JP7040283B2 - Valve opening / closing timing control device - Google Patents

Valve opening / closing timing control device Download PDF

Info

Publication number
JP7040283B2
JP7040283B2 JP2018098293A JP2018098293A JP7040283B2 JP 7040283 B2 JP7040283 B2 JP 7040283B2 JP 2018098293 A JP2018098293 A JP 2018098293A JP 2018098293 A JP2018098293 A JP 2018098293A JP 7040283 B2 JP7040283 B2 JP 7040283B2
Authority
JP
Japan
Prior art keywords
bearing
rotating body
shaft core
input gear
side rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018098293A
Other languages
Japanese (ja)
Other versions
JP2019203433A (en
Inventor
仁樹 向出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2018098293A priority Critical patent/JP7040283B2/en
Publication of JP2019203433A publication Critical patent/JP2019203433A/en
Application granted granted Critical
Publication of JP7040283B2 publication Critical patent/JP7040283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)

Description

本発明は、電動アクチュエータの駆動力により駆動側回転体と従動側回転体との相対回転位相を設定する弁開閉時期制御装置に関する。 The present invention relates to a valve opening / closing timing control device that sets a relative rotation phase between a driving side rotating body and a driven side rotating body by a driving force of an electric actuator.

従来、回転軸芯を中心に内燃機関のクランクシャフトと同期回転する駆動側回転体と、回転軸芯と同軸芯で駆動側回転体の径方向内側に配置された状態で内燃機関の弁開閉用のカムシャフトと一体回転する従動側回転体と、駆動側回転体および従動側回転体の相対回転位相を設定する電動アクチュエータと、を備えた弁開閉時期制御装置が知られている(例えば、特許文献1参照)。 Conventionally, for opening and closing valves of an internal combustion engine in a state where the drive side rotating body that rotates synchronously with the crankshaft of the internal combustion engine centering on the rotating shaft core and the drive side rotating body are arranged radially inside the driving side rotating body with a coaxial core with the rotating shaft core. A valve opening / closing timing control device including a driven side rotating body that rotates integrally with the camshaft of the above and an electric actuator that sets the relative rotation phase of the driving side rotating body and the driven side rotating body is known (for example, a patent). See Document 1).

特許文献1に記載の弁開閉時期制御装置は、従動側回転体に設けられた出力ギヤ(文献では従動側内歯車部)と、駆動側回転体と連結され回転軸芯に対して偏芯した偏芯軸芯で回転する入力ギヤ(文献では遊星歯車)と、入力ギヤを支持する筒状の偏芯部材(文献では遊星キャリア)と、従動側回転体の径方向内側と偏芯部材の径方向外側との間に配置される第1軸受(文献では遊星ベアリング)と、駆動側回転体の径方向内側と偏芯部材の径方向外側との間に配置される第2軸受(文献では遊星ベアリング)と、を備えている(特許文献1の図19~図21参照)。また、入力ギヤは、駆動側回転体に形成された駆動側内歯車部と噛み合う駆動側外歯車部により駆動側回転体と連結されており、さらに第1軸受と従動側回転体との間まで延出し従動側回転体の出力ギヤと噛み合う従動側外歯車部を有している。 The valve open / close timing control device described in Patent Document 1 is connected to an output gear (a driven side internal gear portion in the document) provided on the driven side rotating body and a driving side rotating body, and is eccentric with respect to the rotating shaft core. An input gear that rotates on an eccentric shaft (planetary gear in the literature), a tubular eccentric member that supports the input gear (planetary carrier in the literature), and the radial inside of the driven side rotating body and the diameter of the eccentric member. A first bearing (planetary bearing in the literature) placed between the outside of the direction and a second bearing (planetary in the literature) placed between the radial inside of the drive-side rotating body and the radial outside of the eccentric member. (Bearing) and (see FIGS. 19 to 21 of Patent Document 1). Further, the input gear is connected to the drive-side rotating body by a drive-side external gear portion that meshes with the drive-side internal gear portion formed on the drive-side rotating body, and further extends between the first bearing and the driven-side rotating body. It has a driven side external gear that meshes with the output gear of the extended driven side rotating body.

第1軸受は、ばね部材により入力ギヤの方向に付勢されており、駆動側回転体の駆動側内歯車部と駆動側内歯車部よりも歯数が少ない入力ギヤの駆動側外歯車部とが噛み合うと共に、従動側回転体の出力ギヤと従動側内歯車部よりも歯数が少ない入力ギヤの従動側外歯車部とが噛み合っている。さらに入力ギヤの従動側外歯車部は駆動側外歯車部よりも歯数が少なく形成されており、電動アクチュエータの駆動力により偏芯部材の回転で偏芯軸芯を回転軸芯周りに公転させて入力ギヤの駆動側外歯車部および従動側外歯車部と駆動側内歯車部および従動側回転体の出力ギヤとの噛み合い位置を変化させる。その結果、入力ギヤにおける従動側外歯車部と駆動側外歯車部との歯数の差により、相対回転位相が変更される。 The first bearing is urged in the direction of the input gear by a spring member, and has a drive-side internal gear portion of the drive-side rotating body and a drive-side external gear portion of the input gear having fewer teeth than the drive-side internal gear portion. Are meshed with each other, and the output gear of the driven side rotating body and the driven side external gear portion of the input gear having fewer teeth than the driven side internal gear portion are meshed with each other. Further, the driven side external gear portion of the input gear is formed to have a smaller number of teeth than the drive side external gear portion, and the eccentric shaft core is revolved around the rotating shaft core by the rotation of the eccentric member by the driving force of the electric actuator. The meshing position between the drive side external gear portion and the driven side external gear portion of the input gear and the drive side internal gear portion and the output gear of the driven side rotating body is changed. As a result, the relative rotation phase is changed by the difference in the number of teeth between the driven side external gear portion and the driving side external gear portion in the input gear.

特開2008-38886号公報Japanese Unexamined Patent Publication No. 2008-38886

特許文献1に記載の弁開閉時期制御装置は、ばね部材により第1軸受を付勢して入力ギヤと出力ギヤとの噛み合い部におけるバックラッシュを無くすものであるが、このばね部材と第2軸受とが摺接しないように設計する必要がある。特許文献1に記載の技術では、偏芯部材の径方向外側に突起を設けて、該突起をばね部材と第2軸受との間に配置することで、ばね部材と第2軸受との摺接を防止している。 The valve open / close timing control device described in Patent Document 1 urges the first bearing with a spring member to eliminate backlash in the meshing portion between the input gear and the output gear. The spring member and the second bearing are eliminated. It is necessary to design so that it does not come into contact with the bearing. In the technique described in Patent Document 1, a protrusion is provided on the radial outer side of the eccentric member, and the protrusion is arranged between the spring member and the second bearing so that the spring member and the second bearing are in sliding contact with each other. Is prevented.

しかしながら、特許文献1に記載の弁開閉時期制御装置は、偏芯部材の突起によって、ばね部材により付勢される第1軸受と第2軸受との回転軸芯方向の距離を短縮することができず、軸長が大きくなってしまう。しかも、第1軸受と第2軸受との距離が離れるほど、出力ギヤと入力ギヤとの噛み合い部から受ける反力により、これら軸受にかかるモーメントが大きくなり、軸受の寿命低下を招いてしまう。 However, the valve opening / closing timing control device described in Patent Document 1 can shorten the distance in the rotation axis direction between the first bearing and the second bearing urged by the spring member by the protrusion of the eccentric member. However, the shaft length becomes large. Moreover, as the distance between the first bearing and the second bearing increases, the moment applied to these bearings increases due to the reaction force received from the meshing portion between the output gear and the input gear, which shortens the life of the bearing.

そこで、電動アクチュエータの駆動力により駆動側回転体と従動側回転体との相対回転位相を設定する弁開閉時期制御装置において、軸受の耐久性を高めつつ小型に構成することが望まれている。 Therefore, in a valve opening / closing timing control device that sets the relative rotation phase between the driving side rotating body and the driven side rotating body by the driving force of the electric actuator, it is desired to make the valve compact while improving the durability of the bearing.

本発明に係る弁開閉時期制御装置の特徴構成は、回転軸芯と平行姿勢で且つ前記回転軸芯に対して所定の偏芯量を有する偏芯軸芯で回転する入力ギヤを有し、前記回転軸芯を中心に内燃機関のクランクシャフトと同期回転する駆動側回転体と、前記入力ギヤの歯数よりも多い歯数を含む出力ギヤを有し、前記回転軸芯と同軸芯で前記内燃機関の弁開閉用のカムシャフトと一体回転する従動側回転体と、前記駆動側回転体および前記従動側回転体の相対回転位相を設定する電動アクチュエータと、該電動アクチュエータによって回転される筒状の偏芯部材と、前記偏芯部材を支持する第1軸受と、前記入力ギヤを支持する第2軸受と、を備え、前記電動アクチュエータの駆動力による前記偏芯部材の回転で前記偏芯軸芯を前記回転軸芯周りに公転させて前記出力ギヤと前記入力ギヤとの噛み合い位置を変化させることにより前記相対回転位相が変更され、前記第1軸受の内径は、前記第2軸受の内径に前記偏芯量の2倍を加えた値よりも大きい点にある。 The characteristic configuration of the valve opening / closing timing control device according to the present invention includes an input gear that rotates on an eccentric shaft core that is in a parallel posture with the rotating shaft core and has a predetermined eccentric amount with respect to the rotating shaft core. It has a drive-side rotating body that rotates synchronously with the crank shaft of the internal combustion engine around the rotating shaft core, and an output gear that includes an output gear that includes a larger number of teeth than the number of teeth of the input gear. A driven side rotating body that rotates integrally with a cam shaft for opening and closing a valve of an engine, an electric actuator that sets the relative rotation phase of the driving side rotating body and the driven side rotating body, and a tubular shape that is rotated by the electric actuator. An eccentric member, a first bearing that supports the eccentric member, and a second bearing that supports the input gear are provided, and the eccentric shaft core is rotated by rotation of the eccentric member by the driving force of the electric actuator. The relative rotation phase is changed by revolving around the rotation shaft core to change the meshing position between the output gear and the input gear, and the inner diameter of the first bearing is the inner diameter of the second bearing. The point is larger than the value obtained by adding twice the amount of eccentricity.

本構成では、電動アクチュエータの駆動力による偏芯部材の回転で偏芯軸芯を回転軸芯周りに公転させて、駆動側回転体に設けられた入力ギヤと従動側回転体に設けられた出力ギヤとを噛み合い位置を変化させることにより駆動側回転体と従動側回転体との相対回転位相が変更可能となっている。その結果、偏芯部材を支持する第1軸受と、前入力ギヤを支持する第2軸受とには、噛み合い部位からの反力を受けてモーメントが作用し、耐久性が問題となる。このため、第1軸受と第2軸受とは回転軸芯方向に近接させることが望ましい。 In this configuration, the eccentric shaft core is revolved around the rotating shaft core by the rotation of the eccentric member by the driving force of the electric actuator, and the input gear provided on the driving side rotating body and the output provided on the driven side rotating body are provided. The relative rotation phase between the driving side rotating body and the driven side rotating body can be changed by changing the meshing position with the gear. As a result, a moment acts on the first bearing that supports the eccentric member and the second bearing that supports the front input gear by receiving a reaction force from the meshing portion, and durability becomes a problem. Therefore, it is desirable that the first bearing and the second bearing are close to each other in the direction of the axis of rotation.

ところで、駆動側回転体に設けられた入力ギヤは偏芯軸芯が回転軸芯周りに所定の偏心量で公転するので、第2軸受の内周面は回転軸芯を中心として径方向に偏芯量の2倍の移動量となる。つまり、本構成のように第1軸受の内径を第2軸受の内径に偏芯量の2倍を加えた値よりも大きくすれば、駆動側回転体の回転時において第1軸受の内周面は必ず第2軸受の内周面よりも径方向外側に位置することとなる。その結果、第2軸受の内周面に例えば板ばね等を配置した場合でも、第1軸受は該板ばねに干渉しない。このため、第1軸受と第2軸受とを回転軸芯方向に沿って近接させることが可能となる。 By the way, in the input gear provided on the drive side rotating body, the eccentric shaft core revolves around the rotating shaft core by a predetermined amount of eccentricity, so that the inner peripheral surface of the second bearing is deviated in the radial direction around the rotating shaft core. The amount of movement is twice the amount of core. That is, if the inner diameter of the first bearing is made larger than the value obtained by adding twice the eccentricity to the inner diameter of the second bearing as in this configuration, the inner peripheral surface of the first bearing when the drive-side rotating body rotates. Is always located radially outside the inner peripheral surface of the second bearing. As a result, even when a leaf spring or the like is arranged on the inner peripheral surface of the second bearing, the first bearing does not interfere with the leaf spring. Therefore, the first bearing and the second bearing can be brought close to each other along the rotation axis direction.

よって、弁開閉時期制御装置の軸長を短縮することができると共に、出力ギヤと入力ギヤとの噛み合い部から受ける反力によりこれら軸受にかかるモーメントを小さくして、軸受の耐久性を高めることができる。このように、電動アクチュエータの駆動力により駆動側回転体と従動側回転体との相対回転位相を設定する弁開閉時期制御装置において、軸受の耐久性を高めつつ小型に構成できた。 Therefore, the shaft length of the valve opening / closing timing control device can be shortened, and the moment applied to these bearings due to the reaction force received from the meshing portion between the output gear and the input gear can be reduced to improve the durability of the bearing. can. As described above, in the valve opening / closing timing control device that sets the relative rotation phase between the driving side rotating body and the driven side rotating body by the driving force of the electric actuator, the bearing can be made compact while improving the durability.

他の特徴構成は、前記偏芯部材は、前記第1軸受が配置される第一部分と前記第2軸受が配置される第二部分とを有し、前記第2軸受は、前記入力ギヤの径方向内側と前記偏芯部材の前記第二部分の径方向外側との間に配置されており、前記第2軸受の径方向内側と前記偏芯部材の径方向外側との間に配置され前記第2軸受を前記入力ギヤの側に付勢する付勢部材をさらに備え、前記偏芯部材の前記第一部分には前記付勢部材の径方向の外面よりも更に径方向外側に突出させた突出部が形成されており、当該突出部の外周面と前記第1軸受の内周面とを嵌合させている点にある。 Another characteristic configuration is that the eccentric member has a first portion in which the first bearing is arranged and a second portion in which the second bearing is arranged, and the second bearing has a diameter of the input gear. It is arranged between the inside in the direction and the radial outside of the second portion of the eccentric member, and is arranged between the radial inside of the second bearing and the radial outside of the eccentric member. 2 A urging member for urging the bearing to the side of the input gear is further provided, and the first portion of the eccentric member has a protruding portion protruding radially outward from the radial outer surface of the urging member. Is formed, and the outer peripheral surface of the protruding portion and the inner peripheral surface of the first bearing are fitted to each other.

本構成のように、第2軸受を入力ギヤの側に付勢する付勢部材を設ければ、出力ギヤと入力ギヤとの噛み合い部におけるバックラッシュを無くすことができる。また、本構成のように、偏芯部材の第一部分に付勢部材の径方向の外面よりも更に径方向外側に突出させた突出部を設け、突出部の外周面と第1軸受の内周面とを嵌合させれば、該突出部により付勢部材と第1軸受との摺接を確実に防止することができる。 If an urging member for urging the second bearing to the side of the input gear is provided as in this configuration, backlash at the meshing portion between the output gear and the input gear can be eliminated. Further, as in this configuration, a protrusion is provided on the first portion of the eccentric member so as to project radially outward from the radial outer surface of the urging member, and the outer peripheral surface of the protrusion and the inner circumference of the first bearing are provided. If the surface is fitted, the protrusion can reliably prevent the urging member from sliding with the first bearing.

他の特徴構成は、前記付勢部材と前記第1軸受とが径方向視において一部重なっている点にある。 Another characteristic configuration is that the urging member and the first bearing partially overlap each other in the radial direction.

本構成のように、付勢部材と第1軸受とが径方向視において一部重なっていれば、第1軸受と第2軸受とが回転軸芯方向により近接した状態となる。よって、弁開閉時期制御装置の軸長を短縮することができると共に軸受の耐久性を確実に高めることができる。 If the urging member and the first bearing partially overlap in the radial direction as in this configuration, the first bearing and the second bearing are in a state of being closer to each other in the rotation axis direction. Therefore, the shaft length of the valve opening / closing timing control device can be shortened, and the durability of the bearing can be reliably improved.

他の特徴構成は、前記駆動側回転体は、前記内燃機関の回転が伝達される本体部と、前記入力ギヤを前記本体部に連結するオルダム継手をさらに備え、前記第1軸受と前記第2軸受は前記回転軸芯方向に近接して配置され、前記オルダム継手は、前記回転軸芯に沿う方向で前記第1軸受および前記第2軸受の双方よりも前記カムシャフトより遠い側に配置されている点にある。 Another characteristic configuration is that the drive-side rotating body further includes a main body portion to which the rotation of the internal combustion engine is transmitted, and an old dam joint for connecting the input gear to the main body portion, and the first bearing and the second bearing. The bearings are arranged close to the rotating shaft core, and the Oldham joint is arranged along the rotating shaft core on a side farther from the cam shaft than both the first bearing and the second bearing. There is a point.

本構成によると、駆動側回転体は、内燃機関の回転が伝達される本体部と、入力ギヤを本体部に連結するオルダム継手をさらに備え、オルダム継手を回転軸芯に沿う方向で第1軸受および第2軸受の双方よりもカムシャフトより遠い側に配置している。このため、第1軸受と第2軸受との間にオルダム継手が介在することなく、第1軸受と第2軸受とを回転軸芯方向に容易に近接させることができる。 According to this configuration, the drive-side rotating body further includes a main body portion to which the rotation of the internal combustion engine is transmitted and an old dam joint for connecting the input gear to the main body portion, and the old dam joint is the first bearing in the direction along the rotation axis. It is located farther from the camshaft than both the second bearing and the second bearing. Therefore, the first bearing and the second bearing can be easily brought close to each other in the rotation axis direction without an old dam joint intervening between the first bearing and the second bearing.

他の特徴構成は、前記偏芯部材は、前記回転軸芯に沿う方向で前記第1軸受および前記第2軸受の双方よりも前記カムシャフトに近い側において径方向外側に突出した突起を有しており、前記突起が前記回転軸芯に沿う方向で前記第1軸受と前記従動側回転体との間に挟まれている点にある。 Another characteristic configuration is that the eccentric member has protrusions protruding radially outward on the side closer to the cam shaft than both the first bearing and the second bearing in the direction along the axis of rotation. The protrusion is sandwiched between the first bearing and the driven side rotating body in the direction along the rotating shaft core.

偏芯部材は、出力ギヤと入力ギヤとの噛み合い部からの反力を受けて、回転軸芯方向に移動し易い。本構成のように、偏芯部材の突起を第1軸受と従動側回転体との間に挟んで配置することにより、偏芯部材の回転軸芯方向への移動を防止し、円滑な回転を実現することができる。しかも、偏芯部材の突起は第1軸受および第2軸受の双方よりもカムシャフトに近い側に配置されているので、第1軸受と第2軸受との間に該突起が介在することなく、第1軸受と第2軸受とを回転軸芯方向に容易に近接させることができる。 The eccentric member receives a reaction force from the meshing portion between the output gear and the input gear, and easily moves in the direction of the axis of rotation. By arranging the protrusion of the eccentric member between the first bearing and the driven side rotating body as in this configuration, the eccentric member is prevented from moving in the direction of the rotation axis, and smooth rotation is achieved. It can be realized. Moreover, since the protrusions of the eccentric member are arranged closer to the camshaft than both the first bearing and the second bearing, the protrusions do not intervene between the first bearing and the second bearing. The first bearing and the second bearing can be easily brought close to each other in the direction of the axis of rotation.

弁開閉時期制御装置の断面図である。It is sectional drawing of the valve opening / closing timing control device. 図1のII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG. 図1のIII-III線断面図である。FIG. 3 is a sectional view taken along line III-III of FIG. 図1のIV-IV線断面図である。FIG. 6 is a sectional view taken along line IV-IV of FIG. 弁開閉時期制御装置の分解斜視図である。It is an exploded perspective view of the valve opening / closing timing control device.

以下、本発明の実施形態を図面に基づいて説明する。
〔基本構成〕
図1に示すように、内燃機関としてのエンジンEのクランクシャフト1と回転軸芯Xを中心に同期回転する駆動側回転体Aと、駆動側回転体Aの径方向内側に配置され、回転軸芯Xを中心にして弁開閉用の吸気カムシャフト2(カムシャフトの一例)と一体回転する従動側回転体Bと、駆動側回転体Aと従動側回転体Bとの相対回転位相を設定する電動モータで構成される位相制御モータM(電動アクチュエータの一例)とを備えて弁開閉時期制御装置100が構成されている。弁開閉時期制御装置100は、回転軸芯Xに沿う方向で、位相制御モータMと吸気カムシャフト2との間に配置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Basic configuration]
As shown in FIG. 1, a drive-side rotating body A that rotates synchronously with the crank shaft 1 of the engine E as an internal combustion engine and a rotating shaft core X, and a rotating shaft arranged inside the drive-side rotating body A in the radial direction. Set the relative rotation phase between the driven side rotating body B that rotates integrally with the intake cam shaft 2 (an example of the cam shaft) for opening and closing the valve around the core X, and the driving side rotating body A and the driven side rotating body B. The valve opening / closing timing control device 100 is configured with a phase control motor M (an example of an electric actuator) composed of an electric motor. The valve opening / closing timing control device 100 is arranged between the phase control motor M and the intake camshaft 2 in the direction along the rotation axis X.

エンジンEは、シリンダブロックに形成された複数のシリンダ3にピストン4を収容し、そのピストン4をコネクティングロッド5によりクランクシャフト1に連結した4サイクル型に構成されている。このエンジンEのクランクシャフト1の出力スプロケット1Sと、駆動側回転体Aの駆動スプロケット11Sとに亘ってタイミングチェーン6(タイミングベルト等でも良い)が巻回されている。これにより、エンジンEのクランクシャフト1の回転が駆動側回転体Aに伝達される。 The engine E is configured as a 4-cycle type in which a piston 4 is housed in a plurality of cylinders 3 formed in a cylinder block, and the piston 4 is connected to a crankshaft 1 by a connecting rod 5. A timing chain 6 (a timing belt or the like) is wound around the output sprocket 1S of the crankshaft 1 of the engine E and the drive sprocket 11S of the drive side rotating body A. As a result, the rotation of the crankshaft 1 of the engine E is transmitted to the drive-side rotating body A.

これによりエンジンEの稼働時には弁開閉時期制御装置100の全体が回転軸芯Xを中心に回転する。また、位相制御モータMの駆動力により後述する位相調節機構Cを作動させ駆動側回転体Aに対して従動側回転体Bを回転方向と同方向又は逆方向に相対変位可能となる。この変位により駆動側回転体Aと従動側回転体Bとの相対回転位相を設定し、吸気カムシャフト2のカム部2Aによる吸気バルブ2Bの開閉時期(開閉タイミング)の制御が実現する。 As a result, when the engine E is in operation, the entire valve opening / closing timing control device 100 rotates about the rotation axis X. Further, the driving force of the phase control motor M activates the phase adjusting mechanism C, which will be described later, so that the driven side rotating body B can be displaced relative to the driving side rotating body A in the same direction as the rotation direction or in the opposite direction. By this displacement, the relative rotation phase between the driving side rotating body A and the driven side rotating body B is set, and the opening / closing timing (opening / closing timing) of the intake valve 2B is controlled by the cam portion 2A of the intake camshaft 2.

尚、従動側回転体Bが駆動側回転体Aの回転方向と同方向に変位する作動を進角作動と称し、この進角作動により吸気圧縮比が増大する。また、従動側回転体Bが駆動側回転体Aと逆方向に変位する作動を遅角作動と称し、この遅角作動により吸気圧縮比が低減する。 The operation in which the driven side rotating body B is displaced in the same direction as the driving side rotating body A is referred to as an advance angle operation, and the intake compression ratio is increased by this advance angle operation. Further, the operation in which the driven side rotating body B is displaced in the opposite direction to the driving side rotating body A is referred to as a retard angle operation, and the intake compression ratio is reduced by this retard angle operation.

〔弁開閉時期制御装置〕
図1~図4に示すように、駆動側回転体Aは、回転軸芯Xを中心とする筒状の本体部Aaと、本体部Aaと同期回転するオルダム継手Cxおよび入力ギヤ30とを備えている。本体部Aaは、外周に駆動スプロケット11Sが形成されたアウタケース11と、フロントプレート12と、を複数の締結ボルト13で締結して構成されている。アウタケース11は、底部に開口を有する有底筒状型である。駆動側回転体Aの一部を構成するオルダム継手Cxおよび入力ギヤ30は、後述する位相調節機構Cとしても機能する。オルダム継手Cxを介して入力ギヤ30は本体部Aaに連結されている。
[Valve opening / closing timing control device]
As shown in FIGS. 1 to 4, the drive-side rotating body A includes a cylindrical main body Aa centered on a rotating shaft core X, an oldham joint Cx that rotates synchronously with the main body Aa, and an input gear 30. ing. The main body Aa is configured by fastening the outer case 11 having the drive sprocket 11S formed on the outer periphery thereof and the front plate 12 with a plurality of fastening bolts 13. The outer case 11 is a bottomed tubular type having an opening at the bottom. The Oldham joint Cx and the input gear 30 that form a part of the drive-side rotating body A also function as the phase adjusting mechanism C described later. The input gear 30 is connected to the main body Aa via the Oldham joint Cx.

アウタケース11の内部空間に中間部材20(従動側回転体Bの一例)と、ハイポサイクロイド型のギヤ減速機構を有した位相調節機構Cとが収容されている。また、位相調節機構Cは、位相変化を駆動側回転体Aおよび従動側回転体Bに反映するオルダム継手Cxを備えており、このオルダム継手Cxは回転軸芯X方向において中間部材20とフロントプレート12との間に配置されている。フロントプレート12のうちオルダム継手Cxと対向する面には、回転軸芯X方向に僅かな隙間となる潤滑凹部12aが形成されている。 An intermediate member 20 (an example of a driven side rotating body B) and a phase adjusting mechanism C having a hypocycloid type gear reduction mechanism are housed in the internal space of the outer case 11. Further, the phase adjusting mechanism C includes an old dam joint Cx that reflects the phase change on the driving side rotating body A and the driven side rotating body B, and this old dam joint Cx has an intermediate member 20 and a front plate in the rotation axis X direction. It is arranged between 12 and 12. A lubrication recess 12a, which is a slight gap in the rotation axis X direction, is formed on the surface of the front plate 12 facing the Oldham joint Cx.

従動側回転体Bを構成する中間部材20は、回転軸芯Xに直交する姿勢で吸気カムシャフト2に連結される支持壁部21と、回転軸芯Xを中心とする筒状で吸気カムシャフト2から離間する方向に突出する筒状壁部22とが一体形成されている。 The intermediate member 20 constituting the driven side rotating body B has a support wall portion 21 connected to the intake camshaft 2 in a posture orthogonal to the rotating shaft core X, and a cylindrical intake camshaft centered on the rotating shaft core X. A cylindrical wall portion 22 projecting in a direction away from 2 is integrally formed.

この中間部材20は、筒状壁部22の外面がアウタケース11の内面に接触する状態で相対回転自在に挿入されており、支持壁部21の中央の貫通孔に挿通する連結ボルト23により吸気カムシャフト2の端部に固定されている。このように固定された状態で筒状壁部22の回転軸芯Xに沿う方向で外側(吸気カムシャフト2より遠い側)の端部がフロントプレート12より回転軸芯Xに沿う方向で内側(吸気カムシャフト2に近い側)に位置するように構成されている。中間部材20の支持壁部21のうち、吸気カムシャフト2に当接する面の一部には偏芯部材26の内部にオイルを案内する開口部21aが形成されている。 The intermediate member 20 is inserted so as to be relatively rotatable in a state where the outer surface of the tubular wall portion 22 is in contact with the inner surface of the outer case 11, and is taken in by a connecting bolt 23 inserted through a through hole in the center of the support wall portion 21. It is fixed to the end of the camshaft 2. In the fixed state in this way, the outer end (the side farther from the intake camshaft 2) of the tubular wall portion 22 in the direction along the rotary shaft core X is inside (the side farther from the intake camshaft 2) in the direction along the rotary shaft core X than the front plate 12. It is configured to be located on the side closer to the intake camshaft 2. An opening 21a for guiding oil is formed inside the eccentric member 26 on a part of the surface of the support wall portion 21 of the intermediate member 20 that comes into contact with the intake camshaft 2.

位相制御モータMは、その出力軸Maを回転軸芯Xと同軸芯上に配置するように支持フレーム7によりエンジンEに支持されている。位相制御モータMの出力軸Maには回転軸芯Xに対して直交する姿勢の一対の係合ピン8が形成されている。 The phase control motor M is supported by the engine E by a support frame 7 so that its output shaft Ma is arranged on a coaxial core with the rotary shaft core X. A pair of engaging pins 8 having a posture orthogonal to the rotation shaft core X are formed on the output shaft Ma of the phase control motor M.

〔位相調節機構〕
図1~図5に示すように位相調節機構Cは、位相制御モータMの駆動力により駆動側回転体Aと従動側回転体Bとの相対回転位相を変更するように複数の部材で構成されている。この位相調節機構Cは、中間部材20と、中間部材20の筒状壁部22の内周面に形成される出力ギヤ25と、偏芯部材26と、板ばね27(付勢部材の一例)と、第1軸受28と、第2軸受29と、固定リング31と、オルダム継手Cxと、入力ギヤ30と、を備えている。なお、第1軸受28および第2軸受29は、夫々内輪28a,29aと外輪28b,29bとを有するボールベアリングが使用されている。
[Phase adjustment mechanism]
As shown in FIGS. 1 to 5, the phase adjusting mechanism C is composed of a plurality of members so as to change the relative rotation phase between the driving side rotating body A and the driven side rotating body B by the driving force of the phase control motor M. ing. The phase adjusting mechanism C includes an intermediate member 20, an output gear 25 formed on the inner peripheral surface of the tubular wall portion 22 of the intermediate member 20, an eccentric member 26, and a leaf spring 27 (an example of an urging member). A first bearing 28, a second bearing 29, a fixing ring 31, an Oldham joint Cx, and an input gear 30 are provided. The first bearing 28 and the second bearing 29 are ball bearings having inner rings 28a and 29a and outer rings 28b and 29b, respectively.

中間部材20の筒状壁部22の内周のうち、回転軸芯Xに沿う方向で内側(支持壁部21に隣接する位置)に回転軸芯Xを中心とする支持面22Sが形成され、支持面22Sより回転軸芯Xに沿う方向で外側(吸気カムシャフト2より遠い側)に回転軸芯Xを中心とする出力ギヤ25が一体的に形成されている。 Of the inner circumference of the tubular wall portion 22 of the intermediate member 20, a support surface 22S centered on the rotary shaft core X is formed inside (a position adjacent to the support wall portion 21) in the direction along the rotary shaft core X. An output gear 25 centered on the rotary shaft core X is integrally formed on the outer side (the side farther from the intake camshaft 2) in the direction along the rotary shaft core X from the support surface 22S.

偏芯部材26は筒状であり、この偏芯部材26は、回転軸芯Xに沿う方向での内側(吸気カムシャフト2に近い側)に従動側回転体B(中間部材20)の径方向内側を支持する第一部分26Aと、回転軸芯Xに沿う方向での外側(吸気カムシャフト2より遠い側)に駆動側回転体A(入力ギヤ30)の径方向内側を支持する第二部分26Bと、を有している。第二部分26Bには、回転軸芯Xに平行となる姿勢で且つ回転軸芯Xに対して所定の偏芯量Dyで偏芯する偏芯軸芯Yを中心とする外周面である偏芯支持面26Eが形成されている(図3参照)。この偏芯支持面26Eの外周に形成した凹部26Fに板ばね27が嵌め込まれている。また、第一部分26Aには、この板ばね27の径方向の外面よりも更に径方向外側に突出させた突出部26Sが形成されている。この突出部26Sの外周面には回転軸芯Xを中心とする円周支持面26Saが形成されている(図2参照)。 The eccentric member 26 has a cylindrical shape, and the eccentric member 26 is in the radial direction of the driven side rotating body B (intermediate member 20) on the inner side (the side closer to the intake camshaft 2) in the direction along the rotating shaft core X. The first portion 26A that supports the inside and the second portion 26B that supports the radial inside of the drive-side rotating body A (input gear 30) on the outside (the side farther from the intake camshaft 2) along the rotation shaft core X. And have. The second portion 26B has an eccentricity that is an outer peripheral surface centered on the eccentric shaft core Y that is parallel to the rotation shaft core X and eccentric with respect to the rotation shaft core X with a predetermined eccentricity amount Dy. A support surface 26E is formed (see FIG. 3). A leaf spring 27 is fitted in a recess 26F formed on the outer periphery of the eccentric support surface 26E. Further, the first portion 26A is formed with a protruding portion 26S protruding radially outward from the radial outer surface of the leaf spring 27. A circumferential support surface 26Sa centered on the rotation axis X is formed on the outer peripheral surface of the protrusion 26S (see FIG. 2).

偏芯部材26の内周には、位相制御モータMの一対の係合ピン8の各々が係合可能な一対の係合溝26Tが回転軸芯Xと平行姿勢で形成されている(図4参照)。更に、偏芯部材26の回転軸芯Xに沿う方向で内側(支持壁部21の側)の端部には径方向外側に突出した環状の突起26aが形成されている。この突起26aは、回転軸芯Xに沿う方向で従動側回転体Bの支持壁部21と第1軸受28との間に挟まれており、偏芯部材26の抜け止め機能を有している。 On the inner circumference of the eccentric member 26, a pair of engaging grooves 26T to which each of the pair of engaging pins 8 of the phase control motor M can be engaged are formed in a posture parallel to the rotary shaft core X (FIG. 4). reference). Further, an annular protrusion 26a projecting radially outward is formed at an end portion on the inner side (side of the support wall portion 21) in the direction along the rotation axis core X of the eccentric member 26. The protrusion 26a is sandwiched between the support wall portion 21 of the driven side rotating body B and the first bearing 28 in the direction along the rotating shaft core X, and has a function of preventing the eccentric member 26 from coming off. ..

偏芯部材26は、図1~図3に示すように円周支持面26Sa(突出部26Sの外周面)が第1軸受28の内輪28aの内周面に圧入(嵌合の一例)され、偏芯支持面26Eが板ばね27の付勢力により第2軸受29の内輪29aの内周面の一部に嵌合状態で当接している。また、第1軸受28の外輪28bの外周面は従動側回転体B(中間部材20)の筒状壁部22の支持面22Sに圧入され、第2軸受29の外輪29bの外周面は入力ギヤ30の内周面に圧入されている。このとき、筒状壁部22は第1軸受28を径方向に支持し、第1軸受28は偏芯部材26を径方向に支持し、偏芯部材26は第2軸受29を径方向に支持し、第2軸受29は入力ギヤ30を径方向に支持している。つまり、第1軸受28は、従動側回転体B(中間部材20)の径方向内側と偏芯部材26の第一部分26Aの径方向外側との間に配置され、第2軸受29は、駆動側回転体A(入力ギヤ30)の径方向内側と偏芯部材26の第二部分26Bの径方向外側との間に配置されている。すなわち、第1軸受28は従動側回転体Bに支持され、且つ、偏芯部材26を支持し、第2軸受29は偏芯部材26に支持され、且つ、入力ギヤ30を支持する。なお、偏芯部材26と第1軸受28の内輪28aとの圧入、従動側回転体Bと第1軸受28の外輪28bとの圧入、および入力ギヤ30と第2軸受29の外輪29bとの圧入は、何れかが凹凸嵌合等であっても良く、両部材が一体で回転できる形態であれば特に限定されない。また、第1軸受28は筒状壁部22に直接支持され、且つ、偏芯部材26を直接支持する構成に限定されない。筒状壁部22と第1軸受28との間に配置された別部材を介して第1軸受28が筒状壁部22に支持されても良いし、第1軸受28と偏芯部材26との間に配置された別部材を介して第1軸受28が偏芯部材26を支持しても良い。第2軸受29についても同様である。すなわち、第2軸受29は偏芯部材26に直接支持され、且つ、入力ギヤ30を直接支持する構成に限定されない。偏芯部材26と第2軸受29との間に配置された別部材を介して第2軸受29が偏芯部材26に支持されても良いし、第2軸受29と入力ギヤ30との間に配置された別部材を介して第2軸受29が入力ギヤ30を支持しても良い。 As shown in FIGS. 1 to 3, the eccentric member 26 has a circumferential support surface 26Sa (outer peripheral surface of the protruding portion 26S) press-fitted into the inner peripheral surface of the inner ring 28a of the first bearing 28 (an example of fitting). The eccentric support surface 26E is in contact with a part of the inner peripheral surface of the inner ring 29a of the second bearing 29 in a fitted state by the urging force of the leaf spring 27. Further, the outer peripheral surface of the outer ring 28b of the first bearing 28 is press-fitted into the support surface 22S of the tubular wall portion 22 of the driven side rotating body B (intermediate member 20), and the outer peripheral surface of the outer ring 29b of the second bearing 29 is an input gear. It is press-fitted into the inner peripheral surface of 30. At this time, the tubular wall portion 22 supports the first bearing 28 in the radial direction, the first bearing 28 supports the eccentric member 26 in the radial direction, and the eccentric member 26 supports the second bearing 29 in the radial direction. However, the second bearing 29 supports the input gear 30 in the radial direction. That is, the first bearing 28 is arranged between the radial inside of the driven side rotating body B (intermediate member 20) and the radial outside of the first portion 26A of the eccentric member 26, and the second bearing 29 is on the drive side. It is arranged between the radial inside of the rotating body A (input gear 30) and the radial outside of the second portion 26B of the eccentric member 26. That is, the first bearing 28 is supported by the driven side rotating body B and supports the eccentric member 26, and the second bearing 29 is supported by the eccentric member 26 and supports the input gear 30. The eccentric member 26 and the inner ring 28a of the first bearing 28 are press-fitted, the driven side rotating body B and the outer ring 28b of the first bearing 28 are press-fitted, and the input gear 30 and the outer ring 29b of the second bearing 29 are press-fitted. Is not particularly limited as long as both members can rotate integrally. Further, the first bearing 28 is not limited to a configuration in which the first bearing 28 is directly supported by the tubular wall portion 22 and directly supports the eccentric member 26. The first bearing 28 may be supported by the tubular wall portion 22 via another member arranged between the tubular wall portion 22 and the first bearing 28, or the first bearing 28 and the eccentric member 26 The first bearing 28 may support the eccentric member 26 via another member arranged between the bearings. The same applies to the second bearing 29. That is, the second bearing 29 is not limited to the configuration in which it is directly supported by the eccentric member 26 and directly supports the input gear 30. The second bearing 29 may be supported by the eccentric member 26 via another member arranged between the eccentric member 26 and the second bearing 29, or between the second bearing 29 and the input gear 30. The second bearing 29 may support the input gear 30 via another arranged member.

本実施形態では、第1軸受28の内輪28aの内周面の直径である第1軸受28の内径D1を、第2軸受29の内輪29aの内周面の直径である第2軸受29の内径D2に偏芯量Dyの2倍を加えた値よりも大きく構成している。また、板ばね27と第1軸受28とが径方向視において一部重なっている。このため、第1軸受28と第2軸受29とが回転軸芯X方向に近接した状態となっている。 In the present embodiment, the inner diameter D1 of the first bearing 28, which is the diameter of the inner peripheral surface of the inner ring 28a of the first bearing 28, is the inner diameter of the second bearing 29, which is the diameter of the inner peripheral surface of the inner ring 29a of the second bearing 29. It is configured to be larger than the value obtained by adding twice the eccentricity amount Dy to D2. Further, the leaf spring 27 and the first bearing 28 partially overlap each other in the radial direction. Therefore, the first bearing 28 and the second bearing 29 are in a state of being close to each other in the rotation axis X direction.

この位相調節機構Cでは、入力ギヤ30の外歯部30Aの歯数が、出力ギヤ25の内歯部25Aの歯数より1歯だけ少なく設定されている。そして、入力ギヤ30の外歯部30Aの一部が出力ギヤ25の内歯部25Aの一部に噛合する。 In this phase adjusting mechanism C, the number of teeth of the external tooth portion 30A of the input gear 30 is set to be one tooth less than the number of teeth of the internal tooth portion 25A of the output gear 25. Then, a part of the outer tooth portion 30A of the input gear 30 meshes with a part of the inner tooth portion 25A of the output gear 25.

板ばね27は、ばね板材をU字状に屈曲させた一対の屈曲部材で構成されており、入力ギヤ30の外歯部30Aの一部を出力ギヤ25の内歯部25Aの一部に噛み合わせるように、入力ギヤ30に付勢力を作用させる。この板ばね27の付勢力により、入力ギヤ30と出力ギヤ25との噛み合い部におけるバックラッシュを無くすことができる。板ばね27の一対の屈曲部材は、偏芯支持面26Eの凹部26Fに形成したガイド凸部26Faにより所定の位置に設置されている(図4参照)。本実施形態では、板ばね27の回転軸芯X方向の長さが第2軸受29の回転軸芯X方向の長さよりも大きく構成されており、板ばね27の回転軸芯X方向に沿う中心が第2軸受29の回転軸芯X方向に沿う中心に一致するように板ばね27と第2軸受29との位置関係が規定されている(図1参照)。これにより、板ばね27の付勢力を第2軸受29に均等に作用させることが可能となるので、入力ギヤ30と出力ギヤ25との噛み合い部におけるバックラッシュを確実に無くすることができる。 The leaf spring 27 is composed of a pair of bending members obtained by bending a spring plate material into a U shape, and a part of the outer tooth portion 30A of the input gear 30 is bitten into a part of the inner tooth portion 25A of the output gear 25. An urging force is applied to the input gear 30 so as to match. By the urging force of the leaf spring 27, backlash in the meshing portion between the input gear 30 and the output gear 25 can be eliminated. The pair of bending members of the leaf spring 27 are installed at predetermined positions by the guide convex portion 26F formed in the concave portion 26F of the eccentric support surface 26E (see FIG. 4). In the present embodiment, the length of the leaf spring 27 in the rotation shaft core X direction is larger than the length of the second bearing 29 in the rotation shaft core X direction, and the center of the leaf spring 27 along the rotation shaft core X direction. The positional relationship between the leaf spring 27 and the second bearing 29 is defined so as to coincide with the center of the second bearing 29 along the rotation axis X direction (see FIG. 1). As a result, the urging force of the leaf spring 27 can be evenly applied to the second bearing 29, so that backlash at the meshing portion between the input gear 30 and the output gear 25 can be reliably eliminated.

固定リング31はC字状の環状部材であり、偏芯部材26の偏芯支持面26Eよりも回転軸芯X方向の外側(吸気カムシャフト2より遠い側)に周方向に亘って形成した環状溝26Eaに固定リング31が嵌合状態で固定されることにより第2軸受29の抜け止めが行われる(図5参照)。 The fixing ring 31 is a C-shaped annular member, and is an annular member formed in the circumferential direction on the outer side (the side farther from the intake camshaft 2) in the rotation axis X direction than the eccentric support surface 26E of the eccentric member 26. By fixing the fixing ring 31 to the groove 26Ea in the fitted state, the second bearing 29 is prevented from coming off (see FIG. 5).

図1、図4、図5に示すように、オルダム継手Cxは、中央の環状部41と、この環状部41から第1方向(図4では左右方向)に沿って径方向外側に突出する一対の外部係合アーム42と、環状部41から第1方向に直交する第2方向(図4では上下方向)に沿って径方向外側に突出する内部係合アーム43とを一体形成した板状の継手部材で構成されている。一対の内部係合アーム43の各々には環状部41の開口に連なる係合凹部43aが形成されている。 As shown in FIGS. 1, 4, and 5, the orthogonal joint Cx has a central annular portion 41 and a pair of annular portions 41 protruding outward in the radial direction along a first direction (left-right direction in FIG. 4). An external engaging arm 42 and an internal engaging arm 43 projecting radially outward along a second direction (vertical direction in FIG. 4) orthogonal to the first direction from the annular portion 41 are integrally formed. It is composed of joint members. Each of the pair of internal engaging arms 43 is formed with an engaging recess 43a connected to the opening of the annular portion 41.

アウタケース11のうち、フロントプレート12が当接する開口縁部にはアウタケース11の内部空間から外部空間に亘り、回転軸芯Xを中心に径方向に延出する一対の案内溝部11aが貫通溝状に形成されている。この案内溝部11aの溝幅が外部係合アーム42の幅より僅かに広く設定され、各々の案内溝部11aには潤滑油を排出する一対の排出流路11bが切欠き形成されている。なお、排出流路11bを、フロントプレート12に形成しても良い。 Of the outer case 11, a pair of guide groove portions 11a extending in the radial direction about the rotation axis X from the internal space to the external space of the outer case 11 are through grooves at the opening edge portion where the front plate 12 abuts. It is formed in a shape. The groove width of the guide groove portion 11a is set to be slightly wider than the width of the external engaging arm 42, and a pair of discharge flow paths 11b for discharging the lubricating oil are formed in each guide groove portion 11a. The discharge flow path 11b may be formed on the front plate 12.

入力ギヤ30は、周方向に亘って複数の外歯部30Aを有する環状部材であり、回転軸芯Xに平行となる姿勢で且つ回転軸芯Xに対して所定の偏芯量Dyで偏芯する偏芯軸芯Yを中心として回転する。この入力ギヤ30のうちフロントプレート12に対向する端面には、一対の係合突起30Tが一体形成されている。この係合突起30Tの係合幅が内部係合アーム43の係合凹部43aの係合幅より僅かに狭く設定されている。 The input gear 30 is an annular member having a plurality of external tooth portions 30A in the circumferential direction, and is eccentric with a posture parallel to the rotation shaft core X and a predetermined eccentricity amount Dy with respect to the rotation shaft core X. Rotates around the eccentric shaft core Y. A pair of engaging protrusions 30T are integrally formed on the end surface of the input gear 30 facing the front plate 12. The engagement width of the engagement protrusion 30T is set to be slightly narrower than the engagement width of the engagement recess 43a of the internal engagement arm 43.

このような構成から、オルダム継手Cxの一対の外部係合アーム42を、アウタケース11の一対の案内溝部11aに係合させ、オルダム継手Cxの一対の内部係合アーム43の係合凹部43aを、入力ギヤ30の一対の係合突起30Tに係合させることによりオルダム継手Cxを機能させることが可能となる。 From such a configuration, the pair of external engaging arms 42 of the Oldham joint Cx are engaged with the pair of guide groove portions 11a of the outer case 11, and the engaging recesses 43a of the pair of internal engaging arms 43 of the Oldam joint Cx are engaged. By engaging the pair of engaging protrusions 30T of the input gear 30, the oldham joint Cx can be made to function.

このとき、オルダム継手Cxがアウタケース11に対して外部係合アーム42が突出する第1方向(図4で左右方向)に変位可能となり、このオルダム継手Cxに対して内部係合アーム43の係合凹部43aの形成方向に沿う第2方向(図4では上下方向)に入力ギヤ30が変位自在となる。 At this time, the oldham joint Cx can be displaced in the first direction (left-right direction in FIG. 4) in which the external engaging arm 42 projects with respect to the outer case 11, and the internal engaging arm 43 engages with the oldam joint Cx. The input gear 30 can be freely displaced in the second direction (vertical direction in FIG. 4) along the forming direction of the joint recess 43a.

図1に示すように、オイルポンプPから供給される潤滑油は、吸気カムシャフト2の潤滑油路15から、中間部材20の支持壁部21の開口部21aを介して偏芯部材26の内部空間に供給される。このように供給された潤滑油は、遠心力により偏芯部材26の突起26aと従動側回転体Bの支持壁部21との隙間から第1軸受28に供給され第1軸受28を円滑に作動させる。これと同時に、偏芯部材26の内部空間の潤滑油は遠心力によりオルダム継手Cxに供給されると共に、第2軸受29に供給され、出力ギヤ25の内歯部25Aと入力ギヤ30の外歯部30Aとの間に供給される。そして、このオルダム継手Cxに供給された潤滑油は、オルダム継手Cxの外部係合アーム42とアウタケース11の案内溝部11aとの間の隙間から外部に排出される。 As shown in FIG. 1, the lubricating oil supplied from the oil pump P is inside the eccentric member 26 from the lubricating oil passage 15 of the intake camshaft 2 via the opening 21a of the support wall portion 21 of the intermediate member 20. It is supplied to the space. The lubricating oil supplied in this way is supplied to the first bearing 28 from the gap between the protrusion 26a of the eccentric member 26 and the support wall portion 21 of the driven side rotating body B by centrifugal force, and the first bearing 28 operates smoothly. Let me. At the same time, the lubricating oil in the internal space of the eccentric member 26 is supplied to the Oldham joint Cx by centrifugal force and also to the second bearing 29, and is supplied to the internal tooth portion 25A of the output gear 25 and the external teeth of the input gear 30. It is supplied to and from the portion 30A. Then, the lubricating oil supplied to the Oldham joint Cx is discharged to the outside through the gap between the external engaging arm 42 of the Oldam joint Cx and the guide groove portion 11a of the outer case 11.

特に、案内溝部11aに排出流路11bが形成されているため、寒冷の環境で停止状態にあるエンジンEを始動する際には、遠心力によって内部の潤滑油が排出流路11bを介して迅速に排出される。このため、粘性の高い潤滑油を短時間のうちに排出し、潤滑油の粘性の影響を排除して位相調節機構Cの迅速な作動を可能にする。 In particular, since the discharge flow path 11b is formed in the guide groove portion 11a, when the engine E in a stopped state in a cold environment is started, the internal lubricating oil is swiftly passed through the discharge flow path 11b by centrifugal force. Is discharged to. Therefore, the highly viscous lubricating oil is discharged in a short time, the influence of the viscosity of the lubricating oil is eliminated, and the phase adjusting mechanism C can be operated quickly.

組み立て状態の弁開閉時期制御装置100は、図1に示すように吸気カムシャフト2の端部に中間部材20の支持壁部21が連結ボルト23により連結されており、吸気カムシャフト2と中間部材20とが一体回転する。偏芯部材26は第1軸受28により中間部材20に対して回転軸芯Xを中心に相対回転自在に支持されている。図1、図2に示すように、この偏芯部材26の偏芯支持面26Eに対し第2軸受29を介して入力ギヤ30が支持され、板ばね27の付勢力により入力ギヤ30の外歯部30Aの一部が出力ギヤ25の内歯部25Aの一部に噛み合っている。 In the valve open / close timing control device 100 in the assembled state, as shown in FIG. 1, the support wall portion 21 of the intermediate member 20 is connected to the end of the intake camshaft 2 by the connecting bolt 23, and the intake camshaft 2 and the intermediate member are connected to each other. 20 and 20 rotate integrally. The eccentric member 26 is rotatably supported by the first bearing 28 with respect to the intermediate member 20 about the rotary shaft core X. As shown in FIGS. 1 and 2, the input gear 30 is supported by the second bearing 29 with respect to the eccentric support surface 26E of the eccentric member 26, and the external teeth of the input gear 30 are supported by the urging force of the leaf spring 27. A part of the portion 30A meshes with a part of the internal tooth portion 25A of the output gear 25.

更に、図4に示すようにオルダム継手Cxの外部係合アーム42がアウタケース11の一対の案内溝部11aに係合し、オルダム継手Cxの内部係合アーム43の係合凹部43aに入力ギヤ30の係合突起30Tが係合する。図1に示すようにオルダム継手Cxの外方側にフロントプレート12が配置されるため、オルダム継手Cxはフロントプレート12の内面に接触する状態で回転軸芯Xに対して直交する方向に移動可能となる。この配置により、オルダム継手Cxは、第1軸受28および第2軸受29の双方より回転軸芯X方向の外側(吸気カムシャフト2より遠い側)で、且つフロントプレート12より回転軸芯X方向の内側(吸気カムシャフト2に近い側)に配置されている。 Further, as shown in FIG. 4, the external engaging arm 42 of the Oldham joint Cx engages with the pair of guide groove portions 11a of the outer case 11, and the input gear 30 fits into the engaging recess 43a of the internal engaging arm 43 of the Oldam joint Cx. The engaging protrusion 30T of the above engages. Since the front plate 12 is arranged on the outer side of the Oldham joint Cx as shown in FIG. 1, the Oldam joint Cx can move in the direction orthogonal to the rotation axis X while in contact with the inner surface of the front plate 12. Will be. Due to this arrangement, the Oldham joint Cx is outside the rotation shaft core X direction (farther side from the intake camshaft 2) from both the first bearing 28 and the second bearing 29, and is in the rotation shaft core X direction from the front plate 12. It is arranged inside (the side closer to the intake camshaft 2).

そして、図1~図3に示すように、位相制御モータMの出力軸Maに形成された一対の係合ピン8が、偏芯部材26の係合溝26Tに係合している。 Then, as shown in FIGS. 1 to 3, a pair of engaging pins 8 formed on the output shaft Ma of the phase control motor M are engaged with the engaging groove 26T of the eccentric member 26.

〔位相調節機構の作動形態〕
位相制御モータMはECUとして構成される制御装置(不図示)によって制御される。エンジンEにはクランクシャフト1と吸気カムシャフト2との回転速度(単位時間あたりの回転数)と、各々の回転位相とを検知可能なセンサ(不図示)を備えており、これらのセンサの検知信号が制御装置に入力するように構成されている。
[Operating mode of phase adjustment mechanism]
The phase control motor M is controlled by a control device (not shown) configured as an ECU. The engine E is equipped with a sensor (not shown) capable of detecting the rotation speed (rotational speed per unit time) of the crankshaft 1 and the intake camshaft 2 and the respective rotation phases, and detection of these sensors. The signal is configured to be input to the controller.

制御装置は、エンジンEの稼動時において位相制御モータMを吸気カムシャフト2の回転速度と等しい速度で駆動することで相対回転位相を維持する。これに対して位相制御モータMの回転速度を吸気カムシャフト2の回転速度より低減することにより進角作動が行われ、これとは逆に回転速度が増大することにより遅角作動が行われる。前述したように進角作動により吸気圧縮比が増大し、遅角作動により吸気圧縮比が低減する。 The control device maintains the relative rotational phase by driving the phase control motor M at a speed equal to the rotational speed of the intake camshaft 2 when the engine E is operating. On the other hand, the advance angle operation is performed by reducing the rotation speed of the phase control motor M from the rotation speed of the intake camshaft 2, and conversely, the retard angle operation is performed by increasing the rotation speed. As described above, the intake compression ratio is increased by the advance angle operation, and the intake compression ratio is decreased by the retard angle operation.

位相制御モータMがアウタケース11と等速(吸気カムシャフト2と等速)で回転する場合には、出力ギヤ25の内歯部25Aに対する入力ギヤ30の外歯部30Aの噛み合い位置が変化しないため、駆動側回転体Aに対する従動側回転体Bの相対回転位相は維持される。 When the phase control motor M rotates at a constant speed (constant speed with the intake camshaft 2) with the outer case 11, the meshing position of the outer tooth portion 30A of the input gear 30 with respect to the inner tooth portion 25A of the output gear 25 does not change. Therefore, the relative rotation phase of the driven side rotating body B with respect to the driving side rotating body A is maintained.

これに対してアウタケース11の回転速度より高速又は低速で位相制御モータMの出力軸Maを駆動回転することにより、位相調節機構Cにおける偏芯軸芯Yが回転軸芯X周りに公転する。この公転により出力ギヤ25の内歯部25Aに対する入力ギヤ30の外歯部30Aに対する噛み合い位置が出力ギヤ25の内周に沿って変位し、入力ギヤ30と出力ギヤ25との間には回転力が作用する。つまり、出力ギヤ25には回転軸芯Xを中心とする回転力が作用し、入力ギヤ30には偏芯軸芯Yを中心に自転させようとする回転力が作用する。 On the other hand, by driving and rotating the output shaft Ma of the phase control motor M at a speed higher or lower than the rotation speed of the outer case 11, the eccentric shaft core Y in the phase adjusting mechanism C revolves around the rotation shaft core X. Due to this revolution, the meshing position of the input gear 30 with respect to the inner tooth portion 25A of the output gear 25 with respect to the outer tooth portion 30A is displaced along the inner circumference of the output gear 25, and a rotational force is generated between the input gear 30 and the output gear 25. Works. That is, a rotational force centered on the rotary shaft core X acts on the output gear 25, and a rotational force that tries to rotate around the eccentric shaft core Y acts on the input gear 30.

前述したように入力ギヤ30は、その係合突起30Tがオルダム継手Cxの内部係合アーム43の係合凹部43aに係合するためアウタケース11に対して自転することはなく、駆動側回転体Aの本体部Aaの回転力が出力ギヤ25に作用する。この回転力の作用により出力ギヤ25と共に中間部材20が、アウタケース11に対し回転軸芯Xを中心に回転する。その結果、駆動側回転体Aと従動側回転体Bとの相対回転位相が設定され、吸気カムシャフト2による開閉時期の設定が実現される。 As described above, the input gear 30 does not rotate with respect to the outer case 11 because its engaging protrusion 30T engages with the engaging recess 43a of the internal engaging arm 43 of the Oldham joint Cx, and is a drive-side rotating body. The rotational force of the main body Aa of A acts on the output gear 25. Due to the action of this rotational force, the intermediate member 20 together with the output gear 25 rotates about the rotation shaft core X with respect to the outer case 11. As a result, the relative rotation phase between the driving side rotating body A and the driven side rotating body B is set, and the opening / closing timing is set by the intake camshaft 2.

また、入力ギヤ30の偏芯軸芯Yが回転軸芯X周りに公転する際には、入力ギヤ30の変位に伴い、オルダム継手Cxは、アウタケース11に対して外部係合アーム42が突出する方向(第1方向)に変位し、入力ギヤ30は、内部係合アーム43が突出する方向(第2方向)へ変位する。 Further, when the eccentric shaft core Y of the input gear 30 revolves around the rotating shaft core X, the external engaging arm 42 of the Oldham joint Cx protrudes from the outer case 11 due to the displacement of the input gear 30. The input gear 30 is displaced in the direction in which the internal engaging arm 43 protrudes (second direction).

前述したように入力ギヤ30の外歯部30Aの歯数が、出力ギヤ25の内歯部25Aの歯数より1歯だけ少なく設定されているため、入力ギヤ30の偏芯軸芯Yが回転軸芯Xを中心に1回転だけ公転した場合には、1歯分だけ出力ギヤ25が回転することになり大きい減速を実現している。 As described above, since the number of teeth of the external tooth portion 30A of the input gear 30 is set to be one tooth less than the number of teeth of the internal tooth portion 25A of the output gear 25, the eccentric shaft core Y of the input gear 30 rotates. When it revolves about one rotation around the shaft core X, the output gear 25 rotates by one tooth, and a large deceleration is realized.

〔実施形態の作用・効果〕
上述したように、本実施形態では、位相制御モータMの駆動力により偏芯部材26の回転で偏芯軸芯Yを公転させて、駆動側回転体Aに設けた入力ギヤ30と従動側回転体Bに設けた出力ギヤ25とを噛み合い位置を変化させることにより相対回転位相が変更可能となっている。その結果、従動側回転体B(中間部材20)の径方向内側と偏芯部材26の第一部分26Aの径方向外側との間に配置された第1軸受28と、駆動側回転体A(入力ギヤ30)の径方向内側と偏芯部材26の第二部分26Bの径方向外側との間に配置された第2軸受29とには、噛み合い部位からの反力を受けてモーメントが作用し、耐久性が問題となる。このため、第1軸受28と第2軸受29とは回転軸芯X方向に近接させることが望ましい。
[Action / effect of the embodiment]
As described above, in the present embodiment, the eccentric shaft core Y is revolved by the rotation of the eccentric member 26 by the driving force of the phase control motor M, and the input gear 30 and the driven side rotation provided on the driving side rotating body A are rotated. The relative rotation phase can be changed by changing the meshing position with the output gear 25 provided on the body B. As a result, the first bearing 28 arranged between the radial inner side of the driven side rotating body B (intermediate member 20) and the radial outer side of the first portion 26A of the eccentric member 26, and the driving side rotating body A (input). A moment acts on the second bearing 29 arranged between the radial inner side of the gear 30) and the radial outer side of the second portion 26B of the eccentric member 26 by receiving a reaction force from the meshing portion. Durability becomes an issue. Therefore, it is desirable that the first bearing 28 and the second bearing 29 are close to each other in the rotation axis X direction.

そこで、図1に示すように、本実施形態では、第1軸受28の内径D1を、第2軸受29の内径D2に偏芯量Dyの2倍を加えた値よりも大きく構成している。これは、駆動側回転体Aに設けられた入力ギヤ30の偏芯軸芯Yが公転するので、駆動側回転体Aの径方向内側と偏芯部材26の径方向外側との間に配置された第2軸受29の内周面の移動量は回転軸芯Xを中心として径方向に偏芯量Dyの2倍となるからである。つまり、本実施形態ように第1軸受28の内径D1を第2軸受29の内径D2に偏芯量Dyの2倍を加えた値よりも大きくすれば、駆動側回転体Aの回転時において第1軸受28の内周面は必ず第2軸受29の内周面よりも径方向外側に位置することとなる。その結果、第2軸受29の内周面に配置された板ばね27に第1軸受28が干渉しない。このため、第1軸受28と第2軸受29とを回転軸芯X方向に沿って近接させることが可能となる。特に、本実施形態では、板ばね27と第1軸受28とが径方向視において一部重なっている。その結果、第1軸受28と第2軸受29とが回転軸芯X方向により近接した状態となっている。 Therefore, as shown in FIG. 1, in the present embodiment, the inner diameter D1 of the first bearing 28 is configured to be larger than the value obtained by adding twice the eccentricity Dy to the inner diameter D2 of the second bearing 29. This is arranged between the radial inside of the drive-side rotating body A and the radial outside of the eccentric member 26 because the eccentric shaft core Y of the input gear 30 provided on the driving-side rotating body A revolves. This is because the amount of movement of the inner peripheral surface of the second bearing 29 is twice the amount of eccentricity Dy in the radial direction about the rotating shaft core X. That is, if the inner diameter D1 of the first bearing 28 is made larger than the value obtained by adding twice the eccentricity amount Dy to the inner diameter D2 of the second bearing 29 as in the present embodiment, the driving side rotating body A becomes the first in rotation. The inner peripheral surface of the 1 bearing 28 is always located radially outside the inner peripheral surface of the second bearing 29. As a result, the first bearing 28 does not interfere with the leaf spring 27 arranged on the inner peripheral surface of the second bearing 29. Therefore, the first bearing 28 and the second bearing 29 can be brought close to each other along the rotation axis X direction. In particular, in the present embodiment, the leaf spring 27 and the first bearing 28 partially overlap each other in the radial direction. As a result, the first bearing 28 and the second bearing 29 are in a state closer to each other in the rotation axis X direction.

よって、弁開閉時期制御装置100の軸長を短縮することができると共に、出力ギヤ25と入力ギヤ30との噛み合い部から受ける反力によりこれら軸受28,29にかかるモーメントを小さくして、軸受28,29の耐久性を高めることができる。 Therefore, the shaft length of the valve opening / closing timing control device 100 can be shortened, and the moment applied to the bearings 28 and 29 due to the reaction force received from the meshing portion between the output gear 25 and the input gear 30 can be reduced to reduce the moment applied to the bearings 28 and 29. , 29 can be improved in durability.

また、突出部26Sの外周面(円周支持面26Sa)が板ばね27の径方向の外面よりも突出しているため、この突出部26Sにより板ばね27と第1軸受28との摺接を確実に防止することができる。 Further, since the outer peripheral surface (circumferential support surface 26Sa) of the protruding portion 26S protrudes from the radial outer surface of the leaf spring 27, the protruding portion 26S ensures sliding contact between the leaf spring 27 and the first bearing 28. Can be prevented.

また、オルダム継手Cxが板材で構成されるため、弁開閉時期制御装置100の回転軸芯Xに沿う方向での小型化が実現される。このオルダム継手Cxは、回転軸芯Xに沿う方向で第1軸受28および第2軸受29の双方よりも吸気カムシャフト2より遠い側に配置されている。このため、第1軸受28と第2軸受29との間にオルダム継手Cxが介在することなく、第1軸受28と第2軸受29とを回転軸芯X方向に容易に近接させることができる。 Further, since the oldham joint Cx is made of a plate material, the valve opening / closing timing control device 100 can be miniaturized in the direction along the rotation axis X. The Oldham joint Cx is arranged on the side of the intake camshaft 2 farther from both the first bearing 28 and the second bearing 29 in the direction along the rotation shaft core X. Therefore, the first bearing 28 and the second bearing 29 can be easily brought close to each other in the rotation axis X direction without the old dam joint Cx intervening between the first bearing 28 and the second bearing 29.

また、偏芯部材26は、回転軸芯Xに沿う方向で第1軸受28および第2軸受29の双方よりも吸気カムシャフト2に近い側において径方向外側に突出した突起26aを有しており、この突起26aが回転軸芯Xに沿う方向で第1軸受28と従動側回転体Bとの間に挟まれている。このため、出力ギヤ25と入力ギヤ30との噛み合い部からの反力を受けて、偏芯部材26を回転軸芯X方向に沿って吸気カムシャフト2から遠い側に移動させる応力が偏芯部材26に作用したときでも、突起26aが第1軸受28に当接し、第1軸受28と従動側回転体Bの筒状壁部22の支持面22Sとの圧入面によって該応力を受け止めて、偏芯部材26の移動を阻止することができる。しかも、偏芯部材26の突起26aは第1軸受28および第2軸受29の双方よりも吸気カムシャフト2に近い側に配置されているので、第1軸受28と第2軸受29との間に突起26aが介在することなく、第1軸受28と第2軸受29とを回転軸芯X方向に容易に近接させることができる。 Further, the eccentric member 26 has a protrusion 26a protruding outward in the radial direction on the side closer to the intake cam shaft 2 than both the first bearing 28 and the second bearing 29 in the direction along the rotation shaft core X. The protrusion 26a is sandwiched between the first bearing 28 and the driven side rotating body B in the direction along the rotating shaft core X. Therefore, the stress that receives the reaction force from the meshing portion between the output gear 25 and the input gear 30 and moves the eccentric member 26 to the side far from the intake cam shaft 2 along the rotation axis X direction is the eccentric member. Even when acting on 26, the protrusion 26a abuts on the first bearing 28, and the stress is received by the press-fitting surface of the first bearing 28 and the support surface 22S of the cylindrical wall portion 22 of the driven side rotating body B, resulting in bias. The movement of the core member 26 can be prevented. Moreover, since the protrusion 26a of the eccentric member 26 is arranged closer to the intake camshaft 2 than both the first bearing 28 and the second bearing 29, it is located between the first bearing 28 and the second bearing 29. The first bearing 28 and the second bearing 29 can be easily brought close to each other in the rotation axis X direction without the intervention of the protrusion 26a.

また、偏芯部材26の円周支持面26Saが第1軸受28を介して中間部材20の内周面である支持面22Sを支持し、偏芯部材26の偏芯支持面26Eが第2軸受29を介して入力ギヤ30の内周面を支持している。このため、板ばね27の付勢力が偏芯部材26の姿勢を変化させる方向に作用しても偏芯部材26の円周支持面26Saの全周が第1軸受28により中間部材20の内周に抱き込まれるように保持され、偏芯部材26と中間部材20との位置関係を維持できる。 Further, the circumferential support surface 26Sa of the eccentric member 26 supports the support surface 22S which is the inner peripheral surface of the intermediate member 20 via the first bearing 28, and the eccentric support surface 26E of the eccentric member 26 is the second bearing. The inner peripheral surface of the input gear 30 is supported via 29. Therefore, even if the urging force of the leaf spring 27 acts in the direction of changing the posture of the eccentric member 26, the entire circumference of the circumferential support surface 26Sa of the eccentric member 26 is the inner circumference of the intermediate member 20 due to the first bearing 28. It is held so as to be embraced by the eccentric member 26, and the positional relationship between the eccentric member 26 and the intermediate member 20 can be maintained.

特に、この構成では、板ばね27の付勢力が偏芯部材26と中間部材20との間にだけ作用し、外部の部材に作用しないため、例えば、板ばね27の付勢力に対する外部の部材の変形や変位を考慮せずに済み、偏芯部材26の姿勢維持を一層高い精度で行える。 In particular, in this configuration, the urging force of the leaf spring 27 acts only between the eccentric member 26 and the intermediate member 20 and does not act on the external member. Therefore, for example, the urging force of the leaf spring 27 acts on the external member. It is not necessary to consider deformation and displacement, and the posture of the eccentric member 26 can be maintained with higher accuracy.

〔別実施形態〕
(1)上述した実施形態では、入力ギヤ30に板ばね27の付勢力を作用させて、入力ギヤ30と出力ギヤ25との噛み合い部におけるバックラッシュを無くしたが、板ばね27を省略しても良い。この場合でも、入力ギヤ30と出力ギヤ25とが噛み合うことで駆動側回転体Aと駆動側回転体Aとの一体回転が実現できる。
(2)上述した実施形態では、オルダム継手Cxを板状の継手部材で構成したが、例えば、上述した特許文献1(特開2008‐38886号公報)に記載のように駆動側回転体Aの内周面に内歯車部を形成して、該内歯車部と入力ギヤ30とを噛み合わせることにより、オルダム継手Cxを省略しても良い。この場合、第1軸受28を、駆動側回転体Aのフロントプレート12の径方向内側と偏芯部材26の径方向外側との間に配置しても良い。
(3)上述した実施形態では、偏芯部材26を支持する第1軸受28は中間部材20(従動側回転体)の筒状壁部22に直接支持されていたが、これに限られるものではない。特許文献1のように遊星ベアリング(本実施形態の第1軸受28に相当)が、遊星ベアリングと従動側回転体(本実施形態の中間部材20に相当)との間に配置された別部材を介して従動側回転体に支持されていても良い。
(4)上述した実施形態では、エンジンEの吸気側に弁開閉時期制御装置100を設けたが、エンジンEの排気側に弁開閉時期制御装置100を設けても良い。
[Another Embodiment]
(1) In the above-described embodiment, the urging force of the leaf spring 27 is applied to the input gear 30 to eliminate backlash at the meshing portion between the input gear 30 and the output gear 25, but the leaf spring 27 is omitted. Is also good. Even in this case, the input gear 30 and the output gear 25 mesh with each other, so that the drive-side rotating body A and the driving-side rotating body A can be integrally rotated.
(2) In the above-described embodiment, the oldham joint Cx is composed of a plate-shaped joint member, but for example, as described in the above-mentioned Patent Document 1 (Japanese Patent Laid-Open No. 2008-38886), the drive-side rotating body A The old dam joint Cx may be omitted by forming an internal gear portion on the inner peripheral surface and engaging the internal gear portion with the input gear 30. In this case, the first bearing 28 may be arranged between the radial inside of the front plate 12 of the drive-side rotating body A and the radial outside of the eccentric member 26.
(3) In the above-described embodiment, the first bearing 28 that supports the eccentric member 26 is directly supported by the tubular wall portion 22 of the intermediate member 20 (driven rotating body), but the present invention is not limited to this. do not have. As in Patent Document 1, the planetary bearing (corresponding to the first bearing 28 of the present embodiment) is a separate member arranged between the planetary bearing and the driven side rotating body (corresponding to the intermediate member 20 of the present embodiment). It may be supported by the driven side rotating body via the vehicle.
(4) In the above-described embodiment, the valve opening / closing timing control device 100 is provided on the intake side of the engine E, but the valve opening / closing timing control device 100 may be provided on the exhaust side of the engine E.

本発明は、電動アクチュエータの駆動力により駆動側回転体と従動側回転体との相対回転位相を設定する弁開閉時期制御装置に利用することができる。 The present invention can be used in a valve opening / closing timing control device that sets the relative rotation phase between the driving side rotating body and the driven side rotating body by the driving force of the electric actuator.

1 クランクシャフト
2 吸気カムシャフト(カムシャフト)
25 出力ギヤ
26 偏芯部材
26A 第一部分
26B 第二部分
26S 突出部
26Sa 円周支持面(外周面)
26a 突起
27 ばね体(付勢部材)
28 第1軸受
29 第2軸受
30 入力ギヤ
100 弁開閉時期制御装置
A 駆動側回転体
B 従動側回転体
Cx オルダム継手
D1 第1軸受の内径
D2 第2軸受の内径
Dy 偏芯量
E エンジン(内燃機関)
M 位相制御モータ(電動アクチュエータ)
X 回転軸芯
Y 偏芯軸芯
1 Crankshaft 2 Intake camshaft (camshaft)
25 Output gear 26 Eccentric member 26A First part 26B Second part 26S Protruding part 26Sa Circumferential support surface (outer peripheral surface)
26a Protrusion 27 Spring body (urgency member)
28 1st bearing 29 2nd bearing 30 Input gear 100 Valve opening / closing timing control device A Drive side rotating body B Driven side rotating body Cx Oldham joint D1 Inner diameter of 1st bearing D2 Inner diameter of 2nd bearing D E. institution)
M phase control motor (electric actuator)
X Rotating shaft core Y Eccentric shaft core

Claims (5)

回転軸芯と平行姿勢で且つ前記回転軸芯に対して所定の偏芯量を有する偏芯軸芯で回転する入力ギヤを有し、前記回転軸芯を中心に内燃機関のクランクシャフトと同期回転する駆動側回転体と、
前記入力ギヤの歯数よりも多い歯数を含む出力ギヤを有し、前記回転軸芯と同軸芯で前記内燃機関の弁開閉用のカムシャフトと一体回転する従動側回転体と、
前記駆動側回転体および前記従動側回転体の相対回転位相を設定する電動アクチュエータと、
該電動アクチュエータによって回転される筒状の偏芯部材と、
前記偏芯部材を支持する第1軸受と、
前記入力ギヤを支持する第2軸受と、を備え、
前記電動アクチュエータの駆動力による前記偏芯部材の回転で前記偏芯軸芯を前記回転軸芯周りに公転させて前記出力ギヤと前記入力ギヤとの噛み合い位置を変化させることにより前記相対回転位相が変更され、
前記第1軸受の内径は、前記第2軸受の内径に前記偏芯量の2倍を加えた値よりも大きい弁開閉時期制御装置。
It has an input gear that rotates in an eccentric shaft core that is parallel to the rotating shaft core and has a predetermined amount of eccentricity with respect to the rotating shaft core, and rotates synchronously with the crank shaft of the internal combustion engine around the rotating shaft core. Drive side rotating body and
A driven side rotating body having an output gear having a number of teeth larger than the number of teeth of the input gear and rotating integrally with the camshaft for opening and closing the valve of the internal combustion engine on a coaxial core with the rotating shaft core.
An electric actuator that sets the relative rotation phase of the driving side rotating body and the driven side rotating body, and
A cylindrical eccentric member rotated by the electric actuator and
The first bearing that supports the eccentric member and
A second bearing that supports the input gear is provided.
The relative rotation phase is changed by revolving the eccentric shaft core around the rotation shaft core by the rotation of the eccentric member by the driving force of the electric actuator and changing the meshing position between the output gear and the input gear. Changed,
A valve opening / closing timing control device in which the inner diameter of the first bearing is larger than the value obtained by adding twice the eccentricity to the inner diameter of the second bearing.
前記偏芯部材は、前記第1軸受が配置される第一部分と前記第2軸受が配置される第二部分とを有し、
前記第2軸受は、前記入力ギヤの径方向内側と前記偏芯部材の前記第二部分の径方向外側との間に配置されており、
前記第2軸受の径方向内側と前記偏芯部材の径方向外側との間に配置され前記第2軸受を前記入力ギヤの側に付勢する付勢部材をさらに備え、
前記偏芯部材の前記第一部分には前記付勢部材の径方向の外面よりも更に径方向外側に突出させた突出部が形成されており、当該突出部の外周面と前記第1軸受の内周面とを嵌合させている請求項1に記載の弁開閉時期制御装置。
The eccentric member has a first portion in which the first bearing is arranged and a second portion in which the second bearing is arranged.
The second bearing is arranged between the radial inside of the input gear and the radial outside of the second portion of the eccentric member.
Further provided with an urging member arranged between the radial inner side of the second bearing and the radial outer side of the eccentric member to urge the second bearing toward the input gear.
A protrusion is formed in the first portion of the eccentric member so as to project radially outward from the radial outer surface of the urging member, and the outer peripheral surface of the protrusion and the inside of the first bearing. The valve opening / closing timing control device according to claim 1, wherein the peripheral surface is fitted to the peripheral surface.
前記付勢部材と前記第1軸受とが径方向視において一部重なっている請求項2に記載の弁開閉時期制御装置。 The valve opening / closing timing control device according to claim 2, wherein the urging member and the first bearing partially overlap each other in a radial direction. 前記駆動側回転体は、前記内燃機関の回転が伝達される本体部と、前記入力ギヤを前記本体部に連結するオルダム継手をさらに備え、
前記第1軸受と前記第2軸受は前記回転軸芯方向に近接して配置され、
前記オルダム継手は、前記回転軸芯に沿う方向で前記第1軸受および前記第2軸受の双方よりも前記カムシャフトより遠い側に配置されている請求項1~3の何れか一項に記載の弁開閉時期制御装置。
The drive-side rotating body further includes a main body portion to which the rotation of the internal combustion engine is transmitted, and an oldham joint for connecting the input gear to the main body portion.
The first bearing and the second bearing are arranged close to each other in the direction of the axis of rotation.
13. Valve opening / closing timing control device.
前記偏芯部材は、前記回転軸芯に沿う方向で前記第1軸受および前記第2軸受の双方よりも前記カムシャフトに近い側において径方向外側に突出した突起を有しており、
前記突起が前記回転軸芯に沿う方向で前記第1軸受と前記従動側回転体との間に挟まれている請求項1~4の何れか一項に記載の弁開閉時期制御装置。
The eccentric member has a protrusion that protrudes radially outward on the side closer to the camshaft than both the first bearing and the second bearing in the direction along the rotary shaft core.
The valve opening / closing timing control device according to any one of claims 1 to 4, wherein the protrusion is sandwiched between the first bearing and the driven side rotating body in a direction along the rotating shaft core.
JP2018098293A 2018-05-22 2018-05-22 Valve opening / closing timing control device Active JP7040283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018098293A JP7040283B2 (en) 2018-05-22 2018-05-22 Valve opening / closing timing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018098293A JP7040283B2 (en) 2018-05-22 2018-05-22 Valve opening / closing timing control device

Publications (2)

Publication Number Publication Date
JP2019203433A JP2019203433A (en) 2019-11-28
JP7040283B2 true JP7040283B2 (en) 2022-03-23

Family

ID=68726517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018098293A Active JP7040283B2 (en) 2018-05-22 2018-05-22 Valve opening / closing timing control device

Country Status (1)

Country Link
JP (1) JP7040283B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300068A (en) 2005-04-23 2006-11-02 Schaeffler Kg Camshaft adjusting device for internal combustion engine
JP2008038886A (en) 2006-01-16 2008-02-21 Denso Corp Valve timing control device
JP2010242585A (en) 2009-04-03 2010-10-28 Ntn Corp Variable valve timing device
JP2016061234A (en) 2014-09-18 2016-04-25 アイシン精機株式会社 Valve opening/closing timing control device
US20170145873A1 (en) 2014-06-05 2017-05-25 Borgwarner Inc. Electric cam phaser with fixed sun planetary

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300068A (en) 2005-04-23 2006-11-02 Schaeffler Kg Camshaft adjusting device for internal combustion engine
JP2008038886A (en) 2006-01-16 2008-02-21 Denso Corp Valve timing control device
JP2010242585A (en) 2009-04-03 2010-10-28 Ntn Corp Variable valve timing device
US20170145873A1 (en) 2014-06-05 2017-05-25 Borgwarner Inc. Electric cam phaser with fixed sun planetary
JP2016061234A (en) 2014-09-18 2016-04-25 アイシン精機株式会社 Valve opening/closing timing control device

Also Published As

Publication number Publication date
JP2019203433A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP6838506B2 (en) Valve opening / closing timing control device
JP6911571B2 (en) Valve opening / closing timing control device
EP3396124B1 (en) Valve opening/closing timing control device
JP6790639B2 (en) Valve opening / closing timing control device
WO2018092390A1 (en) Valve opening/closing timing control device
JP6869465B2 (en) Gear reducer
CN212803354U (en) Valve timing control device
JP6394222B2 (en) Valve timing control device
JP7040283B2 (en) Valve opening / closing timing control device
US10655509B2 (en) Variable valve timing control device
CN213360202U (en) Valve timing control device
US10801375B2 (en) Valve opening-closing timing control device
CN113167140B (en) Valve timing adjusting device
CN112539094A (en) Valve timing adjusting device
WO2024070373A1 (en) Valve open/close period control device
JP2023086583A (en) Valve opening/closing timing control device
JP7450478B2 (en) Valve opening/closing timing control device
CN116255217A (en) Valve timing control device
JP2023086586A (en) Valve opening/closing timing control device
JP6907822B2 (en) Valve timing adjustment device and rotation adjustment device
JP2024119301A (en) Valve timing adjustment device
CN116255221A (en) Valve timing control device
JPH09170410A (en) Suction and exhaust valve drive control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R150 Certificate of patent or registration of utility model

Ref document number: 7040283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150