JP7044593B2 - Water electrolyzer - Google Patents

Water electrolyzer Download PDF

Info

Publication number
JP7044593B2
JP7044593B2 JP2018041992A JP2018041992A JP7044593B2 JP 7044593 B2 JP7044593 B2 JP 7044593B2 JP 2018041992 A JP2018041992 A JP 2018041992A JP 2018041992 A JP2018041992 A JP 2018041992A JP 7044593 B2 JP7044593 B2 JP 7044593B2
Authority
JP
Japan
Prior art keywords
pressure
electrolyte membrane
cathode
hydrogen
resistant member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018041992A
Other languages
Japanese (ja)
Other versions
JP2019157164A (en
Inventor
博之 石川
鋭刀 大門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018041992A priority Critical patent/JP7044593B2/en
Priority to CN201910171578.6A priority patent/CN110241436B/en
Publication of JP2019157164A publication Critical patent/JP2019157164A/en
Application granted granted Critical
Publication of JP7044593B2 publication Critical patent/JP7044593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、水を電気分解して酸素と水素を発生させる水電解装置に関する。 The present invention relates to a water electrolyzer that electrolyzes water to generate oxygen and hydrogen.

水電解装置は、水を電気分解して水素(及び酸素)を発生させるものとして周知であり、得られた水素は、例えば、燃料電池に供給されて燃料ガスとして用いられる。 The water electrolyzer is well known as a device that electrolyzes water to generate hydrogen (and oxygen), and the obtained hydrogen is supplied to a fuel cell, for example, and used as a fuel gas.

一層具体的には、水電解装置は、固体高分子からなる電解質膜の一面にアノード電極触媒層が形成され、他の一面にカソード電極触媒層が形成された電解質膜・電極構造体を有する。電解質膜・電極構造体は、アノード電極触媒層及びカソード電極触媒層の外方にそれぞれ配設される給電体に挟まれる。給電体を介して電解質膜・電極構造体に電力が供給されると、アノード電極触媒層にて水が電気分解され、これにより水素イオン(プロトン)と酸素が生成される。この中のプロトンは、電解質膜を透過してカソード電極触媒層に移動し、電子と結合して水素に変化する。その一方で、アノード電極触媒層にて生成された酸素は、余剰の水とともに水電解装置から排出される。 More specifically, the water electrolyzer has an electrolyte membrane / electrode structure in which an anode electrode catalyst layer is formed on one surface of an electrolyte membrane made of a solid polymer and a cathode electrode catalyst layer is formed on the other surface. The electrolyte membrane / electrode structure is sandwiched between the anode electrode catalyst layer and the feeding body arranged outside the cathode electrode catalyst layer, respectively. When electric power is supplied to the electrolyte membrane / electrode structure via the feeder, water is electrolyzed in the anode electrode catalyst layer, whereby hydrogen ions (protons) and oxygen are generated. The protons in this permeate through the electrolyte membrane, move to the cathode electrode catalyst layer, combine with electrons, and change to hydrogen. On the other hand, the oxygen generated in the anode electrode catalyst layer is discharged from the water electrolyzer together with the excess water.

ここで、カソード電極触媒層で発生した水素を、アノード電極触媒層で生成された酸素に比して高圧なものとして得る場合がある。この水電解装置ではカソード側の内圧が大きくなるため、カソード側に、水素が漏洩することを防止するためのシール部材(例えば、Oリング)と、その外方からシール部材を囲繞する耐圧部材とが設けられる。 Here, hydrogen generated in the cathode electrode catalyst layer may be obtained as having a higher pressure than oxygen generated in the anode electrode catalyst layer. In this water electrolyzer, since the internal pressure on the cathode side becomes large, a seal member (for example, an O-ring) for preventing hydrogen from leaking to the cathode side and a pressure resistant member surrounding the seal member from the outside thereof. Is provided.

さらに、特許文献1に示されるように、電解質膜が損傷することを回避するための絶縁性補強部材が設けられることもある。この場合、絶縁性補強部材は薄膜からなり、耐圧部材に接着される。 Further, as shown in Patent Document 1, an insulating reinforcing member may be provided to prevent the electrolyte membrane from being damaged. In this case, the insulating reinforcing member is made of a thin film and is adhered to the pressure resistant member.

特許第6091012号公報Japanese Patent No. 6091012

本発明は上記の従来技術に関連してなされたもので、電解質膜やシール部材が破損することを一層有効に回避し得る水電解装置を提供することを目的とする。 The present invention has been made in connection with the above-mentioned prior art, and an object of the present invention is to provide a water electrolyzer capable of more effectively avoiding damage to an electrolyte membrane or a sealing member.

前記の目的を達成するために、本発明は、アノード側セパレータと、
カソード側セパレータと、
アノード電極触媒層とカソード電極触媒層が電解質膜に設けられることで構成され、アノード側セパレータとカソード側セパレータとの間に位置する電解質膜・電極構造体と、
カソード側セパレータと電解質膜・電極構造体とで挟持され、カソード電極触媒層を囲繞するシール部材と、
シール部材を外方から囲繞する耐圧部材と、
を有する水電解装置であって、
耐圧部材の、電解質膜・電極構造体に臨む第1端面と、カソード側セパレータに臨む第2端面に凹凸が形成され、
且つ耐圧部材と電解質膜・電極構造体との間に介挿された絶縁体をさらに有することを特徴とする。
In order to achieve the above object, the present invention uses an anode-side separator and
Cathode side separator and
The anode electrode catalyst layer and the cathode electrode catalyst layer are provided on the electrolyte membrane, and the electrolyte membrane / electrode structure located between the anode side separator and the cathode side separator,
A sealing member sandwiched between the cathode side separator and the electrolyte membrane / electrode structure and surrounding the cathode electrode catalyst layer,
A pressure-resistant member that surrounds the seal member from the outside,
It is a water electrolyzer with
Concavities and convexities are formed on the first end surface of the pressure-resistant member facing the electrolyte membrane / electrode structure and the second end surface facing the cathode side separator.
Further, it is characterized by further having an insulator interposed between the pressure-resistant member and the electrolyte membrane / electrode structure.

すなわち、本発明においては、耐圧部材の第1端面及び第2端面を所定の面粗度となるように粗面化している。このため、第1端面は、絶縁体に対し、面接触ではなく、凸部の先端のみを介する複数の点接触で当接する。第2端面も同様に、カソード側セパレータに対して複数の点接触で当接する。従って、絶縁体と耐圧部材との間、耐圧部材とカソード側セパレータとの間に若干のクリアランスが形成される。 That is, in the present invention, the first end surface and the second end surface of the pressure resistant member are roughened so as to have a predetermined surface roughness. Therefore, the first end surface abuts on the insulator not by surface contact but by a plurality of point contacts via only the tip of the convex portion. Similarly, the second end surface also abuts on the cathode side separator by a plurality of point contacts. Therefore, a slight clearance is formed between the insulator and the pressure-resistant member, and between the pressure-resistant member and the cathode-side separator.

シール部材の内周側のカソードで高圧の水素が生成されると、シール部材の外周側(耐圧部材)は常圧であるため、シール部材の内部を透過した水素や、電解質膜を透過した水素が絶縁体と耐圧部材の第1端面との間、第2端面とカソード側セパレータとの間に水素が進入することがあり得る。しかしながら、本発明では、上記したように当該箇所にクリアランスを形成するようにしている。このため、水素の生成を停止した後にカソードを脱圧したとき、クリアランスに進入した水素が速やかに排出される。 When high-pressure hydrogen is generated at the cathode on the inner peripheral side of the seal member, the outer peripheral side (pressure resistant member) of the seal member is at normal pressure, so hydrogen that has permeated the inside of the seal member and hydrogen that has permeated the electrolyte membrane. Hydrogen may enter between the insulator and the first end face of the pressure resistant member, and between the second end face and the cathode side separator. However, in the present invention, a clearance is formed at the relevant portion as described above. Therefore, when the cathode is depressurized after the production of hydrogen is stopped, the hydrogen that has entered the clearance is quickly discharged.

その結果、高圧の水素が絶縁体と第1端面との間、第2端面とカソード側セパレータとの間に滞留することが防止されるので、シール部材の内周側と外周側に差圧が生じることが回避される。従って、この差圧に起因してシール部材が絶縁体と耐圧部材との間、耐圧部材とカソード側セパレータとの間に噛み込むことや、シール部材が電解質膜・電極構造体側に押圧されてシール部材と電解質膜・電極構造体との間に間隙が形成されることが回避される。これにより、電解質膜やシール部材が損傷することを有効に回避することができる。 As a result, high-pressure hydrogen is prevented from staying between the insulator and the first end face and between the second end face and the cathode side separator, so that a differential pressure is generated on the inner peripheral side and the outer peripheral side of the sealing member. It is avoided to occur. Therefore, due to this differential pressure, the sealing member is caught between the insulator and the pressure-resistant member, and between the pressure-resistant member and the cathode side separator, and the sealing member is pressed against the electrolyte membrane / electrode structure side to seal. It is avoided that a gap is formed between the member and the electrolyte membrane / electrode structure. This makes it possible to effectively prevent damage to the electrolyte membrane and the sealing member.

耐圧部材の第1端面、すなわち、絶縁体に対して点接触する端面の面粗度は、最大高さが1.5~13.0μmの範囲内となるように設定することが好ましい。この場合、水素の排出が容易となるとともに、シール部材が絶縁体と耐圧部材との間に噛み込むことを防止することが容易となる。 The surface roughness of the first end surface of the pressure-resistant member, that is, the end surface that makes point contact with the insulator is preferably set so that the maximum height is in the range of 1.5 to 13.0 μm. In this case, it becomes easy to discharge hydrogen, and it becomes easy to prevent the sealing member from getting caught between the insulator and the pressure-resistant member.

また、シール部材と耐圧部材との間に、シール部材からの押圧を受けて電解質膜・電極構造体に圧力を付与する面圧付与部材を介在することが好ましい。この面圧付与部材は、水素の生成中、シール部材からの押圧を受ける。このため、
電解質膜・電極構造体を押さえ付ける力(面圧)に変換する。従って、水素の生成・生成停止に伴ってシール部材が圧縮又は伸縮する際、電解質膜・電極構体が位置ズレを起こすことが有効に防止される。
Further, it is preferable to interpose a surface pressure applying member between the seal member and the pressure resistant member to apply pressure to the electrolyte membrane / electrode structure by receiving pressure from the seal member. This surface pressure applying member is pressed by the sealing member during the generation of hydrogen. For this reason,
It is converted into a force (surface pressure) that presses down the electrolyte membrane / electrode structure. Therefore, it is possible to effectively prevent the electrolyte membrane / electrode structure from being displaced when the sealing member is compressed or expanded / contracted due to the generation / stop of hydrogen production.

しかも、水素の生成時にはシール部材の外周壁が面圧付与部材に当接して圧縮されるので、該シール部材の外周壁が絶縁体と耐圧部材の間に噛み込まれることが有効に防止される。 Moreover, when hydrogen is generated, the outer peripheral wall of the seal member abuts on the surface pressure applying member and is compressed, so that the outer peripheral wall of the seal member is effectively prevented from being bitten between the insulator and the pressure resistant member. ..

以上の構成において、絶縁体は、耐圧部材と電解質膜・電極構造体に対して接着されていないことが好ましい。接着を行う場合、前記凹凸、ひいてはクリアランスが接着剤で充填される可能性がある。このような状態では、水素を排出することが容易でなくなるからである。 In the above configuration, it is preferable that the insulator is not adhered to the pressure resistant member and the electrolyte membrane / electrode structure. When bonding, the unevenness and thus the clearance may be filled with an adhesive. This is because it is not easy to discharge hydrogen in such a state.

本発明によれば、シール部材を外周側から囲繞する耐圧部材の、電解質膜・電極構造体に臨む第1端面と、カソード側セパレータに臨む第2端面に凹凸を形成するようにしている。このため、絶縁体と耐圧部材との間、耐圧部材とカソード側セパレータとの間にシール部材が噛み込んだり、シール部材が耐圧部材から離間したりすることが回避される。これにより、電解質膜やシール部材が損傷することを防止することができる。 According to the present invention, the pressure-resistant member that surrounds the seal member from the outer peripheral side has irregularities formed on the first end surface facing the electrolyte membrane / electrode structure and the second end surface facing the cathode side separator. Therefore, it is possible to prevent the seal member from getting caught between the insulator and the pressure-resistant member and between the pressure-resistant member and the cathode-side separator, and the seal member from being separated from the pressure-resistant member. This makes it possible to prevent the electrolyte membrane and the sealing member from being damaged.

本発明の実施の形態に係る差圧式高圧水電解装置(水電解装置)の概略全体斜視図である。It is a schematic whole perspective view of the differential pressure type high pressure water electrolyzer (water electrolyzer) which concerns on embodiment of this invention. 図1の差圧式高圧水電解装置を構成する高圧水電解セルの分解斜視図である。It is an exploded perspective view of the high pressure water electrolysis cell constituting the differential pressure type high pressure water electrolysis apparatus of FIG. 図2中のIII-III線矢視断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 高圧水電解セルの要部拡大断面図である。It is an enlarged sectional view of the main part of a high-pressure water electrolysis cell. 大Oリング(シール部材)に高圧水素の押圧力が作用した状態を示す要部拡大断面図である。It is an enlarged sectional view of the main part which shows the state which the pressing force of high pressure hydrogen acted on the large O-ring (seal member). 最大高さが0.4μmである凹凸を形成したときの、積層体内の圧力(水素圧)と該積層体外での水素濃度の経時変化を示したグラフである。It is a graph which showed the time-dependent change of the pressure (hydrogen pressure) in a stack, and the hydrogen concentration outside the stack when the unevenness having the maximum height of 0.4 μm was formed. 最大高さが1.68μmである凹凸を形成したときの、積層体内の圧力と該積層体外での水素濃度の経時変化を示したグラフである。It is a graph which showed the time-dependent change of the pressure inside a stack, and the hydrogen concentration outside the stack when the unevenness having a maximum height of 1.68 μm was formed. 最大高さが8.0μmである凹凸を形成したときの、積層体内の圧力と該積層体外での水素濃度の経時変化を示したグラフである。It is a graph which showed the time-dependent change of the pressure in the laminated body and the hydrogen concentration outside the laminated body when the unevenness with the maximum height of 8.0 μm was formed.

以下、本発明に係る水電解装置につき好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。 Hereinafter, suitable embodiments of the water electrolyzer according to the present invention will be given, and will be described in detail with reference to the accompanying drawings.

図1は、本実施の形態に係る差圧式高圧水電解装置10(水電解装置)の概略全体斜視図である。この差圧式高圧水電解装置10は、複数の高圧水電解セル12が積層された積層体14を備える。なお、図1では高圧水電解セル12を鉛直方向(矢印A方向)に沿って積層しているが、水平方向(矢印B方向)に沿って積層するようにしてもよい。 FIG. 1 is a schematic overall perspective view of a differential pressure type high-pressure water electrolyzer 10 (water electrolyzer) according to the present embodiment. The differential pressure type high-pressure water electrolyzer 10 includes a laminated body 14 in which a plurality of high-pressure water electrolyzer cells 12 are laminated. Although the high-pressure water electrolysis cells 12 are laminated along the vertical direction (arrow A direction) in FIG. 1, they may be laminated along the horizontal direction (arrow B direction).

積層体14の積層方向一端(上端)には、いずれも略円盤形状をなすターミナルプレート16a、絶縁プレート18a及びエンドプレート20aが、下方から上方に向かってこの順序で配設される。積層体14の積層方向他端(下端)にも同様に、いずれも略円盤形状をなすターミナルプレート16b、絶縁プレート18b及びエンドプレート20bが、上方から下方に向かってこの順序で配設される。 At one end (upper end) of the laminated body 14 in the stacking direction, a terminal plate 16a, an insulating plate 18a, and an end plate 20a, each having a substantially disk shape, are arranged in this order from the lower side to the upper side. Similarly, the terminal plate 16b, the insulating plate 18b, and the end plate 20b, each of which has a substantially disk shape, are arranged in this order from the upper side to the lower side on the other end (lower end) of the laminated body 14 in the stacking direction.

差圧式高圧水電解装置10は、矢印A方向に延在する4本のタイロッド22を介してエンドプレート20a、20b間が一体的に締め付け保持され、積層方向に締結される。なお、差圧式高圧水電解装置10は、エンドプレート20a、20bを端板として含む箱状ケーシング(図示せず)により一体的に保持される構成を採用してもよい。また、差圧式高圧水電解装置10は、全体として略円柱体形状を有しているが、立方体形状等の種々の形状に設定可能である。 The differential pressure type high-pressure water electrolyzer 10 is integrally tightened and held between the end plates 20a and 20b via four tie rods 22 extending in the direction of arrow A, and is fastened in the stacking direction. The differential pressure type high-pressure water electrolyzer 10 may adopt a configuration in which the end plates 20a and 20b are integrally held by a box-shaped casing (not shown) including the end plates. Further, although the differential pressure type high-pressure water electrolyzer 10 has a substantially cylindrical shape as a whole, it can be set to various shapes such as a cubic shape.

ターミナルプレート16a、16bの側部には、端子部24a、24bが外方に突出して設けられる。端子部24a、24bには、導線26a、26bを介して電解電源28が電気的に接続される。 Terminal portions 24a and 24b are provided on the side portions of the terminal plates 16a and 16b so as to project outward. The electrolytic power supply 28 is electrically connected to the terminal portions 24a and 24b via the conducting wires 26a and 26b.

図2及び図3に示すように、高圧水電解セル12は、略円盤状の電解質膜・電極構造体30と、該電解質膜・電極構造体30を挟持するアノード側セパレータ32及びカソード側セパレータ34とを備える。アノード側セパレータ32とカソード側セパレータ34との間には、略円環形状をなす樹脂枠部材36が配置される。樹脂枠部材36の中空内部には、電解質膜・電極構造体30等が収容される。 As shown in FIGS. 2 and 3, the high-pressure water electrolysis cell 12 includes a substantially disk-shaped electrolyte membrane / electrode structure 30, an anode-side separator 32 and a cathode-side separator 34 that sandwich the electrolyte membrane / electrode structure 30. And. A resin frame member 36 having a substantially annular shape is arranged between the anode-side separator 32 and the cathode-side separator 34. The electrolyte membrane / electrode structure 30 and the like are housed in the hollow inside of the resin frame member 36.

樹脂枠部材36の上開口底部、下開口底部には、シール部材37a、37bが設けられる。アノード側セパレータ32、カソード側セパレータ34は、これらシール部材37a、37bのそれぞれを介して樹脂枠部材36の上開口底部、下開口底部を閉塞する。 Seal members 37a and 37b are provided on the bottom of the upper opening and the bottom of the lower opening of the resin frame member 36. The anode-side separator 32 and the cathode-side separator 34 close the upper opening bottom and the lower opening bottom of the resin frame member 36 via the sealing members 37a and 37b, respectively.

樹脂枠部材36の直径方向一端には、積層方向(矢印A方向)に互いに連通して、水(純水)を供給するための水供給連通孔38aが設けられる。また、樹脂枠部材36の直径方向他端には、反応により生成された酸素及び未反応の水(混合流体)を排出するための水排出連通孔38bが設けられる。 A water supply communication hole 38a for supplying water (pure water) is provided at one end of the resin frame member 36 in the radial direction so as to communicate with each other in the stacking direction (arrow A direction). Further, at the other end of the resin frame member 36 in the radial direction, a water discharge communication hole 38b for discharging oxygen generated by the reaction and unreacted water (mixed fluid) is provided.

図1に示すように、積層方向の最下方に配置される樹脂枠部材36の側部には、水供給連通孔38aに連通する水供給口39aが接続される。また、積層方向の最上方に配置される樹脂枠部材36の側部には、水排出連通孔38bに連通する水排出口39bが接続される。 As shown in FIG. 1, a water supply port 39a communicating with the water supply communication hole 38a is connected to the side portion of the resin frame member 36 arranged at the lowermost position in the stacking direction. Further, a water discharge port 39b communicating with the water discharge communication hole 38b is connected to the side portion of the resin frame member 36 arranged at the uppermost position in the stacking direction.

高圧水電解セル12の中央部には、電解領域の略中央を貫通して積層方向に互いに連通する高圧水素連通孔38cが設けられる(図2及び図3参照)。高圧水素連通孔38cは、反応により生成され、同じく反応により生成された酸素よりも高圧(例えば、1MPa~80MPa)な水素を排出する。 At the center of the high-pressure water electrolysis cell 12, a high-pressure hydrogen communication hole 38c that penetrates substantially the center of the electrolysis region and communicates with each other in the stacking direction is provided (see FIGS. 2 and 3). The high-pressure hydrogen communication hole 38c is generated by the reaction and discharges hydrogen having a higher pressure (for example, 1 MPa to 80 MPa) than oxygen also generated by the reaction.

アノード側セパレータ32及びカソード側セパレータ34は、略円盤状を有するとともに、例えば、カーボン部材等で構成される。アノード側セパレータ32及びカソード側セパレータ34は、その他、鋼板、ステンレス鋼板、チタン板、アルミニウム板、めっき処理鋼板、又はその金属表面に防食用の表面処理を施した金属板をプレス成形することで得るようにしてもよい。あるいは、切削加工した後に防食用の表面処理を施して構成してもよい。 The anode-side separator 32 and the cathode-side separator 34 have a substantially disk shape and are composed of, for example, a carbon member or the like. The anode-side separator 32 and the cathode-side separator 34 are obtained by press-molding a steel plate, a stainless steel plate, a titanium plate, an aluminum plate, a plated steel plate, or a metal plate having a surface treatment for corrosion protection on the metal surface thereof. You may do so. Alternatively, it may be configured by subjecting it to a surface treatment for anticorrosion after cutting.

電解質膜・電極構造体30は、略リング形状をなす固体高分子膜からなる電解質膜40を備える。電解質膜40は、リング形状を有する電解用のアノード給電体42及びカソード給電体44により挟持される。電解質膜40は、例えば、炭化水素(HC)系の膜又はフッ素系の固体高分子膜により構成される。 The electrolyte membrane / electrode structure 30 includes an electrolyte membrane 40 made of a solid polymer membrane having a substantially ring shape. The electrolyte membrane 40 is sandwiched between the anode feeding body 42 for electrolysis and the cathode feeding body 44 having a ring shape. The electrolyte membrane 40 is composed of, for example, a hydrocarbon (HC) -based membrane or a fluorine-based solid polymer membrane.

電解質膜40の一方の面には、リング形状を有するアノード電極触媒層42aが設けられる。電解質膜40の他方の面には、リング形状を有するカソード電極触媒層44aが形成される。アノード電極触媒層42aとしては、例えば、Ru(ルテニウム)系触媒が使用され、カソード電極触媒層44aとしては、例えば、白金触媒が使用される。電解質膜40、アノード電極触媒層42a、カソード電極触媒層44aの略中央部には、高圧水素連通孔38cが形成される。 An anode electrode catalyst layer 42a having a ring shape is provided on one surface of the electrolyte membrane 40. A ring-shaped cathode electrode catalyst layer 44a is formed on the other surface of the electrolyte membrane 40. As the anode electrode catalyst layer 42a, for example, a Ru (ruthenium) -based catalyst is used, and as the cathode electrode catalyst layer 44a, for example, a platinum catalyst is used. A high-pressure hydrogen communication hole 38c is formed in a substantially central portion of the electrolyte membrane 40, the anode electrode catalyst layer 42a, and the cathode electrode catalyst layer 44a.

アノード給電体42及びカソード給電体44は、例えば、球状アトマイズチタン粉末の焼結体(多孔質導電体)により構成される。アノード給電体42及びカソード給電体44は、研削加工後にエッチング処理される平滑表面部を設けるとともに、空隙率が10%~50%、より好ましくは20%~40%の範囲内に設定される。アノード給電体42の外周縁部には、枠部42eが嵌め込まれる。枠部42eは、アノード給電体42よりも緻密に構成する。なお、アノード給電体42の外周部を緻密に構成することにより、前記外周縁部を枠部42eとすることもできる。 The anode feeding body 42 and the cathode feeding body 44 are composed of, for example, a sintered body (porous conductor) of spherical atomized titanium powder. The anode feeding body 42 and the cathode feeding body 44 are provided with a smooth surface portion to be etched after grinding, and the porosity is set within the range of 10% to 50%, more preferably 20% to 40%. The frame portion 42e is fitted into the outer peripheral edge portion of the anode feeding body 42. The frame portion 42e is configured more precisely than the anode feeding body 42. By precisely forming the outer peripheral portion of the anode feeding body 42, the outer peripheral edge portion can be used as the frame portion 42e.

樹脂枠部材36の中空内部とアノード側セパレータ32により、アノード給電体42が収容されるアノード室45anが形成される。一方、樹脂枠部材36の中空内部とカソード側セパレータ34により、カソード給電体44が収容されるカソード室45caが形成される。 The hollow inside of the resin frame member 36 and the anode-side separator 32 form an anode chamber 45an in which the anode feeding body 42 is housed. On the other hand, the hollow inside of the resin frame member 36 and the cathode side separator 34 form a cathode chamber 45ca in which the cathode feeding body 44 is housed.

アノード側セパレータ32とアノード給電体42との間(アノード室45an)には、水流路部材46が介装されるとともに、前記アノード給電体42とアノード電極触媒層42aとの間には、保護シート部材48が介装される。図2に示すように、水流路部材46は略円板形状を有し、外周部には、略180°の位相差で入口突起部46a及び出口突起部46bが形成される。 A water flow path member 46 is interposed between the anode side separator 32 and the anode feeding body 42 (anode chamber 45an), and a protective sheet is provided between the anode feeding body 42 and the anode electrode catalyst layer 42a. The member 48 is interposed. As shown in FIG. 2, the water flow path member 46 has a substantially disk shape, and an inlet protrusion 46a and an outlet protrusion 46b are formed on the outer peripheral portion with a phase difference of approximately 180 °.

入口突起部46aには、水供給連通孔38aに連通する供給連結路50aが形成される。この供給連結路50aは、水流路50bに連通する(図3参照)。さらに、水流路50bには複数個の孔部50cが連通し、該孔部50cは、アノード給電体42に向かって開口する。一方、出口突起部46bには、水流路50bに連通する排出連結路50dが形成され、この排出連結路50dは水排出連通孔38bに連通する。 A supply connecting path 50a communicating with the water supply communication hole 38a is formed in the inlet protrusion 46a. The supply connecting path 50a communicates with the water flow path 50b (see FIG. 3). Further, a plurality of holes 50c communicate with the water flow path 50b, and the holes 50c open toward the anode feeding body 42. On the other hand, the outlet protrusion 46b is formed with a discharge connecting path 50d communicating with the water flow path 50b, and the discharge connecting path 50d communicates with the water discharge communication hole 38b.

保護シート部材48は、その内周がアノード給電体42及びカソード給電体44の内周よりも内方に配置されるとともに、その外周位置が電解質膜40、アノード給電体42及び水流路部材46の外周位置と同一位置に設定される。また、保護シート部材48は、アノード電極触媒層42aの積層方向に対向する範囲(電解領域)に設けられる複数の貫通孔48aを有するとともに、電解領域の外方に枠部48bを有する。枠部48bには、例えば、長方形状の孔部(図示せず)が形成される。 The inner circumference of the protective sheet member 48 is arranged inward from the inner circumferences of the anode feeding body 42 and the cathode feeding body 44, and the outer peripheral positions thereof are the electrolyte membrane 40, the anode feeding body 42, and the water flow path member 46. It is set to the same position as the outer peripheral position. Further, the protective sheet member 48 has a plurality of through holes 48a provided in a range (electrolysis region) facing the stacking direction of the anode electrode catalyst layer 42a, and has a frame portion 48b on the outer side of the electrolytic region. For example, a rectangular hole portion (not shown) is formed in the frame portion 48b.

アノード側セパレータ32と電解質膜40との間には、高圧水素連通孔38cを囲繞する連通孔部材52が配置される。連通孔部材52は略円柱形状をなし、軸方向両端には、リング状に切り欠かれた形状のシール室52a、52bが設けられる。シール室52a、52bには、高圧水素連通孔38cを周回してシールするシール部材(小Oリング)54a、54bが配置される。連通孔部材52の電解質膜40に対向する端面には、保護シート部材48が配置される溝部52sが形成される。 A communication hole member 52 surrounding the high-pressure hydrogen communication hole 38c is arranged between the anode-side separator 32 and the electrolyte membrane 40. The communication hole member 52 has a substantially cylindrical shape, and seal chambers 52a and 52b having a ring-shaped notch are provided at both ends in the axial direction. Sealing members (small O-rings) 54a and 54b that circulate and seal the high-pressure hydrogen communication holes 38c are arranged in the sealing chambers 52a and 52b. Grooves 52s in which the protective sheet member 48 is arranged are formed on the end surface of the communication hole member 52 facing the electrolyte membrane 40.

シール室52a、52bと高圧水素連通孔38cとの間には、円筒形状の多孔質部材56が配設される。多孔質部材56の中央部には、高圧水素連通孔38cが形成される。多孔質部材56は、アノード側セパレータ32と電解質膜40との間に介装される。多孔質部材56は、セラミック製多孔質体、樹脂製多孔質体又はセラミックと樹脂との混合材料製多孔質体で形成されるが、その他、種々の材料を用いてもよい。 A cylindrical porous member 56 is disposed between the seal chambers 52a and 52b and the high-pressure hydrogen communication hole 38c. A high-pressure hydrogen communication hole 38c is formed in the central portion of the porous member 56. The porous member 56 is interposed between the anode-side separator 32 and the electrolyte membrane 40. The porous member 56 is formed of a ceramic porous body, a resin porous body, or a porous body made of a mixed material of ceramic and resin, but various other materials may be used.

図2及び図3に示すように、カソード室45caには、カソード給電体44を電解質膜40側に指向して押圧する荷重付与機構58が配置される。この荷重付与機構58は、弾性部材、例えば、板ばね60を含んで構成され、該板ばね60は、金属製の板ばねホルダ(シム部材)62を介してカソード給電体44に荷重を付与する。なお、弾性部材としては、板ばね60の他、皿ばねやコイルスプリング等を使用することができる。 As shown in FIGS. 2 and 3, a load applying mechanism 58 that presses the cathode feeding body 44 toward the electrolyte membrane 40 is arranged in the cathode chamber 45ca. The load applying mechanism 58 includes an elastic member, for example, a leaf spring 60, and the leaf spring 60 applies a load to the cathode feeding body 44 via a metal leaf spring holder (shim member) 62. .. As the elastic member, in addition to the leaf spring 60, a disc spring, a coil spring, or the like can be used.

カソード給電体44と板ばねホルダ62との間には、導電シート66が配置される。導電シート66は、例えば、チタン、SUS又は鉄等の金属シートにより構成されるとともに、リング形状を有し、カソード給電体44と略同一の直径に設定される。 A conductive sheet 66 is arranged between the cathode feeding body 44 and the leaf spring holder 62. The conductive sheet 66 is made of, for example, a metal sheet such as titanium, SUS, or iron, has a ring shape, and has a diameter substantially the same as that of the cathode feeding body 44.

カソード給電体44の中央部には、導電シート66と電解質膜40との間に位置して絶縁部材、例えば、樹脂シート68が配置される。樹脂シート68は、カソード給電体44の内周面に嵌合する。樹脂シート68は、カソード給電体44と略同一の厚さに設定される。樹脂シート68としては、例えば、PEN(ポリエチレンナフタレート)やポリイミドフィルム等が使用される。 An insulating member, for example, a resin sheet 68, is arranged between the conductive sheet 66 and the electrolyte membrane 40 in the central portion of the cathode feeding body 44. The resin sheet 68 fits on the inner peripheral surface of the cathode feeding body 44. The resin sheet 68 is set to have substantially the same thickness as the cathode feeding body 44. As the resin sheet 68, for example, PEN (polyethylene naphthalate), a polyimide film, or the like is used.

樹脂シート68とカソード側セパレータ34との間には、連通孔部材70が配置される。連通孔部材70は円筒形状を有し、中央部に高圧水素連通孔38cが形成される。連通孔部材70の軸方向一端には、カソード室45caと高圧水素連通孔38cとを連通する水素排出通路71が形成される。 A communication hole member 70 is arranged between the resin sheet 68 and the cathode side separator 34. The communication hole member 70 has a cylindrical shape, and a high-pressure hydrogen communication hole 38c is formed in the central portion. A hydrogen discharge passage 71 that communicates the cathode chamber 45ca and the high-pressure hydrogen communication hole 38c is formed at one end of the communication hole member 70 in the axial direction.

カソード室45caには、カソード給電体44、板ばねホルダ62及び導電シート66の外周を周回する大Oリング72(シール部材)が配置される。この大Oリング72の外周には、該大Oリング72よりも高硬度な耐圧部材74が配置される。耐圧部材74は、略リング形状を有するとともに、外周部が樹脂枠部材36の内周部に嵌合する。 In the cathode chamber 45ca, a large O-ring 72 (seal member) that circulates around the outer periphery of the cathode feeding body 44, the leaf spring holder 62, and the conductive sheet 66 is arranged. A pressure-resistant member 74 having a hardness higher than that of the large O-ring 72 is arranged on the outer periphery of the large O-ring 72. The pressure-resistant member 74 has a substantially ring shape, and the outer peripheral portion is fitted to the inner peripheral portion of the resin frame member 36.

大Oリング72の断面は、真円ないし楕円に近い。従って、図3に示すように、大Oリング72とカソード電極触媒層44aとの間に空隙76が生じる。後述するように、カソード電極触媒層44aで発生した水素は、この空隙76に進入する。 The cross section of the large O-ring 72 is close to a perfect circle or an ellipse. Therefore, as shown in FIG. 3, a gap 76 is formed between the large O-ring 72 and the cathode electrode catalyst layer 44a. As will be described later, hydrogen generated in the cathode electrode catalyst layer 44a enters the void 76.

大Oリング72と耐圧部材74の間には、面圧付与部材としてのバックアップリング78が介装される。要部拡大断面図である図4から諒解されるように、バックアップリング78は、径方向に沿う断面が略三角形をなし、大Oリング72と耐圧部材74の下半分との間に形成される略三角形状の空隙を埋める。このような形状をなすバックアップリング78は、電解質膜・電極構造体30に当接する第1当接面80aと、耐圧部材74に当接する第2当接面80bと、大Oリング72に当接する第3当接面80cとを有する。以下、第1当接面80aをなす辺、第2当接面80bをなす辺、第3当接面80cをなす辺を、それぞれ、第1辺82a、第2辺82b、第3辺82cと表記する。この中の第1辺82aが底辺となり、且つ第3辺82cが第1辺82aと第2辺82bの双方に連なる斜辺となることで、バックアップリング78の径方向断面が略三角形となる。 A backup ring 78 as a surface pressure applying member is interposed between the large O-ring 72 and the pressure resistant member 74. As can be understood from FIG. 4, which is an enlarged cross-sectional view of a main part, the backup ring 78 has a substantially triangular cross section along the radial direction, and is formed between the large O-ring 72 and the lower half of the pressure-resistant member 74. Fills the approximately triangular voids. The backup ring 78 having such a shape abuts on the first contact surface 80a that abuts on the electrolyte membrane / electrode structure 30, the second contact surface 80b that abuts on the pressure resistant member 74, and the large O-ring 72. It has a third contact surface 80c. Hereinafter, the side forming the first contact surface 80a, the side forming the second contact surface 80b, and the side forming the third contact surface 80c are referred to as the first side 82a, the second side 82b, and the third side 82c, respectively. write. The first side 82a is the bottom side, and the third side 82c is the hypotenuse connected to both the first side 82a and the second side 82b, so that the radial cross section of the backup ring 78 becomes a substantially triangular shape.

バックアップリング78は、摩擦係数が低い材料からなることが好ましい。このような材料の好適な一例としては、ポテトラフルオロエチレン樹脂が挙げられる。
The backup ring 78 is preferably made of a material having a low coefficient of friction. A suitable example of such a material is a polytetrafluoroethylene resin.

耐圧部材74の、電解質膜・電極構造体30を臨む下面(第1端面)と、カソード側セパレータ34を臨む上面(第2端面)には、粗面化処理が施されている。このため、下面及び上面は平滑ではなく、凹部90及び凸部92を含む凹凸が形成されている。下面及び上面の面粗度は、最大高さ(Rz)が1.5~13.0μmの範囲内となるように設定することが好ましい。なお、一層好適な面粗度は、最大高さ(Rz)が1.5~8.0μmの範囲内である。 The lower surface (first end surface) of the pressure resistant member 74 facing the electrolyte membrane / electrode structure 30 and the upper surface (second end surface) facing the cathode side separator 34 are roughened. Therefore, the lower surface and the upper surface are not smooth, and unevenness including the concave portion 90 and the convex portion 92 is formed. The surface roughness of the lower surface and the upper surface is preferably set so that the maximum height (Rz) is in the range of 1.5 to 13.0 μm. The more suitable surface roughness is in the range of the maximum height (Rz) of 1.5 to 8.0 μm.

電解質膜・電極構造体30を構成する電解質膜40と耐圧部材74との間には、絶縁体としての絶縁性円環体94が介挿される。換言すれば、絶縁性円環体94は、電解質膜40と耐圧部材74との間に挟み込まれる。なお、絶縁性円環体94は、例えば、樹脂シート68と同様にPENやポリイミドフィルム等から構成される。 An insulating annular body 94 as an insulator is interposed between the electrolyte membrane 40 constituting the electrolyte membrane / electrode structure 30 and the pressure resistant member 74. In other words, the insulating torus 94 is sandwiched between the electrolyte membrane 40 and the pressure resistant member 74. The insulating torus 94 is made of, for example, a PEN, a polyimide film, or the like, like the resin sheet 68.

従来技術では、耐圧部材74と絶縁体(絶縁性円環体94)は接着剤によって接着される。これに対し、本実施の形態では、絶縁性円環体94は耐圧部材74に対して接着されていない。また、その他の接合手法によって接合されてもおらず、単に接触するのみである。 In the prior art, the pressure resistant member 74 and the insulator (insulating ring 94) are bonded by an adhesive. On the other hand, in the present embodiment, the insulating torus 94 is not adhered to the pressure resistant member 74. In addition, they are not joined by other joining methods, but merely come into contact with each other.

本実施の形態に係る差圧式高圧水電解装置10は、基本的には以上のように構成されるものであり、次に、その作用効果について、該差圧式高圧水電解装置10の動作との関係で説明する。 The differential pressure type high-pressure water electrolyzer 10 according to the present embodiment is basically configured as described above, and next, the operation and effect thereof are the same as the operation of the differential pressure type high-pressure water electrolyzer 10. I will explain in relation.

水の電気分解を開始するに際しては、図1に示すように、水供給口39aから水供給連通孔38aに水が供給されるとともに、ターミナルプレート16a、16bの端子部24a、24bに導線26a、26bを介して電解電源28からの電力が付与される。このため、図3に示すように、各高圧水電解セル12では、水供給連通孔38aから供給連結路50aを通って水流路部材46の水流路50bに水が供給される。水は、複数個の孔部50cからアノード給電体42に供給され、多孔質体である該アノード給電体42内に移動する。 When starting the electrolysis of water, as shown in FIG. 1, water is supplied from the water supply port 39a to the water supply communication hole 38a, and the lead wires 26a are connected to the terminal portions 24a and 24b of the terminal plates 16a and 16b. Power from the electrolytic power source 28 is applied via 26b. Therefore, as shown in FIG. 3, in each high-pressure water electrolysis cell 12, water is supplied from the water supply communication hole 38a to the water flow path 50b of the water flow path member 46 through the supply connection path 50a. Water is supplied to the anode feeding body 42 from the plurality of holes 50c and moves into the anode feeding body 42 which is a porous body.

水は、さらに、貫通孔48aを通過してアノード電極触媒層42aに到達する。このアノード電極触媒層42aにて水が電気分解され、プロトン、電子及び酸素が生成される陽極反応が生起される。この中のプロトンは電解質膜40を透過してカソード電極触媒層44a側に移動し、電子と結合する陰極反応を起こす。その結果、気相としての水素が得られる。 Water further passes through the through hole 48a and reaches the anode electrode catalyst layer 42a. Water is electrolyzed in the anode electrode catalyst layer 42a, and an anodic reaction is generated in which protons, electrons and oxygen are generated. The protons in this permeate through the electrolyte membrane 40 and move to the cathode electrode catalyst layer 44a side, causing a cathode reaction that binds to electrons. As a result, hydrogen as a gas phase is obtained.

水素は、カソード給電体44の内部の水素流路に沿ってカソード室45caに流動し、さらに、水素排出通路71から高圧水素連通孔38cに排出される。水素は、水供給連通孔38aよりも高圧に維持された状態で、高圧水素連通孔38cを流れて差圧式高圧水電解装置10の外部に取り出し可能となる。一方、陽極反応により生成した酸素と未反応の水とは、水排出連通孔38bから水排出口39bを介して差圧式高圧水電解装置10の外部に排出される。 Hydrogen flows into the cathode chamber 45ca along the hydrogen flow path inside the cathode feeding body 44, and is further discharged from the hydrogen discharge passage 71 into the high-pressure hydrogen communication hole 38c. Hydrogen can flow out of the differential pressure type high-pressure water electrolyzer 10 through the high-pressure hydrogen communication hole 38c while being maintained at a higher pressure than the water supply communication hole 38a. On the other hand, the oxygen generated by the anodic reaction and the unreacted water are discharged from the water discharge communication hole 38b to the outside of the differential pressure type high-pressure water electrolyzer 10 through the water discharge port 39b.

カソード電極触媒層44aで発生した水素の一部は、空隙76に進入する。空隙76及びカソード室45caに進入した水素が上記したように高圧であるため、各高圧水電解セル12では、大Oリング72の内方が高圧、外方が低圧となる。このため、図5に示すように、大Oリング72に対し、該大Oリング72を耐圧部材74側に押し付けるように移動させ且つ圧縮させる押圧力Fが作用する。バックアップリング78は、この押圧力Fを受ける。 A part of the hydrogen generated in the cathode electrode catalyst layer 44a enters the void 76. Since the hydrogen that has entered the void 76 and the cathode chamber 45ca has a high pressure as described above, in each high-pressure water electrolysis cell 12, the inside of the large O-ring 72 has a high pressure and the outside has a low pressure. Therefore, as shown in FIG. 5, a pressing force F that moves and compresses the large O-ring 72 so as to press it against the pressure-resistant member 74 acts on the large O-ring 72. The backup ring 78 receives this pressing force F.

すなわち、バックアップリング78は、大Oリング72に当接した第3当接面80cが、大Oリング72によって押圧される。第3当接面80cをなす第3辺82cが斜辺であるので、大Oリング72の押圧力Fは、第3辺82cに略直交する方向に沿って作用する。押圧力Fは、さらに、第1辺82a、第2辺82bのそれぞれに略直交する方向に分配される。このため、第1辺82a(第1当接面80a)は電解質膜40を分配力f1で押圧し、第2辺82b(第2当接面80b)は分配力f2で耐圧部材74を押圧する。このように、大Oリング72の拡径に伴って生じる押圧力Fは、バックアップリング78によって、電解質膜40を保護シート部材48に押し付ける力f1に変換される。 That is, in the backup ring 78, the third contact surface 80c in contact with the large O-ring 72 is pressed by the large O-ring 72. Since the third side 82c forming the third contact surface 80c is a hypotenuse, the pressing force F of the large O-ring 72 acts along a direction substantially orthogonal to the third side 82c. The pressing force F is further distributed in a direction substantially orthogonal to each of the first side 82a and the second side 82b. Therefore, the first side 82a (first contact surface 80a) presses the electrolyte membrane 40 with the distribution force f1, and the second side 82b (second contact surface 80b) presses the pressure resistant member 74 with the distribution force f2. .. In this way, the pressing force F generated by the expansion of the diameter of the large O-ring 72 is converted into a force f1 that presses the electrolyte membrane 40 against the protective sheet member 48 by the backup ring 78.

このように、バックアップリング78の内方側に空隙76が形成されることにより、水素の圧力が大Oリング72に確実に伝達される。その結果として、大Oリング72の押圧力Fがバックアップリング78の第1当接面80aを介して電解質膜40に伝達されるので、バックアップリング78から電解質膜・電極構造体30に面圧(分配力f2)が付与される。従って、電解質膜・電極構造体30が保護シート部材48に強力に押し付けられる。すなわち、電解質膜40が保護シート部材48に指向して押圧される。
By forming the void 76 on the inner side of the backup ring 78 in this way, the pressure of hydrogen is surely transmitted to the large O-ring 72. As a result, the pressing force F of the large O-ring 72 is transmitted to the electrolyte membrane 40 via the first contact surface 80a of the backup ring 78, so that the surface pressure (from the backup ring 78 to the electrolyte membrane / electrode structure 30) ( Distributing power f2) is given. Therefore, the electrolyte membrane / electrode structure 30 is strongly pressed against the protective sheet member 48. That is, the electrolyte membrane 40 is directed toward the protective sheet member 48 and pressed.

この押圧により、電解質膜・電極構造体30が保護シート部材48に対して位置ズレを起こすことが困難となる。従って、大Oリング72が移動したとしても、これに伴って電解質膜40が引っ張られることが回避される。このため、該電解質膜40に皺が発生する懸念が払拭される。 This pressing makes it difficult for the electrolyte membrane / electrode structure 30 to be displaced with respect to the protective sheet member 48. Therefore, even if the large O-ring 72 moves, the electrolyte membrane 40 is prevented from being pulled accordingly. Therefore, the concern that wrinkles are generated in the electrolyte membrane 40 is eliminated.

加えて、大Oリング72がバックアップリング78に堰き止められた状態で圧縮されるため、大Oリング72の外周壁の一部が電解質膜40ないし絶縁性円環体94と耐圧部材74との間に噛み込むことが防止される。 In addition, since the large O-ring 72 is compressed while being blocked by the backup ring 78, a part of the outer peripheral wall of the large O-ring 72 is formed by the electrolyte membrane 40 or the insulating torus 94 and the pressure resistant member 74. It is prevented from getting caught in between.

ここで、大Oリング72の内周側(カソード)では高圧の水素が発生しており、常圧である外周側(耐圧部材74)との差圧が大きい。このため、カソード電極触媒層44aで発生して大Oリング72の内部を透過した水素や、電解質膜40を透過した水素が耐圧部材74側に進行し、絶縁性円環体94と耐圧部材74の下面との間や、耐圧部材74の上面とカソード側セパレータ34との間に進入して滞留する可能性がある。 Here, high-pressure hydrogen is generated on the inner peripheral side (cathode) of the large O-ring 72, and the differential pressure from the outer peripheral side (pressure resistant member 74), which is the normal pressure, is large. Therefore, hydrogen generated in the cathode electrode catalyst layer 44a and permeating the inside of the large O-ring 72 and hydrogen permeating the electrolyte membrane 40 proceed to the pressure-resistant member 74 side, and the insulating torus 94 and the pressure-resistant member 74 There is a possibility that it may enter and stay between the lower surface of the pressure-resistant member 74 and between the upper surface of the pressure-resistant member 74 and the cathode-side separator 34.

電気分解を停止するべく差圧式高圧水電解装置10の運転を停止するに際しては、低圧(常圧)側のアノード室45anと高圧側のカソード室45caとの差圧を解消させるために、カソード室45caに脱圧(減圧)処理が施される。上記したように、絶縁性円環体94と耐圧部材74との間、耐圧部材74とカソード側セパレータ34との間に水素が滞留していると、大Oリング72の内周側が低圧、外周側が高圧となるために差圧が生じる。 When stopping the operation of the differential pressure type high pressure water electrolysis device 10 to stop electrolysis, the cathode chamber is used to eliminate the differential pressure between the anode chamber 45an on the low pressure (normal pressure) side and the cathode chamber 45ca on the high pressure side. Depressurization (decompression) treatment is applied to 45ca. As described above, when hydrogen stays between the insulating torus 94 and the pressure resistant member 74 and between the pressure resistant member 74 and the cathode side separator 34, the inner peripheral side of the large O-ring 72 has a low pressure and the outer circumference. A differential pressure is generated because the side becomes high pressure.

この差圧に基づいて大Oリング72が内周側に押圧されると、該大Oリング72が耐圧部材74から離間したり、絶縁性円環体94ないし電解質膜40と耐圧部材74との間、耐圧部材74とカソード側セパレータ34との間に噛み込んだりすることがあり得る。その結果として、電解質膜40や大Oリング72が破損する懸念がある。 When the large O-ring 72 is pressed toward the inner peripheral side based on this differential pressure, the large O-ring 72 is separated from the pressure-resistant member 74, or the insulating ring 94 or the electrolyte membrane 40 and the pressure-resistant member 74 are separated from each other. In the meantime, it may get caught between the pressure resistant member 74 and the cathode side separator 34. As a result, there is a concern that the electrolyte membrane 40 and the large O-ring 72 may be damaged.

しかしながら、本実施の形態では、先ず、耐圧部材74の下面及び上面に対して粗面化処理を施し、凹部90及び凸部92を含む凹凸を形成している。このため、絶縁性円環体94と耐圧部材74の下面との間、耐圧部材74の上面とカソード側セパレータ34との間は、面接触ではなく、凸部92の先端を介した複数の点接触で当接している。換言すれば、凸部92の先端以外は、絶縁性円環体94又は耐圧部材74から離間している。この離間により、絶縁性円環体94と耐圧部材74の下面との間、耐圧部材74の上面とカソード側セパレータ34との間に、クリアランスがそれぞれ形成される。 However, in the present embodiment, first, the lower surface and the upper surface of the pressure-resistant member 74 are roughened to form unevenness including the concave portion 90 and the convex portion 92. Therefore, between the insulating torus 94 and the lower surface of the pressure-resistant member 74, and between the upper surface of the pressure-resistant member 74 and the cathode-side separator 34, a plurality of points are not in surface contact but via the tip of the convex portion 92. They are in contact with each other. In other words, except for the tip of the convex portion 92, it is separated from the insulating torus 94 or the pressure resistant member 74. Due to this separation, a clearance is formed between the insulating torus 94 and the lower surface of the pressure-resistant member 74, and between the upper surface of the pressure-resistant member 74 and the cathode-side separator 34.

耐圧部材74の下面及び上面の面粗度は、好ましくは最大高さ(Rz)が1.5~13.0μmの範囲内となるように設定される。最大高さが1.5μm未満では十分なクリアランスを形成することが容易でなくなる。また、13.0μmを超えると、上記の水素生成時に大Oリング72が押圧力Fを受けて耐圧部材74に押し付けられた際、耐圧部材74とカソード側セパレータ34との間に大Oリング72が噛み込む懸念がある。一層好適な最大高さ(Rz)は、1.5~8.0μmの範囲内である。 The surface roughness of the lower surface and the upper surface of the pressure-resistant member 74 is preferably set so that the maximum height (Rz) is in the range of 1.5 to 13.0 μm. If the maximum height is less than 1.5 μm, it will not be easy to form a sufficient clearance. If it exceeds 13.0 μm, when the large O-ring 72 receives the pressing force F and is pressed against the pressure resistant member 74 during the above hydrogen generation, the large O-ring 72 is between the pressure resistant member 74 and the cathode side separator 34. There is a concern that it will bite. A more preferred maximum height (Rz) is in the range of 1.5 to 8.0 μm.

しかも、本実施の形態では、絶縁性円環体94を耐圧部材74に対して当接させるのみとし、接着はしていない。このため、接着剤が前記クリアランスを充填することもない。 Moreover, in the present embodiment, the insulating torus 94 is only brought into contact with the pressure resistant member 74, and is not adhered. Therefore, the adhesive does not fill the clearance.

従って、水素が、絶縁性円環体94と耐圧部材74の下面との間、耐圧部材74の上面とカソード側セパレータ34との間に進入した場合、カソードに脱圧が施されると、水素は、前記クリアランスを介して流通することが可能である。すなわち、耐圧部材74の下面及び上面に凹部90及び凸部92(凹凸)を設ける粗面化処理を施したことにより、絶縁性円環体94と耐圧部材74の下面との間、耐圧部材74の上面とカソード側セパレータ34との間に進入した水素が速やかに排出される。 Therefore, when hydrogen enters between the insulating torus 94 and the lower surface of the pressure resistant member 74, and between the upper surface of the pressure resistant member 74 and the cathode side separator 34, when the cathode is depressurized, hydrogen is applied. Can be distributed through the clearance. That is, the pressure-resistant member 74 is between the insulating annular body 94 and the lower surface of the pressure-resistant member 74 by performing a roughening treatment in which the concave portion 90 and the convex portion 92 (concavo-convex) are provided on the lower surface and the upper surface of the pressure-resistant member 74. Hydrogen that has entered between the upper surface of the torus and the cathode side separator 34 is quickly discharged.

換言すれば、脱圧後に水素が滞留することが防止される。従って、大Oリング72の内周側と外周側に差圧が生じることが回避される。これにより、大Oリング72の内周側と外周側との差圧に起因して電解質膜40や大Oリング72が破損する懸念が払拭される。 In other words, hydrogen is prevented from staying after depressurization. Therefore, it is avoided that a differential pressure is generated on the inner peripheral side and the outer peripheral side of the large O-ring 72. This eliminates the concern that the electrolyte membrane 40 and the large O-ring 72 will be damaged due to the differential pressure between the inner peripheral side and the outer peripheral side of the large O-ring 72.

図6~図8は、それぞれ、最大高さが0.4μm、1.68μm、8.0μmであるときの積層体14内の圧力(水素圧)と、積層体14外での水素濃度の経時変化を示したグラフである。図6においては積層体14内の圧力の下降に伴って水素濃度もなだらかに下降しているのに対し、図7及び図8においては脱圧時に水素濃度が瞬間的に上昇していることが分かる。このことは、図7及び図8では、絶縁性円環体94と耐圧部材74の下面との間、耐圧部材74の上面とカソード側セパレータ34との間に進入していた水素が排出されているのに対し、図6では滞留したままであることを表している。 6 to 8 show the pressure (hydrogen pressure) inside the laminate 14 and the hydrogen concentration outside the laminate 14 over time when the maximum heights are 0.4 μm, 1.68 μm, and 8.0 μm, respectively. It is a graph showing the change. In FIG. 6, the hydrogen concentration gradually decreases as the pressure in the laminate 14 decreases, whereas in FIGS. 7 and 8, the hydrogen concentration momentarily increases during depressurization. I understand. This means that in FIGS. 7 and 8, hydrogen that has entered between the insulating torus 94 and the lower surface of the pressure resistant member 74, and between the upper surface of the pressure resistant member 74 and the cathode side separator 34 is discharged. On the other hand, FIG. 6 shows that it remains stagnant.

すなわち、図6と、図7及び図8とを対比すれば、耐圧部材74の下面及び上面に、所定の面粗度となるように粗面化加工を施すことにより、カソードの脱圧後に、絶縁性円環体94と耐圧部材74との間、耐圧部材74とカソード側セパレータ34との間に水素が滞留することを防止し得ることが明らかである。 That is, when FIG. 6 is compared with FIGS. 7 and 8, the lower surface and the upper surface of the pressure resistant member 74 are roughened so as to have a predetermined surface roughness, so that after depressurization of the cathode, It is clear that hydrogen can be prevented from staying between the insulating torus 94 and the pressure resistant member 74, and between the pressure resistant member 74 and the cathode side separator 34.

なお、脱圧により、バックアップリング78の内方と外方が同圧となる。このために大Oリング72が上記の押圧力Fから解放されるので、該大Oリング72が伸長して元の形状に戻るとともに、元の位置に移動する。 By depressurizing, the pressure inside and outside the backup ring 78 becomes the same. For this reason, the large O-ring 72 is released from the pressing force F, so that the large O-ring 72 expands and returns to its original shape and moves to its original position.

このときにも、バックアップリング78の第当接面80が絶縁性円環体94に当接している状態が継続されている。従って、上記と同様に電解質膜・電極構造体30が保護シート部材48に対して位置ズレを起こすことは困難であり、大Oリング72の移動に伴って電解質膜40が引っ張られることが回避される。すなわち、該電解質膜40に皺が発生する懸念が払拭される。
Even at this time, the state in which the second contact surface 80 b of the backup ring 78 is in contact with the insulating torus 94 continues. Therefore, it is difficult for the electrolyte membrane / electrode structure 30 to be displaced with respect to the protective sheet member 48 in the same manner as described above, and it is possible to avoid pulling the electrolyte membrane 40 with the movement of the large O-ring 72. To. That is, the concern that wrinkles are generated in the electrolyte membrane 40 is eliminated.

本発明は、上記した実施の形態に特に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not particularly limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.

例えば、バックアップリング78を用いる必要は特にない。 For example, it is not necessary to use the backup ring 78.

10…差圧式高圧水電解装置 12…高圧水電解セル
14…積層体 28…電解電源
30…電解質膜・電極構造体 32…アノード側セパレータ
34…カソード側セパレータ 36…樹脂枠部材
37a、37b…シール部材 38a…水供給連通孔
38b…水排出連通孔 38c…高圧水素連通孔
39a…水供給口 39b…水排出口
40…電解質膜 42…アノード給電体
42a…アノード電極触媒層 44…カソード給電体
44a…カソード電極触媒層 45an…アノード室
45ca…カソード室 46…水流路部材
52、70…連通孔部材 52a、52b…シール室
56…多孔質部材 58…荷重付与機構
60…板ばね 62…板ばねホルダ
71…水素排出通路 72…大Oリング
74…耐圧部材 76…空隙
78…バックアップリング 80a…第1当接面
80b…第2当接面 80c…第3当接面
82a…第1辺 82b…第2辺
82c…第3辺 90…凹部
92…凸部 94…絶縁性円環体
10 ... Differential pressure type high pressure water electrolyzer 12 ... High pressure water electrolysis cell 14 ... Laminated body 28 ... Electrolyte power supply 30 ... Electrolyte film / electrode structure 32 ... Anode side separator 34 ... Anode side separator 36 ... Resin frame member 37a, 37b ... Seal Member 38a ... Water supply communication hole 38b ... Water discharge communication hole 38c ... High-pressure hydrogen communication hole 39a ... Water supply port 39b ... Water discharge port 40 ... Electrolyte film 42 ... Anode feeding body 42a ... Anode electrode catalyst layer 44 ... Cathode feeding body 44a ... Cathode electrode catalyst layer 45an ... Anode chamber 45ca ... Cathode chamber 46 ... Water flow path member 52, 70 ... Communication hole member 52a, 52b ... Seal chamber 56 ... Porous member 58 ... Load application mechanism 60 ... Leaf spring 62 ... Leaf spring holder 71 ... Hydrogen discharge passage 72 ... Large O-ring 74 ... Pressure-resistant member 76 ... Void 78 ... Backup ring 80a ... First contact surface 80b ... Second contact surface 80c ... Third contact surface 82a ... First side 82b ... First side 2 sides 82c ... 3rd side 90 ... concave 92 ... convex 94 ... insulating annular body

Claims (2)

アノード側セパレータと、
カソード側セパレータと、
アノード電極触媒層とカソード電極触媒層が電解質膜に設けられることで構成され、前記アノード側セパレータと前記カソード側セパレータとの間に位置する電解質膜・電極構造体と、
前記カソード側セパレータと前記電解質膜・電極構造体とで挟持され、前記カソード電極触媒層を囲繞するシール部材と、
前記シール部材を外方から囲繞する耐圧部材と、
を有する水電解装置であって、
前記耐圧部材の、前記電解質膜・電極構造体に臨む第1端面と、前記カソード側セパレータに臨む第2端面に凹凸が形成され、
前記第1端面及び前記第2端面の面粗度は、最大高さで1.5~13.0μmであり、
且つ前記耐圧部材と前記電解質膜・電極構造体との間に介挿された絶縁体をさらに有し、
前記絶縁体は、前記耐圧部材と前記電解質膜・電極構造体に対して接着されていないことを特徴とする水電解装置。
Anode side separator and
Cathode side separator and
An electrolyte membrane / electrode structure configured by providing an anode electrode catalyst layer and a cathode electrode catalyst layer on an electrolyte membrane and located between the anode-side separator and the cathode-side separator.
A seal member sandwiched between the cathode side separator and the electrolyte membrane / electrode structure and surrounding the cathode electrode catalyst layer, and
A pressure-resistant member that surrounds the seal member from the outside,
It is a water electrolyzer with
Concavities and convexities are formed on the first end surface of the pressure resistant member facing the electrolyte membrane / electrode structure and the second end surface facing the cathode side separator.
The surface roughness of the first end surface and the second end surface is 1.5 to 13.0 μm at the maximum height.
Further, it further has an insulator interposed between the pressure-resistant member and the electrolyte membrane / electrode structure.
A water electrolyzer characterized in that the insulator is not adhered to the pressure resistant member and the electrolyte membrane / electrode structure .
請求項1記載の水電解装置において、前記シール部材と前記耐圧部材との間に介在し、前記シール部材からの押圧を受けて前記電解質膜・電極構造体に圧力を付与する面圧付与部材をさらに有することを特徴とする水電解装置。 In the water electrolyzer according to claim 1 , a surface pressure applying member that is interposed between the seal member and the pressure resistant member and receives pressure from the seal member to apply pressure to the electrolyte membrane / electrode structure. A water electrolyzer characterized by further having.
JP2018041992A 2018-03-08 2018-03-08 Water electrolyzer Active JP7044593B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018041992A JP7044593B2 (en) 2018-03-08 2018-03-08 Water electrolyzer
CN201910171578.6A CN110241436B (en) 2018-03-08 2019-03-07 Water electrolysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018041992A JP7044593B2 (en) 2018-03-08 2018-03-08 Water electrolyzer

Publications (2)

Publication Number Publication Date
JP2019157164A JP2019157164A (en) 2019-09-19
JP7044593B2 true JP7044593B2 (en) 2022-03-30

Family

ID=67883009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018041992A Active JP7044593B2 (en) 2018-03-08 2018-03-08 Water electrolyzer

Country Status (2)

Country Link
JP (1) JP7044593B2 (en)
CN (1) CN110241436B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7037965B2 (en) * 2018-03-14 2022-03-17 本田技研工業株式会社 Water electrolyzer
EP4455365A1 (en) * 2021-12-23 2024-10-30 Panasonic Intellectual Property Management Co., Ltd. Compression device
WO2023120042A1 (en) * 2021-12-23 2023-06-29 パナソニックIpマネジメント株式会社 Compression device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050155668A1 (en) 2004-01-16 2005-07-21 Gennadi Finkelshtain Refilling system for a fuel cell and method of refilling a fuel cell
JP2014228105A (en) 2013-05-24 2014-12-08 本田技研工業株式会社 High-pressure gas vessel and gas leakage determination method of high-pressure gas vessel seal part
JP2016044353A (en) 2014-08-26 2016-04-04 本田技研工業株式会社 Differential pressure type high pressure water electrolyzer
JP2016089220A (en) 2014-11-05 2016-05-23 本田技研工業株式会社 Differential pressure type high-pressure water electrolysis apparatus

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157914B2 (en) * 2006-12-14 2013-03-06 Nok株式会社 SEALING DEVICE AND METHOD FOR MANUFACTURING SEALING DEVICE
CN101747570B (en) * 2008-12-18 2013-12-18 株式会社阪上制作所 Sliding part and sealing device
CN102041522B (en) * 2009-10-19 2012-05-30 江阴市生一氯碱设备制造有限公司 Production method of seal gasket of electrolytic tank
JP2013194296A (en) * 2012-03-21 2013-09-30 Asahi Kasei Chemicals Corp Protective member of electrolytic cell and electrolytic cell using the same
CN202867831U (en) * 2012-08-31 2013-04-10 浙江吉利汽车研究院有限公司杭州分公司 Oil filling port cap seal ring
CN102839385B (en) * 2012-09-18 2015-08-05 北京化工大学 Oxygen cathode ion membrane electrolysis groove and installation sealing method thereof
JP5781490B2 (en) * 2012-11-26 2015-09-24 本田技研工業株式会社 High pressure water electrolyzer
CN203571079U (en) * 2013-10-29 2014-04-30 费希尔久安输配设备(成都)有限公司 Valve seat, sealing gasket and pressure valve
CN103822523A (en) * 2013-11-26 2014-05-28 合肥安诺新型建材有限公司 Combined pipe connecting device for skirting radiating fins
EP3101158B1 (en) * 2014-01-31 2019-03-06 Delgado Rodriguez, Luis Alfonso Electrochemical reactor for producing oxyhydrogen gas
JP6081420B2 (en) * 2014-08-27 2017-02-15 本田技研工業株式会社 Differential pressure type high pressure water electrolyzer
JP6129809B2 (en) * 2014-11-06 2017-05-17 本田技研工業株式会社 Differential pressure type high pressure water electrolyzer
EP3274488A1 (en) * 2015-03-24 2018-01-31 GTA Inc. Electrolyzer
CN204752861U (en) * 2015-06-23 2015-11-11 陕西华秦新能源科技有限责任公司 Heavy pressure water electrolytic hydrogen production electrolysis trough
KR20170090193A (en) * 2016-01-28 2017-08-07 한국과학기술연구원 Liquid stream inducing type polymer membrane, method of preparing the same and fuel cell comprising the same
CN206563076U (en) * 2017-03-15 2017-10-17 东莞市冠成织带有限公司 A kind of sealing device of new automatic forming machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050155668A1 (en) 2004-01-16 2005-07-21 Gennadi Finkelshtain Refilling system for a fuel cell and method of refilling a fuel cell
JP2014228105A (en) 2013-05-24 2014-12-08 本田技研工業株式会社 High-pressure gas vessel and gas leakage determination method of high-pressure gas vessel seal part
JP2016044353A (en) 2014-08-26 2016-04-04 本田技研工業株式会社 Differential pressure type high pressure water electrolyzer
JP6091012B2 (en) 2014-08-26 2017-03-08 本田技研工業株式会社 Differential pressure type high pressure water electrolyzer
JP2016089220A (en) 2014-11-05 2016-05-23 本田技研工業株式会社 Differential pressure type high-pressure water electrolysis apparatus

Also Published As

Publication number Publication date
JP2019157164A (en) 2019-09-19
CN110241436A (en) 2019-09-17
CN110241436B (en) 2021-06-11

Similar Documents

Publication Publication Date Title
US10053786B2 (en) Differential pressure water electrolysis system
US8337678B2 (en) Electrochemical apparatus
US10053784B2 (en) Differential pressure water electrolysis system
US10053783B2 (en) Differential pressure water electrolysis system
JP7044593B2 (en) Water electrolyzer
JP2006316288A (en) High-pressure hydrogen production apparatus
US9828682B2 (en) Differential pressure water electrolysis apparatus
US8709220B2 (en) Water electrolysis apparatus
JP6025691B2 (en) Differential pressure type high pressure water electrolyzer
JP5770246B2 (en) High pressure water electrolyzer
US20110180398A1 (en) Water electrolysis apparatus
JP2006328527A (en) Apparatus for producing hydrogen
JP6607977B2 (en) Water electrolyzer
CN209906895U (en) Water electrolysis device
CN109943858B (en) Water electrolysis device
JP2015113497A (en) Differential pressure type high-pressure water electrolysis apparatus
JP6649414B2 (en) Water electrolysis device
JP7014615B2 (en) Water electrolyzer
JP6426654B2 (en) Differential pressure type high pressure water electrolyzer
JP7149319B2 (en) electrochemical booster

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220317

R150 Certificate of patent or registration of utility model

Ref document number: 7044593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150