JP7046663B2 - 多端子直流送電システムおよび多端子直流送電システムの制御方法 - Google Patents

多端子直流送電システムおよび多端子直流送電システムの制御方法 Download PDF

Info

Publication number
JP7046663B2
JP7046663B2 JP2018050685A JP2018050685A JP7046663B2 JP 7046663 B2 JP7046663 B2 JP 7046663B2 JP 2018050685 A JP2018050685 A JP 2018050685A JP 2018050685 A JP2018050685 A JP 2018050685A JP 7046663 B2 JP7046663 B2 JP 7046663B2
Authority
JP
Japan
Prior art keywords
power
converter
voltage
renewable energy
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018050685A
Other languages
English (en)
Other versions
JP2019165531A (ja
Inventor
徹 吉原
守 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018050685A priority Critical patent/JP7046663B2/ja
Publication of JP2019165531A publication Critical patent/JP2019165531A/ja
Application granted granted Critical
Publication of JP7046663B2 publication Critical patent/JP7046663B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Description

本発明は、電力変換器および直流送電線を介し、再生可能エネルギー電源などの発電システムを連系可能な多端子直流送電システムおよび多端子直流送電システムの制御方法に関する。
長距離送電や海底送電の高効率化のために、直流送電システムが用いられる。一般の電力系統は交流系統であるので、直流送電システムでは、交流系統の電力を交直変換器で直流に変換して送電する。
従来の直流送電システムは、2つの交直変換器を直流送電線路で接続する1対1送電システムが主であった。近年の直流送電システムの大容量化に伴い、大規模送電に適した直流送電システムの形態として、3箇所以上に交直変換器を設けた多端子直流送電システムの開発が進められている。
多端子直流送電システムの運用形態として、複数の風車を洋上に建設してウインドファーム(集合型風力発電所)を構成し、その発電電力を洋上変電所で集電し、多端子直流送電システムで複数の陸上系統に送電する洋上ウインドファーム連系多端子直流送電システムが注目されている(特許文献1)。
特開2017-11916号公報
以降の説明では、交直変換器の交流側と接続する端子を「交流端」と呼称し、直流側と接続する端子を「直流端」と呼称し、直流端を直流送電ケーブルで接続して構成される電力ネットワークを「直流系統」と呼称する。
洋上ウインドファーム連系多端子直流送電システムの安定運用のためには、直流系統内の直流電圧を一定に保つ必要がある。直流電圧の変動は、直流系統に流入する電力と直流系統から流出する電力の差分が、直流系統内の送電ケーブルに充放電されることで発生する。このため、直流系統に流出入する電力の差分が大略0になるように多端子直流送電システムを運用する。
直流系統に流出入する電力の差分を大略0にするために、多端子直流送電システム内の少なくとも1つの交直変換器で、交直変換器に通流する有効電力を、直流電圧の変動を抑制するように制御する。
以降、本明細書では、このような直流系統の電圧変動を抑制するために、自変換器に通流する有効電力を調整することで、交流端に接続される電力システムが授受する有効電力を調整する一連の制御のことを「しわ取り制御」と呼称する。また、しわ取り制御を実施する変換器を「しわ取り変換器」と呼称する。
しわ取り制御として、陸上電力系統が接続される交直変換器に通流する有効電力に合わせて直流電圧を調整するドループ制御が知られている。しかし、近年、陸上電力系統において、再生可能エネルギー電源の連系量増加に伴い、火力発電機のようなガバナフリー制御が可能な発電機の連系量が減少し、陸上電力系統の周波数変動の増大による大規模停電のリスクの増加が懸念されている。このため、洋上ウインドファーム多端子直流送電システムにおいても、陸上電力系統が連系される交直変換器に通流する有効電力を、陸上電力系統の周波数変動を抑制するように連続的に制御可能であることが望ましい。
以降、本明細書では、陸上電力系統の周波数変動に合わせて、自変換器に通流する有効電力を制御することを「有効電力調整制御」と呼称する。また、有効電力調整制御を実施する変換器を「有効電力調整変換器」と呼称する。
しわ取り制御は、直流系統の直流電圧に合わせて、自変換器に通流する有効電力を調整する制御である。有効電力調整制御は、陸上電力系統の周波数変動に合わせて、自変換器に通流する有効電力を調整する制御である。このため、変換器に通流する有効電力の制御のみでは、直流系統の直流電圧に合わせた有効電力制御と、陸上電力系統の周波数変動に合わせた有効電力制御を、同時かつ独立に制御することができない。つまり、しわ取り変換器で有効電力調整制御を実施することができない。
上述したように、洋上ウインドファーム多端子直流送電システムにおいて、陸上電力系統が接続される交直変換器の少なくとも1つを、しわ取り変換器として運用する必要があり、当該交直変換器は有効電力調整制御を行うことができなかった。
本発明は、上記事情に鑑みなされたものであり、その目的は、直流系統の直流電圧に合わせた有効電力制御と、交流系統の周波数変動に合わせた有効電力制御を独立に制御することが可能な多端子直流送電システムおよび多端子直流送電システムの制御方法を提供することにある。
上記目的を達成するため、第1の観点に係る多端子直流送電システムは、少なくとも1つの再生可能エネルギー電源を含むM(Mは正の整数)個の再生可能エネルギー電源群と、N(Nは2以上の整数)個の電力系統が、それぞれ電力変換器を介し直流系統により接続される多端子直流送電システムであって、前記多端子直流送電システムの直流電圧を一定値に維持または追従させつつ、前記N個の電力系統に対応して設けられたN個の電力変換器がそれぞれ独立に有効電力を制御することが可能である。
本発明によれば、直流系統の直流電圧に合わせた有効電力制御と、交流系統の周波数変動に合わせた有効電力制御を独立に制御することができる。
図1は、第1実施形態に係る多端子直流送電システムが適用される電力システムの構成を示すブロック図である。 図2は、図1の多端子直流送電システムにおける有効電力、直流電圧および周波数の時間変化を示すタイミングチャートである。 図3は、図1のウインドファーム側の交直変換器にて実現される周波数変換部の構成を示す図である。 図4は、図1のウインドファームの構成例を示すブロック図である。 図5は、図4の発電電力指令値演算部の構成を示す図である。 図6は、第2実施形態に係る多端子直流送電システムが適用される電力システムの構成を示すブロック図である。 図7は、第3実施形態に係る多端子直流送電システムが適用される電力システムの構成を示すブロック図である。 図8は、図7の電力変換部を実現するウインドファームの構成を示すブロック図である。 図9は、第4実施形態に係る多端子直流送電システムが適用される電力システムの構成を示すブロック図である。 図10は、第5実施形態に係る多端子直流送電システムが適用される電力システムの構成を示すブロック図である。
実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また、実施形態の中で説明されている諸要素及びその組み合わせの全てが発明の解決手段に必須であるとは限らない。以下の説明では、特に断りがない限り、「交流」は三相交流を指す。
図1は、第1実施形態に係る多端子直流送電システムが適用される電力システムの構成を示すブロック図である。なお、図1では、2つの交流系統と1つのウインドファームが、交直変換器と直流系統を介して電気的に接続するウインドファーム連系3端子直流送電システムを例にとった。ウインドファームは、洋上に設置してもよいし、陸上に設置してもよい。
また、図1では、3つの直流母線と直流線路の接続例として、直流線路が直流母線をループ状に接続する構成を示した。ただし、本発明における直流線路と直流母線の接続は、本発明の要旨を逸脱しない限り、他の形態を含む。また、本発明は、3端子直流送電システムに限定されず、4端子以上の多端子直流送電システムにおいても適用可能である。
図1において、この電力システムは、交流系統101A、101B、交流母線102A、102B、102W、交直変換器103A、103B、103W、直流母線104、104B、104W、直流線路105およびウインドファーム106を備える。ウインドファーム106は、再生可能エネルギー電源群として用いることができる。交流系統101A、101Bは、電力を需要家の受電設備に供給する電力系統として用いることができる。交流系統101A、101Bは、陸上に設置することができる。
各交直変換器103A、103B、103Wは、自励式変換器と呼ばれる電力変換器である。各交直変換器103A、103B、103Wは、その内部の半導体素子の点弧と消弧を制御することで、機器定格および運用の許す範囲で任意の電圧を出力可能である。各交直変換器103A、103B、103Wは、交流電力を直流電力に変換可能であり、かつ直流電力を交流電力に変換可能である。各交直変換器103A、103B、103Wの一端は直流で接続され、もう一端は交流で接続される。
交直変換器103Aの交流端は、交流母線102Aを介して、交流系統101Aと接続される。交直変換器103Aの直流端は、直流母線104Aを介して、直流線路105と接続される。
交直変換器103Bの交流端は、交流母線102Bを介して、交流系統101Bと接続される。交直変換器103Bの直流端は、直流母線104Bを介して、直流線路105と接続される。
交直変換器103Wの交流端は、交流母線102Wを介して、ウインドファーム106と接続される。交直変換器103Wの直流端は、直流母線104Wを介して、直流線路105と接続される。
以下の説明では、交流母線102Aの周波数をFa、交流母線102Bの周波数をFb、交流母線102Wの周波数をfw、交直変換器103Aから交流母線102Aに向かって流れる有効電力をPa、交直変換器103Bから交流母線102Bに向かって流れる有効電力をPb、交流母線102Wから交直変換器103Wに向かって流れる有効電力をPw、直流母線104Aから交直変換器103Aに向かって流れる有効電力をPadc、直流母線104Bから交直変換器103Bに向かって流れる有効電力をPbdc、交直変換器103Wから直流母線104Wに向かって流れる有効電力をPwdc、直流母線104Aの直流電圧をVadc、直流母線104Bの直流電圧をVbdc、直流母線104Wの直流電圧をVwdcとする。
交直変換器103Aは、有効電力Paと有効電力Padcが大略等しくなるよう、自変換器の出力電圧を制御する。交直変換器103Bは、有効電力Pbと有効電力Pbdcが大略等しくなるよう、自変換器の出力電圧を制御する。交直変換器103Wは、有効電力Pwと有効電力Pwdcが大略等しくなるよう、自変換器の出力電圧を制御する。
この3端子直流送電システムでは、交直変換器103Wおよびウインドファーム106が連携動作することで直流電圧Vadc、Vbdc、Vwdcを一定値に維持または追従させつつ、交直変換器103A、103Bがそれぞれ独立に有効電力Pa、Pbを制御することが可能である。
ここで、各交直変換器103A、103Bが有効電力調整変換器100A、100Bとして独立に動作した時に、直流系統内の直流電圧Vadc、Vbdc、Vwdcを一定値に維持または追従させるために、交直変換器103Wおよびウインドファーム106は、しわ取り変換器100Wとして動作することができる。この時、各有効電力調整変換器100A、100Bは、交流系統101A、101Bの周波数Fa、Fbの変動に基づいて、各交直変換器103A、103Bに通流する有効電力Pa、Pbを制御する。しわ取り変換器100Wは、直流系統内の直流電圧Vwdcに基づいて、交直変換器103Wに通流する有効電力Pwを調整することで、交流系統101A、101Bが授受する有効電力Pa、Pbを調整する。
しわ取り変換器100Wにおいて、交直変換器103Wは、周波数変換部100Fとして動作し、ウインドファーム106は、電力変換部100Pとして動作することができる。ここで、周波数変換部100Fおよび電力変換部100Pが連携して動作することにより、ウインドファーム106側でしわ取り変換器100Wを実現することができる。この時、周波数変換部100Fは、直流母線104Wの直流電圧Vwdcを検出し、直流電圧Vwdcの変化に相関させて交直変換器103Wの出力する交流電圧の周波数fwを変化させる。電力変換部100Pは、交直変換器103Wの出力する交流電圧の周波数fwに相関させてウインドファーム106の発電電力を変化させることで、交直変換器103Wに通流する有効電力Pwを調整する。
ここで、各交流系統101A、101Bの需要電力と供給電力にアンバランスが発生したものとする。この時、各有効電力調整変換器100A、100Bは、各交流系統101A、101Bの需要電力と供給電力をバランスさせるために、各交直変換器103A、103Bを通流する有効電力Pa、Pbを調整する。
この時、各交直変換器103A、103Bを通流する有効電力Pa、Pbが変化すると、直流母線104、104Bの直流電圧Vadc、Vbdcが変化する。この直流電圧Vadc、Vbdcの変化は直流線路105を介して直流母線104Wに伝わり、直流電圧Vadc、Vbdcの変化に伴って直流電圧Vwdcが変化する。
周波数変換部100Fは、直流電圧Vwdcの変化を検出すると、その変化に相関させて交流電圧の周波数fwを変化させる。周波数fwが変化した交流電圧は、交流母線102Wを介してウインドファーム106に送れられる。電力変換部100Pは、その交流電圧の周波数fwの変化に相関させて発電電力を変化させることで、交直変換器103Wに通流する有効電力Pwを調整する。
これにより、直流系統に流入する有効電力Pwと、直流系統から流出する有効電力Pa、Pbの差分を大略0にすることができ、直流系統内の直流電圧Vadc、Vbdc、Vwdcを一定に保つことができる。
ここで、ウインドファーム106側でしわ取り制御を実施することにより、各交直変換器103A、103Bはしわ取り制御を実施する必要がなくなり、それぞれ独立かつ同時に有効電力Pa、Pbを調整することができる。
また、各交直変換器103A、103Bが有効電力Pa、Pbを調整した時に、その有効電力Pa、Pbの調整に伴う直流電圧Vadc、Vbdcの変化を、直流線路105を介して交直変換器103Wに伝えることができる。このため、各交直変換器103A、103B側で生じた直流電圧Vadc、Vbdcの変化を交直変換器103Wに伝えるための通信路を別途設ける必要がなくなる。
さらに、交直変換器103Wは、直流電圧Vadc、Vbdcの変化に伴って、交直変換器103Wの出力する交流電圧の周波数fwを変化させることにより、直流電圧Vadc、Vbdcの変化に伴う周波数fwの変化を、交流母線102Wを介してウインドファーム106に伝えることができる。このため、交直変換器103Wが発生させた周波数fwの変化をウインドファーム106に伝えるための通信路を別途設ける必要がなくなる。
図2は、図1の多端子直流送電システムにおける有効電力、直流電圧および周波数の時間変化を示すタイミングチャートである。
図2において、6つのグラフの横軸は時刻であり、縦軸は、上から順に、Pa、Pb、Pw、Pw-(Pa+Pb)、Vwdc、fwである。縦軸および横軸の単位は、任意単位[a.u.](arbitrary unit)で表記している。図2の値は、第1実施形態の動作原理を説明するための一例である。
時刻T1[a.u.]以前は、Pa=0.4[a.u.]、Pb=0.2[a.u.]、Pw=0.6[a.u.]、Vwdc=1.0[a.u.]、fw=1.0[a.u.]の状況を想定した。この時、Pa+Pb=0.6[a.u.]であり、Pw=0.6[a.u.]と等しい。このため、Pw-(Pa+Pb)=0.0[a.u.]となり、直流線路105に流入する有効電力Pwと、直流線路105から流出する有効電力Pa+Pbが等しく、直流電圧Vadc、Vbdc、VWdcが一定に保たれる。
そして、各交流系統101A、101Bの需要電力が供給電力よりも減少したものとする。この時、各交直変換器103A、103Bは、各交流系統101A、101Bの需要電力と供給電力をバランスさせるために、有効電力調整制御により、時刻T1[a.u.]に有効電力Pa、Pbをそれぞれ、Pa=0.2[a.u.]、Pb=0.1[a.u.]に変化させるものとする。
各交直変換器103A、103Bがそれぞれ、有効電力Pa、Pbを、時刻T1で変化させる具体的な方法としては、自変換器の出力する交流電圧の振幅および位相を、所望の有効電力Pa、Pbが流れるよう、フィードバック制御する方法が挙げられる。
各交直変換器103A、103Bの有効電力調整制御により、時刻T1[a.u.]にPa+Pb=0.3[a.u.]となる一方、Pw=0.6[a.u.]である。このため、Pw-(Pa+Pb)=0.3[a.u.]となり、直流線路103に流入する有効電力Pwの方が、直流線路103から流出する有効電力Pa+Pbより大きくなる。図2の例では、直流線路103に流入する有効電力Pwと、直流線路103から流出する有効電力Pa+Pbの差分Pw-(Pa+Pb)が、直流線路103に蓄えられ、その結果として直流電圧Vwdcが上昇する。
この時、交直変換器103Wおよびウインドファーム106は連携してしわ取り制御を実施する。すなわち、交直変換器103Wが、直流電圧Vwdcの上昇に応じて周波数fwを上げるように制御し、ウインドファーム106が周波数fwの上昇に応じて発電電力を下げることで、交直変換器103Wに通流する有効電力Pwを下げる。この結果、直流線路103に流入する有効電力Pwと、直流線路103から流出する有効電力Pa+Pbの差分Pw-(Pa+Pb)が減少する。そして、時刻T2[a.u.]で、有効電力Pwと有効電力Pa+Pbの差分Pw-(Pa+Pb)が0.0となり、有効電力Pwが有効電力Pa+Pbと等しくなる。
これにより、交直変換器103Wおよびウインドファーム106が連携してしわ取り変換器100Wとして動作することで直流系統の直流電圧Vadc、Vbdc、Vwdcを一定に保ちつつ、交直変換器103A、103Bがそれぞれ、有効電力調整変換器100A、100Bとして、有効電力Pa、Pbを任意に制御することが可能となる。
なお、図2の例では、有効電力Pa+Pbが有効電力Pwより小さくなる場合を説明したが、有効電力Pa+Pbが有効電力Pwより大きくなる場合についても、同様の効果がられる。
図3は、図1のウインドファーム側の交直変換器にて実現される周波数変換部の構成を示す図である。
図1の周波数変換部100Fは、交直変換器103Wによる直流電圧Vwdcと交流電圧の周波数fwの連動制御を実施し、交直変換器103Wが出力する交流電圧の周波数fwを直流電圧Vwdcの変動に相関させる。この時、交直変換器103Wが直流電圧Vwdcの変化を検出し、自変換器の出力する交流電圧の周波数fwを変えるよう、交直変換器103Wを制御する。
このような連動制御を実現するために、周波数変換部100Fは、図3に示すように、減算器301、演算器302および加算器303を備えることができる。減算器301は、直流母線104Wの直流電圧Vwdcの基準値Vwdc0から、直流電圧Vwdcを減算する。演算器302は、比例ゲインKwを減算器301の出力に乗算する。加算器303は、交直変換器103Wが出力する交流電圧の周波数fwの基準値fw0を演算器302の出力に加算し、その加算結果を交直変換器103Wが出力する交流電圧の指令値fwとして出力する。交直変換器103Wは、自変換器の出力する交流電圧の周波数がfwとなるよう交流電圧を出力する。なお、Vwdc0、fw0、Kwは、本実施形態の趣旨を逸脱しない範囲で任意に設定可能である。
この時、指令値fwは、以下の(1)式で計算することができる。
fw=Kw(Vwdc0-Vwdc)+fw0 ・・・(1)
なお、図3の構成は、交直変換器103Wによる直流電圧Vwdcと交流電圧の周波数fwの連動制御の一例であり、直流電圧Vwdcと交流電圧の周波数fwの連動制御の構成は、図3の構成に限定されない。
以下、ウインドファーム106による交流電圧の周波数fwと発電電力の連動制御について、図4および図5を参照しながら説明する。
図4は、図1のウインドファームの構成例を示すブロック図である。
図4において、ウインドファーム106は、2台の風力発電装置401A、401Bを備える。風力発電装置401A、401Bはそれぞれ、再生可能エネルギー電源として用いることができる。風力発電装置401A、401Bはアレーケーブル402を介して交流で接続されている。この時、各風力発電装置401A、401Bの発電電力は交流で集電される。
風力発電装置401Bは、風力発電機403および発電電力指令値演算部404を備える。発電電力指令値演算部404は、交流電圧の周波数fwに基づいて、風力発電機403が出力する発電電力Pwtの指令値Pwtを演算する。風力発電機403は、指令値Pwtに基づいて発電電力Pwtを出力する。風力発電機403の出力制御は、例えば、図示しない風力発電機403のピッチ角制御や、出力交流電圧のフィードバック制御によって実現可能である。
風力発電装置401Aも風力発電装置401Bと同様に構成することができる。すなわち、風力発電装置401Aは、周波数fwの変化を検出し、風力発電装置401Aの発電電力Pwt2を調整するよう、風力発電装置401Aの発電電力Pwt2の指令値Pwt2を計算する。この時、アレーケーブル402での送電損失を無視すれば、PwtとPwt2の和は、大略Pwとなる。
なお、図4の例では、ウインドファーム106が2台の風力発電装置401A、401Bを備えた構成を示したが、ウインドファームは1台の風力発電装置を備えていてもよいし、3台以上の風力発電装置を備えていてもよい。
図5は、図4の発電電力指令値演算部の構成を示す図である。
図5において、発電電力指令値演算部404は、風力発電装置401Bの接続端の周波数fwに風力発電装置401Bの発電電力Pwtが相関するように指令値Pwtを演算する。この時、発電電力指令値演算部804は、減算器501、演算器502および加算器503を備えることができる。
減算器501は、交流電圧の周波数fwの基準値fw0から、交流電圧の周波数fwを減算する。演算器502は、比例ゲインKwtを減算器501の出力に乗算する。加算器503は、風力発電装置401Bの発電電力Pwtの基準値Pwt0を演算器502の出力に加算し、その加算結果を風力発電機403の発電電力Pwtの指令値Pwtとして出力する。なお、Pwt0、Kwtは、本実施形態の趣旨を逸脱しない範囲で任意に設定可能であり、風力発電装置401A、401Bごとに異なった値であってもよい。
ここで、風力発電装置401Bが発電電力Pwtを周波数fwと相関させることで、発電電力Pwと周波数fwも相関するようになる。
この時、指令値Pwt*は、以下の(2)式で計算することができる。
Pwt=Kwt(fw0-fw)+Pwt0 ・・・(2)
なお、図5の構成は、風力発電装置401Bの接続端の周波数fwと風力発電装置401Bの発電電力Pwtとの相関制御の一例であり、風力発電装置401Bの接続端の周波数fwと風力発電装置401Bの発電電力Pwtとの相関制御の構成は、図5の構成に限定されない。
ここで、交直変換器103Wによる直流電圧Vwdcと交流電圧の周波数fwの連動制御と、風力発電装置401Bによる発電電力Pwtの指令値Pwtの演算処理により、周波数fwを介して、直流電圧Vwdcと発電電力Pwを相関させることが可能となる。このため、ウインドファーム106側でしわ取り制御を実施することが可能となり、交流系統101A、101B側でしわ取り制御を実施する必要がなくなることから、各交直変換器103A、103Bが独立に有効電力調整制御を実施することが可能となる。
なお、交直変換器103A、103Bの有効電力調整制御の指令値については、例えば、交流系統101A、101Bの火力発電機のガバナフリー制御のように、自変換器の交流系統周波数に基づく垂下特性制御によって算出してもよいし、交流系統101A、101Bの図示しない給電指令所から送信される有効電力指令値を用いるようにしてもよい。また、有効電力Pa、Pbは必ずしも同時に変化させる必要はなく、それぞれ独立に変えてよい。
また、上述した第1実施形態では、2つの交流系統101A、101Bと1つのウインドファーム106が、交直変換器と直流系統を介して電気的に接続するウインドファーム連系3端子直流送電システムを例に説明したが、少なくとも1つの風力発電装置を含むM(Mは正の整数)個のウインドファームと、N(Nは2以上の整数)個の電力系統が、それぞれ電力変換器を介し直流系統により接続される多端子直流送電システムに適用するようにしてもよい。
図6は、第2実施形態に係る多端子直流送電システムが適用される電力システムの構成を示すブロック図である。なお、図6では、2つの交流系統と2つのウインドファームが、交直変換器と直流系統を介して電気的に接続するウインドファーム連系4端子直流送電システムを示した。
図6において、この電力システムは、交流系統101A、101B、交流母線102A、102B、102WA、102WB、交直変換器103A、103B、103WA、103WB、直流母線104A、104B、104WA、104WB、直流線路115およびウインドファーム106A、106Bを備える。
交直変換器103Aの交流端は、交流母線102Aを介して、交流系統101Aと接続される。交直変換器103Aの直流端は、直流母線104Aを介して、直流線路115と接続される。
交直変換器103Bの交流端は、交流母線102Bを介して、交流系統101Bと接続される。交直変換器103Bの直流端は、直流母線104Bを介して、直流線路115と接続される。
交直変換器103WAの交流端は、交流母線102WAを介して、ウインドファーム106Aと接続される。交直変換器103WAの直流端は、直流母線104WAを介して、直流線路115と接続される。
交直変換器103WBの交流端は、交流母線102WBを介して、ウインドファーム106Bと接続される。交直変換器103WBの直流端は、直流母線104WBを介して、直流線路115と接続される。
この時、交直変換器103WAおよびウインドファーム106Aは、しわ取り変換器100Wとして動作することができる。これにより、4端子直流送電システムにおいても、交直変換器103WAおよびウインドファーム106Aが連携動作することで直流系統の直流電圧を一定値に維持または追従させつつ、交直変換器103A、103Bがそれぞれ独立に有効電力調整制御を実施することが可能となる。
なお、2個以上のウインドファーム106A、106Bが交直変換器と直流系統を介して電気的に接続する場合、ウインドファーム側のしわ取り制御は、運用の許す範囲で、ウインドファームが連系する交直変換器のうち、少なくとも1つの交直変換器のみで実施すればよい。
また、図6の例では、ウインドファーム連系4端子直流送電システムを示したが、5端子以上のウインドファーム連系多端子直流送電システムであってもよい。
また、上述した実施形態では、ウインドファームが交直変換器を介して直流系統と接続されてる多端子直流送電システムを示したが、ウインドファームが直流・直流変換器を介して直流系統と接続されてる多端子直流送電システムであってもよい。
図7は、第3実施形態に係る多端子直流送電システムが適用される電力システムの構成を示すブロック図である。
図7の電力システムは、図1の交直変換器103W、交流母線102Wおよびウインドファーム106の代わりに、直流・直流変換器701、直流母線702およびウインドファーム703を備える。直流・直流変換器701は、直流電力を直流電力に変換可能である。直流・直流変換器701の一端は直流で接続され、もう一端も直流で接続される。
直流・直流変換器701の一方の直流端は、直流母線702を介して、ウインドファーム703と接続される。直流・直流変換器701のもう一方の直流端は、直流母線104Wを介して、直流線路105と接続される。直流・直流変換器701は、有効電力Pwと有効電力Pwdcが大略等しくなるよう、自変換器の出力電圧を制御する。
ここで、直流・直流変換器701およびウインドファーム703は、しわ取り変換器100Cとして動作することができる。この時、しわ取り変換器100Cは、直流・直流変換器701に通流する有効電力Pwを調整することで、交流系統101A、101Bが授受する有効電力Pa、Pbを調整する。
しわ取り変換器100Cにおいて、直流・直流変換器701は、直流電圧変換部100Dとして動作し、ウインドファーム703は、電力変換部100Eとして動作することができる。ここで、直流電圧変換部100Dおよび電力変換部100Eが連携して動作することにより、ウインドファーム703側でしわ取り変換器100Cを実現することができる。この時、直流電圧変換部100Dは、直流母線104Wの直流電圧Vwdcを検出し、直流電圧Vwdcの変化に相関させて直流・直流変換器701が出力する直流電圧Vwdc2を設定する。電力変換部100Eは、直流・直流変換器701が出力する直流電圧Vwdc2に相関させてウインドファーム703の発電電力を変化させることで、直流・直流変換器701に通流する有効電力Pwを調整する。
これにより、3端子直流送電システムにおいて、ウインドファーム703の発電電力が直流母線702および直流・直流変換器701を介して通流する場合においても、直流・直流変換器701およびウインドファーム703が連携動作することで直流系統の直流電圧を一定値に維持または追従させつつ、交直変換器103A、103Bがそれぞれ独立に有効電力調整制御を実施することが可能となる。
図8は、図7の電力変換部を実現するウインドファームの構成を示すブロック図である。
図8において、ウインドファーム703は、2台の風力発電装置801A、801Bを備える。風力発電装置801A、801Bはそれぞれ、再生可能エネルギー電源として用いることができる。風力発電装置801A、801Bはアレーケーブル802を介して直流で接続されている。この時、各風力発電装置801A、801Bの発電電力は直流で集電される。風力発電装置801Bは、風力発電機803および発電電力指令値演算部804を備える。発電電力指令値演算部804は、直流電圧Vwdc2に基づいて、風力発電機803が出力する発電電力Pwtの指令値Pwtを演算する。風力発電機803は、指令値Pwtに基づいて発電電力Pwtを出力する。
風力発電装置801Aも風力発電装置801Bと同様に構成することができる。すなわち、風力発電装置801Aは、直流電圧Vwdc2を検出し、風力発電装置801Aの発電電力Pwt2を調整するよう、風力発電装置801Aの発電電力Pwt2の指令値Pwt2を計算する。この時、アレーケーブル802での送電損失を無視すれば、PwtとPwt2の和は、大略Pwとなる。
そして、図7の直流・直流変換器701は、直流電圧Vwdcに合わせて直流電圧Vwdc2を変えるよう制御する。ウインドファーム703内の風力発電装置801Bは、直流電圧Vwdc2に合わせて風力発電装置801Bの発電電力Pwtを変えるよう指令値Pwtを制御する。
上述した第1実施形態では、交直変換器103Wによる直流電圧Vwdcと交流電圧周波数fwの連動制御と、風力発電装置401Bによる発電電力指令値演算を組み合わせることで、交流電圧周波数fwを介して、直流電圧Vwdcと有効電力Pwを相関させることが可能であった。これに対し、第3実施形態では、直流・直流変換器801による直流系統側直流電圧Vwdcとウインドファーム側直流電圧Vwdc2の連動制御と、ウインドファーム703内の風力発電装置801Bによるウインドファーム側直流電圧Vwdc2と発電出力Pwtの連動制御によって、直流系統側直流電圧Vwdcと有効電力Pwを相関させることが可能となる。これにより、風力発電装置801A、801Bの発電電力が直流で集電される場合においても、3端子直流送電システムの直流電圧Vadc、Vbdc、Vwdcを一定値に維持または追従させつつ、交直変換器103A、103Bがそれぞれ独立に有効電力Pa、Pbを制御することが可能である。
図9は、第4実施形態に係る多端子直流送電システムが適用される電力システムの構成を示すブロック図である。なお、図9では、2つの交流系統と2つのウインドファームが、交流系統側の交直変換器と、ウインドファーム側の直流・直流変換器と、直流系統を介して電気的に接続するウインドファーム連系4端子直流送電システムを示した。
図9の電力システムは、図6の交直変換器103WA、103WB、交流母線102WA、102WBおよびウインドファーム106A、106Bの代わりに、直流・直流変換器701WA、701WB、直流母線702WA、702WBおよびウインドファーム703A、703Bを備える。
直流・直流変換器701WAの一方の直流端は、直流母線702WAを介して、ウインドファーム703Aと接続される。直流・直流変換器701WAのもう一方の直流端は、直流母線104WAを介して、直流線路115と接続される。直流・直流変換器701WBの一方の直流端は、直流母線702WBを介して、ウインドファーム703Bと接続される。直流・直流変換器701WBのもう一方の直流端は、直流母線104WBを介して、直流線路115と接続される。
ここで、直流・直流変換器701WAおよびウインドファーム703Aは、しわ取り変換器100Cとして動作することができる。これにより、4端子直流送電システムにおいて、ウインドファーム703A、703Bの発電電力が直流・直流変換器701WA、701WBをそれぞれ介して通流する場合においても、直流系統の直流電圧を一定値に維持または追従させつつ、交直変換器103A、103Bがそれぞれ独立に有効電力調整制御を実施することが可能となる。
なお、2個以上のウインドファーム703A、703Bが直流・直流変換器と直流系統を介して電気的に接続する場合、ウインドファーム側のしわ取り制御は、運用の許す範囲で、ウインドファームが連系する直流・直流変換器のうち、少なくとも1つの直流・直流変換器のみで実施すればよい。
また、図9の例では、ウインドファーム連系4端子直流送電システムを示したが、5端子以上のウインドファーム連系多端子直流送電システムであってもよい。
図10は、第5実施形態に係る多端子直流送電システムが適用される電力システムの構成を示すブロック図である。
図10の電力システムは、図6の交直変換器103WB、交流母線102WBおよびウインドファーム106Bの代わりに、直流・直流変換器701、直流母線702およびウインドファーム703を備える。ここで、交直変換器103WAおよびウインドファーム106Aは、しわ取り変換器100Wとして動作することができる。
これにより、4端子直流送電システムにおいて、ウインドファーム106Aの発電電力が交直変換器103WAを介して通流し、ウインドファーム703の発電電力が直流・直流変換器701を介して通流する場合においても、直流系統の直流電圧を一定値に維持または追従させつつ、交直変換器103A、103Bがそれぞれ独立に有効電力調整制御を実施することが可能となる。
なお、2つのウインドファームのうち、1つが交流で集電され、交直変換器を介して直流線路と接続され、もう1つが直流で集電され、直流・直流変換器を介して直流線路と接続される場合、ウインドファーム側のしわ取り制御は、運用の許す範囲で、ウインドファームが連系する交直変換器または直流・直流変換器で実施すればよい。
また、図10の例では、ウインドファーム連系4端子直流送電システムを示したが、5端子以上のウインドファーム連系多端子直流送電システムであってもよい。
上述した実施形態では、再生可能エネルギー電源として風力発電装置を例にとって説明したが、再生可能エネルギー電源は風力発電装置に限定されることなく、風力発電装置以外の発電装置であってもよい。例えば、再生可能エネルギー電源は、太陽光、風力、潮力、流水・潮汐または地熱などを利用した発電装置であってもよい。
101A、101B 交流系統、102A、102B、102W 交流母線、103A、103B、103W 交直変換器、104A、104B、104W、702 直流母線、105 直流線路、106、703 ウインドファーム、301、501 減算器、302、502 演算器、303、503 加算器、401A、401B、801A、801B 風力発電装置、402、802 アレーケーブル、403、803 風力発電機、404、804 発電電力指令値演算部、701 直流・直流変換器

Claims (4)

  1. 再生可能エネルギー電源と交流系統である電力系統とが、それぞれ電力変換器を介し直流系統により接続され、前記再生可能エネルギー電源側で実施する前記直流系統の直流電圧に合わせた有効電力制御と、前記電力系統側で実施する前記交流系統の周波数変動に合わせた有効電力制御を独立に制御する多端子直流送電システムの制御方法であって、
    前記電力系統の電力変動に基づく前記直流系統の直流電圧の変化を前記再生可能エネルギー電源側で検出し、
    前記再生可能エネルギー電源側で検出された前記直流電圧の変化に基づいて、前記直流系統の直流電圧に合わせた有効電力制御を前記再生可能エネルギー電源側で実施するものであり、
    前記再生可能エネルギー電源と前記直流系統との間に接続された交直変換器を備え、
    前記交直変換器は、前記直流電圧の変化に基づいて交流母線の交流周波数を変化させ、
    前記再生可能エネルギー電源は、前記交流母線の交流周波数に基づいて前記有効電力制御を実施する、多端子直流送電システムの制御方法。
  2. 再生可能エネルギー電源と交流系統である電力系統とが、それぞれ電力変換器を介し直流系統により接続され、前記再生可能エネルギー電源側で実施する前記直流系統の直流電圧に合わせた有効電力制御と、前記電力系統側で実施する前記交流系統の周波数変動に合わせた有効電力制御を独立に制御する多端子直流送電システムの制御方法であって、
    前記電力系統の電力変動に基づく前記直流系統の直流電圧の変化を前記再生可能エネルギー電源側で検出し、
    前記再生可能エネルギー電源側で検出された前記直流電圧の変化に基づいて、前記直流系統の直流電圧に合わせた有効電力制御を前記再生可能エネルギー電源側で実施するものであり、
    前記再生可能エネルギー電源と前記直流系統との間に接続された直流・直流変換器を備え、
    前記直流・直流変換器は、前記直流系統の直流電圧の変化に基づいて直流母線の直流電圧を変化させ、
    前記再生可能エネルギー電源は、前記直流母線の直流電圧に基づいて前記有効電力制御を実施する、多端子直流送電システムの制御方法。
  3. 再生可能エネルギー電源と交流系統である電力系統とが、それぞれ電力変換器を介し直流系統により接続され、前記再生可能エネルギー電源側で実施する前記直流系統の直流電圧に合わせた有効電力制御と、前記電力系統側で実施する前記交流系統の周波数変動に合わせた有効電力制御を独立に制御する多端子直流送電システムであって、
    前記電力系統の電力変動に基づく前記直流系統の直流電圧の変化を前記再生可能エネルギー電源側で検出し、
    前記再生可能エネルギー電源側で検出された前記直流電圧の変化に基づいて、前記直流系統の直流電圧に合わせた有効電力制御を前記再生可能エネルギー電源側で実施するものであり、
    前記再生可能エネルギー電源と前記直流系統との間に接続された交直変換器を備え、
    前記交直変換器は、前記直流電圧の変化に基づいて交流母線の交流周波数を変化させ、
    前記再生可能エネルギー電源は、前記交流母線の交流周波数に基づいて前記有効電力制御を実施する、多端子直流送電システム。
  4. 再生可能エネルギー電源と交流系統である電力系統とが、それぞれ電力変換器を介し直流系統により接続され、前記再生可能エネルギー電源側で実施する前記直流系統の直流電圧に合わせた有効電力制御と、前記電力系統側で実施する前記交流系統の周波数変動に合わせた有効電力制御を独立に制御する多端子直流送電システムであって、
    前記電力系統の電力変動に基づく前記直流系統の直流電圧の変化を前記再生可能エネルギー電源側で検出し、
    前記再生可能エネルギー電源側で検出された前記直流電圧の変化に基づいて、前記直流系統の直流電圧に合わせた有効電力制御を前記再生可能エネルギー電源側で実施するものであり、
    前記再生可能エネルギー電源と前記直流系統との間に接続された直流・直流変換器を備え、
    前記直流・直流変換器は、前記直流系統の直流電圧の変化に基づいて直流母線の直流電圧を変化させ、
    前記前記再生可能エネルギー電源は、前記直流母線の直流電圧に基づいて前記有効電力制御を実施する、多端子直流送電システム。
JP2018050685A 2018-03-19 2018-03-19 多端子直流送電システムおよび多端子直流送電システムの制御方法 Active JP7046663B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018050685A JP7046663B2 (ja) 2018-03-19 2018-03-19 多端子直流送電システムおよび多端子直流送電システムの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018050685A JP7046663B2 (ja) 2018-03-19 2018-03-19 多端子直流送電システムおよび多端子直流送電システムの制御方法

Publications (2)

Publication Number Publication Date
JP2019165531A JP2019165531A (ja) 2019-09-26
JP7046663B2 true JP7046663B2 (ja) 2022-04-04

Family

ID=68066375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018050685A Active JP7046663B2 (ja) 2018-03-19 2018-03-19 多端子直流送電システムおよび多端子直流送電システムの制御方法

Country Status (1)

Country Link
JP (1) JP7046663B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740431B (zh) * 2020-06-11 2021-11-12 浙江运达风电股份有限公司 一种大型风电场参与电力系统调频控制方法
CN113285478B (zh) * 2021-05-26 2022-06-14 南方电网科学研究院有限责任公司 适用于海上风电场的串联多端直流系统的控制方法和装置
CN113629773A (zh) * 2021-09-09 2021-11-09 南方电网科学研究院有限责任公司 一种风力发电系统及其发电方法
WO2024033982A1 (ja) * 2022-08-08 2024-02-15 三菱電機株式会社 電力変換システムおよび制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140091630A1 (en) 2012-10-01 2014-04-03 Abb Research Ltd Medium voltage dc collection system with power electronics
JP2015220979A (ja) 2014-05-14 2015-12-07 エルエス産電株式会社Lsis Co., Ltd. コンバータ及びその動作方法
JP2016519924A (ja) 2013-04-22 2016-07-07 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 電力供給ネットワークに電力を供給する方法
JP2017011916A (ja) 2015-06-24 2017-01-12 株式会社日立製作所 多端子直流送電システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131936A (ja) * 1993-11-01 1995-05-19 Hitachi Ltd 直流送電制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140091630A1 (en) 2012-10-01 2014-04-03 Abb Research Ltd Medium voltage dc collection system with power electronics
JP2016519924A (ja) 2013-04-22 2016-07-07 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 電力供給ネットワークに電力を供給する方法
JP2015220979A (ja) 2014-05-14 2015-12-07 エルエス産電株式会社Lsis Co., Ltd. コンバータ及びその動作方法
JP2017011916A (ja) 2015-06-24 2017-01-12 株式会社日立製作所 多端子直流送電システム

Also Published As

Publication number Publication date
JP2019165531A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
JP7046663B2 (ja) 多端子直流送電システムおよび多端子直流送電システムの制御方法
Abdel-Khalik et al. Optimum power transmission-based droop control design for multi-terminal HVDC of offshore wind farms
Pinto et al. A novel distributed direct-voltage control strategy for grid integration of offshore wind energy systems through MTDC network
EP2793392B1 (en) Controller for controlling a power converter
EP3116086B1 (en) Operating a wind turbine being connected to a utility grid both via a hvdc power connection and via an umbilical ac cable with a network bridge controller performing a power and a voltage control
US10063176B2 (en) Operating a wind turbine being connected to a utility grid solely via a HVDC power connection with a network bridge controller performing a power and a voltage control
US9525284B2 (en) Medium voltage DC collection system with power electronics
KR101689315B1 (ko) 마이크로그리드의 멀티 주파수 제어 시스템 및 방법
US20180097450A1 (en) Hybrid high voltage direct current converter station and operation method therefor
CN106797181A (zh) 用于可再生能源的功率转换器系统
EP2485378A1 (en) Control arrangement and method for regulating the output voltage of a dc source power converter connected to a multi-source dc system
US10135354B2 (en) DC-link reference voltage determination for wind turbine converter systems
CN112290579B (zh) 一种直流耦合离网制氢系统及其控制方法
TW202037029A (zh) 電力變換系統及方法
CN107078506B (zh) 电压源转换器
JP6772118B2 (ja) 分散電源システムの制御装置、分散電源システム、分散電源システムの制御方法、及び分散電源システムの制御プログラム
Luque et al. Coordinated control for wind turbine and VSC-HVDC transmission to enhance FRT capability
CN210927096U (zh) 直流耦合系统
CN113746135A (zh) 柔性直流单元系统的黑启动协调控制方法及装置
CN114362215A (zh) 交流电解系统控制方法、装置及交流电解系统
Modepalli et al. Offshore wind energy systems using high frequency isolated current-fed modular converters
US20240162705A1 (en) Method for operating an energy supply system, device for exchanging electrical power in an energy supply system, and energy supply system
Benzazah et al. A robust control and design of generator-side converter for a multi-megawatt hydraulic energy conversion system
CN110690728A (zh) 光伏系统及其供电方法
Bharat et al. Asymmetrical Fault Analysis Using P2P Coordinated Control System for DFIG-STATCOM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220323

R150 Certificate of patent or registration of utility model

Ref document number: 7046663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150