JP7042642B2 - Seismic isolation mechanism - Google Patents

Seismic isolation mechanism Download PDF

Info

Publication number
JP7042642B2
JP7042642B2 JP2018022201A JP2018022201A JP7042642B2 JP 7042642 B2 JP7042642 B2 JP 7042642B2 JP 2018022201 A JP2018022201 A JP 2018022201A JP 2018022201 A JP2018022201 A JP 2018022201A JP 7042642 B2 JP7042642 B2 JP 7042642B2
Authority
JP
Japan
Prior art keywords
laminated rubber
sliding
sliding portion
slider
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018022201A
Other languages
Japanese (ja)
Other versions
JP2019138376A (en
Inventor
銘崇 劉
和彦 磯田
智貴 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2018022201A priority Critical patent/JP7042642B2/en
Publication of JP2019138376A publication Critical patent/JP2019138376A/en
Application granted granted Critical
Publication of JP7042642B2 publication Critical patent/JP7042642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、免震機構に関する。 The present invention relates to a seismic isolation mechanism.

従来、すべり支承のすべり面を傾斜面とした傾斜すべり支承が知られている(例えば、特許文献1参照)。傾斜すべり支承は、互いに直交する方向にそれぞれV字形状に傾斜する2つの傾斜面で摺動子を上下から挟み、摺動子が下側の傾斜面に沿って摺動するとともに、上側の傾斜面に沿って摺動するように構成されている。摺動子の上下には、傾斜面に沿って滑る摩擦面がそれぞれ形成されている。傾斜すべり支承は、摺動子が傾斜面を摺動することにより、摺動子と傾斜面との摩擦抵抗力による減衰力と、自重による復元力と、を得るように構成されている。 Conventionally, an inclined sliding bearing in which the sliding surface of the sliding bearing is an inclined surface is known (see, for example, Patent Document 1). In the inclined sliding bearing, the slider is sandwiched from above and below by two inclined surfaces that are inclined in a V shape in the directions orthogonal to each other, and the slider slides along the lower inclined surface and is inclined on the upper side. It is configured to slide along a surface. Friction surfaces that slide along the inclined surface are formed above and below the slider. The inclined sliding bearing is configured so that the slider slides on the inclined surface to obtain a damping force due to frictional resistance between the slider and the inclined surface and a restoring force due to its own weight.

このように、傾斜すべり支承は、免震装置に必要な荷重支持機能、減衰機能、および復元機能を有している。また、傾斜すべり支承は、周期特性を有していないことから地震の特性の影響を受けにくく共振しないこと、建物が不整形であったり偏荷重であったり荷重の変動があったりする場合でも捩れが生じにくいこと、残留変位がわずかで累計しないため、地震後に建物を継続して使用可能であるという特徴がある。
なお、特許文献1には、摺動子と傾斜面との摩擦係数μと、傾斜面の傾斜角度θとの関係を、tanθ=(0.2~0.4)μ程度とすることで残留変位を抑制できることが開示されている。
As described above, the inclined sliding bearing has the load supporting function, the damping function, and the restoring function necessary for the seismic isolation device. In addition, since the inclined sliding bearing does not have periodic characteristics, it is not easily affected by the characteristics of earthquakes and does not resonate, and even if the building is irregular, uneven load, or load fluctuation, it twists. It is difficult for the building to occur, and the residual displacement is small and does not accumulate, so the building can be used continuously after the earthquake.
In Patent Document 1, the relationship between the friction coefficient μ between the slider and the inclined surface and the inclination angle θ of the inclined surface is set to about tan θ = (0.2 to 0.4) μ. It is disclosed that the displacement can be suppressed.

特開2013-130216号公報Japanese Unexamined Patent Publication No. 2013-130216

摺動子には、傾斜面の傾斜角度が切り替わる箇所を通過する際に、衝撃による加速度が生じることになる。発生した地震が中小地震の場合、摺動子が傾斜角度が切り替わる箇所を頻繁に通過して加速度が生じるため、免震性能上の問題はないが、居住性が悪いという問題がある。
また、摺動子が傾斜面を摺動する際に、摺動面に引っ掛かったり滑ったりを繰り返すスティックスリップ現象が発生し、高周波成分を有する加速度が発生するという問題もある。
また、すべり免震支承が設けられた構造物の上層階および下層階には、すべり免震支承の上側の上部構造に起因して生じる高周波(高次モード)成分により、中間階に比べて大きな加速度が生じるという問題もある。
Acceleration due to impact is generated in the slider when passing through a portion where the inclination angle of the inclined surface is switched. When the generated earthquake is a small and medium-sized earthquake, the slider frequently passes through the place where the inclination angle changes and acceleration is generated, so that there is no problem in seismic isolation performance, but there is a problem that the habitability is poor.
Further, when the slider slides on the inclined surface, a stick-slip phenomenon that repeatedly gets caught in and slides on the sliding surface occurs, and there is also a problem that acceleration having a high frequency component is generated.
In addition, the upper and lower floors of the structure provided with the slip seismic isolation bearings are larger than the middle floors due to the high frequency (higher-order mode) components generated by the upper structure above the slip seismic isolation bearings. There is also the problem of acceleration.

本発明は、上述する問題点に鑑みてなされたもので、摺動子が傾斜面の傾斜角度が切り替わる箇所を通過する際に生じる加速度、スティックスリップ現象の衝撃によって生じる加速度、および、構造物の上階層や下階層に生じる中層階よりも大きな加速度を低減させることができる免震機構を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and the acceleration generated when the slider passes through the place where the inclination angle of the inclined surface is switched, the acceleration generated by the impact of the stick-slip phenomenon, and the structure. It is an object of the present invention to provide a seismic isolation mechanism capable of reducing a larger acceleration than that of the middle layer generated in the upper layer and the lower layer.

上記目的を達成するため、本発明に係る免震機構は、水平方向に相対変位可能な下部構造体と上部構造体との間に設けられる免震機構において、前記下部構造体の上部に設けられ、一の水平方向に沿って下側に凸となるV字形状に形成された下部摺動面を有する下部案内部と、前記上部構造体の底部に設けられ、前記一の水平方向に直交する他の水平方向に沿って上側に凸となる逆V字形状に形成された上部摺動面を有する上部案内部と、前記下部摺動面と前記上部摺動面との間に配置され、前記下部摺動面に沿って前記下部案内部と前記一の水平方向に相対変位可能であるともに、前記上部摺動面に沿って前記上部案内部と前記他の水平方向に相対変位可能な摺動子と、を有し、前記摺動子は、前記下部摺動面を摺動可能な下部摺動部と、前記下部摺動部の上側に配置されて前記上部摺動面を摺動可能な上部摺動部と、前記下部摺動部と前記上部摺動部との間に配置され前記下部摺動部と前記上部摺動部とを水平方向に相対移動可能に支持する積層ゴムと、を有し、前記下部構造体と前記上部構造体とが水平方向に相対変位すると、該相対変位に追従して前記積層ゴムが水平方向に変形し、前記積層ゴムの原位置に対する水平変位が所定の水平変位設定値を超えた後に、前記摺動子が前記下部摺動面および前記上部摺動面の少なくとも一方で摺動するように構成され、前記下部摺動部と前記上部摺動部との水平方向の相対変位量の最大値は、前記積層ゴムの厚さ寸法の2倍以下に設定され、前記積層ゴムは、水平方向の変形量が前記積層ゴムの厚さ寸法の2倍以下の場合には弾性変形し塑性変形せず、前記積層ゴムは、上下方向から見て縁部が前記下部摺動部および前記上部摺動部よりも外側に突出し、前記縁部が前記下部摺動部に固定された下側支持具および前記上部摺動部に固定された上側支持具で上下方向から挟持され、前記下側支持具は、前記下部摺動部の側面のみに当接して固定される下側固定板部と、前記下側固定板部の上端部から側方に突出し、前記積層ゴムの前記縁部の下面に前記下部摺動部の上面の高さで当接して前記積層ゴムを支持する下側支持板部と、を有し、断面形状がL字形であり、前記上側支持具は、前記上部摺動部の側面のみに当接して固定される上側固定板部と、前記上側固定板部の下端部から側方に突出し、前記積層ゴムの前記縁部の上面に前記上部摺動部の下面の高さで当接して前記積層ゴムを支持する上側支持板部と、を有し、断面形状がL字形であることを特徴とする。 In order to achieve the above object, the seismic isolation mechanism according to the present invention is provided above the substructure in a seismic isolation mechanism provided between the substructure and the superstructure that can be relatively displaced in the horizontal direction. , A lower guide portion having a V-shaped lower sliding surface formed in a V shape that is convex downward along one horizontal direction, and a lower guide portion provided at the bottom of the upper structure and orthogonal to the one horizontal direction. An upper guide portion having an inverted V-shaped upper sliding surface formed in an inverted V shape that is convex upward along another horizontal direction is arranged between the lower sliding surface and the upper sliding surface. Sliding that can be displaced relative to the lower guide portion in the horizontal direction along the lower sliding surface, and can be displaced relative to the upper guide portion and the other horizontally along the upper sliding surface. The slider has a lower sliding portion that can slide on the lower sliding surface, and the slider is arranged above the lower sliding portion and can slide on the upper sliding surface. An upper sliding portion and a laminated rubber arranged between the lower sliding portion and the upper sliding portion and supporting the lower sliding portion and the upper sliding portion so as to be relatively movable in the horizontal direction. When the lower structure and the upper structure are relatively displaced in the horizontal direction, the laminated rubber is deformed in the horizontal direction following the relative displacement, and the horizontal displacement of the laminated rubber with respect to the in-situ position is predetermined. After the horizontal displacement set value is exceeded, the slider is configured to slide on at least one of the lower sliding surface and the upper sliding surface, and the lower sliding portion and the upper sliding portion are aligned with each other. The maximum value of the relative displacement amount in the horizontal direction is set to twice or less the thickness dimension of the laminated rubber, and the laminated rubber has a deformation amount in the horizontal direction of twice or less the thickness dimension of the laminated rubber. The laminated rubber is elastically deformed and not plastically deformed, and the edge portion of the laminated rubber projects outward from the lower sliding portion and the upper sliding portion, and the edge portion becomes the lower sliding portion. The lower support is sandwiched from above and below by the fixed lower support and the upper support fixed to the upper sliding portion, and the lower support is fixed by contacting only the side surface of the lower sliding portion. The side fixing plate portion and the upper end portion of the lower fixing plate portion project laterally and abut against the lower surface of the edge portion of the laminated rubber at the height of the upper surface of the lower sliding portion to support the laminated rubber. The upper support has an L-shaped cross section, and the upper support has an upper fixing plate portion that is fixed by contacting only the side surface of the upper sliding portion and the upper fixing portion. It protrudes laterally from the lower end of the plate and abuts on the upper surface of the edge of the laminated rubber at the height of the lower surface of the upper sliding portion. It is characterized by having an upper support plate portion for supporting the laminated rubber and having an L-shaped cross section .

本発明では、地震が生じ、下部構造体と上部構造体とが水平方向に相対変位すると、まず、摺動子は上部摺動面および下部摺動面に対して摺動せずに、積層ゴムのみが変形する。ここから更に下部構造体と上部構造体とが水平方向に相対変位して、積層ゴムの原位置に対する水平変位が所定の水平変位設定値を超えると、摺動子が上部摺動面および下部摺動面に対して摺動し始める。
これにより、摺動子が傾斜面(下部摺動面、上部摺動面)の傾斜角度が切り替わる箇所を通過する際に衝撃が生じたり、スティックスリップ現象の衝撃が生じたりした場合でも、積層ゴムが変形することにより衝撃を吸収できるため、摺動子に生じる加速度を低減させることができる。
また、傾斜滑り支承のみの免震機構と比べて、積層ゴムの変形によって免震機構の上部の構造に起因する高周波成分を低減させることができるため、構造物の上階層や下階層に生じる加速度を低減させることができる。
そして、下部摺動部と上部摺動部との水平方向の相対変位量の最大値は、積層ゴムの厚さ寸法の2倍以下に設定され、積層ゴムは、水平方向の変形量が積層ゴムの厚さ寸法の2倍以下の場合には弾性変形し塑性変形しないことにより、積層ゴムに確実に減衰性能が付与されるため、加速度の低減効果を高めることができる。
また、本発明に係る免震機構では、前記積層ゴムは、上下方向から見て縁部が前記下部摺動部および前記上部摺動部よりも外側に突出し、前記縁部が前記下部摺動部および前記上部摺動部に固定された支持具で上下方向から挟持されている。
このような構成とすることにより、積層ゴムを下部摺動部および上部摺動部に確実に固定することができる。また、積層ゴムの上下方向から見た形状を下部摺動部および上部摺動部よりも大きくすることができるため、下部摺動部および上部摺動部の形状にかかわらず積層ゴムの形状を設定することができる。
In the present invention, when an earthquake occurs and the lower structure and the upper structure are displaced relative to each other in the horizontal direction, first, the slider does not slide with respect to the upper sliding surface and the lower sliding surface, and the laminated rubber Only transforms. From here, when the lower structure and the upper structure are further displaced in the horizontal direction and the horizontal displacement with respect to the in-situ of the laminated rubber exceeds a predetermined horizontal displacement set value, the slider moves to the upper sliding surface and the lower sliding surface. It begins to slide with respect to the moving surface.
As a result, even if an impact is generated when the slider passes through a portion where the inclination angle of the inclined surface (lower sliding surface, upper sliding surface) is switched, or an impact of the stick-slip phenomenon occurs, the laminated rubber Since the impact can be absorbed by the deformation of the rubber, the acceleration generated in the slider can be reduced.
In addition, compared to the seismic isolation mechanism with only tilted sliding bearings, the deformation of the laminated rubber can reduce the high-frequency components caused by the structure above the seismic isolation mechanism, so that the acceleration generated in the upper and lower layers of the structure can be reduced. Can be reduced.
The maximum value of the horizontal relative displacement between the lower sliding portion and the upper sliding portion is set to be twice or less the thickness dimension of the laminated rubber, and the laminated rubber has a horizontal deformation amount of the laminated rubber. If it is less than twice the thickness of the rubber, it is elastically deformed and not plastically deformed, so that the laminated rubber is surely imparted with damping performance, so that the effect of reducing acceleration can be enhanced.
Further, in the seismic isolation mechanism according to the present invention, the laminated rubber has an edge portion protruding outward from the lower sliding portion and the upper sliding portion when viewed from the vertical direction, and the edge portion is the lower sliding portion. And it is sandwiched from above and below by a support fixed to the upper sliding portion.
With such a configuration, the laminated rubber can be reliably fixed to the lower sliding portion and the upper sliding portion. Further, since the shape of the laminated rubber seen from the vertical direction can be made larger than that of the lower sliding portion and the upper sliding portion, the shape of the laminated rubber can be set regardless of the shape of the lower sliding portion and the upper sliding portion. can do.

また、本発明に係る免震機構では、前記積層ゴムのせん断剛性Krbは、前記積層ゴムのせん断剛性Krb =前記上部構造体の自重W×摩擦係数μ+tan傾斜角度θ)/前記摺動子の前記積層ゴムに設定する最大変位量Δmaxで設定されていてもよい。
このような構成とすることにより、摺動子が傾斜面の傾斜角度が切り替わる箇所を通過する際に生じる加速度、スティックスリップ現象の衝撃によって生じる加速度、および、構造物の上階層や下階層に生じる中層階よりも大きな加速度をより低減させることができる。傾斜角度θとは、下部摺動面および上部摺動面の傾斜角度を示している。
Further, in the seismic isolation mechanism according to the present invention, the shear rigidity Krb of the laminated rubber is the shear rigidity Krb of the laminated rubber = ( self-weight W × friction coefficient μ + tan inclination angle θ) of the superstructure / the above. The maximum displacement amount Δmax set for the laminated rubber of the slider may be set.
With such a configuration, the acceleration generated when the slider passes through the place where the inclination angle of the inclined surface changes, the acceleration generated by the impact of the stick-slip phenomenon, and the acceleration generated in the upper and lower layers of the structure. It is possible to reduce the acceleration larger than that of the middle floor. The tilt angle θ indicates the tilt angle of the lower sliding surface and the upper sliding surface.

本発明によれば、摺動子が傾斜面の傾斜角度が切り替わる箇所を通過する際に生じる加速度、スティックスリップ現象の衝撃によって生じる加速度、および、構造物の上階層や下階層に生じる中層階よりも大きな加速度を低減させることができる。 According to the present invention, the acceleration generated when the slider passes through the place where the inclination angle of the inclined surface changes, the acceleration generated by the impact of the stick-slip phenomenon, and the middle layer generated in the upper and lower layers of the structure. Can also reduce large accelerations.

本発明の実施形態による免震機構の一例を示す分解斜視図である。It is an exploded perspective view which shows an example of the seismic isolation mechanism by embodiment of this invention. 本発明の実施形態による免震機構を上方から見た図である。It is the figure which looked at the seismic isolation mechanism by embodiment of this invention from above. 図2のA-A線断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 図2のB-B線断面図である。FIG. 2 is a cross-sectional view taken along the line BB of FIG. (a)は下部構造体と上部構造体とがX方向に相対変位し始めた状態を説明する図、(b)は(a)よりも多く下部構造体と上部構造体とがX方向に相対変位した状態を説明する図である。(A) is a diagram explaining a state in which the lower structure and the upper structure start to be relatively displaced in the X direction, and (b) is more than (a) and the lower structure and the upper structure are relative to each other in the X direction. It is a figure explaining the displaced state. 本実施形態による免震機構の復元特性を説明する図である。It is a figure explaining the restoration characteristic of the seismic isolation mechanism by this embodiment. 構造部の頂部における応答加速度波形のフーリエ振幅スペクトル(EL Centro)を示すグラフである。It is a graph which shows the Fourier amplitude spectrum (EL Centro) of the response acceleration waveform at the top of the structure part. 解析対象の構造物の形状と解析モデルを示す図である。It is a figure which shows the shape of the structure to be analyzed and the analysis model. (a)はケース1の加振波形における各階の最大応答変位の比較を示す図、(b)はケース1の加振波形における各階の最大応答加速度の比較を示す図、(c)はケース1の加振波形における摺動子の積層ゴムに生じる変位と残留変位との比較を示す図である。(A) is a diagram showing a comparison of the maximum response displacement of each floor in the vibration waveform of Case 1, (b) is a diagram showing a comparison of the maximum response acceleration of each floor in the vibration waveform of Case 1, and (c) is a diagram showing a comparison of the maximum response acceleration of each floor in the vibration waveform of Case 1. It is a figure which shows the comparison between the displacement which occurs in the laminated rubber of a slider, and the residual displacement in the vibration waveform of. (a)はケース2の加振波形における各階の最大応答変位の比較を示す図、(b)はケース2の加振波形における各階の最大応答加速度の比較を示す図、(c)はケース2の加振波形における摺動子の積層ゴムに生じる変位と残留変位との比較を示す図である。(A) is a diagram showing a comparison of the maximum response displacement of each floor in the vibration waveform of Case 2, (b) is a diagram showing a comparison of the maximum response acceleration of each floor in the vibration waveform of Case 2, and (c) is a diagram showing a comparison of the maximum response acceleration of each floor in the vibration waveform of Case 2. It is a figure which shows the comparison between the displacement which occurs in the laminated rubber of a slider, and the residual displacement in the vibration waveform of. (a)はケース3の加振波形における各階の最大応答変位の比較を示す図、(b)はケース3の加振波形における各階の最大応答加速度の比較を示す図、(c)はケース3の加振波形における摺動子の積層ゴムに生じる変位と残留変位との比較を示す図である。(A) is a diagram showing a comparison of the maximum response displacement of each floor in the vibration waveform of Case 3, (b) is a diagram showing a comparison of the maximum response acceleration of each floor in the vibration waveform of Case 3, and (c) is a diagram showing a comparison of the maximum response acceleration of each floor in the vibration waveform of Case 3. It is a figure which shows the comparison of the displacement which occurs in the laminated rubber of a slider, and the residual displacement in the vibration waveform of. (a)はケース4の加振波形における各階の最大応答変位の比較を示す図、(b)はケース4の加振波形における各階の最大応答加速度の比較を示す図、(c)はケース4の加振波形における摺動子の積層ゴムに生じる変位と残留変位との比較を示す図である。(A) is a diagram showing a comparison of the maximum response displacement of each floor in the vibration waveform of Case 4, (b) is a diagram showing a comparison of the maximum response acceleration of each floor in the vibration waveform of Case 4, and (c) is a diagram showing a comparison of the maximum response acceleration of each floor in the vibration waveform of Case 4. It is a figure which shows the comparison between the displacement which occurs in the laminated rubber of a slider, and the residual displacement in the vibration waveform of. (a)はケース5の加振波形における各階の最大応答変位の比較を示す図、(b)はケース5の加振波形における各階の最大応答加速度の比較を示す図、(c)はケース5の加振波形における摺動子の積層ゴムに生じる変位と残留変位との比較を示す図である。(A) is a diagram showing a comparison of the maximum response displacement of each floor in the vibration waveform of Case 5, (b) is a diagram showing a comparison of the maximum response acceleration of each floor in the vibration waveform of Case 5, and (c) is a diagram showing a comparison of the maximum response acceleration of each floor in the vibration waveform of Case 5. It is a figure which shows the comparison of the displacement which occurs in the laminated rubber of a slider, and the residual displacement in the vibration waveform of. (a)はケース6の加振波形における各階の最大応答変位の比較を示す図、(b)はケース6の加振波形における各階の最大応答加速度の比較を示す図、(c)はケース6の加振波形における摺動子の積層ゴムに生じる変位と残留変位との比較を示す図である。(A) is a diagram showing a comparison of the maximum response displacements of each floor in the vibration waveform of Case 6, (b) is a diagram showing a comparison of the maximum response acceleration of each floor in the vibration waveform of Case 6, and (c) is a diagram showing a comparison of the maximum response acceleration of each floor in the vibration waveform of Case 6. It is a figure which shows the comparison between the displacement which occurs in the laminated rubber of a slider, and the residual displacement in the vibration waveform of. (a)はケース7の加振波形における各階の最大応答変位の比較を示す図、(b)はケース7の加振波形における各階の最大応答加速度の比較を示す図、(c)はケース7の加振波形における摺動子の積層ゴムに生じる変位と残留変位との比較を示す図である。(A) is a diagram showing a comparison of the maximum response displacement of each floor in the vibration waveform of Case 7, (b) is a diagram showing a comparison of the maximum response acceleration of each floor in the vibration waveform of Case 7, and (c) is a diagram showing a comparison of the maximum response acceleration of each floor in the vibration waveform of Case 7. It is a figure which shows the comparison between the displacement which occurs in the laminated rubber of a slider, and the residual displacement in the vibration waveform of. (a)はケース1の加振波形における積層ゴムの最大変位量Δmaxが4cmの場合の各階の応答変位を示す図、(b)はケース1の加振波形における積層ゴムの最大変位量Δmaxが4cmの場合の各階の応答加速度を示す図である。(A) is a diagram showing the response displacement of each floor when the maximum displacement amount Δmax of the laminated rubber in the vibration waveform of Case 1 is 4 cm, and (b) is the maximum displacement amount Δ of the laminated rubber in the vibration waveform of Case 1. It is a figure which shows the response acceleration of each floor when max is 4 cm. (a)はケース2の加振波形における積層ゴムの最大変位量Δmaxが4cmの場合の各階の応答変位を示す図、(b)はケース2の加振波形における積層ゴムの最大変位量Δmaxが4cmの場合の各階の応答加速度を示す図である。(A) is a diagram showing the response displacement of each floor when the maximum displacement amount Δmax of the laminated rubber in the vibration waveform of the case 2 is 4 cm, and (b) is the maximum displacement amount Δ of the laminated rubber in the vibration waveform of the case 2. It is a figure which shows the response acceleration of each floor when max is 4 cm. (a)はケース3の加振波形における積層ゴムの最大変位量Δmaxが4cmの場合の各階の応答変位を示す図、(b)はケース3の加振波形における積層ゴムの最大変位量Δmaxが4cmの場合の各階の応答加速度を示す図である。(A) is a diagram showing the response displacement of each floor when the maximum displacement amount Δmax of the laminated rubber in the vibration waveform of the case 3 is 4 cm, and (b) is the maximum displacement amount Δ of the laminated rubber in the vibration waveform of the case 3. It is a figure which shows the response acceleration of each floor when max is 4 cm. (a)はケース4の加振波形における積層ゴムの最大変位量Δmaxが4cmの場合の各階の応答変位を示す図、(b)はケース4の加振波形における積層ゴムの最大変位量Δmaxが4cmの場合の各階の応答加速度を示す図である。(A) is a diagram showing the response displacement of each floor when the maximum displacement amount Δmax of the laminated rubber in the vibration waveform of the case 4 is 4 cm, and (b) is the maximum displacement amount Δ of the laminated rubber in the vibration waveform of the case 4. It is a figure which shows the response acceleration of each floor when max is 4 cm. (a)はケース5の加振波形における積層ゴムの最大変位量Δmaxが4cmの場合の各階の応答変位を示す図、(b)はケース5の加振波形における積層ゴムの最大変位量Δmaxが4cmの場合の各階の応答加速度を示す図である。(A) is a diagram showing the response displacement of each floor when the maximum displacement amount Δmax of the laminated rubber in the vibration waveform of the case 5 is 4 cm, and (b) is the maximum displacement amount Δ of the laminated rubber in the vibration waveform of the case 5. It is a figure which shows the response acceleration of each floor when max is 4 cm. (a)はケース6の加振波形における積層ゴムの最大変位量Δmaxが4cmの場合の各階の応答変位を示す図、(b)はケース6の加振波形における積層ゴムの最大変位量Δmaxが4cmの場合の各階の応答加速度を示す図である。(A) is a diagram showing the response displacement of each floor when the maximum displacement amount Δmax of the laminated rubber in the vibration waveform of the case 6 is 4 cm, and (b) is the maximum displacement amount Δ of the laminated rubber in the vibration waveform of the case 6. It is a figure which shows the response acceleration of each floor when max is 4 cm. (a)はケース7の加振波形における積層ゴムの最大変位量Δmaxが4cmの場合の各階の応答変位を示す図、(b)はケース7の加振波形における積層ゴムの最大変位量Δmaxが4cmの場合の各階の応答加速度を示す図である。(A) is a diagram showing the response displacement of each floor when the maximum displacement amount Δmax of the laminated rubber in the vibration waveform of the case 7 is 4 cm, and (b) is the maximum displacement amount Δ of the laminated rubber in the vibration waveform of the case 7. It is a figure which shows the response acceleration of each floor when max is 4 cm. (a)はケース1の加振波形における積層ゴムの最大変位量Δmaxが8cmの場合の各階の応答変位を示す図、(b)はケース1の加振波形における積層ゴムの最大変位量Δmaxが8cmの場合の各階の応答加速度を示す図である。(A) is a diagram showing the response displacement of each floor when the maximum displacement amount Δmax of the laminated rubber in the vibration waveform of Case 1 is 8 cm, and (b) is the maximum displacement amount Δ of the laminated rubber in the vibration waveform of Case 1. It is a figure which shows the response acceleration of each floor when max is 8 cm. (a)はケース2の加振波形における積層ゴムの最大変位量Δmaxが8cmの場合の各階の応答変位を示す図、(b)はケース2の加振波形における積層ゴムの最大変位量Δmaxが8cmの場合の各階の応答加速度を示す図である。(A) is a diagram showing the response displacement of each floor when the maximum displacement amount Δmax of the laminated rubber in the vibration waveform of the case 2 is 8 cm, and (b) is the maximum displacement amount Δ of the laminated rubber in the vibration waveform of the case 2. It is a figure which shows the response acceleration of each floor when max is 8 cm. (a)はケース3の加振波形における積層ゴムの最大変位量Δmaxが8cmの場合の各階の応答変位を示す図、(b)はケース3の加振波形における積層ゴムの最大変位量Δmaxが8cmの場合の各階の応答加速度を示す図である。(A) is a diagram showing the response displacement of each floor when the maximum displacement amount Δmax of the laminated rubber in the vibration waveform of the case 3 is 8 cm, and (b) is the maximum displacement amount Δ of the laminated rubber in the vibration waveform of the case 3. It is a figure which shows the response acceleration of each floor when max is 8 cm. (a)はケース4の加振波形における積層ゴムの最大変位量Δmaxが8cmの場合の各階の応答変位を示す図、(b)はケース4の加振波形における積層ゴムの最大変位量Δmaxが8cmの場合の各階の応答加速度を示す図である。(A) is a diagram showing the response displacement of each floor when the maximum displacement amount Δmax of the laminated rubber in the vibration waveform of the case 4 is 8 cm, and (b) is the maximum displacement amount Δ of the laminated rubber in the vibration waveform of the case 4. It is a figure which shows the response acceleration of each floor when max is 8 cm. (a)はケース5の加振波形における積層ゴムの最大変位量Δmaxが8cmの場合の各階の応答変位を示す図、(b)はケース5の加振波形における積層ゴムの最大変位量Δmaxが8cmの場合の各階の応答加速度を示す図である。(A) is a diagram showing the response displacement of each floor when the maximum displacement amount Δmax of the laminated rubber in the vibration waveform of the case 5 is 8 cm, and (b) is the maximum displacement amount Δ of the laminated rubber in the vibration waveform of the case 5. It is a figure which shows the response acceleration of each floor when max is 8 cm. (a)はケース6の加振波形における積層ゴムの最大変位量Δmaxが8cmの場合の各階の応答変位を示す図、(b)はケース6の加振波形における積層ゴムの最大変位量Δmaxが8cmの場合の各階の応答加速度を示す図である。(A) is a diagram showing the response displacement of each floor when the maximum displacement amount Δmax of the laminated rubber in the vibration waveform of the case 6 is 8 cm, and (b) is the maximum displacement amount Δ of the laminated rubber in the vibration waveform of the case 6. It is a figure which shows the response acceleration of each floor when max is 8 cm. (a)はケース7の加振波形における積層ゴムの最大変位量Δmaxが8cmの場合の各階の応答変位を示す図、(b)はケース7の加振波形における積層ゴムの最大変位量Δmaxが8cmの場合の各階の応答加速度を示す図である。(A) is a diagram showing the response displacement of each floor when the maximum displacement amount Δmax of the laminated rubber in the vibration waveform of the case 7 is 8 cm, and (b) is the maximum displacement amount Δ of the laminated rubber in the vibration waveform of the case 7. It is a figure which shows the response acceleration of each floor when max is 8 cm. (a)はケース1の加振波形における最大変位量と残留変位との比較を示すグラフ、(b)はケース2の加振波形における最大変位量と残留変位との比較を示すグラフ、(c)はケース3の加振波形における最大変位量と残留変位との比較を示すグラフ、(d)はケース4の加振波形における最大変位量と残留変位との比較を示すグラフ、(e)はケース5の加振波形における最大変位量と残留変位との比較を示すグラフ、(f)はケース6の加振波形における最大変位量と残留変位との比較を示すグラフ、(g)はケース7の加振波形における最大変位量と残留変位との比較を示すグラフである。(A) is a graph showing a comparison between the maximum displacement amount and the residual displacement in the vibration waveform of Case 1, and (b) is a graph showing the comparison between the maximum displacement amount and the residual displacement in the vibration waveform of Case 2. ) Is a graph showing a comparison between the maximum displacement amount and the residual displacement in the vibration waveform of Case 3, (d) is a graph showing a comparison between the maximum displacement amount and the residual displacement in the vibration waveform of Case 4, and (e) is a graph showing the comparison. The graph showing the comparison between the maximum displacement amount and the residual displacement in the vibration waveform of Case 5, (f) is the graph showing the comparison between the maximum displacement amount and the residual displacement in the vibration waveform of Case 6, and (g) is the case 7. It is a graph which shows the comparison between the maximum displacement amount and the residual displacement in the vibration waveform of.

以下、本発明の実施形態による免震機構1について、図1~図7に基づいて説明する。
図1および図2に示す本実施形態による免震機構1は、下部構造体11(図3および図4参照)と上部構造体12(図3および図4参照)との間の免震層13(図3および図4参照)に設けられている。本実施形態では、免震機構1は、免震層13に複数設けられているものとする。免震層13に設けられた複数の免震機構1は、それぞれ同じ形態としている。
免震機構1は、下部構造体11の上部に固定された下部案内部2と、上部構造体12の底部に固定された上部案内部3と、下部案内部2と上部案内部3との間に配置された摺動子4と、を有している。
Hereinafter, the seismic isolation mechanism 1 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 7.
The seismic isolation mechanism 1 according to the present embodiment shown in FIGS. 1 and 2 is a seismic isolation layer 13 between the lower structure 11 (see FIGS. 3 and 4) and the upper structure 12 (see FIGS. 3 and 4). (See FIGS. 3 and 4). In the present embodiment, it is assumed that a plurality of seismic isolation mechanisms 1 are provided in the seismic isolation layer 13. The plurality of seismic isolation mechanisms 1 provided in the seismic isolation layer 13 have the same form.
The seismic isolation mechanism 1 is between the lower guide portion 2 fixed to the upper part of the lower structure 11, the upper guide portion 3 fixed to the bottom of the upper structure 12, and the lower guide portion 2 and the upper guide portion 3. It has a slider 4 arranged in the.

図3に示すように、下部案内部2は、摺動子4が摺動する下部摺動面21を有する本体部22と、本体部22の下部に連結されて下部構造体11に固定される固定部23と、を有している。なお、図2では、固定部23を省略している。
本体部22は、長尺の略直方体となるブロック状に形成され、一の水平方向に延びる向きに配置されている。一の水平方向をX方向とし、一の水平方向に直交する他の水平方向をY方向とする。本体部22の上面は、X方向に沿ってX方向の略中央部が下側に凸となる略V字形状の傾斜面に形成されている。この本体部22の上面が下部摺動面21となっている。下部摺動面21の略中央部の屈曲している部分を下部屈曲部211とする。また、下部摺動面21のうち、下部屈曲部211からX方向の一方側を第1下部摺動面212とし、下部屈曲部211からX方向の他方側を第2下部摺動面213とする。
As shown in FIG. 3, the lower guide portion 2 is connected to the main body portion 22 having the lower sliding surface 21 on which the slider 4 slides and the lower portion of the main body portion 22 and is fixed to the lower structure 11. It has a fixed portion 23 and. In FIG. 2, the fixing portion 23 is omitted.
The main body portion 22 is formed in a block shape which is a long substantially rectangular parallelepiped, and is arranged in a direction extending in one horizontal direction. One horizontal direction is the X direction, and the other horizontal direction orthogonal to one horizontal direction is the Y direction. The upper surface of the main body 22 is formed on a substantially V-shaped inclined surface in which a substantially central portion in the X direction is convex downward along the X direction. The upper surface of the main body 22 is the lower sliding surface 21. The bent portion of the substantially central portion of the lower sliding surface 21 is referred to as the lower bent portion 211. Further, of the lower sliding surface 21, one side in the X direction from the lower bent portion 211 is referred to as the first lower sliding surface 212, and the other side in the X direction from the lower bent portion 211 is referred to as the second lower sliding surface 213. ..

第1下部摺動面212および第2下部摺動面213は、それぞれ平面となる傾斜面に形成されている。第1下部摺動面212および第2下部摺動面213の水平面に対する傾斜角度は、互いに同じ値(傾斜角度θ)に設定されている。
第1下部摺動面212および第2下部摺動面213には、摺動子4との摩擦を低減させるようにステンレスやメッキ鋼板あるいはテフロン(登録商標)などの滑り材がそれぞれ設けられている。
図4に示すように、本体部22の両側面(Y方向の両側の端面)221,221は、それぞれY方向を向く略垂直面となるように形成されている。
The first lower sliding surface 212 and the second lower sliding surface 213 are each formed on a flat inclined surface. The tilt angles of the first lower sliding surface 212 and the second lower sliding surface 213 with respect to the horizontal plane are set to the same value (tilt angle θ).
The first lower sliding surface 212 and the second lower sliding surface 213 are each provided with a sliding material such as stainless steel, a plated steel plate, or Teflon (registered trademark) so as to reduce friction with the slider 4. ..
As shown in FIG. 4, both side surfaces (end surfaces on both sides in the Y direction) 221,221 of the main body portion 22 are formed so as to be substantially vertical surfaces facing the Y direction, respectively.

図3および図4に示すように、固定部23は、板状に形成され、板面が水平面となる向きで本体部22の下面と接合されている。固定部23は、本体部22よりもX方向およびY方向に大きい略長方形状に形成され、本体部22よりもX方向およびY方向に突出している。固定部23は、下部構造体11の上面に固定されている。 As shown in FIGS. 3 and 4, the fixing portion 23 is formed in a plate shape and is joined to the lower surface of the main body portion 22 in a direction in which the plate surface is a horizontal plane. The fixed portion 23 is formed in a substantially rectangular shape that is larger in the X direction and the Y direction than the main body portion 22, and protrudes in the X direction and the Y direction from the main body portion 22. The fixing portion 23 is fixed to the upper surface of the lower structure 11.

図4に示すように、上部案内部3は、摺動子4が摺動する上部摺動面31を有する本体部32と、本体部32の上部に連結されて上部構造体12に固定される固定部33と、を有している。なお、図2では、固定部33を省略している。
本体部32は、長尺の略直方体となるブロック状に形成され、Y方向に延びる向きに配置されている。本体部32の下面は、Y方向に沿ってY方向の略中央部が上側に凸となる略逆V字形状の傾斜面に形成されている。この本体部32の下面が上部摺動面31となっている。上部摺動面31の略中央部の屈曲している部分を上部屈曲部311とする。また、上部摺動面31のうち、上部屈曲部311からY方向の一方側を第1上部摺動面312とし、上部屈曲部311からY方向の他方側を第2上部摺動面313とする。
As shown in FIG. 4, the upper guide portion 3 is connected to the main body portion 32 having the upper sliding surface 31 on which the slider 4 slides, and the upper portion of the main body portion 32, and is fixed to the upper structure 12. It has a fixed portion 33 and. In FIG. 2, the fixed portion 33 is omitted.
The main body portion 32 is formed in a block shape which is a long substantially rectangular parallelepiped, and is arranged in a direction extending in the Y direction. The lower surface of the main body 32 is formed on a substantially inverted V-shaped inclined surface in which a substantially central portion in the Y direction is convex upward along the Y direction. The lower surface of the main body 32 is the upper sliding surface 31. The bent portion of the substantially central portion of the upper sliding surface 31 is referred to as the upper bent portion 311. Further, of the upper sliding surface 31, one side in the Y direction from the upper bent portion 311 is designated as the first upper sliding surface 312, and the other side in the Y direction from the upper bent portion 311 is referred to as the second upper sliding surface 313. ..

第1上部摺動面312および第2上部摺動面313は、それぞれ平面となる傾斜面に形成されている。第1上部摺動面312および第2上部摺動面313の水平面に対する傾斜角度は、互いに同じ値(傾斜角度θ)に設定されている。この傾斜角度θは、第1下部摺動面212および第2下部摺動面213の水平面に対する傾斜角度θと同じ値となっている。
第1上部摺動面312および第2上部摺動面313には、摺動子4との摩擦を低減させるようにステンレスやメッキ鋼板あるいはテフロン(登録商標)などの滑り材がそれぞれ設けられている。
図3に示すように、本体部32の両側面(X方向の両側の端面)321,321は、それぞれX方向を向く略垂直面となるように形成されている。
The first upper sliding surface 312 and the second upper sliding surface 313 are each formed on a flat inclined surface. The tilt angles of the first upper sliding surface 312 and the second upper sliding surface 313 with respect to the horizontal plane are set to the same value (tilt angle θ). The inclination angle θ is the same value as the inclination angle θ with respect to the horizontal plane of the first lower sliding surface 212 and the second lower sliding surface 213.
The first upper sliding surface 312 and the second upper sliding surface 313 are each provided with a sliding material such as stainless steel, a plated steel plate, or Teflon (registered trademark) so as to reduce friction with the slider 4. ..
As shown in FIG. 3, both side surfaces (end surfaces on both sides in the X direction) 321 and 321 of the main body portion 32 are formed so as to be substantially vertical surfaces facing the X direction, respectively.

図3および図4に示すように、固定部33は、板状に形成され、板面が水平面となる向きで本体部32の上面と接合されている。固定部33は、本体部32よりもX方向およびY方向に大きい略長方形状に形成され、本体部32よりもX方向およびY方向に突出している。固定部33は、上部構造体12の下面に固定されている。 As shown in FIGS. 3 and 4, the fixing portion 33 is formed in a plate shape and is joined to the upper surface of the main body portion 32 in a direction in which the plate surface is a horizontal plane. The fixed portion 33 is formed in a substantially rectangular shape that is larger in the X direction and the Y direction than the main body portion 32, and protrudes in the X direction and the Y direction from the main body portion 32. The fixing portion 33 is fixed to the lower surface of the upper structure 12.

このような下部案内部2と上部案内部3とは、上下方向に間をあけて重なるように配置され、下部案内部2と上部案内部3とが上下方向に重なる交差部10に摺動子4が配置されている。 Such a lower guide portion 2 and an upper guide portion 3 are arranged so as to overlap each other with a gap in the vertical direction, and a slider is provided at an intersection 10 where the lower guide portion 2 and the upper guide portion 3 overlap in the vertical direction. 4 is arranged.

図3および図4に示すように、摺動子4は、下部摺動面21と当接する下部当接面41を有する下部摺動部42と、上部摺動面31と当接する上部当接面43を有する上部摺動部44と、下部摺動部42と上部摺動部44との間に配置される積層ゴム45と、を有している。さらに、本実施形態では、下部摺動部42のY方向の両縁部それぞれから下側に突出し下部案内部2の本体部22のY方向の両側にそれぞれ配置される一対の下部ガイド部46,46と、上部摺動部44のX方向の両縁部それぞれから上側に突出し上部案内部3の本体部32のX方向の両側にそれぞれ配置される一対の上部ガイド部47,47と、を有している。 As shown in FIGS. 3 and 4, the slider 4 has a lower sliding portion 42 having a lower contact surface 41 that abuts on the lower sliding surface 21 and an upper contact surface that abuts on the upper sliding surface 31. It has an upper sliding portion 44 having a 43, and a laminated rubber 45 arranged between the lower sliding portion 42 and the upper sliding portion 44. Further, in the present embodiment, a pair of lower guide portions 46, which protrude downward from each of both edges of the lower sliding portion 42 in the Y direction and are arranged on both sides of the main body portion 22 of the lower guide portion 2 in the Y direction. It has 46 and a pair of upper guide portions 47, 47 that protrude upward from both edges of the upper sliding portion 44 in the X direction and are arranged on both sides of the main body portion 32 of the upper guide portion 3 in the X direction, respectively. is doing.

下部摺動部42は、平面視形状(上方から見た形状)が略正方形となるブロック状に形成されている。
一対の下部ガイド部46,46は、互いにY方向に間隔をあけて配置されている。一対の下部ガイド部46,46の間隔は、下部案内部2の本体部22のY方向の寸法よりもやや大きく形成されている。一対の下部ガイド部46,46における互いにY方向に対向する内側面461,461は、鉛直面に形成されている。
下部摺動部42の下面のうちの一対の下部ガイド部46,46の間の領域に下部当接面41が形成されている。
The lower sliding portion 42 is formed in a block shape having a substantially square shape (shape seen from above) in a plan view.
The pair of lower guide portions 46, 46 are arranged so as to be spaced apart from each other in the Y direction. The distance between the pair of lower guide portions 46, 46 is formed to be slightly larger than the dimension of the main body portion 22 of the lower guide portion 2 in the Y direction. The inner side surfaces 461 and 461 of the pair of lower guide portions 46, 46 facing each other in the Y direction are formed on a vertical surface.
A lower contact surface 41 is formed in a region between a pair of lower guide portions 46, 46 on the lower surface of the lower sliding portion 42.

下部摺動部42は、下部案内部2の上側に配置されると、下部当接面41が下部案内部2の下部摺動面21と当接し、一対の下部ガイド部46,46が下部案内部2の本体部22のY方向の両側方に配置される。図4に示すように、一対の下部ガイド部46,46それぞれの内側面461,461は、本体部22の側面(Y方向の端面)221,221と対向している。本実施形態では、一対の下部ガイド部46,46それぞれの内側面461,461に滑り材462,462が設けられていて、滑り材462,462が本体部22の側面221,221と当接している。 When the lower sliding portion 42 is arranged above the lower guide portion 2, the lower contact surface 41 comes into contact with the lower sliding surface 21 of the lower guide portion 2, and the pair of lower guide portions 46, 46 abuts the lower guide portion 46. It is arranged on both sides of the main body portion 22 of the portion 2 in the Y direction. As shown in FIG. 4, the inner side surfaces 461 and 461 of each of the pair of lower guide portions 46, 46 face the side surfaces (end faces in the Y direction) 221,221 of the main body portion 22. In the present embodiment, sliding members 462 and 462 are provided on the inner side surfaces 461 and 461 of each of the pair of lower guide portions 46 and 46, and the sliding members 462 and 462 come into contact with the side surfaces 221,221 of the main body portion 22. There is.

図3に示すように、下部当接面41は、X方向に沿ってX方向の略中央部が下側に凸となる略V字形状の傾斜面に形成されている。この下部当接面41のX方向の略中央部の屈曲している部分を下部屈曲部411とする。
また、下部当接面41のうち、下部屈曲部411よりもX方向の一方側を第1下部当接面412とし、下部屈曲部411よりもX方向の他方側を第2下部当接面413とする。
第1下部当接面412および第2下部当接面413には、それぞれテフロン(登録商標)などの滑り材414がそれぞれ設けられている。
下部摺動部42の上面は略水平面に形成され、積層ゴム45が接続されている。
As shown in FIG. 3, the lower contact surface 41 is formed on a substantially V-shaped inclined surface in which a substantially central portion in the X direction is convex downward along the X direction. The bent portion of the substantially central portion of the lower contact surface 41 in the X direction is referred to as the lower bent portion 411.
Further, of the lower abutting surface 41, one side in the X direction from the lower bent portion 411 is the first lower abutting surface 412, and the other side in the X direction from the lower bent portion 411 is the second lower abutting surface 413. And.
A sliding material 414 such as Teflon (registered trademark) is provided on each of the first lower contact surface 412 and the second lower contact surface 413, respectively.
The upper surface of the lower sliding portion 42 is formed in a substantially horizontal plane, and the laminated rubber 45 is connected to the upper surface.

上部摺動部44は、平面視形状(上方から見た形状)が略正方形となるブロック状に形成されている。
一対の上部ガイド部47,47は、互いにX方向に間隔をあけて配置されている。一対の上部ガイド部47,47の間隔は、上部案内部3の本体部22のX方向の寸法よりもやや大きく形成されている。一対の上部ガイド部47,47における互いにX方向に対向する内側面471,471は、鉛直面に形成されている。
上部摺動部44の下面のうちの一対の上部ガイド部47,47の間の領域に上部当接面43が形成されている。
The upper sliding portion 44 is formed in a block shape having a substantially square shape (shape seen from above) in a plan view.
The pair of upper guide portions 47, 47 are arranged at intervals in the X direction from each other. The distance between the pair of upper guide portions 47, 47 is formed to be slightly larger than the dimension of the main body portion 22 of the upper guide portion 3 in the X direction. The inner side surfaces 471, 471 of the pair of upper guide portions 47, 47 facing each other in the X direction are formed in a vertical plane.
The upper contact surface 43 is formed in the region between the pair of upper guide portions 47, 47 on the lower surface of the upper sliding portion 44.

図4に示すように、上部摺動部44は、上部案内部3の下側に配置されると、上部当接面43が上部案内部3の下部摺動面21と当接し、一対の上部ガイド部47,47が上部案内部3の本体部32のX方向の両側方に配置される。図3に示すように、一対の上部ガイド部47,47それぞれの内側面471,471は、本体部32の側面(X方向の両側の端面)321,321と対向している。本実施形態では、一対の上部ガイド部47,47それぞれの内側面471,471に滑り材472,472が設けられていて、滑り材472,472が本体部32の側面321,321と当接している。 As shown in FIG. 4, when the upper sliding portion 44 is arranged below the upper guide portion 3, the upper contact surface 43 abuts on the lower sliding surface 21 of the upper guide portion 3, and a pair of upper portions. Guide portions 47, 47 are arranged on both sides of the main body portion 32 of the upper guide portion 3 in the X direction. As shown in FIG. 3, the inner side surfaces 471 and 471 of each of the pair of upper guide portions 47 and 47 face the side surfaces (end surfaces on both sides in the X direction) 321, 321 of the main body portion 32. In the present embodiment, sliding members 472 and 472 are provided on the inner side surfaces 471 and 471 of each of the pair of upper guide portions 47 and 47, and the sliding members 472 and 472 come into contact with the side surfaces 321, 321 of the main body portion 32. There is.

図4に示すように、上部当接面43は、Y方向に沿ってX方向の略中央部が上側に凸となる略逆V字形状の傾斜面に形成されている。この上部当接面43のY方向の略中央部の屈曲している部分を上部屈曲部431とする。
また、上部当接面43のうち、上部屈曲部431よりもY方向の一方側を第1上部当接面432とし、上部屈曲部431よりもY方向の他方側を第2上部当接面433とする。
第1上部当接面432および第2上部当接面433には、それぞれテフロン(登録商標)などの滑り材434がそれぞれ設けられている。
上部摺動部44の下面は略水平面に形成され、積層ゴム45が接続されている。
下部摺動部42の上面と上部摺動部44の下面とは、略同じ正方形に形成され、積層ゴムを介して上下方向に重なっている。下部摺動部42の上面の縁部と上部摺動部44の下面の縁部とは、上下方向に重なっている。
As shown in FIG. 4, the upper contact surface 43 is formed on a substantially inverted V-shaped inclined surface in which a substantially central portion in the X direction is convex upward along the Y direction. The bent portion of the substantially central portion of the upper contact surface 43 in the Y direction is referred to as the upper bent portion 431.
Further, of the upper abutting surface 43, one side in the Y direction from the upper bent portion 431 is designated as the first upper abutting surface 432, and the other side in the Y direction from the upper bent portion 431 is the second upper abutting surface 433. And.
The first upper contact surface 432 and the second upper contact surface 433 are each provided with a sliding material 434 such as Teflon (registered trademark).
The lower surface of the upper sliding portion 44 is formed in a substantially horizontal plane, and the laminated rubber 45 is connected to the lower surface.
The upper surface of the lower sliding portion 42 and the lower surface of the upper sliding portion 44 are formed in substantially the same square shape, and overlap each other in the vertical direction via the laminated rubber. The edge of the upper surface of the lower sliding portion 42 and the edge of the lower surface of the upper sliding portion 44 overlap each other in the vertical direction.

図3および図4に示すように、積層ゴム45は、ゴムと薄鋼板とを鉛直に積層した公知の構造のもので、水平方向に弾性変形可能に構成され、下部摺動部42と上部摺動部44とを水平方向に相対移動可能に連結している。
積層ゴム45は、上下方向から見た形状が下部摺動部42の上面および上部摺動部44の下面よりも大きい正方形に形成され、下部摺動部42の上面と上部摺動部44の下面との間に配置された状態で、縁部45aが下部摺動部42の縁部42aおよび上部摺動部44の縁部44aよりも外側に突出している。
積層ゴム45は、下部摺動部42の上面および上部摺動部44の下面それぞれに固定されているとともに、下部摺動部42および上部摺動部44に固定された支持具48に支持されている。
As shown in FIGS. 3 and 4, the laminated rubber 45 has a known structure in which rubber and a thin steel plate are vertically laminated, and is configured to be elastically deformable in the horizontal direction, and has a lower sliding portion 42 and an upper sliding portion 42. The moving portion 44 is connected so as to be relatively movable in the horizontal direction.
The laminated rubber 45 is formed in a square whose shape when viewed from the vertical direction is larger than the upper surface of the lower sliding portion 42 and the lower surface of the upper sliding portion 44, and the upper surface of the lower sliding portion 42 and the lower surface of the upper sliding portion 44. The edge portion 45a protrudes outward from the edge portion 42a of the lower sliding portion 42 and the edge portion 44a of the upper sliding portion 44 in a state of being arranged between the two.
The laminated rubber 45 is fixed to the upper surface of the lower sliding portion 42 and the lower surface of the upper sliding portion 44, respectively, and is supported by the support 48 fixed to the lower sliding portion 42 and the upper sliding portion 44. There is.

支持具48は、下部摺動部42に固定されて積層ゴム45の下面の縁部近傍と当接する下側支持具481と、上部摺動部44に固定されて積層ゴム45の上面の縁部近傍と当接する上側支持具482と、を有している。
下側支持具481は、四方枠状に形成され、下部摺動部42の側面の上縁部に沿って配置されている。下側支持具481は、下部摺動部42の側面に当接して固定される下側固定板部481aと、積層ゴム45の下面の縁部近傍に当接して積層ゴム45を支持する下側支持板部481bと、を有している。
The support 48 is fixed to the lower sliding portion 42 and comes into contact with the vicinity of the lower edge of the laminated rubber 45, and the support 48 is fixed to the upper sliding portion 44 and is fixed to the upper edge of the laminated rubber 45. It has an upper support 482 that comes into contact with the vicinity.
The lower support 481 is formed in a square frame shape and is arranged along the upper edge of the side surface of the lower sliding portion 42. The lower support 481 abuts on the side surface of the lower sliding portion 42 and is fixed to the lower fixing plate portion 481a, and the lower support 481 abuts on the vicinity of the edge portion of the lower surface of the laminated rubber 45 to support the laminated rubber 45. It has a support plate portion 481b and.

上側支持具482は、下側支持具481と上下方向に対称となる四方枠状に形成され、上部摺動部44の側面の下縁部に沿って配置されている。上側支持具482は、上部摺動部44の側面に当接して固定される上側固定板部482aと、積層ゴム45の上面の縁部近傍に当接して積層ゴム45を支持する上側支持板部482bと、を有している。
積層ゴム45の縁部近傍は、下側支持板部481bと上側支持板部482bとに上下方向から挟持されている。
The upper support 482 is formed in a square frame shape that is vertically symmetrical with the lower support 481, and is arranged along the lower edge of the side surface of the upper sliding portion 44. The upper support 482 has an upper fixing plate portion 482a that abuts and is fixed to the side surface of the upper sliding portion 44, and an upper support plate portion that abuts near the edge portion of the upper surface of the laminated rubber 45 to support the laminated rubber 45. It has 482b and.
The vicinity of the edge portion of the laminated rubber 45 is sandwiched between the lower support plate portion 481b and the upper support plate portion 482b from the vertical direction.

積層ゴム45は、下部摺動部42と上部摺動部44とが水平方向に相対変位すると、下部摺動部42と上部摺動部44との相対変位に追従してゴム部分が弾性変形する。
そして、弾性変形したゴム部分の復元力(弾性すべり復元力)により下部摺動部42と上部摺動部44とが原位置に復元されるように構成されている。
In the laminated rubber 45, when the lower sliding portion 42 and the upper sliding portion 44 are relatively displaced in the horizontal direction, the rubber portion is elastically deformed following the relative displacement between the lower sliding portion 42 and the upper sliding portion 44. ..
The lower sliding portion 42 and the upper sliding portion 44 are configured to be restored to their original positions by the restoring force (elastic slip restoring force) of the elastically deformed rubber portion.

本実施形態では、積層ゴム45は、せん断剛性G=0.34~0.39N/mm(G4~G10)程度で、厚さ寸法(ゴム厚)は2~4cmとしている。
下部摺動部42と上部摺動部44との水平方向の相対変位量の最大値は、積層ゴム45の厚さ寸法の2倍以下となるように設定され、本実施形態では4~8cmとしている。積層ゴム45は、水平方向の変位量が積層ゴム45の厚さ寸法の2倍(200%)以下の場合には、塑性変形せずに弾性変形するように設計されている。
例えば、積層ゴム45の厚さ寸法が2cmの場合は、下部摺動部42と上部摺動部44との水平方向の相対変位量の最大値が4cmとなり、積層ゴム45の水平方向の変位量が0~4cmの場合には、塑性変形せずに弾性変形するように設計されている。
摺動子4の平面寸法は、面積が4×長期支持荷重/(摩擦材の基準面圧)程度となるように設定されている。
In the present embodiment, the laminated rubber 45 has a shear rigidity G of about 0.34 to 0.39 N / mm 2 (G4 to G10) and a thickness dimension (rubber thickness) of 2 to 4 cm.
The maximum value of the horizontal relative displacement between the lower sliding portion 42 and the upper sliding portion 44 is set to be twice or less the thickness dimension of the laminated rubber 45, and is set to 4 to 8 cm in this embodiment. There is. The laminated rubber 45 is designed to be elastically deformed without plastic deformation when the amount of displacement in the horizontal direction is twice (200%) or less of the thickness dimension of the laminated rubber 45.
For example, when the thickness dimension of the laminated rubber 45 is 2 cm, the maximum value of the horizontal relative displacement between the lower sliding portion 42 and the upper sliding portion 44 is 4 cm, and the horizontal displacement amount of the laminated rubber 45 is 4 cm. When is 0 to 4 cm, it is designed to be elastically deformed without plastic deformation.
The plane dimension of the slider 4 is set so that the area is about 4 × long-term bearing load / (reference surface pressure of the friction material).

このような構成の免震機構1は、図5および図6に示すように、地震が生じて下部構造体11と上部構造体12とが水平方向に相対変位すると、下部構造体11に設けられた下部案内部2と上部構造体12に設けられた上部案内部3との相対変位に追従して積層ゴム45が変形するとともに、摺動子4が下部摺動面21および上部摺動面31を摺動する。 As shown in FIGS. 5 and 6, the seismic isolation mechanism 1 having such a configuration is provided in the lower structure 11 when an earthquake occurs and the lower structure 11 and the upper structure 12 are relatively displaced in the horizontal direction. The laminated rubber 45 is deformed according to the relative displacement between the lower guide portion 2 and the upper guide portion 3 provided in the upper structure 12, and the slider 4 is formed on the lower sliding surface 21 and the upper sliding surface 31. Sliding.

図3および図4に示すように免震機構1の初期状態(通常時)では、積層ゴム45は変形せず、摺動子4は下部案内部2および上部案内部3に対して原位置に配置されている。原位置に配置された摺動子4は、第1下部当接面412が下部案内部2の第1下部摺動面212と当接し、第2下部当接面413が下部案内部2の第2下部摺動面213と当接し、第1上部当接面432が上部案内部3の第1上部摺動面312と当接し、第2上部当接面433が上部案内部3の第2上部摺動面313と当接している。 As shown in FIGS. 3 and 4, in the initial state (normal state) of the seismic isolation mechanism 1, the laminated rubber 45 is not deformed, and the slider 4 is in the original position with respect to the lower guide portion 2 and the upper guide portion 3. Have been placed. In the slider 4 arranged in the original position, the first lower contact surface 412 abuts on the first lower sliding surface 212 of the lower guide portion 2, and the second lower contact surface 413 is the second lower guide portion 2. 2 The lower sliding surface 213 is in contact, the first upper contact surface 432 is in contact with the first upper sliding surface 312 of the upper guide portion 3, and the second upper contact surface 433 is the second upper portion of the upper guide portion 3. It is in contact with the sliding surface 313.

図5(b)に示すように、摺動子4は、下部案内部2に対して原位置からX方向の一方側に移動すると、第1下部当接面412が第1下部摺動面212と当接しているが、第2下部当接面413が第2下部摺動面213から離間した状態で第1下部摺動面212を上るように下部摺動面21を摺動する。摺動子4は、下部案内部2に対して原位置からX方向の他方側に移動すると、第2下部当接面413が第2下部摺動面213と当接しているが、第1下部当接面412が第1下部摺動面212から離間した状態で第2下部摺動面213を上るように下部摺動面21を摺動する。 As shown in FIG. 5B, when the slider 4 moves from the original position to one side in the X direction with respect to the lower guide portion 2, the first lower contact surface 412 becomes the first lower sliding surface 212. However, the lower sliding surface 21 is slid so as to go up the first lower sliding surface 212 in a state where the second lower contact surface 413 is separated from the second lower sliding surface 213. When the slider 4 moves from the original position to the other side in the X direction with respect to the lower guide portion 2, the second lower contact surface 413 is in contact with the second lower sliding surface 213, but the first lower portion is in contact with the second lower sliding surface 213. The lower sliding surface 21 is slid so as to go up the second lower sliding surface 213 in a state where the contact surface 412 is separated from the first lower sliding surface 212.

また、摺動子4は、上部案内部3に対して原位置からY方向の一方側に移動すると、第1上部当接面432が第1上部摺動面312と当接しているが、第2上部当接面433が第2上部摺動面313から離間した状態で第1上部摺動面312を下るように上部摺動面31を摺動する。摺動子4は、上部案内部3に対して原位置からY方向の他方側に移動すると、第2上部当接面433が第2上部摺動面313と当接しているが、第1上部当接面432が第1上部摺動面312から離間した状態で第2上部摺動面313を下るように上部摺動面31を摺動する。 Further, when the slider 4 moves from the original position to one side in the Y direction with respect to the upper guide portion 3, the first upper contact surface 432 is in contact with the first upper sliding surface 312. 2 The upper sliding surface 31 is slid so as to go down the first upper sliding surface 312 in a state where the upper contact surface 433 is separated from the second upper sliding surface 313. When the slider 4 moves from the original position to the other side in the Y direction with respect to the upper guide portion 3, the second upper contact surface 433 is in contact with the second upper sliding surface 313, but the first upper portion The upper sliding surface 31 is slid so as to go down the second upper sliding surface 313 in a state where the contact surface 432 is separated from the first upper sliding surface 312.

このように摺動子4は、下部案内部2および上部案内部3に対して上ったり下ったりすることで高さ寸法が変化することになる。しかしながら、本実施形態では、免震層13に設けられた複数の免震機構1は、それぞれの傾斜角度θが同じ値であるため、地震が生じてそれぞれの下部案内部2と上部案内部3とが水平方向に相対変位しても、免震機構1それぞれの上端部は同じ高さとなり、免震機構1それぞれの下端部は同じ高さに配置される。
これにより、下部構造体11と上部構造体12とが水平方向に相対変位しても、上部構造体12が水平に維持される。
In this way, the height dimension of the slider 4 changes by moving up and down with respect to the lower guide portion 2 and the upper guide portion 3. However, in the present embodiment, since the plurality of seismic isolation mechanisms 1 provided in the seismic isolation layer 13 have the same inclination angle θ, an earthquake occurs and the lower guide portion 2 and the upper guide portion 3 respectively. Even if and are displaced relative to each other in the horizontal direction, the upper end portions of the seismic isolation mechanisms 1 are at the same height, and the lower end portions of the seismic isolation mechanisms 1 are arranged at the same height.
As a result, even if the lower structure 11 and the upper structure 12 are displaced relative to each other in the horizontal direction, the upper structure 12 is maintained horizontally.

免震機構1では、摺動子4と下部案内部2とがX方向に相対変位すると、摺動子4が下部案内部2の下部摺動面21を上るように下部案内部2と相対変位するため、摺動子4と下部案内部2との相対変位がポテンシャルエネルギー(位置エネルギー)として蓄積され、摺動子4が原位置に復元するための復元力(傾斜復元力)となる。摺動子4と上部案内部3とがY方向に相対変位すると、上部案内部3が摺動子4の上部当接面43の傾斜面を上るように摺動子4と相対変位するため、摺動子4と上部案内部3との相対変位がポテンシャルエネルギー(位置エネルギー)として蓄積され、摺動子4が原位置に復元するための復元力(傾斜復元力)となる。
上部案内部3に作用する鉛直荷重をWとすると、傾斜復元力(水平力)Fは水平面に対する傾斜角度θをとしてF=Wtanθと表される。
In the seismic isolation mechanism 1, when the slider 4 and the lower guide portion 2 are displaced relative to each other in the X direction, the slider 4 is displaced relative to the lower guide portion 2 so as to go up the lower sliding surface 21 of the lower guide portion 2. Therefore, the relative displacement between the slider 4 and the lower guide portion 2 is accumulated as potential energy (potential energy), and becomes a restoring force (tilt restoring force) for the slider 4 to restore to the original position. When the slider 4 and the upper guide portion 3 are relatively displaced in the Y direction, the upper guide portion 3 is displaced relative to the slider 4 so as to go up the inclined surface of the upper contact surface 43 of the slider 4. The relative displacement between the slider 4 and the upper guide portion 3 is accumulated as potential energy (potential energy), and becomes a restoring force (tilt restoring force) for the slider 4 to restore to the original position.
Assuming that the vertical load acting on the upper guide portion 3 is W, the tilt restoring force (horizontal force) F is expressed as F = Wtan θ with the tilt angle θ with respect to the horizontal plane.

本実施形態では、図5(a)に示すような下部構造体11と上部構造体12との相対変位量が微小な場合には、積層ゴム45が変形するのみで、摺動子4は下部摺動面21および上部摺動面31を摺動せず、図5(b)に示すような上部構造体12と下部構造体11との相対変位量が大きくなり、積層ゴム45の原位置に対する水平変位が所定の水平変位設定値を超えた場合には、摺動子4が下部摺動面21および上部摺動面31を摺動するように構成されている。 In the present embodiment, when the relative displacement between the lower structure 11 and the upper structure 12 as shown in FIG. 5A is small, the laminated rubber 45 is only deformed and the slider 4 is at the lower part. The sliding surface 21 and the upper sliding surface 31 are not slid, and the relative displacement amount between the upper structure 12 and the lower structure 11 as shown in FIG. 5B becomes large, and the relative displacement amount with respect to the original position of the laminated rubber 45 becomes large. When the horizontal displacement exceeds a predetermined horizontal displacement set value, the slider 4 is configured to slide on the lower sliding surface 21 and the upper sliding surface 31.

本実施形態による免震機構1(傾斜弾性すべり支承)の復元力特性(荷重-変形関係)を図6に示す。すべりを生じた後の摩擦抵抗力μWは、一般的に傾斜復元力Wtanθより大きく、両者を合成したものが免震機構1の復元力特性となる。 FIG. 6 shows the restoring force characteristics (load-deformation relationship) of the seismic isolation mechanism 1 (tilt elastic sliding bearing) according to the present embodiment. The frictional resistance force μW after slipping is generally larger than the tilt restoring force Wtan θ, and the combination of the two is the restoring force characteristic of the seismic isolation mechanism 1.

次に、上述した本実施形態による免震機構1の作用・効果について図面を用いて説明する。
上述した本実施形態による免震機構1では、地震が生じ、下部構造体11と上部構造体12とが水平方向に相対変位すると、まず、摺動子4は上部摺動面および下部摺動面21に対して摺動せずに、積層ゴム45のみが変形する。ここから更に下部構造体11と上部構造体12とが水平方向に相対変位して、積層ゴム45の原位置に対する水平変位が所定の水平変位設定値を超えると、摺動子4が上部摺動面および下部摺動面21に対して摺動し始める。
これにより、摺動子4が傾斜面の傾斜角度が切り替わる箇所を通過する際に衝撃が生じたり、スティックスリップ現象の衝撃が生じたりした場合でも、積層ゴム45が変形することにより衝撃を吸収できるため、摺動子4に生じる加速度を低減させることができる。
Next, the operation / effect of the seismic isolation mechanism 1 according to the above-described embodiment will be described with reference to the drawings.
In the seismic isolation mechanism 1 according to the above-described embodiment, when an earthquake occurs and the lower structure 11 and the upper structure 12 are relatively displaced in the horizontal direction, first, the slider 4 has an upper sliding surface and a lower sliding surface. Only the laminated rubber 45 is deformed without sliding with respect to 21. From here, when the lower structure 11 and the upper structure 12 are further displaced in the horizontal direction and the horizontal displacement of the laminated rubber 45 with respect to the in-situ position exceeds a predetermined horizontal displacement set value, the slider 4 slides upward. It begins to slide with respect to the surface and the lower sliding surface 21.
As a result, even if an impact is generated when the slider 4 passes through a portion where the inclination angle of the inclined surface is switched, or an impact of a stick-slip phenomenon is generated, the impact can be absorbed by the deformation of the laminated rubber 45. Therefore, the acceleration generated in the slider 4 can be reduced.

また、図7に示すように、傾斜滑り支承のみの免震機構と比べて、積層ゴム45の変形によって免震機構の上部の構造に起因する高周波成分を低減させることができるため、構造物の上階層や下階層に生じる加速度を低減させることができる。
そして、下部摺動部42と上部摺動部44との水平方向の相対変位量の最大値が、積層ゴム45の厚さ寸法の2倍以下に設定され、積層ゴム45は、水平方向の変形量が厚さ寸法の2倍以下の場合には弾性変形し塑性変形しないことにより、積層ゴム45に確実に減衰性能が付与されるため、加速度の低減効果を高めることができる。
Further, as shown in FIG. 7, as compared with the seismic isolation mechanism having only the inclined sliding bearing, the deformation of the laminated rubber 45 can reduce the high frequency component caused by the structure of the upper part of the seismic isolation mechanism, so that the structure can be reduced. It is possible to reduce the acceleration generated in the upper and lower layers.
Then, the maximum value of the relative displacement amount in the horizontal direction between the lower sliding portion 42 and the upper sliding portion 44 is set to be twice or less the thickness dimension of the laminated rubber 45, and the laminated rubber 45 is deformed in the horizontal direction. When the amount is twice or less the thickness dimension, the laminated rubber 45 is surely imparted with damping performance by elastically deforming and not plastically deforming, so that the effect of reducing acceleration can be enhanced.

また、積層ゴム45は、上下方向から見て縁部が下部摺動部42および上部摺動部44よりも外側に突出し、縁部が下部摺動部42および上部摺動部44に固定された支持具48で上下方向から挟持されている。これにより、積層ゴム45を下部摺動部42および上部摺動部44に確実に固定することができる。また、積層ゴム45の上下方向から見た形状を下部摺動部42および上部摺動部44よりも大きくすることができるため、下部摺動部42および上部摺動部44の形状にかかわらず積層ゴム45の形状を設定することができる。 Further, in the laminated rubber 45, the edge portion protrudes outward from the lower sliding portion 42 and the upper sliding portion 44 when viewed from the vertical direction, and the edge portion is fixed to the lower sliding portion 42 and the upper sliding portion 44. It is sandwiched by the support 48 from above and below. As a result, the laminated rubber 45 can be securely fixed to the lower sliding portion 42 and the upper sliding portion 44. Further, since the shape of the laminated rubber 45 seen from the vertical direction can be made larger than that of the lower sliding portion 42 and the upper sliding portion 44, the laminated rubber 45 is laminated regardless of the shapes of the lower sliding portion 42 and the upper sliding portion 44. The shape of the rubber 45 can be set.

次に、本実施形態による免震機構1(「傾斜弾性すべり支承」とする)、積層ゴム支承(「LRB」とする)、および傾斜すべり支承の減衰性能について解析行った。以下に、解析内容と解析結果について説明する。
図8に示すように、解析対象となる構造物は、3階建RC造の建物で、平面形状が28m×21mの長方形となっている。免震層13は、地盤と1階の間に介在している。免震層13には、7mピッチで免震支承が設置されている。
Next, the seismic isolation mechanism 1 (referred to as “tilted elastic sliding bearing”), the laminated rubber bearing (referred to as “LRB”), and the damping performance of the inclined sliding bearing according to the present embodiment were analyzed. The analysis contents and analysis results will be described below.
As shown in FIG. 8, the structure to be analyzed is a three-story RC building, which is a rectangle having a plane shape of 28 m × 21 m. The seismic isolation layer 13 is interposed between the ground and the first floor. Seismic isolation bearings are installed on the seismic isolation layer 13 at a pitch of 7 m.

構造物の各階の重量m1~m4、水平剛性k1~k3、全重量Wは、以下のように設定されている。
m1=1199200(kg)
m4=m3=m2=719500(kg)
k1=k2=k3=3.25e9(N/m)
W=(m1+m2+m3+m4)×9.8=32905460(N)
The weight m1 to m4, the horizontal rigidity k1 to k3, and the total weight W of each floor of the structure are set as follows.
m1 = 1199200 (kg)
m4 = m3 = m2 = 719500 (kg)
k1 = k2 = k3 = 3.25e9 (N / m)
W = (m1 + m2 + m3 + m4) x 9.8 = 32905460 (N)

各免震支承の仕様は、以下のように設定されている。
LRB(鉛プラグ入り積層ゴム):せん断剛性G=0.39(N/mm
傾斜すべり支承:摩擦係数μ=0.05、傾斜角度θ=1.5°(理論加速度:0.76m/s)、積層ゴムのせん断剛性krb={W×(0.05+tan1.5°)}/摺動子4の積層ゴムに設定する最大変位量Δmax
傾斜弾性すべり支承:摩擦係数μ=0.05、傾斜角度θ=1.5°(理論加速度:0.76m/s)、積層ゴムのせん断剛性krb={W×(0.05+tan1.5°)}/摺動子4の積層ゴムに設定する最大変位量Δmax
The specifications of each seismic isolation bearing are set as follows.
LRB (laminated rubber with lead plug): Shear rigidity G = 0.39 (N / mm 2 )
Tilt slip bearing: friction coefficient μ = 0.05, tilt angle θ = 1.5 ° (theoretical acceleration: 0.76 m / s 2 ), shear rigidity of laminated rubber krb = {W × (0.05 + tan 1.5 °) )} / Maximum displacement amount set for the laminated rubber of the slider 4 Δ max
Tilt elastic sliding bearings: friction coefficient μ = 0.05, tilt angle θ = 1.5 ° (theoretical acceleration: 0.76 m / s 2 ), shear rigidity of laminated rubber krb = {W × (0.05 + tan1.5 ) °)} / Maximum displacement amount set for the laminated rubber of the slider 4 Δ max

傾斜弾性すべり支承の摺動子4の積層ゴムの最大変位量Δmax=1~8cmとし、傾斜弾性すべり支承の摺動子4の積層ゴムの減衰定数hを無し、h=1~5%とする。
計算用地震波には、以下の表のケース1~7の加振波形を採用する。
The maximum displacement of the laminated rubber of the slanted elastic sliding bearing 4 is Δ max = 1 to 8 cm, and the damping constant h of the laminated rubber of the slanted elastic sliding bearing 4 is set to h = 1 to 5%. do.
For the seismic wave for calculation, the vibration waveforms of cases 1 to 7 in the table below are adopted.

Figure 0007042642000001
Figure 0007042642000001

図9~図15に加振波形のケース1~7毎の各階の最大応答変位の比較、各階の最大応答加速度の比較、摺動子の積層ゴムに生じる変位と残留変位との比較を示す。
最大応答変位の比較、最大応答加速度の比較の図には、免震装置をLRBとした結果および傾斜滑り支承とした結果も記載している。また、応答加速度の比較の図には、免震層13の上部構造体12を剛体でモデル化した理論値を表記している。
図16~図22に、加振波形のケース1~7毎の積層ゴムの最大変位量Δmaxが4cm、減衰定数h(0%~5%)の場合の各階の応答変位および応答加速度を示し、図23~図29には、加振波形のケース1~7毎の最大変位量Δmaxが8cm、減衰定数h(0%~5%)の場合の各階の応答変位および応答加速度を示す。
また、図30(a)~(g)に、加振波形のケース1~7毎の積層ゴムの減衰定数h(0%~5%)の場合の免震層の最大変位量と残留変位との比較を示す。
9 to 15 show a comparison of the maximum response displacement of each floor for each of the vibration waveform cases 1 to 7, a comparison of the maximum response acceleration of each floor, and a comparison of the displacement generated in the laminated rubber of the slider and the residual displacement.
The figures of the comparison of the maximum response displacement and the comparison of the maximum response acceleration also show the result of using the seismic isolation device as LRB and the result of using the inclined sliding bearing. Further, in the figure of comparison of response accelerations, theoretical values obtained by modeling the superstructure 12 of the seismic isolation layer 13 with a rigid body are shown.
16 to 22 show the response displacement and response acceleration of each floor when the maximum displacement amount Δmax of the laminated rubber for each case 1 to 7 of the vibration waveform is 4 cm and the damping constant h (0% to 5%). 23 to 29 show the response displacement and response acceleration of each floor when the maximum displacement amount Δmax for each case 1 to 7 of the vibration waveform is 8 cm and the damping constant h (0% to 5%).
Further, FIGS. 30 (a) to 30 (g) show the maximum displacement amount and the residual displacement of the seismic isolation layer in the case of the damping constant h (0% to 5%) of the laminated rubber for each of the cases 1 to 7 of the vibration waveform. The comparison is shown.

以上のことより、傾斜弾性すべり支承の積層ゴムは、最大変形量を4cm以上に設定すれば、傾斜すべり支承の課題である減衰力不足を解消し、理論加速度(0.76m/s)に近づくことがわかる。また、LRBの応答結果(加速度)よりも小さく高い免震性能が得られることがわかる。特に、積層ゴムのせん断剛性krb={W×(0.05+tan1.5°)}/摺動子4の積層ゴムに設定する最大変位量Δmaxとすることでより高い免震性能を得られることがわかる。
傾斜すべり支承の残留変位は、傾斜すべり支承と同等に約0となることがわかる。傾斜弾性支承の積層ゴムの減衰による上部構造物の計算結果(応答変位と応答加速度)には、あまり違いが無かったが、残留変位の差異が大きいことがわかる。
減衰定数0~5%の計算結果(応答変位、応答加速度、残留変位)より、無減衰とせずh≧1%の減衰を付与すればいずれの応答結果も略同じとなることがわかる。
From the above, the laminated rubber of the inclined elastic sliding bearing can solve the problem of insufficient damping force of the inclined sliding bearing by setting the maximum deformation amount to 4 cm or more, and achieve the theoretical acceleration (0.76 m / s 2 ). You can see that it is approaching. Further, it can be seen that a high seismic isolation performance can be obtained, which is smaller than the response result (acceleration) of the LRB. In particular, higher seismic isolation performance can be obtained by setting the shear rigidity of the laminated rubber k rb = {W × (0.05 + tan1.5 °)} / maximum displacement amount Δmax set for the laminated rubber of the slider 4. You can see that.
It can be seen that the residual displacement of the tilted sliding bearing is about 0, which is equivalent to that of the tilted sliding bearing. Although there was not much difference in the calculation results (response displacement and response acceleration) of the superstructure due to the damping of the laminated rubber of the inclined elastic bearing, it can be seen that the difference in the residual displacement is large.
From the calculation results (response displacement, response acceleration, residual displacement) with a damping constant of 0 to 5%, it can be seen that all response results are substantially the same if h ≧ 1% damping is applied without damping.

以上、本発明による免震機構1の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記の実施形態では、積層ゴム45は、上下方向から見た形状が下部摺動部42の上面および上部摺動部44の下面よりも大きい正方形に形成され、下部摺動部42の上面と上部摺動部44の下面との間に配置された状態で、縁部45aが下部摺動部42の上面の縁部42aおよび上部摺動部44の下面の縁部44aよりも外側に突出している。そして、積層ゴム45の縁部45aは、下部摺動部42および上部摺動部44に固定された支持具48で上下方向から挟持されている。これに対し、積層ゴム45は、上下方向から見た形状が下部摺動部および上部摺動部44よりも外側に突出していなくてもよいし、下部摺動部および上部摺動部44への固定手段も適宜設定されてよい。
また、上記の実施形態では、積層ゴム45の厚さ寸法を2cmから4cmとしているが、積層ゴム45の厚さ寸法は適宜設定されてよい。
Although the embodiment of the seismic isolation mechanism 1 according to the present invention has been described above, the present invention is not limited to the above embodiment and can be appropriately modified without departing from the spirit of the present invention.
For example, in the above embodiment, the laminated rubber 45 is formed into a square whose shape when viewed from the vertical direction is larger than the upper surface of the lower sliding portion 42 and the lower surface of the upper sliding portion 44, and the upper surface of the lower sliding portion 42 is formed. In a state of being arranged between the upper sliding portion 44 and the lower surface of the upper sliding portion 44, the edge portion 45a protrudes outward from the upper surface edge portion 42a of the lower sliding portion 42 and the lower surface edge portion 44a of the upper sliding portion 44. ing. The edge portion 45a of the laminated rubber 45 is sandwiched from above and below by the support 48 fixed to the lower sliding portion 42 and the upper sliding portion 44. On the other hand, the laminated rubber 45 does not have to have a shape seen from the vertical direction protruding outward from the lower sliding portion and the upper sliding portion 44, and may extend to the lower sliding portion and the upper sliding portion 44. The fixing means may also be set as appropriate.
Further, in the above embodiment, the thickness dimension of the laminated rubber 45 is set to 2 cm to 4 cm, but the thickness dimension of the laminated rubber 45 may be appropriately set.

1 免震機構
2 下部案内部
3 上部案内部
4 摺動子
11 下部構造体
12 上部構造体
13 免震層
21 下部摺動面
31 上部摺動面
41 下部当接面
42 下部摺動部
43 上部当接面
44 上部摺動部
45 積層ゴム
48 支持具
1 Seismic isolation mechanism 2 Lower guide part 3 Upper guide part 4 Slider 11 Lower structure 12 Upper structure 13 Seismic isolation layer 21 Lower sliding surface 31 Upper sliding surface 41 Lower contact surface 42 Lower sliding part 43 Upper Contact surface 44 Upper sliding part 45 Laminated rubber 48 Support

Claims (2)

水平方向に相対変位可能な下部構造体と上部構造体との間に設けられる免震機構において、
前記下部構造体の上部に設けられ、一の水平方向に沿って下側に凸となるV字形状に形成された下部摺動面を有する下部案内部と、
前記上部構造体の底部に設けられ、前記一の水平方向に直交する他の水平方向に沿って上側に凸となる逆V字形状に形成された上部摺動面を有する上部案内部と、
前記下部摺動面と前記上部摺動面との間に配置され、前記下部摺動面に沿って前記下部案内部と前記一の水平方向に相対変位可能であるともに、前記上部摺動面に沿って前記上部案内部と前記他の水平方向に相対変位可能な摺動子と、を有し、
前記摺動子は、前記下部摺動面を摺動可能な下部摺動部と、前記下部摺動部の上側に配置されて前記上部摺動面を摺動可能な上部摺動部と、前記下部摺動部と前記上部摺動部との間に配置され前記下部摺動部と前記上部摺動部とを水平方向に相対移動可能に支持する積層ゴムと、を有し、
前記下部構造体と前記上部構造体とが水平方向に相対変位すると、該相対変位に追従して前記積層ゴムが水平方向に変形し、前記積層ゴムの原位置に対する水平変位が所定の水平変位設定値を超えた後に、前記摺動子が前記下部摺動面および前記上部摺動面の少なくとも一方で摺動するように構成され、
前記下部摺動部と前記上部摺動部との水平方向の相対変位量の最大値は、前記積層ゴムの厚さ寸法の2倍以下に設定され、
前記積層ゴムは、水平方向の変形量が前記積層ゴムの厚さ寸法の2倍以下の場合には弾性変形し塑性変形せず、
前記積層ゴムは、上下方向から見て縁部が前記下部摺動部および前記上部摺動部よりも外側に突出し、前記縁部が前記下部摺動部に固定された下側支持具および前記上部摺動部に固定された上側支持具で上下方向から挟持され、
前記下側支持具は、
前記下部摺動部の側面のみに当接して固定される下側固定板部と、
前記下側固定板部の上端部から側方に突出し、前記積層ゴムの前記縁部の下面に前記下部摺動部の上面の高さで当接して前記積層ゴムを支持する下側支持板部と、を有し、断面形状がL字形であり、
前記上側支持具は、
前記上部摺動部の側面のみに当接して固定される上側固定板部と、
前記上側固定板部の下端部から側方に突出し、前記積層ゴムの前記縁部の上面に前記上部摺動部の下面の高さで当接して前記積層ゴムを支持する上側支持板部と、を有し、断面形状がL字形であることを特徴とする免震機構。
In the seismic isolation mechanism provided between the lower structure and the upper structure that can be displaced relative to each other in the horizontal direction.
A lower guide portion provided on the upper part of the lower structure and having a lower sliding surface formed in a V shape that is convex downward along one horizontal direction.
An upper guide portion provided at the bottom of the upper structure and having an upper sliding surface formed in an inverted V shape that is convex upward along the other horizontal direction orthogonal to the horizontal direction.
It is arranged between the lower sliding surface and the upper sliding surface, and can be displaced relative to the lower guide portion in the horizontal direction along the lower sliding surface, and on the upper sliding surface. Along with the upper guide and the other horizontally displaceable sliders,
The slider includes a lower sliding portion capable of sliding the lower sliding surface, an upper sliding portion arranged above the lower sliding portion and slidable on the upper sliding surface, and the above. It has a laminated rubber that is arranged between the lower sliding portion and the upper sliding portion and supports the lower sliding portion and the upper sliding portion so as to be relatively movable in the horizontal direction.
When the lower structure and the upper structure are relatively displaced in the horizontal direction, the laminated rubber is deformed in the horizontal direction following the relative displacement, and the horizontal displacement of the laminated rubber with respect to the in-situ position is set to a predetermined horizontal displacement. After exceeding the value, the slider is configured to slide on at least one of the lower sliding surface and the upper sliding surface.
The maximum value of the horizontal relative displacement between the lower sliding portion and the upper sliding portion is set to be twice or less the thickness dimension of the laminated rubber.
When the amount of deformation in the horizontal direction is twice or less the thickness dimension of the laminated rubber, the laminated rubber elastically deforms and does not plastically deform.
The laminated rubber has a lower support whose edge portion protrudes outward from the lower sliding portion and the upper sliding portion when viewed from the vertical direction, and the edge portion is fixed to the lower sliding portion, and the upper portion. It is sandwiched from above and below by the upper support fixed to the sliding part,
The lower support is
The lower fixing plate portion that abuts and is fixed only to the side surface of the lower sliding portion,
A lower support plate portion that projects laterally from the upper end portion of the lower fixing plate portion and abuts on the lower surface of the edge portion of the laminated rubber at the height of the upper surface of the lower sliding portion to support the laminated rubber. And, the cross-sectional shape is L-shaped,
The upper support is
An upper fixing plate portion that abuts and is fixed only to the side surface of the upper sliding portion,
An upper support plate portion that projects laterally from the lower end portion of the upper fixed plate portion and abuts on the upper surface of the edge portion of the laminated rubber at the height of the lower surface of the upper sliding portion to support the laminated rubber. A seismic isolation mechanism characterized by having an L-shaped cross section .
前記積層ゴムのせん断剛性Krbは、
前記積層ゴムのせん断剛性Krb =前記上部構造体の自重W×摩擦係数μ+tan傾斜角度θ)/前記摺動子の前記積層ゴムに設定する最大変位量Δmax
で設定されていることを特徴とする請求項1に記載の免震機構。
The shear rigidity Krb of the laminated rubber is
Shear rigidity K rb of the laminated rubber = own weight W × ( friction coefficient μ + tan inclination angle θ) of the superstructure / maximum displacement amount Δ max set for the laminated rubber of the slider
The seismic isolation mechanism according to claim 1, wherein the seismic isolation mechanism is set in 1.
JP2018022201A 2018-02-09 2018-02-09 Seismic isolation mechanism Active JP7042642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018022201A JP7042642B2 (en) 2018-02-09 2018-02-09 Seismic isolation mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018022201A JP7042642B2 (en) 2018-02-09 2018-02-09 Seismic isolation mechanism

Publications (2)

Publication Number Publication Date
JP2019138376A JP2019138376A (en) 2019-08-22
JP7042642B2 true JP7042642B2 (en) 2022-03-28

Family

ID=67695208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018022201A Active JP7042642B2 (en) 2018-02-09 2018-02-09 Seismic isolation mechanism

Country Status (1)

Country Link
JP (1) JP7042642B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7432902B1 (en) 2022-10-21 2024-02-19 嘉明 村山 Drive unit for simulator and simulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039266A (en) 2000-07-25 2002-02-06 Kawaguchi Metal Industries Co Ltd Base isolation device
JP2013130216A (en) 2011-12-20 2013-07-04 Shimizu Corp Sliding base isolation mechanism
JP2017115915A (en) 2015-12-21 2017-06-29 清水建設株式会社 Base isolation mechanism

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210826A (en) * 1998-01-27 1999-08-03 Kajima Corp Base isolation slide support
JPH11351325A (en) * 1998-06-11 1999-12-24 Okumura Corp Base isolation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039266A (en) 2000-07-25 2002-02-06 Kawaguchi Metal Industries Co Ltd Base isolation device
JP2013130216A (en) 2011-12-20 2013-07-04 Shimizu Corp Sliding base isolation mechanism
JP2017115915A (en) 2015-12-21 2017-06-29 清水建設株式会社 Base isolation mechanism

Also Published As

Publication number Publication date
JP2019138376A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
US9394967B2 (en) Three-dimensional shock-absorbing device
JP6964465B2 (en) Sliding bearing device
KR101548479B1 (en) Spring restoring and frictional type seismic isolator
JP7042642B2 (en) Seismic isolation mechanism
KR101069079B1 (en) Seismic isolating device used guide rails
JP2006153210A (en) Seismic isolator
JPH0658009A (en) Vibration damping device
KR102191280B1 (en) Vibration isolation device using ball and spring
JPH11190390A (en) Base isolation device
JP2020133722A (en) Friction damper
JP6709609B2 (en) Seismic isolation mechanism
JP6682393B2 (en) Tuned Mass Damper
JP2017145839A (en) Base isolation mechanism
JP6804738B2 (en) Vibration isolation system for rack warehouse
JP2016094989A (en) Vibration absorber and building
JP2012021638A (en) Base isolation device
JP6531479B2 (en) Seismic isolation structure
JP6675636B2 (en) Seismic isolation mechanism
JP2022062510A (en) Friction damper and base isolation building
JPH10184092A (en) Vibration isolation device for wooden building
JP2018132123A (en) Base isolation mechanism
JP6748930B2 (en) Seismic isolation mechanism
JP6914407B2 (en) Seismic isolation mechanism
JP7286496B2 (en) Seismic isolation mechanism
JPH11336201A (en) Bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220315

R150 Certificate of patent or registration of utility model

Ref document number: 7042642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150