドおよび各種金属粉からなる群より選ばれる1種以上であることを特徴とする熱伝導性複合粒子。
〔2〕 前記土台微粒子Aの粒子径DAが0.1μm~1000μmの範囲にあり、かつアスペクト比(微粒子の長径と短径の比率)が2以下であり、前記微粒子Bの粒子径DBは0.01μmから500μmの範囲にあり、複合粒子を形成させるに当たって、DA>DBとなるように選択してなる前記〔1〕に記載の複合粒子。
〔3〕 前記土台微粒子A表面上へ固定化された微粒子Bが、微粒子Aの表面積を微粒子Bの投影面積で一層分覆うことができる以上の個数であり、実質的に微粒子Bが連続して存在することにより微粒子Bの層を形成していることを特徴とする前記〔1〕又は〔2〕に記載の熱伝導性複合粒子。
〔4〕 前記複合粒子を形成させるに当たって、微粒子Bを微粒子A表面上に固定化するためにシランカップリング剤あるいは有機樹脂を利用してなる前記〔1〕~〔3〕のいずれかに記載の複合粒子。
〔5〕 前記〔1〕~〔4〕のいずれかに記載の複合材料がエレクトロスプレーデポジション法あるいはスプレードライ法によって作成されたことを特徴とする熱伝導性複合粒子。
〔6〕 前記〔1〕~〔5〕のいずれかに記載の複合粒子を熱可塑性樹脂あるいは硬化性樹脂に混合した樹脂組成物およびその成形品。
[1] Thermally conductive composite particles in which fine particles B having thermal conductivity are immobilized on the surface of the base fine particles A, wherein the base fine particles A are organic resins and the fine particles B are cellulose nanofibers and carbon. A thermally conductive composite particle selected from the group consisting of fibers, aluminum oxide, aluminum nitride, boron nitride, zinc oxide, magnesium oxide, beryllium oxide, diamond and various metal powders.
[2] The particle size DA of the base fine particles A is in the range of 0.1 μm to 1000 μm, the aspect ratio (ratio of the major axis to the minor axis of the fine particles) is 2 or less, and the particle size DB of the fine particles B is The composite particle according to the above [1], which is in the range of 0.01 μm to 500 μm and is selected so that DA > DB in forming the composite particle.
[3] The number of fine particles B immobilized on the surface of the base fine particles A is more than the number of fine particles B that can cover the surface area of the fine particles A by the projected area of the fine particles B, and the fine particles B are substantially continuous. The thermally conductive composite particle according to the above [1] or [2], which forms a layer of fine particles B by being present.
[4] The above-mentioned [1] to [3], wherein a silane coupling agent or an organic resin is used to immobilize the fine particles B on the surface of the fine particles A in forming the composite particles. Composite particles.
[5] Thermally conductive composite particles according to any one of the above [1] to [4], wherein the composite material is produced by an electrospray deposition method or a spray drying method.
[6] A resin composition obtained by mixing the composite particles according to any one of [1] to [5] with a thermoplastic resin or a curable resin, and a molded product thereof.
熱源に近い部位に設置される樹脂部品は、熱伝導性フィラーを配合した樹脂組成物の成形品が利用されることが多い。かかる樹脂組成物の熱伝導性は一義的にはフィラー配合量に支配されるが、これらの部品が射出成形や注入成形等の材料の流動を伴う成形方法によって作成されるため、樹脂マトリクス内におけるフィラーの配置や配列等の影響を受け、特に流動配向による成形品面方向への配向に決定的に支配される。すなわち、アスペクト比(フィラーの長径と短径の比率)で示される形状異方性が大きなフィラーを配合した樹脂組成物の成形品では、成形品の厚み方向への熱伝導性は乏しくなる。流動配向に伴いフィラー同士の接触が取れず、いわゆる熱伝導パスが形成されずらいためである。 As the resin parts installed in a portion close to the heat source, a molded product of a resin composition containing a heat conductive filler is often used. The thermal conductivity of such a resin composition is primarily controlled by the amount of the filler blended, but since these parts are produced by a molding method involving the flow of a material such as injection molding or injection molding, the resin matrix is contained. It is affected by the arrangement and arrangement of fillers, and is particularly dominated by the orientation toward the surface of the molded product due to the flow orientation. That is, in the molded product of the resin composition containing the filler having a large shape anisotropy represented by the aspect ratio (ratio of the major axis to the minor axis of the filler), the thermal conductivity in the thickness direction of the molded product becomes poor. This is because the fillers cannot come into contact with each other due to the flow orientation, and it is difficult to form a so-called heat conduction path.
本発明の複合粒子は、形態異方性が小さい土台粒子に熱伝導性フィラーを組合わせたものであり、前者の表面に熱伝導性フィラーの粉体を一定量固定化して層を形成せしめ、熱伝導パスを構築しておくことが特徴である。土台粒子サイズが熱伝導性フィラーサイズよりも大きくなるように選定することで、熱伝導性フィラー本来の大きさを超えて長距離の熱伝導パスが形成される。このパスは土台粒子が流動配向の影響を受けにくいことで、樹脂組成物中の複合粒子配合量に依存する格好で成形後に高い熱伝導性を発現することが期待される。 The composite particles of the present invention are obtained by combining a base particle having a small morphological anisotropy with a heat conductive filler, and a certain amount of the powder of the heat conductive filler is immobilized on the surface of the former to form a layer. It is characterized by constructing a heat conduction path. By selecting the base particle size to be larger than the heat conductive filler size, a long-distance heat conduction path is formed beyond the original size of the heat conductive filler. Since the base particles are not easily affected by the flow orientation in this path, it is expected that high thermal conductivity will be exhibited after molding in a manner that depends on the amount of the composite particles blended in the resin composition.
さらに、本発明の複合粒子を構成する土台粒子は有機樹脂製であり、本複合粒子を利用する最も一般的な形態である樹脂組成物(有機樹脂マトリクス成分と複合粒子の混合物)を構成する有機成分/無機成分比率を有機成分リッチとできることが大きな特徴である。熱伝導性フィラーと有機樹脂マトリクスとからなる従来の樹脂組成物では、前記した熱伝導パス形成のために大量の熱伝導性フィラーが必要であり、樹脂組成物を構成する有機成分/無機成分比率が無機成分リッチとなる。このような組成では有機成分はマトリクスとは言えず、もはや熱伝導性フィラーのバインダである。その結果、樹脂組成物は硬くて脆くなり、機械物性面で樹脂に期待される性質は発現しない。一方で、本発明の複合粒子を用いた樹脂組成物では熱伝導パスは実質的に少量の熱伝導性フィラーのみで構築されるため、前記のような機械物性面での問題点は生じない。 Further, the base particles constituting the composite particles of the present invention are made of an organic resin, and the organic constituting the resin composition (mixture of the organic resin matrix component and the composite particles), which is the most common form using the composite particles. A major feature is that the component / inorganic component ratio can be enriched with organic components. In the conventional resin composition composed of the heat conductive filler and the organic resin matrix, a large amount of the heat conductive filler is required for the above-mentioned heat conduction path formation, and the organic component / inorganic component ratio constituting the resin composition is required. Becomes rich in inorganic components. In such a composition, the organic component is no longer a matrix, but a binder for thermally conductive fillers. As a result, the resin composition becomes hard and brittle, and does not exhibit the properties expected of the resin in terms of mechanical properties. On the other hand, in the resin composition using the composite particles of the present invention, since the heat conductive path is constructed with substantially only a small amount of the heat conductive filler, the above-mentioned problems in terms of mechanical characteristics do not occur.
本発明の一実施形態について、詳細に説明すれば以下のとおりである。 An embodiment of the present invention will be described in detail as follows.
(複合粒子)
本発明の熱伝導複合粒子は、土台となる形態異方性が小さい有機樹脂の微粒子Aとその表面に固定化された複数個の微粒子Bとからなる複合粒子であり、後述するような条件を満たすように作成された合成品である。本願発明の複合粒子がもつ高い熱伝導性は、後述する微粒子Bの熱伝導特性に依存し、微粒子Aは微粒子Bの集合状態を規定するための土台として機能することが好ましい。ただし微粒子Aが結果として熱伝導性を有する素材であったとしても構わない。
(Composite particles)
The heat conductive composite particles of the present invention are composite particles composed of fine particles A of an organic resin having a small base and small morphological anisotropy and a plurality of fine particles B immobilized on the surface thereof, and are subject to the conditions described later. It is a synthetic product made to meet. The high thermal conductivity of the composite particles of the present invention depends on the thermal conductivity characteristics of the fine particles B described later, and it is preferable that the fine particles A function as a base for defining the aggregated state of the fine particles B. However, it does not matter if the fine particles A are a material having thermal conductivity as a result.
土台となる微粒子Aは、有機樹脂からなるパウダーまたはその凝集体あるいはビーズであることが好ましい。一次粒子とは、外見上の幾何学的形態から判断して単位粒子と考えられるものであり、これら一次粒子同士が複数個凝集して形成された二次粒子を凝集体とする。またビーズまたはパウダーとは一部の固体の化学製品の形態として呼称されるものであり、一般的には数μmから数mm程度のサイズを有する粒子である。本発明では、既製品でも後述する複合粒子の製造工程での造粒体であってもよい。 The base fine particles A are preferably powders made of an organic resin, aggregates thereof, or beads. The primary particles are considered to be unit particles judging from their apparent geometrical morphology, and the secondary particles formed by aggregating a plurality of these primary particles are regarded as aggregates. The beads or powder are referred to as a form of some solid-state chemical products, and are generally particles having a size of about several μm to several mm. In the present invention, it may be an off-the-shelf product or a granulated product in the manufacturing process of composite particles described later.
本発明における土台微粒子Aはその化学組成に関わらず、粒子径DAが0.1μmから1000μmの範囲にあることが好ましい。より好ましくは、0.1μmから500μmにあることが望ましい。さらに好ましくは0.1μmから100μmの範囲であるとよい。 The base fine particles A in the present invention preferably have a particle size DA in the range of 0.1 μm to 1000 μm regardless of their chemical composition. More preferably, it is preferably in the range of 0.1 μm to 500 μm. More preferably, it is in the range of 0.1 μm to 100 μm.
前記したDAが大きいほど、微粒子Bを固定化するための土台としての微粒子Aの表面積が大きくなり、複合粒子を形成する際の微粒子BのA表面への固定可能な数が増大することになる。また微粒子Bが土台表面により長い距離に渡って連続的に存在してる可能性が高くなり、後述する熱伝導特性を高める目的には好適である。一方で、DAが大きいほど、複合粒子を形成する際の難易度が上がる傾向となる。すわわち、後述のエレクトロスプレーデポジション法や噴霧乾燥法を用いて当該複合粒子を作成する場合、A、Bいずれの微粒子も液相で造粒の場に供給される必要があるが、この際の液相の均一性保持がDAの大きさに依存して困難になる。また得られた複合粒子を含む樹脂組成物中におけるA成分の分率が大きくなる傾向になる。これは樹脂組成物の機械特性を低下させる可能性があり、好ましくない。 The larger the DA mentioned above, the larger the surface area of the fine particles A as the base for immobilizing the fine particles B, and the larger the number of the fine particles B that can be fixed to the surface of A when forming the composite particles. Become. Further, it is highly possible that the fine particles B are continuously present on the surface of the base over a long distance, which is suitable for the purpose of enhancing the heat conduction characteristics described later. On the other hand, the larger the DA , the higher the difficulty in forming the composite particles. That is, when the composite particles are prepared by using the electrospray deposition method or the spray drying method described later, both A and B fine particles need to be supplied to the granulation site in a liquid phase. Maintaining the uniformity of the liquid phase at the time becomes difficult depending on the size of DA . Further, the fraction of the component A in the obtained resin composition containing the composite particles tends to increase. This may reduce the mechanical properties of the resin composition and is not preferable.
かかる微粒子Aの形状は可能な限り球状であることが望ましい。具体的には微粒子Aの外形上の長径と短径との比率で表されるアスペクト比が2以下であることが望ましい。この値が2を超えると形態異方性が大きくなり、後述する当該微粒子Aを土台とする複合粒子を含む樹脂組成物の成形加工時に流動配向の影響を受けやすくなり、流動方向と垂直な方向での高い熱伝導性が得られなくなるため好ましくない。 It is desirable that the shape of the fine particles A is as spherical as possible. Specifically, it is desirable that the aspect ratio represented by the ratio of the major axis to the minor axis on the outer shape of the fine particles A is 2 or less. When this value exceeds 2, the morphological anisotropy becomes large, and it becomes easy to be affected by the flow orientation during the molding process of the resin composition containing the composite particles based on the fine particles A, which will be described later, and the direction perpendicular to the flow direction. It is not preferable because high thermal conductivity cannot be obtained.
微粒子Aを構成する有機樹脂には特に制約はないが、前記したアスペクト比と粒子径を有する必要がある。有機樹脂としては熱可塑性樹脂や各種硬化性樹脂が該当し、前者ではナイロン、ポリフェニレンスルフィド、ポリアミドイミド、ポリエーテルスルフォンやポリ乳酸、ポリメタクリル酸メチル、ウレタン、ポリアクリロニトリルやポリスチレンあるいはフッ素系樹脂あるいはこれらの架橋物からなる市販品が例示される。後者ではエポキシ樹脂やシリコーン樹脂あるいは任意のフォーミュレーションに基づく硬化性樹脂があり、低弾性率のゴム状、あるいはタック性がある接着材であってもよい。これらの微粒子は中実であっても中空であってもよい。
The organic resin constituting the fine particles A is not particularly limited, but needs to have the above-mentioned aspect ratio and particle size. Thermoplastic resins and various curable resins are applicable as organic resins , and the former includes nylon, polyphenylene sulfide, polyamide-imide, polyether sulphon, polylactic acid, polymethylmethacrylate, urethane, polyacrylonitrile, polystyrene, fluororesins, or these. A commercially available product made of the crosslinked product of the above is exemplified. In the latter case, there is an epoxy resin, a silicone resin, or a curable resin based on an arbitrary formulation, and a rubber-like adhesive having a low elastic modulus or a tacky adhesive may be used . These fine particles may be solid or hollow.
係る微粒子Aの有機材料は、必要に応じてポリマーアロイやポリマーブレンドであったり、ナノフィラーを配合したナノコンポジットであってもよい。特に後者は、本発明の複合粒子そのものの熱膨張係数を低減する手法として有効である。前述の熱可塑性樹脂や熱硬化性樹脂と良好に均一分散するナノシリカ、クレイやタルク等の非膨潤性層状ケイ酸塩、合成フッ素雲母やモンモリトナイト等の膨潤性層状ケイ酸塩に代表される少量配合で樹脂マトリクス成分を効率的に強化する原料が好適に用いられる。 The organic material of the fine particles A may be a polymer alloy, a polymer blend, or a nanocomposite containing a nanofiller, if necessary. In particular, the latter is effective as a method for reducing the coefficient of thermal expansion of the composite particle itself of the present invention. Represented by nanosilica that disperses well with the above-mentioned thermoplastic resins and thermosetting resins, non-swellable layered silicates such as clay and talc, and swellable layered silicates such as synthetic fluorine mica and montmorillonite. A raw material that efficiently strengthens the resin matrix component with a small amount of compound is preferably used.
微粒子Bは、熱伝導性の物質であるが、それ自体の熱伝導性が10W/mKより高い性能を有することが好ましい。10W/mK以下の場合には、本発明の複合粒子を用いた樹脂組成物の熱伝導性が、例えば、微粒子Bのみを混合して得た樹脂組成物と比べて特筆すべき性能改善をもたらさないため、工業的に意味がない。具体的な材料としては、セルロースナノファイバー、炭素繊維、アルミニウム酸化物、窒化アルミニウム、窒化ホウ素、酸化亜鉛、酸化マグネシウム、酸化ベリリウム、ダイヤモンドおよび各種金属粉から選ばれる1種以上の粉体であることが好ましい。 Although the fine particles B are thermally conductive substances, it is preferable that the fine particles B themselves have a thermal conductivity higher than 10 W / mK. In the case of 10 W / mK or less, the thermal conductivity of the resin composition using the composite particles of the present invention brings about a remarkable performance improvement as compared with the resin composition obtained by mixing only the fine particles B, for example. Since there is no such thing, it is industrially meaningless. Specific materials include one or more powders selected from cellulose nanofibers, carbon fibers, aluminum oxides, aluminum nitride, boron nitride, zinc oxide, magnesium oxide, beryllium oxide, diamonds and various metal powders. Is preferable.
本発明における微粒子Bはその化学組成に関わらず、粒子径DBが0.01μmから500μmの範囲にあることが好ましい。より好ましくは、0.01μmから300μmにあることが望ましい。本発明で使用する前記微粒子Aおよび微粒子Bについては、これらを用いてなる複合粒子を形成させるに当たって、微粒子Aと微粒子Bの粒子径がDA>DBとなるように選択されていることが好ましい。DAがDB以下となる場合、複合粒子の外形が不定形となり、流動を伴う成形によって得られた樹脂組成物成形品内部に所望の熱伝導パスが形成できず、本発明の効果が得られなくなる。 The fine particles B in the present invention preferably have a particle size DB in the range of 0.01 μm to 500 μm regardless of their chemical composition. More preferably, it is preferably in the range of 0.01 μm to 300 μm. The fine particles A and the fine particles B used in the present invention are selected so that the particle diameters of the fine particles A and the fine particles B are DA > DB when forming composite particles made of the fine particles A and the fine particles B. preferable. When DA is DB or less, the outer shape of the composite particle becomes irregular, and a desired heat conduction path cannot be formed inside the resin composition molded product obtained by molding with flow, so that the effect of the present invention can be obtained. I can't do it.
本発明の複合粒子における土台微粒子Aの表面上に固定化された微粒子Bの個数は、微粒子Aの表面積を微粒子Bの投影面積で一層分覆うことが出来る以上存在することが必要であり、微粒子A表面上に隣接して存在する任意の2個の微粒子Bの一部が接触することにより、微粒子Bが連続的に存在する層を形成していることが望ましい。微粒子Bの土台粒子A表面上における存在個数が前記条件を満たさない場合、微粒子Bは連続層を形成できず、本発明の熱伝導パスが形成されないことなる。一方、微粒子Bの土台粒子A表面上における存在個数が大過剰となる場合、複合粒子の外形が不定形となり、流動を伴う成形によって得られた樹脂組成物成形品の内部に所望の熱伝導パスが形成できず、本発明の効果が得られにくい傾向となる。 The number of fine particles B immobilized on the surface of the base fine particles A in the composite particles of the present invention needs to be present as long as the surface area of the fine particles A can be covered by the projected area of the fine particles B. It is desirable that a part of any two fine particles B adjacent to each other on the surface of A come into contact with each other to form a layer in which the fine particles B are continuously present. When the number of the fine particles B present on the surface of the base particles A does not satisfy the above conditions, the fine particles B cannot form a continuous layer and the heat conduction path of the present invention is not formed. On the other hand, when the number of fine particles B present on the surface of the base particles A is excessive, the outer shape of the composite particles becomes irregular, and a desired heat conduction path is formed inside the resin composition molded product obtained by molding with flow. Cannot be formed, and the effect of the present invention tends to be difficult to obtain.
本発明の複合粒子は土台粒子Aの表面上に微粒子Bが固定化されてなるが、固定化そのものは引力性相互作用として可逆性のあるファンデルワールス力、水素結合やイオン性結合性であってもよいし、シランカップリング剤等を用いた共有結合性のものでもよい。しかし可逆的な引力性相互作用によって土台粒子A表面上に吸着した微粒子Bの結合力は大きくなく、流動を伴う成形の際に樹脂組成物の樹脂マトリクスの粘性から生じる力によって土台粒子A表面から引き離される可能性がある。従って、成形工程後の樹脂組成物内における望ましい熱伝導パスの形成のためには、微粒子Bの固定化に有機ポリマーを用いたりシランカップリング剤等を用いること望ましい。前者ではポリマーの分子量や一次構造等、後者ではシランカップリング剤を樹脂組成物のマトリクス種を考慮して最適に選定することでより強固な固定化が達成される。 In the composite particle of the present invention, the fine particles B are immobilized on the surface of the base particle A, but the immobilization itself is a van der Waals force, hydrogen bond or ionic bond which is reversible as an attractive interaction. It may be a covalent bond using a silane coupling agent or the like. However, the binding force of the fine particles B adsorbed on the surface of the base particle A due to the reversible attractive interaction is not large, and the force generated from the viscosity of the resin matrix of the resin composition during molding accompanied by flow causes the force from the surface of the base particle A. May be pulled apart. Therefore, in order to form a desirable heat conduction path in the resin composition after the molding step, it is desirable to use an organic polymer or a silane coupling agent for immobilization of the fine particles B. In the former case, the molecular weight and primary structure of the polymer, etc., and in the latter case, stronger immobilization is achieved by optimally selecting the silane coupling agent in consideration of the matrix type of the resin composition.
係る複合粒子の作成は特定の手法に限定されることはないが、エレクトロスプレーデポジション法やスプレードライ法等の造粒方法の利用が例示される。エレクトロスプレーデポジション法の場合、土台微粒子A、熱伝導性微粒子Bおよび必要に応じてこれらを固定化する材料を溶解または分散した原料混合液を高圧電場下に吐出し、電場による液滴の分割と溶媒の乾燥を同時に進めることにより複合粒子を得ることができる。一方、スプレードライ法の場合には、前記した原料混合液を高圧で高温雰囲気下に噴霧し、液滴を形成すると同時に溶媒乾燥を促進することにより複合粒子を得ることができる。いずれも原料混合液は一液で供給されても良いし、複数のノズルから原料毎に個別に供給されても良い。 The production of such composite particles is not limited to a specific method, but the use of granulation methods such as an electrospray deposition method and a spray-drying method is exemplified. In the case of the electrospray deposition method, a raw material mixture in which the base fine particles A, the thermally conductive fine particles B and the material for immobilizing them are dissolved or dispersed is discharged under a high piezoelectric field, and the droplets are divided by an electric field. Composite particles can be obtained by simultaneously advancing the drying of the and the solvent. On the other hand, in the case of the spray-drying method, composite particles can be obtained by spraying the above-mentioned raw material mixture at high pressure in a high-temperature atmosphere to form droplets and at the same time promote solvent drying. In either case, the raw material mixed liquid may be supplied as a single liquid, or may be individually supplied for each raw material from a plurality of nozzles.
本発明の複合粒子は、最終的に熱可塑性樹脂あるいや硬化性樹脂に混合し樹脂組成物として提供され、その成形品として高い熱伝導性が要求されるアプリケーションに利用される。熱可塑性樹脂や硬化性樹脂の種類に限定はないが、工業的によく利用されるポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレン(低密度、高密度)、EVA樹脂、ポリプロピレン、ポリ塩化ビニル樹脂、ポリスチレン樹脂、AS樹脂、ABS樹脂、PET樹脂、PBT樹脂、変性PPE樹脂、メタクリル樹脂、ポリフェニルスルホン樹脂、ポリスルホン樹脂、ポリアリレート樹脂、ポリエーテルイミド樹脂、PEEK樹脂、PPS樹脂、ポリエーテルスルホン樹脂、液晶ポリマー、ポリフッ化ビニリデン樹脂、PTFE樹脂、PCTFE樹脂や熱可塑性エラストマー等の各種熱可塑性樹脂やエポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂やポリウレタン樹脂等の熱硬化性樹脂等を例示できる。 The composite particles of the present invention are finally mixed with a thermoplastic resin or a curable resin and provided as a resin composition, and are used in applications that require high thermal conductivity as a molded product thereof. The types of thermoplastic resins and curable resins are not limited, but are industrially commonly used polyamide resins, polycarbonate resins, polyacetal resins, polyethylenes (low density, high density), EVA resins, polypropylenes, polyvinyl chloride resins, etc. Polystyrene resin, AS resin, ABS resin, PET resin, PBT resin, modified PPE resin, methacrylic resin, polyphenylsulfone resin, polysulfone resin, polyallylate resin, polyetherimide resin, PEEK resin, PPS resin, polyethersulfone resin, Thermal curing of various thermoplastic resins such as liquid crystal polymer, polyvinylidene fluoride resin, PTFE resin, PCTFE resin and thermoplastic elastomer, epoxy resin, silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester resin and polyurethane resin. Examples include sex resins.
本発明の複合粒子を配合した樹脂組成物を作成するに当たって、土台粒子Aの樹脂種と樹脂マトリクス成分の樹脂種は同じものであっても異なるものであっても良いが、最終的な成形品を作成する際の成形条件によっては制限を受ける場合がある。すなわち、成形過程における複合粒子の形態保持の観点から、射出成形等の熱溶融成形を必要とする場合には土台粒子の融点あるいは軟化点が成形温度よりも高い方が好ましい。一方で比較的低い温度で成形され、その後に硬化反応によって高温下に保持されるような成形工程であれば、掛る制限は無視しうる場合もある。 In preparing the resin composition containing the composite particles of the present invention, the resin type of the base particles A and the resin type of the resin matrix component may be the same or different, but the final molded product. There may be restrictions depending on the molding conditions when creating. That is, from the viewpoint of maintaining the morphology of the composite particles in the molding process, when heat melt molding such as injection molding is required, it is preferable that the melting point or softening point of the base particles is higher than the molding temperature. On the other hand, in the case of a molding process in which molding is performed at a relatively low temperature and then the molding process is maintained at a high temperature by a curing reaction, the restrictions applied may be negligible.
本願発明の複合粒子は、樹脂組成物成形品の中で等方性の熱伝導性を発現することにより、従来の熱伝導性フィラーを含む樹脂組成物成形品が成形品厚み方向(成形時の流動方向と垂直な方向)で乏しい熱伝導性しか得られなかったことに比して、高い熱伝導性能を有する。このことから、パワー半導体の封止材料や各種放熱材量として好適に利用できる。 The composite particles of the present invention exhibit isotropic thermal conductivity in the molded product of the resin composition, so that the molded product of the resin composition containing the conventional heat conductive filler can be obtained in the thickness direction of the molded product (at the time of molding). It has high thermal conductivity performance compared to the fact that poor thermal conductivity was obtained in the direction perpendicular to the flow direction). Therefore, it can be suitably used as a sealing material for power semiconductors and an amount of various heat radiating materials.
以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
<土台粒子の作成>
土台粒子は、後述の樹脂組成物の樹脂マトリクスと同じエポキシ樹脂を用い、エポキシ樹脂(三菱ケミカル社製 エピコート828)、エポキシ樹脂硬化剤(日立化成社製 HN-2000)および硬化触媒を所定量混合し、固形分濃度を25wt%としたN-メチルピロリドン(NMP)溶液を調製し、エレクトロスプレーデポジション(ESD)法を用いて造粒した。
<Creation of base particles>
For the base particles, the same epoxy resin as the resin matrix of the resin composition described later is used, and a predetermined amount of epoxy resin (Epicoat 828 manufactured by Mitsubishi Chemical Co., Ltd.), epoxy resin curing agent (HN-2000 manufactured by Hitachi Kasei Co., Ltd.) and a curing catalyst are mixed. Then, an N-methylpyrrolidone (NMP) solution having a solid content concentration of 25 wt% was prepared, and granulated by the electrospray deposition (ESD) method.
ESDは前記のような原料混合液を高圧電場下に定量的に吐出させ、連続的に帯電液滴の分裂を発生させ微小液滴を形成するエレクトロスプレー現象を利用した乾燥方法であり、結果として電気的に接地した対極上に微粒子を捕集することができる。本発明の複合粒子を得るためには特別な機材は必要としない。高圧電源装置、原料混合液を定量的に吐出できるマイクロシリンジポンプ、先端を垂直に切り落としたシリンジノズルを取り付けたシリンジ、接地した金属板(コレクタ)および必要に応じて試験環境を調節するためのチャンバーを準備し、公知の方法で装置を組上げればよい。 ESD is a drying method that utilizes an electrospray phenomenon in which a mixed liquid of raw materials as described above is quantitatively discharged under a high-voltage field to continuously generate splits of charged droplets to form fine droplets, and as a result. Fine particles can be collected on the counter electrode that is electrically grounded. No special equipment is required to obtain the composite particles of the present invention. High-voltage power supply, micro-syringe pump that can quantitatively discharge the raw material mixture, syringe with a syringe nozzle with the tip cut off vertically, grounded metal plate (collector) and chamber for adjusting the test environment as needed. The device may be assembled by a known method.
ESD条件は原料混合液の組成に応じて調節する必要があるが、前記した液組成の場合、0.01ml/minの吐出速度、印加電圧20kV、ノズル径21G、ノズル-コレクタ間距離14cm、24℃/25~30%RH下に安定して造粒することができた。コレクタ上に捕集されたエポキシ樹脂パウダーはスパチュラを用いて回収した。 The ESD conditions need to be adjusted according to the composition of the raw material mixture, but in the case of the above-mentioned liquid composition, the discharge rate is 0.01 ml / min, the applied voltage is 20 kV, the nozzle diameter is 21 G, the nozzle-collector distance is 14 cm, and 24. Stable granulation was possible at ° C./25 to 30% RH. The epoxy resin powder collected on the collector was collected using a spatula.
<複合粒子の作成>
複合粒子の作成には、前記したエポキシ樹脂パウダーと窒化ホウ素微粒子(Momentive社製 PT140、粒子径8~4μm)およびポリビニルアルコール(関東化学社製 重合度2,000、ケン化度78~82%)を用いた。予め4重量%水溶液として調製したポリビニルアルコール5gに窒化ホウ素粉末0.5gを追加し、ホモジナイザ(IKA社製ウルトラタックスT10にシャフトジェネレータS25N-8Gを組合わせた)を用いて混合した後、土台粒子となるエポキシ樹脂パウダー7.5gを追加して混合することにより、原料混合液を作成した。調製した混合液は、必要に応じて減圧脱泡を行った。
<Creation of composite particles>
To prepare the composite particles, the above-mentioned epoxy resin powder, boron nitride fine particles (PT140 manufactured by Momentive, particle diameter 8 to 4 μm) and polyvinyl alcohol (polymerization degree 2,000, saponification degree 78 to 82%, manufactured by Kanto Chemical Co., Inc.) Was used. Boron nitride powder 0.5 g was added to 5 g of polyvinyl alcohol prepared in advance as a 4 wt% aqueous solution, mixed using a homogenizer (combined with IKA Ultratax T10 and shaft generator S25N-8G), and then the base particles. A raw material mixture was prepared by adding 7.5 g of the epoxy resin powder to be used and mixing the powder. The prepared mixed solution was defoamed under reduced pressure as needed.
係る原料溶液を前記したESD法を用いて造粒した。ESD条件は0.01ml/minの吐出速度、印加電圧25kV、ノズル径21G、ノズル-コレクタ間距離12cm、24℃/25~30%RH下に安定して造粒することができた。コレクタ上に捕集された複合粒子はスパチュラを用いて回収し、その後、80℃の熱風乾燥器で8時間乾燥した。 The raw material solution was granulated using the ESD method described above. The ESD conditions were a discharge rate of 0.01 ml / min, an applied voltage of 25 kV, a nozzle diameter of 21 G, a nozzle-collector distance of 12 cm, and stable granulation at 24 ° C./25 to 30% RH. The composite particles collected on the collector were collected using a spatula and then dried in a hot air dryer at 80 ° C. for 8 hours.
<樹脂組成物および成形>
本発明の効果を調べるために、前記した複合粒子を含む樹脂組成物を作成した。放熱材あるいは封止材としての利用を想定し、所定量の複合粒子を計量し、エポキシ樹脂(三菱ケミカル社製 エピコート828)、エポキシ樹脂硬化剤(日立化成社製 HN-2000)、反応性希釈材(ナガセケムテックス社製 デナコールEX-141)および硬化触媒を所定量混合した熱硬化性樹脂に配合し、PTFE製のプレート状型内に注入した。その後、80℃、4時間の硬化処理を行った後、厚さ1mmの樹脂組成物成形品を得た。
<Resin composition and molding>
In order to investigate the effect of the present invention, a resin composition containing the above-mentioned composite particles was prepared. Assuming use as a heat radiating material or encapsulant, weigh a predetermined amount of composite particles, and use epoxy resin (Epicoat 828 manufactured by Mitsubishi Chemical Co., Ltd.), epoxy resin curing agent (HN-2000 manufactured by Hitachi Kasei Co., Ltd.), and reactive dilution. The material (Denacol EX-141 manufactured by Nagase ChemteX Corporation) and a curing catalyst were mixed in a predetermined amount and mixed with a thermosetting resin, and injected into a plate-shaped mold made of PTFE. Then, after performing a curing treatment at 80 ° C. for 4 hours, a resin composition molded product having a thickness of 1 mm was obtained.
さらに熱伝導性の接着剤としての利用を想定し、前記したエポキシ樹脂パウダーを土台粒子とする複合粒子を所定量秤量し、エポキシ樹脂(エピコート828)、エポキシ樹脂硬化剤(HN-2000)、反応性希釈材(デナコールEX-141)および硬化触媒を所定量混合した熱硬化性接着剤に配合しPTFE製のプレート(板厚さ2mm)上に500μm厚さに塗布(同時に300μm厚さのPTFE製シートをスペーサとして挟む)し、さらにその上に同じPTFE製プレートを重ねた。その後、熱硬化性接着剤層がPTFE製スペーサと同等になるまで軽く荷重を掛け、その状態を保持したまた、120℃、1時間の硬化処理を行った。最後にPTFE製シート、スペーサを全て剥がし取り、厚さ330μmの熱硬化性接着剤組成物硬化物を得た。 Further, assuming use as a thermosetting adhesive, a predetermined amount of composite particles using the above-mentioned epoxy resin powder as base particles are weighed, and an epoxy resin (Epicoat 828), an epoxy resin curing agent (HN-2000), and a reaction are used. A thermosetting adhesive containing a predetermined amount of a sex diluent (Denacol EX-141) and a curing catalyst is mixed and applied on a PTFE plate (plate thickness 2 mm) to a thickness of 500 μm (at the same time, made of PTFE with a thickness of 300 μm). The sheet was sandwiched as a spacer), and the same PTFE plate was layered on top of it. Then, a load was lightly applied until the thermosetting adhesive layer became equivalent to the spacer made of PTFE, and the state was maintained, and the curing treatment was performed at 120 ° C. for 1 hour. Finally, all the PTFE sheets and spacers were peeled off to obtain a cured thermosetting adhesive composition having a thickness of 330 μm.
(性能評価)
<熱特性の評価>
本発明の複合粒子を含む樹脂組成物成形品の熱特性評価には、温度波熱分析(アイフェイズモバイル社製 ai-phase mobile)による熱伝達係数測定を用いた。熱特性として一般的な熱伝導係数とは材料特性値(比熱および密度)を乗ずることで相互に換算可能であるため、これらが既知の場合には両者は一次の関係にある。
(Performance evaluation)
<Evaluation of thermal characteristics>
In the thermal characteristics evaluation of the resin composition molded product containing the composite particles of the present invention, the heat transfer coefficient measurement by temperature wave thermal analysis (ai-phase mobile manufactured by i-phase mobile) was used. Since the heat conduction coefficient, which is generally used as a thermal property, can be converted into each other by multiplying the material property value (specific heat and density), if these are known, the two have a linear relationship.
<曲げ変形性の評価>
本発明の複合粒子を含む樹脂組成物成形品の機械的特性を調べるために、室温下に、直径3mm、5mm、8mm、10mm、12mm、15mm、20mmのステンレス棒に沿って曲げ変形を順次印加し、変形追従性を調べた。
<Evaluation of bending deformability>
In order to investigate the mechanical properties of the resin composition molded product containing the composite particles of the present invention, bending deformation is sequentially applied along stainless steel rods having diameters of 3 mm, 5 mm, 8 mm, 10 mm, 12 mm, 15 mm and 20 mm at room temperature. Then, the deformation followability was investigated.
〔実施例1〕
作成した複合粒子を70wt%分混合したエポキシ樹脂組成物成形品について、熱伝達係数を測定した。測定はN=10実施し、相加平均および測定結果の最大値の2種の値を得た。また曲げ変形評価はN=3で実施し、割れによる破断あるいはクラックが発生した場合はその時の条件を記録した。
[Example 1]
The heat transfer coefficient was measured for an epoxy resin composition molded product obtained by mixing 70 wt% of the prepared composite particles. The measurement was carried out at N = 10, and two kinds of values, an arithmetic mean and the maximum value of the measurement result, were obtained. The bending deformation evaluation was carried out at N = 3, and when fracture or crack occurred due to cracking, the conditions at that time were recorded.
〔実施例2〕
作成した複合粒子を70wt%分混合したエポキシ樹脂接着剤について、PTFE製シートやスペーサを剥がした後に、熱伝達係数を測定した。測定はN=10実施し、相加平均および測定結果の最大値の2種の値を得た。また曲げ変形評価はN=3で実施し、割れによる破断あるいはクラックが発生した場合はその時の条件を記録した。
[Example 2]
For the epoxy resin adhesive in which 70 wt% of the prepared composite particles were mixed, the heat transfer coefficient was measured after peeling off the PTFE sheet and spacer. The measurement was carried out at N = 10, and two kinds of values, an arithmetic mean and the maximum value of the measurement result, were obtained. The bending deformation evaluation was carried out at N = 3, and when fracture or crack occurred due to cracking, the conditions at that time were recorded.
〔比較例1〕
複合粒子の原料として利用した窒化ホウ素微粒子のみを70wt%分混合したエポキシ樹脂組成物成形品について、熱伝達係数を測定した。測定はN=10実施し、相加平均および測定結果の最大値の2種の値を得た。また曲げ変形評価はN=3で実施し、割れによる破断あるいはクラックが発生した場合はその時の条件を記録した。
[Comparative Example 1]
The heat transfer coefficient was measured for an epoxy resin composition molded product obtained by mixing only 70 wt% of boron nitride fine particles used as a raw material for composite particles. The measurement was carried out at N = 10, and two kinds of values, an arithmetic mean and the maximum value of the measurement result, were obtained. The bending deformation evaluation was carried out at N = 3, and when fracture or crack occurred due to cracking, the conditions at that time were recorded.
〔比較例2〕
複合粒子の原料として利用した窒化ホウ素微粒子のみを70wt%分混合したエポキシ樹脂接着剤の硬化物について、熱伝達係数を測定した。測定はN=10実施し、相加平均および測定結果の最大値の2種の値を得た。また曲げ変形評価はN=3で実施し、割れによる破断あるいはクラックが発生した場合はその時の条件を記録した。
[Comparative Example 2]
The heat transfer coefficient was measured for the cured product of the epoxy resin adhesive in which only the boron nitride fine particles used as the raw material of the composite particles were mixed in an amount of 70 wt%. The measurement was carried out at N = 10, and two kinds of values, an arithmetic mean and the maximum value of the measurement result, were obtained. The bending deformation evaluation was carried out at N = 3, and when fracture or crack occurred due to cracking, the conditions at that time were recorded.
〔比較例3〕
エポキシ樹脂のみを硬化させた成形品について、熱伝達係数を測定した。測定はN=10実施し、相加平均および測定結果の最大値の2種の値を得た。また曲げ変形評価はN=3で実施し、割れによる破断あるいはクラックが発生した場合はその時の条件を記録した。
[Comparative Example 3]
The heat transfer coefficient was measured for the molded product obtained by curing only the epoxy resin. The measurement was carried out at N = 10, and two kinds of values, an arithmetic mean and the maximum value of the measurement result, were obtained. The bending deformation evaluation was carried out at N = 3, and when fracture or crack occurred due to cracking, the conditions at that time were recorded.
〔比較例4〕
エポキシ樹脂接着剤のみを硬化させた成形品について、熱伝達係数を測定した。測定はN=10実施し、相加平均および測定結果の最大値の2種の値を得た。また曲げ変形評価はN=3で実施し、割れによる破断あるいはクラックが発生した場合はその時の条件を記録した。
[Comparative Example 4]
The heat transfer coefficient was measured for the molded product obtained by curing only the epoxy resin adhesive. The measurement was carried out at N = 10, and two kinds of values, an arithmetic mean and the maximum value of the measurement result, were obtained. The bending deformation evaluation was carried out at N = 3, and when fracture or crack occurred due to cracking, the conditions at that time were recorded.
実施例1~2および比較例1~4の組成および性能評価結果をまとめて表1に示した。 The composition and performance evaluation results of Examples 1 and 2 and Comparative Examples 1 and 4 are summarized in Table 1.
表1より、実施例1および2のいずれの場合でも、比較例1および2に対して熱伝達係数が大きく改善されており、高い熱伝導性を発現することが示された。硬化に先立ち、複合粒子間の相対距離がより短縮される操作が入る実施例2の場合、熱伝達係数の最大値は平均値に近い値となり、系内で安定に熱伝導パスが形成されていることが分かる。一方で実施例1の場合、同じ組成の実施例2に比べて最大値が大きく、平均値が小さくなることから熱伝導パスの形成に場所によるムラがあることが分かる。複合粒子配合量を高めることでより高い熱伝達係数を安定に発現すると考えられる。さらに、複合粒子としての見掛けの配合量に比べ熱伝導に寄与する無機成分の実質的な配合量は少ないため、曲げ変形に対する追従性に優れ、成形品の脆化が抑制されたことが分かる。 From Table 1, it was shown that in any of Examples 1 and 2, the heat transfer coefficient was significantly improved as compared with Comparative Examples 1 and 2, and high thermal conductivity was exhibited. In the case of Example 2, in which the relative distance between the composite particles is further shortened prior to curing, the maximum value of the heat transfer coefficient is close to the average value, and a stable heat conduction path is formed in the system. You can see that there is. On the other hand, in the case of Example 1, since the maximum value is larger and the average value is smaller than that of Example 2 having the same composition, it can be seen that there is unevenness in the formation of the heat conduction path depending on the location. It is considered that a higher heat transfer coefficient is stably expressed by increasing the amount of the composite particles blended. Further, it can be seen that since the substantially amount of the inorganic component contributing to heat conduction is smaller than the apparent amount of the composite particles, the followability to bending deformation is excellent and the embrittlement of the molded product is suppressed.
一方で比較例3および4では窒化ホウ素微粒子の大きな形態異方性が原因して熱伝達係数は低い値となった。比較例3と4とを比べると圧縮操作が入る後者の方がやや高い熱伝達係数を示したが、硬化前のエポキシ樹脂の圧縮操作に伴う流動の影響を敏感に受けるため注入成形を行った比較例3と大差ない結果となった。さらに比較例3のエポキシ樹脂は反応性希釈材配合量が少なく粘度が高い。複合粒子は窒化ホウ素微粒子に比べて流動による配向の影響を受けにくいことが分かる。また大量の窒化ホウ素微粒子を配合した比較例3および4では曲げ変形に対する追従性が低下し、成形品が脆いことが分かる。 On the other hand, in Comparative Examples 3 and 4, the heat transfer coefficient was low due to the large morphological anisotropy of the boron nitride fine particles. Comparing Comparative Examples 3 and 4, the latter, which involves a compression operation, showed a slightly higher heat transfer coefficient, but injection molding was performed because it is sensitive to the influence of the flow associated with the compression operation of the epoxy resin before curing. The result was not much different from that of Comparative Example 3. Further, the epoxy resin of Comparative Example 3 has a small amount of the reactive diluent and a high viscosity. It can be seen that the composite particles are less affected by the orientation due to the flow than the boron nitride fine particles. Further, it can be seen that in Comparative Examples 3 and 4 in which a large amount of boron nitride fine particles are blended, the followability to bending deformation is lowered and the molded product is brittle.
本発明の複合粒子を用いた熱伝導性樹脂組成物を用いることで、高い熱移送能力を有する樹脂製成形品や接着剤等を作ることができる。今後の利用拡大が期待される自動車や空調用のパワー半導体の封止材や放熱材あるいは放熱フィンとの接着材等への利用が期待される。
By using the heat conductive resin composition using the composite particles of the present invention, it is possible to produce a resin molded product, an adhesive or the like having a high heat transfer ability. It is expected to be used as a sealing material for power semiconductors for automobiles and air conditioners, which is expected to be widely used in the future, as a heat radiating material, or as an adhesive with heat radiating fins.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018077809A JP7046689B2 (en) | 2018-04-13 | 2018-04-13 | Thermally conductive composite particles and resin composition containing them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018077809A JP7046689B2 (en) | 2018-04-13 | 2018-04-13 | Thermally conductive composite particles and resin composition containing them |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019183052A JP2019183052A (en) | 2019-10-24 |
JP7046689B2 true JP7046689B2 (en) | 2022-04-04 |
Family
ID=68339795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018077809A Active JP7046689B2 (en) | 2018-04-13 | 2018-04-13 | Thermally conductive composite particles and resin composition containing them |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7046689B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021079194A2 (en) * | 2019-10-24 | 2021-04-29 | Tianjin Laird Technologies Limited | Dispensing systems and methods including online remixing of thermal management and/or emi mitigation materials |
JP7425589B2 (en) | 2019-12-11 | 2024-01-31 | デンカ株式会社 | Powder containing composite particles and resin composition containing the powder |
JP7346279B2 (en) * | 2019-12-23 | 2023-09-19 | 株式会社オートネットワーク技術研究所 | Wire Harness |
JP7471197B2 (en) * | 2020-10-20 | 2024-04-19 | 株式会社オートネットワーク技術研究所 | Thermally conductive filler, thermally conductive composite material, wire harness, and method for manufacturing thermally conductive filler |
CN115416115B (en) * | 2022-09-29 | 2023-11-10 | 宏耐地板(宿迁)有限公司 | Environment-friendly fiber reinforced composite artificial board and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010073789A (en) | 2008-09-17 | 2010-04-02 | Nitto Denko Corp | Thermally conductive member, microprocessor and electronic equipment |
JP2011214000A (en) | 2010-03-16 | 2011-10-27 | Sekisui Plastics Co Ltd | Organic-inorganic composite particle, method for producing the same, thermally conductive resin composition, and method for producing the same |
JP2012207197A (en) | 2011-03-17 | 2012-10-25 | Sekisui Plastics Co Ltd | Organic inorganic composite particle, method for manufacturing the same, and application thereof |
JP2015030821A (en) | 2013-08-05 | 2015-02-16 | 大陽日酸株式会社 | Composite resin particles, and method of producing the same |
JP2015048358A (en) | 2013-08-29 | 2015-03-16 | 熊本県 | Heat-conductive composite particle and resin molding |
JP2015227445A (en) | 2014-05-08 | 2015-12-17 | 熊本県 | Composite particle and production method thereof |
JP2017095555A (en) | 2015-11-19 | 2017-06-01 | 積水化学工業株式会社 | Filler complex and thermosetting material |
-
2018
- 2018-04-13 JP JP2018077809A patent/JP7046689B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010073789A (en) | 2008-09-17 | 2010-04-02 | Nitto Denko Corp | Thermally conductive member, microprocessor and electronic equipment |
JP2011214000A (en) | 2010-03-16 | 2011-10-27 | Sekisui Plastics Co Ltd | Organic-inorganic composite particle, method for producing the same, thermally conductive resin composition, and method for producing the same |
JP2012207197A (en) | 2011-03-17 | 2012-10-25 | Sekisui Plastics Co Ltd | Organic inorganic composite particle, method for manufacturing the same, and application thereof |
JP2015030821A (en) | 2013-08-05 | 2015-02-16 | 大陽日酸株式会社 | Composite resin particles, and method of producing the same |
JP2015048358A (en) | 2013-08-29 | 2015-03-16 | 熊本県 | Heat-conductive composite particle and resin molding |
JP2015227445A (en) | 2014-05-08 | 2015-12-17 | 熊本県 | Composite particle and production method thereof |
JP2017095555A (en) | 2015-11-19 | 2017-06-01 | 積水化学工業株式会社 | Filler complex and thermosetting material |
Also Published As
Publication number | Publication date |
---|---|
JP2019183052A (en) | 2019-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7046689B2 (en) | Thermally conductive composite particles and resin composition containing them | |
Yang et al. | Deterministic manipulation of heat flow via three-dimensional-printed thermal meta-materials for multiple protection of critical components | |
Zhao et al. | A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices | |
KR102075893B1 (en) | Thermally conductive sheet, manufacturing method of thermally conductive sheet, heat dissipation member and semiconductor device | |
Lin et al. | Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation | |
JP2003060134A (en) | Heat conductive sheet | |
WO2012070289A1 (en) | Thermal conductive sheet and power module | |
Yung et al. | Effect of the filler size and content on the thermomechanical properties of particulate aluminum nitride filled epoxy composites | |
CN110734644A (en) | heat-conducting insulating boron nitride polymer composite material and preparation method thereof | |
TW201639784A (en) | Graphene powder coating material, method of manufacturing the same and method of coating the same | |
US12101912B2 (en) | Method for manufacturing heat dissipation sheet | |
EP3404708B1 (en) | Thermal conducting sheet, method for manufacturing thermal conducting sheet, heat dissipation member, and semiconductor device | |
WO2020175377A1 (en) | Boron nitride aggregate powder, heat dissipation sheet and semiconductor device | |
JP6393816B2 (en) | HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, HEAT DISSIBLING MEMBER AND SEMICONDUCTOR DEVICE | |
JP2013136658A (en) | Thermally conductive filler | |
CN109563330A (en) | Heat dissipation resin combination, its cured product and its application method | |
KR101898234B1 (en) | Resin composition, article prepared by using the same and method of preparing the same | |
JP2016089169A (en) | Composite resin composition, molding, thermally conductive material, and thermally conductive member | |
Permal et al. | Improved thermal and mechanical properties of aluminium oxide filled epoxy composites by reinforcing milled carbon fiber by partial replacement method | |
Wang et al. | The synergistic effects of carbon black and carbon fibre on the thermal conductivity of silicone rubber | |
KR101960528B1 (en) | Heat-dissipation sheet with improved insulating property | |
US20240120254A1 (en) | Thermally-conductive sheet and electronic device | |
KR20160038479A (en) | Heat-dissipating sheet including composite layer of filler and polymer resin and method for preparing the same | |
JP2019167436A (en) | Resin composition, semiconductor device and method for producing semiconductor device | |
Balaji et al. | Studies on thermal characterization of hybrid filler polymer composites with Rice husk and Aluminium nitride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20180420 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220323 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7046689 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |