JP7045775B2 - Biofuel production method using a distribution reactor - Google Patents

Biofuel production method using a distribution reactor Download PDF

Info

Publication number
JP7045775B2
JP7045775B2 JP2020187703A JP2020187703A JP7045775B2 JP 7045775 B2 JP7045775 B2 JP 7045775B2 JP 2020187703 A JP2020187703 A JP 2020187703A JP 2020187703 A JP2020187703 A JP 2020187703A JP 7045775 B2 JP7045775 B2 JP 7045775B2
Authority
JP
Japan
Prior art keywords
solid acid
catalyst
acid catalyst
raw material
material oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020187703A
Other languages
Japanese (ja)
Other versions
JP2021091875A (en
Inventor
衛華 銭
正明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJITUSYO CO.,LTD.
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Original Assignee
FUJITUSYO CO.,LTD.
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJITUSYO CO.,LTD., NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY filed Critical FUJITUSYO CO.,LTD.
Priority to PCT/JP2020/042387 priority Critical patent/WO2021106619A1/en
Publication of JP2021091875A publication Critical patent/JP2021091875A/en
Application granted granted Critical
Publication of JP7045775B2 publication Critical patent/JP7045775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Fats And Perfumes (AREA)

Description

本発明は、流通式反応装置を用いて原料油に適したバイオ燃料の製造方法に関する。 The present invention relates to a method for producing a biofuel suitable for raw material oil using a distribution type reactor.

今日、利用可能な石油資源の減少や地球環境の悪化、新興国の発展に伴う燃料の需要といった課題が生じた。 Today, challenges have arisen, such as the decline in available petroleum resources, the deterioration of the global environment, and the demand for fuel as emerging economies develop.

そのため、化石資源に替わるクリーンかつ再生可能な燃料や化学製品の製造プロセスの開発が必要となっている。 Therefore, it is necessary to develop a manufacturing process for clean and renewable fuels and chemical products that can replace fossil resources.

これより、バイオ燃料やバイオ化成品は国内産業や温室効果ガスの排出削減、化石資源への依存度の低下、地域の経済発展、国内のエネルギー安全保障に大きく貢献できることが期待される。 From this, it is expected that biofuels and biochemical products can greatly contribute to the reduction of domestic industry and greenhouse gas emissions, the reduction of dependence on fossil resources, regional economic development, and domestic energy security.

現在、バイオディーゼル燃料の製造法は、トリグリセリド(TG)を主成分とする油脂を水酸化カリウム、水酸化ナトリウムなどのアルカリ触媒の存在下、エステル交換反応により脂肪酸エステルを製造する方法が実用化されている。 Currently, as a method for producing a biodiesel fuel, a method for producing a fatty acid ester by a transesterification reaction in the presence of an alkaline catalyst such as potassium hydroxide or sodium hydroxide on an oil or fat containing triglyceride (TG) as a main component has been put into practical use. ing.

しかし、この方法では、原料となる油脂には多量の遊離脂肪酸(FFA)が存在し、これがエステル交換反応、生成物の分離又は精錬に悪影響を与えるため、前処理で除去しなければならない。 However, in this method, a large amount of free fatty acid (FFA) is present in the raw material fat and oil, which adversely affects the transesterification reaction, product separation or refining, and must be removed by pretreatment.

また、環境保全や化石燃料使用によるCO2放出量の削減のため、従来のディーゼルエンジン発電に使用された石油由来燃料油の一部あるいは全部を油脂由来燃料油の使用が注目されてきた。しかし、上記のように、油脂に含まれる遊離酸はディーゼルエンジンを腐食するため、その燃料油から遊離酸を除去しなければならない。 In addition, in order to protect the environment and reduce the amount of CO2 emitted by using fossil fuels, attention has been paid to the use of oil-derived fuel oil as part or all of the petroleum-derived fuel oil used for conventional diesel engine power generation. However, as mentioned above, the free acid contained in the fat and oil corrodes the diesel engine, so the free acid must be removed from the fuel oil.

これに対して、固体酸触媒の存在下でトリグリセリドとメタノール、エタノール等の低級アルコールを反応させ、トリグリセリドのエステル交換反応と遊離脂肪酸のエステル化を同時に行わせる方法が提案されている。 On the other hand, a method has been proposed in which triglyceride is reacted with a lower alcohol such as methanol or ethanol in the presence of a solid acid catalyst to simultaneously carry out transesterification reaction of triglyceride and esterification of free fatty acid.

特開平6-313183号公報Japanese Unexamined Patent Publication No. 6-313183 特開2009-114289JP 2009-114289 国際公開第2004/096962号International Publication No. 2004/096962

しかし、これらの方法では、エステル交換反応と遊離脂肪酸のエステル化の両方に低級アルコールが使用され、低級アルコールの使用量が多くなり、コスト面で問題がある。 However, in these methods, lower alcohols are used for both the transesterification reaction and the esterification of free fatty acids, the amount of lower alcohols used increases, and there is a problem in terms of cost.

そこで、本発明者は新規固体酸触媒を用いて低級アルコール使用量を制御し、原料油中のトリグリセリドが低級アルコールとのエステル交換が殆ど起こらず、一方遊離脂肪酸の低級アルコールとのエステル化反応を選択的に行われるような反応条件についてバッチ式反応装置を用いて検討し、その結果に基づいた最適な反応条件を先に提案した(特願2018-137583)。 Therefore, the present inventor controls the amount of lower alcohol used by using a novel solid acid catalyst, and transesterification of the triglyceride in the raw material oil with the lower alcohol hardly occurs, while the esterification reaction of the free fatty acid with the lower alcohol is carried out. The reaction conditions to be selectively carried out were examined using a batch-type reaction apparatus, and the optimum reaction conditions based on the results were proposed first (Japanese Patent Application No. 2018-137583).

しかし、バッチ式反応装置はバイオ燃料の大量生産には不向きであり、そこで流動式反応装置を用いて反応条件を検討した結果、流動式反応装置を用いた場合の最適な反応条件を見いだし、本発明を提案するものである。 However, the batch reactor is not suitable for mass production of biofuels, and as a result of examining the reaction conditions using the fluid reactor, the optimum reaction conditions when the fluid reactor was used were found. It proposes an invention.

本発明では、固体酸触媒の存在下で遊離脂肪酸を含む原料油と低級アルコールを反応させる流動式反応装置を用いたバイオ燃料の製造方法において、固体酸触媒としてSiO2/Al2O3系固体酸触媒メソポーラスシリカにアルミニウムを一部導入したSiO2/Al2O3系固体酸触媒、Al2O3/B2O3系固体酸触媒等から選択された触媒を使用し、反応温度として100℃~300℃、好ましくは170℃~300℃とすることを提案するものである。 In the present invention, in a method for producing a biofuel using a fluid reaction apparatus in which a raw material oil containing a free fatty acid and a lower alcohol are reacted in the presence of a solid acid catalyst, a SiO 2 / Al 2 O 3 system solid is used as the solid acid catalyst. A catalyst selected from an acid catalyst , a SiO 2 / Al 2 O 3 system solid acid catalyst in which aluminum is partially introduced into mesoporous silica, an Al 2 O 3 / B 2 O 3 system solid acid catalyst, etc. is used, and the reaction temperature is set. It is proposed that the temperature be 100 ° C to 300 ° C, preferably 170 ° C to 300 ° C.

本発明において使用させる固体酸触媒SiO2/Al2O3系固体酸触媒メソポーラスシリカにアルミニウムを一部導入したSiO2/Al2O3系固体酸触媒、Al2O3/B2O3系固体酸触媒について詳しく述べる。 Solid acid catalyst used in the present invention SiO 2 / Al 2 O 3 system solid acid catalyst, SiO 2 / Al 2 O 3 system solid acid catalyst in which aluminum is partially introduced into mesoporous silica, Al 2 O 3 / B 2 O 3 The system solid acid catalyst will be described in detail.

<シリカーアルミナ系個体酸触媒:SiO2/Al2O3(Si/Al)>
本発明において使用されるシリカーアルミナ系固体酸触媒は、アモルファスなもので、アルミナの重量比は10%~30%で、成型されたシリカーアルミナである。
<Silica-alumina solid acid catalyst: SiO 2 / Al 2 O 3 (Si / Al)>
The silica-alumina-based solid acid catalyst used in the present invention is amorphous, and is a molded silica-alumina having a weight ratio of alumina of 10% to 30%.

なお、上記特許文献3に固体酸触媒として記載されるゼオライトは結晶体であるが、本発明で使用されるSiO2/Al2O3系固体酸触媒はアモルファスな成型品である。 The zeolite described as the solid acid catalyst in Patent Document 3 is a crystalline substance, but the SiO 2 / Al 2 O 3 system solid acid catalyst used in the present invention is an amorphous molded product.

<酸化ホウ素―アルミナ系固体酸触媒:Al2O3/B2O3(B/Al(x)>
本発明において使用される固体酸触媒の一例として、次のように酸化ホウ素―アルミナ(Al2O3/B2O3)を調製した。適量の市販アルミナ担体を乾燥器で120℃、1時間乾燥させ、適当なホウ素塩を蒸留水に溶解し、含浸法でホウ素をアルミナ担体に担持した。次に電気炉でこの触媒前駆体を450℃で焼成し、適量な酸化ホウ素を担持した酸化ホウ素―アルミナ触媒(B/Al(x)、x:B2O3担持量、重量%)を調製した。
<Boron oxide-aluminum solid acid catalyst: Al 2 O 3 / B 2 O 3 (B / Al (x)>
As an example of the solid acid catalyst used in the present invention, boron oxide-alumina (Al 2 O 3 / B 2 O 3 ) was prepared as follows. An appropriate amount of a commercially available alumina carrier was dried at 120 ° C. for 1 hour in a dryer, an appropriate boron salt was dissolved in distilled water, and boron was supported on the alumina carrier by an impregnation method. Next, this catalyst precursor was calcined at 450 ° C. in an electric furnace to prepare a boron oxide-alumina catalyst (B / Al (x), x: B 2 O 3 supported, weight%) carrying an appropriate amount of boron oxide. did.

<メソポーラスシリカにアルミニウムを一部導入したSiO2/Al2O3系固体酸触媒:アルミニウムを導入したSBA-15固体酸触媒、Al-SBA-15(A/SBA15)>
本発明において使用される固体酸触媒の一例として、次のようなアルミニウム挿入したSBA-15固体酸触媒を調製した。SBA-15合成に使用する適量のPluronic P123に、適量な塩酸を加え、撹拌・溶解させ、適量なテトラエチルシリルケート(TEOS)を加え、3.0時間撹拌した。適量のアンモニウム塩を適当な塩酸水溶液に溶解したものを加えて、撹拌した後、25%アンモニア水でPH調整を行い、更に20h撹拌した。40℃の条件下で20時間撹拌し、白色の沈殿が生じた。この沈殿を適当な温度・時間で静置エージングを行った。最後に、吸引濾過しながら蒸留水で洗浄し、得られた粉末を550℃で6時間焼成させ、アルミニウム挿入したSBA-15固体酸触媒を調製した。
<SiO 2 / Al 2 O 3 solid acid catalyst with aluminum partially introduced into mesoporous silica: SBA-15 solid acid catalyst with aluminum introduced, Al-SBA-15 (A / SBA15)>
As an example of the solid acid catalyst used in the present invention, the following aluminum-inserted SBA-15 solid acid catalyst was prepared. To an appropriate amount of Pluronic P123 used for SBA-15 synthesis, an appropriate amount of hydrochloric acid was added, stirred and dissolved, an appropriate amount of tetraethylsilylate (TEOS) was added, and the mixture was stirred for 3.0 hours. An appropriate amount of ammonium salt dissolved in an appropriate aqueous hydrochloric acid solution was added, and the mixture was stirred, then PH was adjusted with 25% aqueous ammonia, and the mixture was further stirred for 20 hours. Stirring under the condition of 40 ° C. for 20 hours resulted in a white precipitate. This precipitate was statically aged at an appropriate temperature and time. Finally, the powder was washed with distilled water while suction filtration, and the obtained powder was fired at 550 ° C. for 6 hours to prepare an aluminum-inserted SBA-15 solid acid catalyst.

一方、本発明で使用できる原料油としては、各種植物油、動物油脂、そしてこれらの油脂由来脂肪酸やエステルの混合物等を挙げることができる。 On the other hand, examples of the raw material oil that can be used in the present invention include various vegetable oils, animal fats and oils, and mixtures of fatty acids and esters derived from these fats and oils.

低級アルコールとしては、メタノール、エタノール等を挙げることができる。 Examples of the lower alcohol include methanol, ethanol and the like.

原料油と低級アルコールとは反応器内を上方又は下方より順方向に通過させたり、或いは向流方向に通過させて反応させる。 The feedstock oil and the lower alcohol are allowed to pass through the reactor in the forward direction from above or below, or in the countercurrent direction to react.

低級アルコールと原料油の質量比は0.01~1.0、好ましくは0.1~0.8である。特に遊離脂肪酸の高い転化率とトリグリセライドの低い転化率を得るためには、質量比は0.3が最適である。 The mass ratio of the lower alcohol to the feedstock oil is 0.01 to 1.0, preferably 0.1 to 0.8. In particular, in order to obtain a high conversion rate of free fatty acids and a low conversion rate of triglycerides, a mass ratio of 0.3 is optimal.

また、反応器内を通過させる低級アルコールと原料油の液空間速度(LHSV)は0.1~10(h-1)、好ましいのは0.5~6(h-1)の範囲である。 The liquid space velocity (LHSV) of the lower alcohol and the feedstock oil passing through the reactor is in the range of 0.1 to 10 (h -1 ), preferably 0.5 to 6 (h -1 ).

本発明では、以上のような反応条件で流動式反応装置を用いることにより、原料油中の遊離脂肪酸の高い転化率を高めるとともに、原料油中のトリグリセリドの転化率を抑えることができ、ディーゼルエンジンに適したバイオ燃料を量産できる。 In the present invention, by using the fluid reactor under the above reaction conditions, it is possible to increase the high conversion rate of free fatty acids in the raw material oil and suppress the conversion rate of triglyceride in the raw material oil, and the diesel engine. It is possible to mass-produce biofuel suitable for.

図中の反応条件によるMeOHとPAOの質量比の影響を示す図The figure which shows the influence of the mass ratio of MeOH and PAO by the reaction condition in the figure. 図中の反応条件による液空間速度(LHSV)の影響を示す図The figure showing the influence of the liquid space velocity (LHSV) depending on the reaction conditions in the figure. 図中の反応条件による液空間速度(LHSV)の影響を示す図The figure showing the influence of the liquid space velocity (LHSV) depending on the reaction conditions in the figure. 図中の反応条件による担持量の影響を示す図The figure which shows the influence of the loading amount by the reaction condition in the figure. 図中の反応条件による触媒の影響を示す図The figure which shows the influence of the catalyst by the reaction condition in the figure. 図中の反応条件による各触媒についての酸価(AV)を示す図The figure which shows the acid value (AV) for each catalyst by the reaction condition in the figure. 図中の反応条件による各触媒についての粘度を示す図 The figure showing the viscosity of each catalyst according to the reaction conditions in the figure , 本発明に使用する流通式反応装置の概略図Schematic diagram of the flow-type reactor used in the present invention

固体酸触媒の存在下で遊離脂肪酸を含む原料油と低級アルコールを反応させる流動式反応装置を用いたバイオ燃料の製造方法において、固体酸触媒としてSiO2/Al2O3系固体酸触媒メソポーラスシリカにアルミニウムを一部導入したSiO2/Al2O3系固体酸触媒、Al2O3/B2O3系固体酸触媒から選択された触媒を使用し、低級アルコールと原料油の質量比0.1~0.8、反応温度として170℃~300℃、液空間速度(LHSV)0.5(h-1)~6(h-1)で行わせるバイオ燃料の製造方法。 In a method for producing a biofuel using a fluid reaction device that reacts a raw material oil containing free fatty acids with a lower alcohol in the presence of a solid acid catalyst, the SiO 2 / Al 2 O 3 system solid acid catalyst , mesoporous, is used as the solid acid catalyst. Using a catalyst selected from SiO 2 / Al 2 O 3 series solid acid catalysts and Al 2 O 3 / B 2 O 3 series solid acid catalysts in which aluminum is partially introduced into silica, the mass ratio of lower alcohol to raw material oil A method for producing a biofuel, which is carried out at 0.1 to 0.8, a reaction temperature of 170 ° C to 300 ° C, and a liquid space velocity (LHSV) of 0.5 (h -1 ) to 6 (h -1 ).

本発明に使用する反応装置
図8は、流通式反応装置の概略図であり、触媒が充填された反応器の外周にはヒータが設けられる。
Reactor used in the present invention
FIG. 8 is a schematic view of a flow-type reactor, in which a heater is provided on the outer periphery of the reactor filled with the catalyst.

それぞれのリザーバーに収納された原料油とアルコールはポンプにより反応器内に送られ、触媒層を通過させることにより反応が行われる。 The raw material oil and alcohol stored in each reservoir are pumped into the reactor and passed through the catalyst layer to carry out the reaction.

反応液は、コンデンサーを通して減圧され、分離槽に送られ、分離槽では上部からは改質油が回収され、下部の層は分離塔に送られ、その頂部からは少量の未反応のアルコールが回収され、回収されたアルコールはリザーバーに収納され、反応器に送られ、再び反応に供される。 The reaction solution is depressurized through a condenser and sent to a separation tank, in which the reforming oil is recovered from the upper part, the lower layer is sent to the separation tower, and a small amount of unreacted alcohol is recovered from the top. The recovered and recovered alcohol is stored in a reservoir, sent to a reactor, and subjected to the reaction again.

低級アルコールとしては、メタノール(MeOH)が使用され、原料油は約37.4%の遊離脂肪酸を含むパーム酸オイル(PAO)が使用され、PAOの酸価は75.5mgKOH/g、動粘度は34.4mPa・sであった。 Methanol (MeOH) is used as the lower alcohol, palm acid oil (PAO) containing about 37.4% free fatty acid is used as the raw material oil, the acid value of PAO is 75.5 mgKOH / g, and the kinematic viscosity is 34.4 mPa. It was s.

固体酸触媒についてはSiO2/Al2O3系固体酸触媒(Si/Al)、Al2O3/B2O3系固体酸触媒(B/Al)、メソポーラスシリカSBA-15にアルミニウムを導入したAl-SBA-15系固体酸触媒(Al/SBA)を使用した。 For solid acid catalysts, aluminum is introduced into SiO 2 / Al 2 O 3 series solid acid catalysts (Si / Al), Al 2 O 3 / B 2 O 3 series solid acid catalysts (B / Al), and mesoporous silica SBA-15. The Al-SBA-15 solid acid catalyst (Al / SBA) was used.

反応条件:200℃、220℃、240℃における、原料油中の遊離脂肪酸(FFA)の転化率と原料油中のトリグリセリド(TG)の転化率についてのMeOHとPAOの質量比の影響を図1に示す。 Reaction conditions: Effect of mass ratio of MeOH and PAO on the conversion rate of free fatty acid (FFA) in raw material oil and the conversion rate of triglyceride (TG) in raw material oil at 200 ° C, 220 ° C and 240 ° C. Shown in.

反応条件:200℃、220℃、240℃における、原料油中の遊離脂肪酸(FFA)の転化率と原料油中のトリグリセリド(TG)の転化について、触媒としてSiO2/Al2O3系固体酸触媒(Si/Al)を使用した場合の液空間速度(LHSV)の影響を図2に示す。 Reaction conditions: SiO 2 / Al 2 O 3 system solid acid as a catalyst for the conversion rate of free fatty acid (FFA) in raw material oil and the conversion of triglyceride (TG) in raw material oil at 200 ° C, 220 ° C and 240 ° C. The effect of the liquid space velocity (LHSV) when a catalyst (Si / Al) is used is shown in FIG.

反応条件:200℃、220℃、240℃における、原料油中の遊離脂肪酸(FFA)の転化率と原料油中のトリグリセリド(TG)の転化について、触媒としてAl2O3/B2O3系固体酸触媒(B/Al)SiO2/Al2O3系固体酸触媒(Si/Al)を使用した場合の液空間速度(LHSV)の影響を図3に示す。 Reaction conditions: Al 2 O 3 / B 2 O 3 system as a catalyst for the conversion rate of free fatty acid (FFA) in raw material oil and the conversion of triglyceride (TG) in raw material oil at 200 ° C, 220 ° C and 240 ° C. Figure 3 shows the effect of the liquid space velocity (LHSV) when a solid acid catalyst (B / Al) SiO 2 / Al 2 O 3 system solid acid catalyst (Si / Al) is used.

反応条件:200℃、220℃、240℃における、原料油中の遊離脂肪酸(FFA)の転化率と原料油中のトリグリセリド(TG)の転化について、触媒としてAl2O3/B2O3系固体酸触媒(B/Al)/Alを使用した場合の担持量の影響を図4に示す。 Reaction conditions: Al 2 O 3 / B 2 O 3 system as a catalyst for the conversion rate of free fatty acid (FFA) in raw material oil and the conversion of triglyceride (TG) in raw material oil at 200 ° C, 220 ° C and 240 ° C. FIG. 4 shows the effect of the carrying amount when the solid acid catalyst (B / Al) / Al is used.

反応条件:200℃、220℃、240℃における、原料油中の遊離脂肪酸(FFA)の転化率と原料油中のトリグリセリド(TG)の転化について、触媒の影響を図5に示す。 Reaction conditions: The effect of the catalyst on the conversion rate of free fatty acid (FFA) in the feedstock oil and the conversion of triglyceride (TG) in the feedstock oil at 200 ° C., 220 ° C. and 240 ° C. is shown in FIG.

反応条件:200℃、220℃、240℃における、各触媒についての酸価(AV)を図6に示す。 Reaction conditions: The acid value (AV) for each catalyst at 200 ° C, 220 ° C and 240 ° C is shown in FIG.

反応条件:240℃、MeOH::PAO=0.3(g/g)、LHSV:1.6(h-1)における各固体酸触媒についての粘度を図7に示す。 The viscosities of each solid acid catalyst at reaction conditions: 240 ° C., MeOH :: PAO = 0.3 (g / g), and LHSV: 1.6 (h-1) are shown in FIG.

また、流動式反応装置活性試験結果を表1に示すものである。 The results of the flow reactor activity test are shown in Table 1.

なお、遊離酸(FFA)転化率はガスクロを用いて測定し、トリグリセリド(TG)転化率はFFA転化率と脂肪酸メチルエステル(FAME)収率より求める。 The free acid (FFA) conversion rate is measured using gas chromatography, and the triglyceride (TG) conversion rate is determined from the FFA conversion rate and the fatty acid methyl ester (FAME) yield.

なお粘度はバイオディーゼル(BDF)の基準値は40℃での動粘度であり、粘度計(A&D製SV-10A)を利用し、50℃から室温までの粘度を測定し、40℃の点での密度で割って動粘度を算出した。 The standard value of biodiesel (BDF) is the kinematic viscosity at 40 ° C, and the viscosity from 50 ° C to room temperature is measured using a viscometer (A & D SV-10A) at 40 ° C. The kinematic viscosity was calculated by dividing by the density of.

表1は流動式反応装置活性試験結果を示すものである。 Table 1 shows the results of the flow reactor activity test.

Figure 0007045775000001
Figure 0007045775000001

表1中、LHSV: 原料油体積流量/触媒体積(h-1)
転化率1):原料油中のトリグリセリドの転換率(%)
転化率2):原料油中遊離脂肪酸(FFA)の転化率(%)
原料油:約55.0%の遊離脂肪酸を含むパーム酸オイル(PAO)で、酸価は110.9mgKOH/g原料油で、動粘度は34.4mPa・sであった。
In Table 1, LHSV: Raw oil volume flow rate / catalyst volume (h -1 )
Conversion rate 1): Conversion rate of triglyceride in raw material oil (%)
Conversion rate 2): Conversion rate (%) of free fatty acids (FFA) in raw material oil
Raw material oil: Palm acid oil (PAO) containing about 55.0% free fatty acid, having an acid value of 110.9 mgKOH / g raw material oil and having an kinematic viscosity of 34.4 mPa · s.

実施例についての考察
(1)固体酸触媒Si/Alを用いてMeOHとPAOの質量比について考察結果、質量比が0.3(g/g)の時高いFFAより低いTG転化率が得られる。したがって質量比が0.3(g/g)がの時、最適である。
(2)固体酸触媒Si/AlとB/Alを用いてLHSVについて考察結果、両方とも1.6(h-1)の時FFAの転化率が高かった。
(3)三つの触媒について考察結果、B/Al方の酸価が一番低
(4)粘度測定もB/Alの動粘度が一番低かった。
(5)最適の反応条件としては、触媒B/Al、反応温度240℃、MeOH:PAO質量比は0.3(g/g)、LHSVは1.6(h-1)が最適である。
Discussion on Examples (1) As a result of considering the mass ratio of MeOH and PAO using the solid acid catalyst Si / Al, a lower TG conversion rate than FFA, which is higher when the mass ratio is 0.3 (g / g), is obtained. Therefore, it is optimal when the mass ratio is 0.3 (g / g).
(2) As a result of considering LHSV using solid acid catalysts Si / Al and B / Al, the conversion rate of FFA was high at 1.6 (h -1 ) in both cases.
(3) As a result of considering the three catalysts, the acid value of B / Al was the lowest. (4) The kinematic viscosity of B / Al was also the lowest in the viscosity measurement.
(5) The optimum reaction conditions are catalyst B / Al, reaction temperature 240 ° C., MeOH: PAO mass ratio of 0.3 (g / g), and LHSV of 1.6 (h-1).

以上要するに、本発明によれば流動式反応装置を用いて遊離脂肪酸を含む原料油と低級アルコールを反応させることにより遊離脂肪酸の転化率が高く、且つトリグリセライドの転化率が低く抑えられてディーゼルエンジンに適した燃料の量産ができる。 In short, according to the present invention, the conversion rate of free fatty acids is high and the conversion rate of triglyceride is suppressed to a low level by reacting the raw material oil containing free fatty acids with a lower alcohol using a fluid reaction device, so that a diesel engine can be used. Mass production of suitable fuels is possible.

Claims (3)

固体酸触媒の存在下で遊離脂肪酸を含む原料油と低級アルコールを反応させる流動式反応装置を用いたバイオ燃料の製造方法において、固体酸触媒としてアモルファスな成型品であるSiO 2 /Al 2 O 3 系固体酸触媒、メソポーラスシリカにアルミニウムを一部導入したSiO2/Al2O3系固体酸触媒、Al2O3 /B2O3系固体酸触媒から選択された触媒を使用し、反応温度として100℃~300℃で行わせるバイオ燃料の製造方法。 SiO 2 / Al 2 O , which is an amorphous molded product as a solid acid catalyst in a method for producing a biofuel using a fluid reaction device that reacts a raw material oil containing free fatty acids with a lower alcohol in the presence of a solid acid catalyst. Reaction using a catalyst selected from a 3 system solid acid catalyst , a SiO 2 / Al 2 O 3 system solid acid catalyst in which aluminum is partially introduced into mesoporous silica, and an Al 2 O 3 / B 2 O 3 system solid acid catalyst. A method for producing a biofuel, which is carried out at a temperature of 100 ° C to 300 ° C. 低級アルコールと遊離脂肪酸を含む原料油の質量比を0.01~1.0の範囲で行う請求項1記載のバイオ燃料の製造方法。 The method for producing a biofuel according to claim 1, wherein the mass ratio of the raw material oil containing the lower alcohol and the free fatty acid is in the range of 0.01 to 1.0 . 液空間速度(LHSV)を0.1(h-1)~10(h-1)の範囲で行う請求項1記載のバイオ燃料の製造方法。 The method for producing a biofuel according to claim 1, wherein the liquid space velocity (LHSV) is in the range of 0.1 (h -1 ) to 10 (h -1 ).
JP2020187703A 2019-11-29 2020-11-11 Biofuel production method using a distribution reactor Active JP7045775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/042387 WO2021106619A1 (en) 2019-11-29 2020-11-13 Bio-fuel production method using flow-type reaction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019216912 2019-11-29
JP2019216912 2019-11-29

Publications (2)

Publication Number Publication Date
JP2021091875A JP2021091875A (en) 2021-06-17
JP7045775B2 true JP7045775B2 (en) 2022-04-01

Family

ID=76311839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020187703A Active JP7045775B2 (en) 2019-11-29 2020-11-11 Biofuel production method using a distribution reactor

Country Status (1)

Country Link
JP (1) JP7045775B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096962A1 (en) 2003-04-29 2004-11-11 Escola De Química/Ufrj Catalytic process to the esterification of fatty acids present in the acid grounds of the palm using acid solid catalysts
JP2005206575A (en) 2003-08-29 2005-08-04 Nippon Shokubai Co Ltd Production method for fatty acid alkyl ester and/or glycerol and fatty acid alkyl ester-containing composition
JP2009019197A (en) 2007-06-11 2009-01-29 Kao Corp Method for production of fatty acid ester
JP2011167677A (en) 2010-02-22 2011-09-01 Korea Inst Of Energy Research Method for producing tungsten oxide-alumina catalyst, tungsten oxide-alumina catalyst produced by the method and method for removing free fatty acid from free fatty acid-including waste edible oil by using the catalyst
WO2013137286A1 (en) 2012-03-13 2013-09-19 株式会社ダイキアクシス Solid acid catalyst, method for manufacturing same, and method for manufacturing a fatty acid alkyl ester using same
JP2014504945A (en) 2010-11-02 2014-02-27 エボニック デグサ ゲーエムベーハー Process for producing supported catalysts and use of said catalysts for esterification of free fatty acids in vegetable oils
WO2014115356A1 (en) 2013-01-28 2014-07-31 独立行政法人産業技術総合研究所 Transesterification catalyst and method for producing biodiesel fuel using transesterification catalyst
WO2020022143A1 (en) 2018-07-23 2020-01-30 富士通商株式会社 Method for producing biofuel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096962A1 (en) 2003-04-29 2004-11-11 Escola De Química/Ufrj Catalytic process to the esterification of fatty acids present in the acid grounds of the palm using acid solid catalysts
JP2005206575A (en) 2003-08-29 2005-08-04 Nippon Shokubai Co Ltd Production method for fatty acid alkyl ester and/or glycerol and fatty acid alkyl ester-containing composition
JP2009019197A (en) 2007-06-11 2009-01-29 Kao Corp Method for production of fatty acid ester
JP2011167677A (en) 2010-02-22 2011-09-01 Korea Inst Of Energy Research Method for producing tungsten oxide-alumina catalyst, tungsten oxide-alumina catalyst produced by the method and method for removing free fatty acid from free fatty acid-including waste edible oil by using the catalyst
JP2014504945A (en) 2010-11-02 2014-02-27 エボニック デグサ ゲーエムベーハー Process for producing supported catalysts and use of said catalysts for esterification of free fatty acids in vegetable oils
WO2013137286A1 (en) 2012-03-13 2013-09-19 株式会社ダイキアクシス Solid acid catalyst, method for manufacturing same, and method for manufacturing a fatty acid alkyl ester using same
WO2014115356A1 (en) 2013-01-28 2014-07-31 独立行政法人産業技術総合研究所 Transesterification catalyst and method for producing biodiesel fuel using transesterification catalyst
WO2020022143A1 (en) 2018-07-23 2020-01-30 富士通商株式会社 Method for producing biofuel

Also Published As

Publication number Publication date
JP2021091875A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
Mohadesi et al. Biodiesel production using alkali earth metal oxides catalysts synthesized by sol-gel method
Shu et al. Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+
Taufiq-Yap et al. Biodiesel production via transesterification of palm oil using NaOH/Al2O3 catalysts
CN101198677B (en) Method and equipment for producing fatty acid alkyl-ester by using fatty acid
CN101568622B (en) Converting loads from renewable sources into good-quality diesel fuel bases
CN103805224A (en) Preparation method for aviation kerosene
BRPI0811661B1 (en) HYDROTREATMENT PROCESS OF A LIQUID FOOD AND HYDRODEOXYGENATION PROCESSES OF A RENEWABLE RESOURCE
JP5866740B2 (en) Method for producing fuel oil
Kay et al. Biodiesel production from low quality crude jatropha oil using heterogeneous catalyst
EA029057B1 (en) Catalyst and processes for the production of diesel fuel from natural gas, natural gas liquids, or other gaseous feedstocks
CN101815777A (en) The high energy efficiency method of preparation biologically based fuels
CN107987868B (en) Method for preparing liquid fuel by stepwise deoxygenation of grease
US11427776B2 (en) Method for producing biofuel
Kyrychenko et al. Alternative fuels from vegetable oils: innovative methods and technologies of production and usage
JP7045775B2 (en) Biofuel production method using a distribution reactor
WO2021106619A1 (en) Bio-fuel production method using flow-type reaction device
WO2010113011A2 (en) Novel catalyst composition for biodiesel production and process for preparing the same
Jiang et al. Catalytic cracking of acidified oil and modification of pyrolytic oils from soap stock for the production of a high-quality biofuel
HAJY et al. Efficient Synthesis of biodiesel from waste cooking oil catalysed by Al2O3 impregnated with NaOH
Andrifar et al. Optimization of sustainable biodiesel production from waste cooking oil using heterogeneous alkali catalyst
Deva et al. Influence of various parameters on biodiesel production using different feedstock: A review
Yusuff et al. KINETIC STUDY OF TRANSESTERIFICATION OF WASTE FRYING OIL TO BIODIESEL USING ANTHILLEGGSHELL-Ni-Co MIXED OXIDE COMPOSITE CATALYST.
Wang et al. Mg-Al hydrotalcite/γ-Al2O3 as fixed-bed catalyst in biodiesel production
EP2862915A1 (en) Method for manufacturing biodiesel
CN102911697A (en) Method for producing clean fuels by hydrogenation of biological oil and fat

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20201203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220319

R150 Certificate of patent or registration of utility model

Ref document number: 7045775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250