JP7045028B2 - Direct carbon fuel cell - Google Patents

Direct carbon fuel cell Download PDF

Info

Publication number
JP7045028B2
JP7045028B2 JP2021013764A JP2021013764A JP7045028B2 JP 7045028 B2 JP7045028 B2 JP 7045028B2 JP 2021013764 A JP2021013764 A JP 2021013764A JP 2021013764 A JP2021013764 A JP 2021013764A JP 7045028 B2 JP7045028 B2 JP 7045028B2
Authority
JP
Japan
Prior art keywords
anode
solid carbon
carbon
fuel cell
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021013764A
Other languages
Japanese (ja)
Other versions
JP2021073661A (en
Inventor
弘達 渡部
慎一 作野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Electric Power Development Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Tokyo Institute of Technology NUC filed Critical Electric Power Development Co Ltd
Priority to JP2021013764A priority Critical patent/JP7045028B2/en
Publication of JP2021073661A publication Critical patent/JP2021073661A/en
Application granted granted Critical
Publication of JP7045028B2 publication Critical patent/JP7045028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は直接炭素燃料電池に関する。 The present invention relates directly to a carbon fuel cell.

従来の燃料電池としては、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)、固体酸化物型燃料電池(SOFC)、固体高分子型燃料電池(PEFC)等が知られている。
また、溶融炭酸塩型燃料電池や固体酸化物型燃料電池が気体燃料を用いるのに対して、固体炭素燃料を使用する直接炭素燃料電池(DCFC)も提案されている。
非特許文献1、2には、溶融炭酸塩を電解質として用い、燃料である炭素粉末を電解質中に分散させて用いた直接炭素燃料電池の例が記載されている。
直接炭素燃料電池の電気化学反応は以下の通りである。
カソード:O+2CO+4e→2CO 2-
アノード:C+2CO 2-→3CO+4e
総括反応:C+O→CO
アノードでの反応は、アノードと、固体炭素燃料と、電解質である溶融炭酸塩との三相界面で生じる。
As conventional fuel cells, phosphoric acid type fuel cells (PAFC), molten carbonate type fuel cells (MCFC), solid oxide type fuel cells (SOFC), solid polymer type fuel cells (PEFC) and the like are known. There is.
Further, while molten carbonate fuel cells and solid oxide fuel cells use gaseous fuel, direct carbon fuel cells (DCFC) using solid carbon fuel have also been proposed.
Non-Patent Documents 1 and 2 describe an example of a direct carbon fuel cell in which molten carbonate is used as an electrolyte and carbon powder as a fuel is dispersed in the electrolyte.
The electrochemical reaction of the direct carbon fuel cell is as follows.
Cathode: O 2 + 2CO 2 + 4e- → 2CO 3 2-
Anode: C + 2CO 3 2- → 3CO 2 + 4e-
Summary reaction: C + O 2 → CO 2
The reaction at the anode occurs at the three-phase interface between the anode, the solid carbon fuel and the molten carbonate, which is the electrolyte.

Xiang Li、外4名、「Evaluation of raw coals as fuels for direct carbon fuel cells」、Journal of Power Sources、195(2010)、p.4051-4058Xiang Li, 4 outsiders, "Evaluation of coals as fuels for direct carbon fuel cells", Journal of Power Fuel cells, 195 (2010), p. 4051-4058 山村洸陽、外3名、「No.56 直接炭素燃料電池(DCFC)の構成要素の発電特性に及ぼす影響」、石炭科学会議発表論文集、一般社団法人日本エネルギー学会、2015年10月、第52巻、p.112-113Koyo Yamamura, 3 outsiders, "No. 56 Effect of Direct Carbon Fuel Cell (DCFC) Components on Power Generation Characteristics", Proceedings of the Coal Science Conference, Japan Energy Society, October 2015, No. Volume 52, p. 112-113

しかしながら、非特許文献1、2で開示されている直接炭素燃料電池の発電性能は充分とは言えず、改良が求められる。
本発明は、発電性能に優れた直接炭素燃料電池の提供を目的とする。
However, the power generation performance of the direct carbon fuel cell disclosed in Non-Patent Documents 1 and 2 is not sufficient, and improvement is required.
An object of the present invention is to provide a direct carbon fuel cell having excellent power generation performance.

本発明は以下の態様を有する。
[1]溶融炭酸塩からなる電解質と、
前記電解質と酸素と二酸化炭素に接するカソードと、
前記電解質に接するアノードと、
前記アノード近傍の前記電解質中に存在する粒状の固体炭素と、
前記アノードと前記カソードとの間に設けられ、前記電解質を通過させ、前記固体炭素を通過させない隔壁とを有し、
前記固体炭素が前記アノードと前記隔壁との間で挟持され、前記アノードに前記固体炭素が圧接されている、直接炭素燃料電池。
[2]前記アノードを前記隔壁へ向かう方向に加圧する加圧手段を有する、[1]に記載の直接炭素燃料電池。
[3] 前記アノードが、気泡を逃がすための貫通孔を有する、[1]又は[2]に記載の直接炭素燃料電池。
[4]前記アノードの近傍に、気泡が抜ける隙間が設けられている、[1]乃至[3]のいずれかに記載の直接炭素燃料電池。
なお、本発明は、以下の態様を含む。
[11] 溶融炭酸塩からなる電解質と、前記電解質と酸素と二酸化炭素に接するカソードと、前記電解質に接するアノードと、前記アノード近傍の前記電解質中に存在する粒状の固体炭素と、前記アノードと前記カソードとの間に設けられ、前記電解質を通過させ、前記固体炭素を通過させない隔壁とを有し、前記アノードの少なくとも一部に、前記固体炭素を通過させない貫通孔が設けられており、前記貫通孔の開口面に前記固体炭素が圧接されていることを特徴とする直接炭素燃料電池。
[12] 前記固体炭素が前記貫通孔の開口面と前記隔壁の一部とで挟持されている、[11]の直接炭素燃料電池。
[13] 前記貫通孔の開口面と前記固体炭素とを密着させる方向に加圧する加圧手段を有する、[11]または[12]の直接炭素燃料電池。
[14] 前記固体炭素の平均粒子径が20~2000μmであり、前記貫通孔の開口面における前記貫通孔の直径が、該固体炭素の平均粒子径の1/3倍以下である、[11]~[13]のいずれかの直接炭素燃料電池。
The present invention has the following aspects.
[1] An electrolyte composed of molten carbonate and
The cathode in contact with the electrolyte, oxygen and carbon dioxide,
The anode in contact with the electrolyte and
Granular solid carbon present in the electrolyte near the anode,
It has a partition wall provided between the anode and the cathode that allows the electrolyte to pass through and does not allow the solid carbon to pass through.
A direct carbon fuel cell in which the solid carbon is sandwiched between the anode and the partition wall, and the solid carbon is pressure-welded to the anode.
[2] The direct carbon fuel cell according to [1], which has a pressurizing means for pressurizing the anode in the direction toward the partition wall.
[3] The direct carbon fuel cell according to [1] or [2], wherein the anode has a through hole for allowing air bubbles to escape.
[4] The direct carbon fuel cell according to any one of [1] to [3], wherein a gap through which air bubbles escape is provided in the vicinity of the anode.
The present invention includes the following aspects.
[11] An electrolyte composed of molten carbonate, a cathode in contact with the electrolyte, oxygen and carbon dioxide, an anode in contact with the anode, granular solid carbon present in the electrolyte in the vicinity of the anode, the anode and the above. It has a partition wall that is provided between the anode and the anode and allows the electrolyte to pass through and does not allow the solid carbon to pass through, and at least a part of the anode is provided with a through hole that does not allow the solid carbon to pass through. A direct carbon fuel cell characterized in that the solid carbon is pressure-welded to the opening surface of the hole.
[12] The direct carbon fuel cell according to [11], wherein the solid carbon is sandwiched between the opening surface of the through hole and a part of the partition wall.
[13] The direct carbon fuel cell according to [11] or [12], which has a pressurizing means for pressurizing in a direction in which the opening surface of the through hole and the solid carbon are brought into close contact with each other.
[14] The average particle size of the solid carbon is 20 to 2000 μm, and the diameter of the through hole on the opening surface of the through hole is 1/3 or less of the average particle size of the solid carbon. [11] A direct carbon fuel cell according to any one of [13].

本発明の直接炭素燃料電池は、発電性能に優れる。 The direct carbon fuel cell of the present invention is excellent in power generation performance.

本発明の直接炭素燃料電池の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the direct carbon fuel cell of this invention. 図1中のアノード2の一例を示す平面図である。It is a top view which shows an example of the anode 2 in FIG. 発電時のアノード2の近傍を模式的に示した説明図である。It is explanatory drawing which shows typically the neighborhood of the anode 2 at the time of power generation. 実施例の測定結果を示すグラフである。It is a graph which shows the measurement result of an Example. 比較例の測定結果を示すグラフである。It is a graph which shows the measurement result of the comparative example.

図1は、本発明の直接炭素燃料電池の一実施形態を示す断面図である。
本実施形態の直接炭素燃料電池は、溶融炭酸塩(電解質)3と、一部が溶融炭酸塩3中に浸漬されているカソード1と、全体が溶融炭酸塩3中に浸漬されているアノード2と、アノード2の近傍の溶融炭酸塩3中に存在する粒状の固体炭素(燃料)4とを有する。溶融炭酸塩3は反応器5の底部に設けられた電気炉5cに収容されている。
本実施形態では、直接炭素燃料電池の発電特性を測定するために、参照電極20が設けられ、カソード1、アノード2および参照電極20がポテンショスタット/ガルバノスタット(図示略)に接続されている。符号11、21は配線を示す。アノード2の配線は図示していない。
カソード1および参照電極20と、アノード2との間には、溶融炭酸塩3を通過させ、かつ固体炭素4を通過させない、多孔質の隔壁6が設けられている。隔壁6は有底の円筒状であり、隔壁6の底部は溶融炭酸塩3中に浸漬されている。
FIG. 1 is a cross-sectional view showing an embodiment of the direct carbon fuel cell of the present invention.
In the direct carbon fuel cell of the present embodiment, the molten carbonate (electrolyte) 3, the cathode 1 in which a part thereof is immersed in the molten carbonate 3, and the anode 2 in which the whole is immersed in the molten carbonate 3 And the granular solid carbon (fuel) 4 present in the molten carbonate 3 in the vicinity of the anode 2. The molten carbonate 3 is housed in an electric furnace 5c provided at the bottom of the reactor 5.
In this embodiment, a reference electrode 20 is provided to directly measure the power generation characteristics of the carbon fuel cell, and the cathode 1, the anode 2 and the reference electrode 20 are connected to a potentiostat / galvanostat (not shown). Reference numerals 11 and 21 indicate wiring. The wiring of the anode 2 is not shown.
A porous partition wall 6 is provided between the cathode 1 and the reference electrode 20 and the anode 2 so that the molten carbonate 3 and the solid carbon 4 do not pass through. The partition wall 6 has a bottomed cylindrical shape, and the bottom portion of the partition wall 6 is immersed in the molten carbonate 3.

本実施形態において、アノード2は、円板状で表面から裏面に貫通する貫通孔2aが設けられた部材からなっており、隔壁6の内側に嵌装されている。
固体炭素4はアノード2と隔壁6の底面との間に充填されている。アノード2は、加圧手段7によって隔壁6の底面に向かう方向へ加圧され、これによってアノード2の下面(貫通孔の開口面)に固体炭素4が圧接されている。すなわち、加圧手段7によって、アノード2の下面と固体炭素4とが密着する方向の圧力が加えられ、固体炭素4はアノード2の下面と隔壁6の底面とで挟持されている。符号8は加圧手段7の加圧力を測定する測定器である。
In the present embodiment, the anode 2 is a disk-shaped member provided with a through hole 2a penetrating from the front surface to the back surface, and is fitted inside the partition wall 6.
The solid carbon 4 is filled between the anode 2 and the bottom surface of the partition wall 6. The anode 2 is pressurized by the pressurizing means 7 toward the bottom surface of the partition wall 6, whereby the solid carbon 4 is pressed against the lower surface of the anode 2 (the opening surface of the through hole). That is, pressure is applied by the pressurizing means 7 in the direction in which the lower surface of the anode 2 and the solid carbon 4 are in close contact with each other, and the solid carbon 4 is sandwiched between the lower surface of the anode 2 and the bottom surface of the partition wall 6. Reference numeral 8 is a measuring instrument for measuring the pressing force of the pressurizing means 7.

本実施形態において、カソード1および参照電極20は、通気管12、22内にそれぞれ収容されている。通気管12、22は、一端が溶融炭酸塩3中に浸漬され他端が反応器5の外部に開口しており、カソード1および参照電極20の周りに、OおよびCOを含む混合気体が供給されるようになっている。符号13、23は前記混合気体を供給する給気管、符号14、24は通気管12、22内の気体を反応器5の外部へ排気する排気管を示す。すなわち、カソード1および参照電極20は、溶融炭酸塩3と酸素と二酸化炭素に接している。
反応器5の上部には不活性ガスの供給口5aおよび排気口5bが設けられ、反応器5内に不活性ガスが充填されるようになっている。符号9は発電時にアノード2で発生するCOを反応器5の外部へ排気する排気管である。
In the present embodiment, the cathode 1 and the reference electrode 20 are housed in the ventilation tubes 12 and 22, respectively. One end of the ventilation pipes 12 and 22 is immersed in the molten carbonate 3 and the other end is open to the outside of the reactor 5. A mixed gas containing O 2 and CO 2 is provided around the cathode 1 and the reference electrode 20. Is to be supplied. Reference numerals 13 and 23 indicate an air supply pipe for supplying the mixed gas, and reference numerals 14 and 24 indicate an exhaust pipe for exhausting the gas in the ventilation pipes 12 and 22 to the outside of the reactor 5. That is, the cathode 1 and the reference electrode 20 are in contact with the molten carbonate 3, oxygen and carbon dioxide.
An inert gas supply port 5a and an exhaust port 5b are provided above the reactor 5 so that the reactor 5 is filled with the inert gas. Reference numeral 9 is an exhaust pipe that exhausts CO 2 generated at the anode 2 during power generation to the outside of the reactor 5.

溶融炭酸塩3としては、LiCO、NaCO、およびKCOからなる群から選ばれる1種以上が好ましい。
融点降下の点で、LiCOとNaCOとKCOとの3元型混合物またはL
COとKCOもしくはLiCOとNaCOの2元型混合物がより好ましい。
As the molten carbonate 3, one or more selected from the group consisting of Li 2 CO 3 , Na 2 CO 3 , and K 2 CO 3 is preferable.
In terms of melting point depression, a ternary mixture of Li 2 CO 3 and Na 2 CO 3 and K 2 CO 3 or L
A binary mixture of i 2 CO 3 and K 2 CO 3 or Li 2 CO 3 and Na 2 CO 3 is more preferred.

粒状の固体炭素4としては、活性炭、石炭またはバイオマス由来の炭化物が好ましい。不純物(灰分)が含まれていない点で活性炭が好ましい。
固体炭素4の平均粒子径は20~2000μmが好ましい。
ここで、粒状の固体炭素の平均粒子径は、ふるい分け法による質量平均径である。
As the granular solid carbon 4, activated carbon, coal or a carbide derived from biomass is preferable. Activated carbon is preferable because it does not contain impurities (ash).
The average particle size of the solid carbon 4 is preferably 20 to 2000 μm.
Here, the average particle size of the granular solid carbon is the mass average diameter by the sieving method.

アノード2の材質としては、金(Au)、ニッケル(Ni)等が挙げられる。触媒活性やコストの点ではニッケルが好ましい。
カソード1の材質としては、金(Au)、Liドープされた酸化ニッケル等が挙げられる。
隔壁6は、溶融炭酸塩3を通過させ固体炭素4を通過させない細孔を有する材料で形成されることが好ましい。例えば平均細孔直径が100~500nmの多孔質材料が好ましい。ここで、平均細孔直径の測定方法は水銀圧入法である。
隔壁6の材質としては、溶融塩に対する安定性の点で多孔質アルミナが好ましい。
Examples of the material of the anode 2 include gold (Au) and nickel (Ni). Nickel is preferable in terms of catalytic activity and cost.
Examples of the material of the cathode 1 include gold (Au), Li-doped nickel oxide, and the like.
The partition wall 6 is preferably formed of a material having pores that allow the molten carbonate 3 to pass through but not the solid carbon 4 to pass through. For example, a porous material having an average pore diameter of 100 to 500 nm is preferable. Here, the method for measuring the average pore diameter is the mercury intrusion method.
As the material of the partition wall 6, porous alumina is preferable from the viewpoint of stability against molten salt.

反応器5に充填する不活性ガスとしては、アルゴン(Ar)、窒素(N)等を用いることができる。
カソード1および参照電極20の周りに供給する、OおよびCOを含む混合気体としては、OとCOまたはCOと空気の混合気体等を用いることができる。
As the inert gas to be filled in the reactor 5, argon (Ar), nitrogen (N 2 ) or the like can be used.
As the mixed gas containing O 2 and CO 2 supplied around the cathode 1 and the reference electrode 20, a mixed gas of O 2 and CO 2 or CO 2 and air can be used.

図2はアノード2の平面図であり、図3は発電時のアノード2の近傍を模式的に示した説明図である。図3中の符号32は、炭素/電極/溶融炭酸塩の三相界面(反応サイト)を示す。
本実施形態において、アノード2は板状であり、その厚さ方向が垂直になるように配置され、加圧手段7によって、アノード2の下面に粒状の固体炭素4が押しつけられている。このようにアノード2に固体炭素4を圧接させることにより、アノード2と固体炭素4をより確実に接触させることができる。
また、本実施形態のアノード2には、図2に示すように、表面から裏面に貫通する貫通孔2aが同心円状に設けられている。貫通孔2aの配置はこれに限られず、適宜変更可能である。
発電時には、アノード2の下面と固体炭素4と溶融炭酸塩3との三相界面(反応サイト)32から、生成物であるCOガス(気泡)が生成する(C+2CO 2-→3CO+4e)。従来の直接炭素燃料電池では、固体炭素と溶融塩のスラリーに、アノードを挿入して発電していたため、連続発電時に気泡がアノードを覆ってしまい、反応サイトの連続的な形成が抑制されていた。本実施形態では、図3に示すように、固体炭素4と溶融炭酸塩3のスラリーに対して、貫通孔2aを有するアノード2を上方からプレスした状態で発電させるため、生成物である気泡31は貫通孔2aを通ってアノード2の上方へ排出される。これにより、アノード2の下部において三相界面(反応サイト)の形成が促進され、発電性能が向上する。
一方、アノード2に貫通孔2aを設けることによって、アノード2の下面(貫通孔2aの開口面)の面積が大きく縮小すると、かえって発電性能が低下するため、かかる不都合が生じないように、貫通孔2aの大きさ、数を設定することが好ましい。
FIG. 2 is a plan view of the anode 2, and FIG. 3 is an explanatory diagram schematically showing the vicinity of the anode 2 during power generation. Reference numeral 32 in FIG. 3 indicates a three-phase interface (reaction site) of carbon / electrode / molten carbonate.
In the present embodiment, the anode 2 has a plate shape, is arranged so that its thickness direction is vertical, and the granular solid carbon 4 is pressed against the lower surface of the anode 2 by the pressurizing means 7. By pressing the solid carbon 4 to the anode 2 in this way, the anode 2 and the solid carbon 4 can be brought into contact with each other more reliably.
Further, as shown in FIG. 2, the anode 2 of the present embodiment is provided with through holes 2a penetrating from the front surface to the back surface in a concentric manner. The arrangement of the through hole 2a is not limited to this, and can be changed as appropriate.
During power generation, CO 2 gas (bubbles), which is a product, is generated from the three-phase interface (reaction site) 32 between the lower surface of the anode 2 and the solid carbon 4 and the molten carbonate 3 (C + 2CO 3 2- → 3CO 2 + 4e). - ). In the conventional direct carbon fuel cell, since the anode is inserted into the slurry of solid carbon and molten salt to generate electricity, bubbles cover the anode during continuous power generation, and the continuous formation of reaction sites is suppressed. .. In the present embodiment, as shown in FIG. 3, a bubble 31 which is a product is generated in a state where the anode 2 having the through hole 2a is pressed from above with respect to the slurry of the solid carbon 4 and the molten carbonate 3. Is discharged above the anode 2 through the through hole 2a. As a result, the formation of a three-phase interface (reaction site) is promoted in the lower part of the anode 2, and the power generation performance is improved.
On the other hand, if the area of the lower surface of the anode 2 (the opening surface of the through hole 2a) is significantly reduced by providing the through hole 2a in the anode 2, the power generation performance is rather deteriorated. It is preferable to set the size and number of 2a.

アノード2の下面(貫通孔2aの開口面)における貫通孔2aの直径は、固体炭素4の粒径よりも小さく、固体炭素4は貫通孔2aを通過しない。該貫通孔2aの直径は、固体炭素4の平均粒子径の1/3倍以下が好ましい。
貫通孔2aの一方の開口部から他方の開口部までの距離(本実施形態ではアノード2の厚さ)は、0.05~1mmが好ましい。
The diameter of the through hole 2a on the lower surface of the anode 2 (the opening surface of the through hole 2a) is smaller than the particle size of the solid carbon 4, and the solid carbon 4 does not pass through the through hole 2a. The diameter of the through hole 2a is preferably 1/3 or less of the average particle size of the solid carbon 4.
The distance from one opening of the through hole 2a to the other opening (thickness of the anode 2 in this embodiment) is preferably 0.05 to 1 mm.

本実施形態において固体炭素4が挟持されている区画、すなわちアノード2の下面と隔壁6の底面と隔壁6の内壁とで囲まれた区画内に存在する固体炭素4の粒径および固体炭素4の合計体積が一定であるとき、加圧手段7の加圧力を大きくすることによって、アノード2と固体炭素4の接触部位の数を増大させることができる。前記区画内において固体炭素4が最密充填状態になると、それ以上加圧力を増加させても発電性能は変化しない。
また固体炭素4の粒径を小さくして、固体炭素4の数を増やすことによっても前記接触部位の数を増大させることができる。
In the present embodiment, the particle size of the solid carbon 4 and the solid carbon 4 existing in the section surrounded by the lower surface of the anode 2, the bottom surface of the partition wall 6, and the inner wall of the partition wall 6 where the solid carbon 4 is sandwiched. When the total volume is constant, the number of contact points between the anode 2 and the solid carbon 4 can be increased by increasing the pressing force of the pressurizing means 7. When the solid carbon 4 is in the close-packed state in the compartment, the power generation performance does not change even if the pressing force is further increased.
Further, the number of the contact portions can be increased by reducing the particle size of the solid carbon 4 and increasing the number of the solid carbon 4.

例えば、加圧手段7の加圧力は、アノード2の下面の単位面積当たり30~100kN/mが好ましい。
前記固体炭素4が挟持されている区画の全質量(隔壁6内部の溶融炭酸塩3と固体炭素4との合計)に対して、固体炭素4が占める割合(以下、固体炭素の充填率という)は0.5~2.0質量%が好ましい。
For example, the pressing force of the pressurizing means 7 is preferably 30 to 100 kN / m 2 per unit area of the lower surface of the anode 2.
The ratio of the solid carbon 4 to the total mass of the section in which the solid carbon 4 is sandwiched (the total of the molten carbonate 3 and the solid carbon 4 inside the partition wall 6) (hereinafter referred to as the solid carbon filling rate). Is preferably 0.5 to 2.0% by mass.

<変形例>
本実施形態では、板状のアノードを、その表面が水平方向となるように配置して、アノードの下面に固体炭素を圧接したが、三相界面の形成を妨げる気泡がアノードの孔を抜けて除去される構造であればよく、アノードの表面が傾斜していてもよく、また固体炭素が圧接されるのはアノードの下面でなくてもよい。アノードの反応サイトで発生した気泡が抜けやすい点では、アノードの下面に反応サイトが存在することが好ましい。
本実施形態では、アノードの下面と隔壁の底面とで固体炭素を挟持したが、アノードに固体炭素を圧接できればよく、この構成に限らない。またアノードの形状は、板状でなくてもよく、気泡を逃がすための貫通孔を形成可能な形状であればよい。例えば多孔質電極内部に固体炭素を充填してもよい。
固体炭素4は隔壁6の内方のみに存在し、アノードの下だけでなく、一部がアノードより上の溶融炭酸塩中に存在していてもよい。
本実施形態では、アノードとは別に加圧手段を設けたが、加圧手段を用いずにアノードに固体炭素を圧接してもよい。
<Modification example>
In the present embodiment, the plate-shaped anode is arranged so that its surface is in the horizontal direction, and solid carbon is pressed against the lower surface of the anode, but bubbles that hinder the formation of the three-phase interface pass through the holes of the anode. The structure may be any as long as it is removed, the surface of the anode may be inclined, and the solid carbon may not be pressure-welded to the lower surface of the anode. It is preferable that the reaction site is present on the lower surface of the anode in that bubbles generated at the reaction site of the anode can easily escape.
In the present embodiment, the solid carbon is sandwiched between the lower surface of the anode and the bottom surface of the partition wall, but the configuration is not limited to this as long as the solid carbon can be pressure-welded to the anode. Further, the shape of the anode does not have to be plate-shaped, and may be any shape as long as it can form a through hole for allowing air bubbles to escape. For example, the inside of the porous electrode may be filled with solid carbon.
The solid carbon 4 may be present only inside the partition wall 6 and may be partially present in the molten carbonate above the anode as well as below the anode.
In the present embodiment, the pressurizing means is provided separately from the anode, but solid carbon may be pressure-welded to the anode without using the pressurizing means.

また、アノードに固体炭素を圧接させることによって、アノードと固体炭素との接触をより確実にできるため、貫通孔を有しないアノードに粒状の固体炭素を圧接させる構成としてもよい。かかる構成によれば、後述の比較例1のように、貫通孔を有しないアノードの近傍の溶融炭酸塩中に粒状の固体炭素が分散されている場合に比べて、発電性能を向上させることができる。さらに三相界面(反応サイト)で生成する気泡が抜ける隙間を、アノード近傍に設けることにより発電性能をより向上させることができる。 Further, since the contact between the anode and the solid carbon can be more reliably performed by pressing the solid carbon to the anode, the structure may be such that the granular solid carbon is pressed to the anode having no through hole. According to this configuration, it is possible to improve the power generation performance as compared with the case where granular solid carbon is dispersed in the molten carbonate in the vicinity of the anode having no through hole as in Comparative Example 1 described later. can. Further, the power generation performance can be further improved by providing a gap in the vicinity of the anode through which bubbles generated at the three-phase interface (reaction site) escape.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
図1に示す構成の直接炭素燃料電池を作成し、定電流モードで,電圧の経時変化を測定した。結果を図4に示す。
アノード2の材質は金(Au)とした。アノード2の形状は、直径14.5mm、厚さ0.5mmの円板状とし、直径0.5mmの孔を、図2に示すように、同心円状に25個設けた。カソード1および参照電極20は金(Au)製とした。隔壁6としては、平均細孔直径が120nmの多孔質アルミナ管(内径15mm)を用いた。反応器5の材質は石英とした。
溶融炭酸塩3は、LiCOの16.9モル%と、NaCOの25.0モル%と、KCOの58.1モル%との混合物を用いた。電気炉5cの壁面温度は800℃とした。固体炭素4としては、平均粒子径が1.0mmの活性炭を用い、電気炉5c内の溶融炭酸塩3に対して固体炭素4は1質量%とした。
反応器5内にArガスを供給し、隔壁6内の溶融炭酸塩3をArガスによるバブリングで撹拌した。カソード1および参照電極20の周りにはO/CO(体積比)が1/2の混合気体を供給した。
加圧手段7によって加える圧力は、アノード2下面の単位面積当たり70kN/mとした。圧力を加えた状態で、アノード2の下面と隔壁6の底面と隔壁6の内壁とで囲まれた区画の体積は880mmであり、該区画における固体炭素4の充填率は1.0質量%であった。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(Example 1)
A direct carbon fuel cell having the configuration shown in FIG. 1 was prepared, and the change over time of the voltage was measured in the constant current mode. The results are shown in FIG.
The material of the anode 2 was gold (Au). The shape of the anode 2 was a disk shape having a diameter of 14.5 mm and a thickness of 0.5 mm, and 25 holes having a diameter of 0.5 mm were provided concentrically as shown in FIG. The cathode 1 and the reference electrode 20 are made of gold (Au). As the partition wall 6, a porous alumina tube (inner diameter of 15 mm) having an average pore diameter of 120 nm was used. The material of the reactor 5 was quartz.
As the molten carbonate 3, a mixture of 16.9 mol% of Li 2 CO 3 , 25.0 mol% of Na 2 CO 3 and 58.1 mol% of K 2 CO 3 was used. The wall surface temperature of the electric furnace 5c was set to 800 ° C. As the solid carbon 4, activated carbon having an average particle diameter of 1.0 mm was used, and the solid carbon 4 was set to 1% by mass with respect to the molten carbonate 3 in the electric furnace 5c.
Ar gas was supplied into the reactor 5, and the molten carbonate 3 in the partition wall 6 was stirred by bubbling with Ar gas. A mixed gas having an O 2 / CO 2 (volume ratio) of 1/2 was supplied around the cathode 1 and the reference electrode 20.
The pressure applied by the pressurizing means 7 was 70 kN / m 2 per unit area of the lower surface of the anode 2. Under pressure, the volume of the section surrounded by the lower surface of the anode 2, the bottom surface of the partition wall 6, and the inner wall of the partition wall 6 is 880 mm 3 , and the filling rate of the solid carbon 4 in the section is 1.0% by mass. Met.

(比較例1)
図1に示す構成において、加圧手段7を設けず、また、隔壁6内の溶融炭酸塩3を、不活性ガスによるバブリングで撹拌できるように、給気管(図示せず)を設けた。アノード2を板状の金(Au)電極とした。固体炭素の平均粒子径を17μmとした。隔壁6内の固体炭素と溶融炭酸塩3を実施例1と同様にArガスによるバブリングで撹拌して、固体炭素のアノード2への接触を促進させた。
実施例1と同様にして、定電流モードで,電圧の経時変化を測定した。結果を図5に示す。
(Comparative Example 1)
In the configuration shown in FIG. 1, the pressurizing means 7 is not provided, and an air supply pipe (not shown) is provided so that the molten carbonate 3 in the partition wall 6 can be agitated by bubbling with an inert gas. The anode 2 was a plate-shaped gold (Au) electrode. The average particle size of the solid carbon was 17 μm. The solid carbon and the molten carbonate 3 in the partition 6 were stirred by bubbling with Ar gas in the same manner as in Example 1 to promote the contact of the solid carbon with the anode 2.
In the same manner as in Example 1, the change over time of the voltage was measured in the constant current mode. The results are shown in FIG.

図4、5の結果に示されるように、比較例1に比べて実施例1は発電特性が向上した。具体的には、比較例1は、電圧が定常状態に達するまでに5分程度時間を要し、さらに電圧の経時的変動が見られた。これに対して実施例1では,電圧が速やかに定常状態に達し、かつ変動が見られず、安定した発電を実現できた。また、比較例1は,25mA/cm以上の発電は困難であったが、実施例では,50mA/cm以上の発電が可能であった。
なお、実施例1におけるアノード面積は1.0cm、比較例1におけるアノード面積は1.6cmとして,アノード面積基準で発電特性を求めた。
As shown in the results of FIGS. 4 and 5, the power generation characteristics of Example 1 were improved as compared with Comparative Example 1. Specifically, in Comparative Example 1, it took about 5 minutes for the voltage to reach a steady state, and further fluctuation of the voltage with time was observed. On the other hand, in Example 1, the voltage quickly reached a steady state, no fluctuation was observed, and stable power generation could be realized. Further, in Comparative Example 1, it was difficult to generate power of 25 mA / cm 2 or more, but in the example, it was possible to generate power of 50 mA / cm 2 or more.
The anode area in Example 1 was 1.0 cm 2 , and the anode area in Comparative Example 1 was 1.6 cm 2 , and the power generation characteristics were obtained based on the anode area.

1 カソード
2 アノード
2a 貫通孔
3 溶融炭酸塩(電解質)
4 固体炭素(燃料)
5 反応器
5a 不活性ガスの供給口
5b 排気口
5c 電気炉
6 隔壁
7 加圧手段
8 測定器
9 排気管
11 配線
12 通気管
13 給気管
14 排気管
20 参照電極
21 配線
22 通気管
23 給気管
24 排気管
31 気泡
32 三相界面
1 Cathode 2 Anode 2a Through hole 3 Molten carbonate (electrolyte)
4 Solid carbon (fuel)
5 Reactor 5a Inert gas supply port 5b Exhaust port 5c Electric furnace 6 Partition 7 Pressurizing means 8 Measuring instrument 9 Exhaust pipe 11 Wiring 12 Ventilation pipe 13 Air supply pipe 14 Exhaust pipe 20 Reference electrode 21 Wiring 22 Ventilation pipe 23 Air supply pipe 24 Exhaust pipe 31 Bubbles 32 Three-phase interface

Claims (4)

溶融炭酸塩からなる電解質と、
前記電解質と酸素と二酸化炭素に接するカソードと、
前記電解質に接するアノードと、
前記アノード近傍の前記電解質中に存在する粒状の固体炭素と、
前記アノードと前記カソードとの間に設けられ、前記電解質を通過させ、前記固体炭素を通過させない、多孔質の隔壁とを有し、
前記固体炭素が前記アノードと前記隔壁との間で挟持され、前記アノードに前記固体炭素が圧接されている、直接炭素燃料電池。
An electrolyte consisting of molten carbonate and
The cathode in contact with the electrolyte, oxygen and carbon dioxide,
The anode in contact with the electrolyte and
Granular solid carbon present in the electrolyte near the anode,
It has a porous partition wall provided between the anode and the cathode that allows the electrolyte to pass through and does not allow the solid carbon to pass through.
A direct carbon fuel cell in which the solid carbon is sandwiched between the anode and the partition wall, and the solid carbon is pressure-welded to the anode.
前記アノードを前記隔壁へ向かう方向に加圧する加圧手段を有する、請求項1に記載の直接炭素燃料電池。 The direct carbon fuel cell according to claim 1, further comprising a pressurizing means for pressurizing the anode in a direction toward the partition wall. 前記アノードが、気泡を逃がすための貫通孔を有する、請求項1又は2に記載の直接炭素燃料電池。 The direct carbon fuel cell according to claim 1 or 2, wherein the anode has a through hole for allowing air bubbles to escape. 前記アノードの近傍に、気泡が抜ける隙間が設けられている、請求項1乃至3のいずれか一項に記載の直接炭素燃料電池。 The direct carbon fuel cell according to any one of claims 1 to 3, wherein a gap through which bubbles can escape is provided in the vicinity of the anode.
JP2021013764A 2021-01-29 2021-01-29 Direct carbon fuel cell Active JP7045028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021013764A JP7045028B2 (en) 2021-01-29 2021-01-29 Direct carbon fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021013764A JP7045028B2 (en) 2021-01-29 2021-01-29 Direct carbon fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017027196A Division JP6901080B2 (en) 2017-02-16 2017-02-16 Direct carbon fuel cell

Publications (2)

Publication Number Publication Date
JP2021073661A JP2021073661A (en) 2021-05-13
JP7045028B2 true JP7045028B2 (en) 2022-03-31

Family

ID=75802497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021013764A Active JP7045028B2 (en) 2021-01-29 2021-01-29 Direct carbon fuel cell

Country Status (1)

Country Link
JP (1) JP7045028B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243067B (en) * 2021-12-15 2024-02-09 浙江大学 Direct carbon fuel cell
CN114361533B (en) * 2022-01-10 2024-01-30 华北科技学院(中国煤矿安全技术培训中心) Test method of carbon fuel cell system with three-electrode structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120328966A1 (en) 2011-06-21 2012-12-27 Lawrence Livermore National Security, Llc Protection of porous carbon fuel particles from boudouard corrosion
US20150263351A1 (en) 2012-08-31 2015-09-17 Pusan National University Industry-University Cooperation Foundation Anode for direct carbon fuel cell and direct carbon fuel cell including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101679418B1 (en) * 2014-02-28 2016-11-25 부산대학교 산학협력단 Direct carbon fuel cell comprising increased tpb, and direct carbon fuel cell system capable of supplying fuel continuously

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120328966A1 (en) 2011-06-21 2012-12-27 Lawrence Livermore National Security, Llc Protection of porous carbon fuel particles from boudouard corrosion
US20150263351A1 (en) 2012-08-31 2015-09-17 Pusan National University Industry-University Cooperation Foundation Anode for direct carbon fuel cell and direct carbon fuel cell including the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
渡部弘達,石炭チャーを直接燃料とするダイレクトカーボン燃料電池の開発,科学研究費助成事業 研究成果報告書,日本,2016年06月16日,科研費データベースに収録(http://kaken.nii.ac.jp/ja/file/KAKENHI-PROJECT-25630064/25630064seika.pdf

Also Published As

Publication number Publication date
JP2021073661A (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP7045028B2 (en) Direct carbon fuel cell
Liu et al. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells
US2928891A (en) Double skeleton catalyst electrode
US7745026B2 (en) Direct carbon fueled solid oxide fuel cell or high temperature battery
Xu et al. A comparative study of different carbon fuels in an electrolyte-supported hybrid direct carbon fuel cell
DK2619829T3 (en) Rechargeable energy storage device
KR101616309B1 (en) Fuel cell apparatus
US8153328B2 (en) Carbon fuel cells with carbon corrosion suppression
Cui et al. Review of molten carbonate-based direct carbon fuel cells
US20090029203A1 (en) Fuel Cell System With an Electrochemical Hydrogen Generation Cell
JPS60236465A (en) Method of operating fused carbonate fuel battery
JP6901080B2 (en) Direct carbon fuel cell
Gang et al. Hydrogen oxidation on gas diffusion electrodes for phosphoric acid fuel cells in the presence of carbon monoxide and oxygen
US3271196A (en) Fuel cell electrodes
JP4432384B2 (en) Solid oxide fuel cell
JP2005327721A (en) Catalyst for fuel cell and fuel cell including this
US20120094216A1 (en) Nano-material catalyst device
JP5071933B2 (en) Fuel cell
US9040205B2 (en) Protection of porous carbon fuel particles from boudouard corrosion
JPH0622144B2 (en) Fuel cell
US20060078764A1 (en) Dissolved fuel alkaline fuel cell
Zhou et al. A completely sealed high temperature carbon-air battery with carbon dioxide absorber
Predtechensky et al. Direct conversion of solid hydrocarbons in a molten carbonate fuel cell
US3351492A (en) Fuel cell with electrode having fine pore openings
JPS6247968A (en) Molten carbonate fuel cell capable of internal reformation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220308

R150 Certificate of patent or registration of utility model

Ref document number: 7045028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533