JP7037170B2 - Additives for hydraulic compositions - Google Patents

Additives for hydraulic compositions Download PDF

Info

Publication number
JP7037170B2
JP7037170B2 JP2017239965A JP2017239965A JP7037170B2 JP 7037170 B2 JP7037170 B2 JP 7037170B2 JP 2017239965 A JP2017239965 A JP 2017239965A JP 2017239965 A JP2017239965 A JP 2017239965A JP 7037170 B2 JP7037170 B2 JP 7037170B2
Authority
JP
Japan
Prior art keywords
acid
water
additive
dialkanolamine
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017239965A
Other languages
Japanese (ja)
Other versions
JP2019104665A (en
Inventor
章宏 古田
卓哉 大石
多朗 水野
和寿 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2017239965A priority Critical patent/JP7037170B2/en
Priority to RU2020123076A priority patent/RU2772920C2/en
Priority to PCT/JP2018/037437 priority patent/WO2019116694A1/en
Priority to KR1020207016304A priority patent/KR102628442B1/en
Priority to CN201880079537.8A priority patent/CN111448172B/en
Priority to TW107137060A priority patent/TW201930227A/en
Publication of JP2019104665A publication Critical patent/JP2019104665A/en
Application granted granted Critical
Publication of JP7037170B2 publication Critical patent/JP7037170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/02Alcohols; Phenols; Ethers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/20Sulfonated aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

本発明は水硬性組成物用添加剤に関し、更に詳しくは、調製した水硬性組成物を硬化して得られる硬化体の初期材齢の強度を増進させることができる水硬性組成物用添加剤に関する。 The present invention relates to an additive for a hydraulic composition, and more particularly to an additive for a hydraulic composition capable of increasing the strength of the initial age of a cured product obtained by curing the prepared hydraulic composition. ..

水硬性組成物は水硬性結合材と水などの材料を混練した後に型枠に充填し、硬化させた後に型枠を脱型し硬化体を得る。なかでも、コンクリート製品とはセメント、水、骨材、分散剤などの材料を混練し、型枠に打設し、硬化させて製品化したものである。初期材齢の強度を向上させることは同じ型枠を使い、より多くのコンクリート製品を製造できることにつながるため、コンクリート打設後に脱型できる強度に達する時間を短縮することが求められている。係る目的のため、さまざまな添加剤が検討されてきており、塩化カルシウム、亜硝酸塩や硝酸塩などの無機塩(例えば非特許文献1参照)やグリセリン、アルカノールアミンなどが開示されている(例えば特許文献1、2参照)。 The hydraulic composition is obtained by kneading a hydraulic binder and a material such as water and then filling the mold, and after curing, the mold is demolded to obtain a cured product. Among them, concrete products are products made by kneading materials such as cement, water, aggregates, and dispersants, placing them in a mold, and hardening them. Improving the strength of the initial age leads to the production of more concrete products using the same formwork, so it is required to shorten the time to reach the strength that can be demolded after concrete placement. For this purpose, various additives have been studied, and inorganic salts such as calcium chloride, nitrite and nitrate (see, for example, Non-Patent Document 1), glycerin, alkanolamine and the like are disclosed (for example, Patent Document). See 1 and 2).

特開2009-256201号公報Japanese Unexamined Patent Publication No. 2009-256201 特開2011-236127号公報Japanese Unexamined Patent Publication No. 2011-236127

友沢史紀ほか、「コンクリート混和剤の開発と最新技術」 株式会社シーエムシー出版、1995年Fumiki Tomozawa et al., "Development and Latest Technology of Concrete Admixtures", CMC Publishing Co., Ltd., 1995

塩化カルシウムは鉄筋コンクリートの鉄筋の腐食の問題から、使用が制限されており、亜硝酸塩や硝酸塩においては添加量が多く必要な場合がある。アルカノールアミンやグリセリンでも初期材齢の強度を向上させることができるが、さらなる初期材齢の強度向上が求められている。 The use of calcium chloride is restricted due to the problem of corrosion of the reinforcing bars of reinforced concrete, and a large amount of nitrite or nitrate may be required. Alkanolamine and glycerin can also improve the strength of the initial age, but further improvement of the strength of the initial age is required.

本発明が解決しようとする課題は、水硬性組成物の硬化体の1~2週材齢の強度を低下させず脱型に必要な強度をより短時間で得られることである。すなわち、早強性を向上することができ、例えば20℃下において、注水から24時間後の圧縮強度や加熱養生における5時間後の圧縮強度等のような短時間の養生で高い圧縮強度を確保することである。 The problem to be solved by the present invention is to obtain the strength required for demolding in a shorter time without lowering the strength of the cured product of the hydraulic composition at 1 to 2 weeks. That is, the quick strength can be improved, and high compressive strength is ensured by short-time curing such as compression strength 24 hours after water injection and compressive strength 5 hours after heat curing at 20 ° C. It is to be.

本発明者らは、前記の課題を解決すべく研究した結果、特定の有機化合物からなる水硬性組成物用添加剤が正しく好適であることを見出した。本発明によれば、以下の水硬性組成物用添加剤が提供される。 As a result of research to solve the above-mentioned problems, the present inventors have found that an additive for a water-hardening composition composed of a specific organic compound is correctly suitable. According to the present invention, the following additives for hydraulic composition are provided.

[1] 水硬性結合材を含む水硬性組成物に使用する水硬性組成物用添加剤であって、ジアルカノールアミン及びジエチレングリコールからなり、前記ジアルカノールアミンが、ジエタノールアミン及び/又はジイソプロパノールアミンであり、且つ、前記ジエチレングリコールに対する、前記ジアルカノールアミンの質量比(ジアルカノールアミン/ジエチレングリコール)が、0.2~100の範囲内であり、前記水硬性結合材に練り混ぜ水を加えて前記水硬性組成物を調製する際に用いられる水硬性組成物用添加剤。 [1] An additive for a water-hard composition used for a water-hard composition containing a water-hard binder, which comprises a dialkanolamine and a diethylene glycol , wherein the dialkanolamine is a diethanolamine and / or a diisopropanolamine. The mass ratio of the dialkanolamine to the diethyleneglycol (dialkanolamine / diethyleneglycol) is in the range of 0.2 to 100, and the water-hardness binder is kneaded with water and the water-hardness is added. Additive for water-hard composition used when preparing a composition.

(削除)(delete)

(削除)(delete)

] 更に硫酸及び/又はスルホン酸化合物を含有する、[1]に記載の水硬性組成物用添加剤。 [ 2 ] The additive for a hydraulic composition according to [1 ], which further contains sulfuric acid and / or a sulfonic acid compound.

] 前記スルホン酸化合物が、トルエンスルホン酸又はメタンスルホン酸である、[]に記載の水硬性組成物用添加剤。 [ 3 ] The additive for a water-hard composition according to [ 2 ], wherein the sulfonic acid compound is toluenesulfonic acid or methanesulfonic acid.

] 前記硫酸及び前記スルホン酸化合物の酸に対する、前記ジアルカノールアミンのアミンのモル比(ジアルカノールアミンのアミン/(硫酸及びスルホン酸化合物の酸))が、0.1~2の範囲内である、[]又は[]に記載の水硬性組成物用添加剤。 [ 4 ] The molar ratio of the amine of the dialkanolamine to the acid of the sulfuric acid and the sulfonic acid compound (amine of the dialkanolamine / (acid of the sulfuric acid and the sulfonic acid compound)) is in the range of 0.1 to 2. The additive for a water-hardening composition according to [ 2 ] or [ 3 ].

] 更に分散剤を含有する、[1]~[]のいずれかに記載の水硬性組成物用添加剤。 [ 5 ] The additive for a hydraulic composition according to any one of [1] to [ 4 ], which further contains a dispersant.

本発明の添加剤を使用して調製した水硬性組成物は硬化して得られる硬化体の初期材齢の強度が増進し、硬化体の1~2週材齢の強度を低下させず脱型に必要な強度をより短時間で得られるという効果がある。 The water-hardening composition prepared by using the additive of the present invention enhances the strength of the initial material age of the cured product obtained by curing, and demolds the cured product without reducing the strength of the material age of 1 to 2 weeks. There is an effect that the required strength can be obtained in a shorter time.

以下、本発明の実施形態について説明する。しかし、本発明は以下の実施形態に限定されるものではない。したがって、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し適宜変更、改良等が加えられ得ることが理解されるべきである。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。 Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments. Therefore, it should be understood that the following embodiments can be appropriately modified, improved, or the like based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. In the following examples and the like, unless otherwise specified,% means mass% and parts mean parts by mass.

本発明の実施形態の水硬性組成物用添加剤は、水硬性結合材を含む水硬性組成物に使用する水硬性組成物用添加剤であって、ジアルカノールアミン及びジエチレングリコールからなる水硬性組成物用添加剤である。 The additive for a hydraulic composition according to the embodiment of the present invention is an additive for a hydraulic composition used for a hydraulic composition containing a hydraulic binder, and is a hydraulic composition composed of dialkanolamine and diethylene glycol. Additive for use.

本実施形態の水硬性組成物用添加剤(以下、本実施形態の添加剤ともいう)に供するジアルカノールアミンとしては、ジエタノールアミン及び/又はジイソプロパノールアミン、参考例として、N-アルキルジエタノールアミン、N-アルキルジイソプロパノールアミンが挙げられるが、なかでもジエタノールアミン及びジイソプロパノールアミンが好ましい。 The dialkanolamine used in the additive for the water-hardening composition of the present embodiment (hereinafter, also referred to as the additive of the present embodiment) is diethanolamine and / or diisopropanolamine , and as a reference example , N-alkyldiethanolamine, N- Examples thereof include alkyldiisopropanolamine, and among them, diethanolamine and diisopropanolamine are preferable.

本実施形態の添加剤におけるジアルカノールアミンの使用量は、セメント等の水硬性結合材100質量部に対して、0.01~1質量部が好ましく、0.02~0.8質量部がより好ましい。 The amount of the dialkanolamine used in the additive of the present embodiment is preferably 0.01 to 1 part by mass, more preferably 0.02 to 0.8 part by mass with respect to 100 parts by mass of the hydraulic binder such as cement. preferable.

本実施形態の添加剤に供するジエチレングリコールは一般の工業製品として市販されているものが使用できる。 As the diethylene glycol used as the additive of the present embodiment, those commercially available as general industrial products can be used.

本実施形態の添加剤におけるジエチレングリコールの使用量は、セメント等の水硬性結合材100質量部に対して、0.001~1質量部が好ましく、0.002~0.5質量部がより好ましい。ジエチレングリコールの使用量が少なすぎると効果がなく、多すぎると1~4週程度の材齢の圧縮強度が低下してしまう。 The amount of diethylene glycol used in the additive of the present embodiment is preferably 0.001 to 1 part by mass, more preferably 0.002 to 0.5 part by mass with respect to 100 parts by mass of the hydraulic binder such as cement. If the amount of diethylene glycol used is too small, there is no effect, and if it is too large, the compressive strength of the material age of about 1 to 4 weeks decreases.

ジエチレングリコールに対する、ジアルカノールアミンの質量比(ジアルカノールアミン/ジエチレングリコール)は、0.2~100の範囲内のものが好ましく、1~50の範囲内のものがより好ましい。 The mass ratio of dialkanolamine to diethylene glycol (dialkanolamine / diethylene glycol) is preferably in the range of 0.2 to 100, and more preferably in the range of 1 to 50.

本実施形態の添加剤は、さらに硫酸及び/又はスルホン酸化合物を含有したものが好ましい。スルホン酸化合物としては、パラトルエンスルホン酸、メタンスルホン酸、ベンゼンスルホン酸、ドデシルベンゼンスルホン酸等が挙げられる。なかでも硫酸、パラトルエンスルホン酸及びメタンスルホン酸から選ばれるものが好ましい。本明細書において、「A及び/又はB」という場合は、「A及びB」と「A又はB」の双方を意味する。したがって、本実施形態の添加剤は、硫酸をさらに含有したものであってもよいし、スルホン酸化合物をさらに含有したものであってもよいし、硫酸及びスルホン酸化合物をさらに含有したものであってもよい。 The additive of the present embodiment preferably further contains a sulfuric acid and / or a sulfonic acid compound. Examples of the sulfonic acid compound include paratoluene sulfonic acid, methane sulfonic acid, benzene sulfonic acid, dodecylbenzene sulfonic acid and the like. Among them, those selected from sulfuric acid, p-toluenesulfonic acid and methanesulfonic acid are preferable. In the present specification, the term "A and / or B" means both "A and B" and "A or B". Therefore, the additive of the present embodiment may further contain sulfuric acid, may further contain a sulfonic acid compound, or may further contain sulfuric acid and a sulfonic acid compound. May be.

ジアルカノールアミンと硫酸及び/又はスルホン酸化合物とを組み合わせることは、ジアルカノールアミンを硫酸及び/又はスルホン酸化合物で中和することを意味する。ジアルカノールアミンと硫酸及びスルホン酸化合物の酸とのモル比は特に制限はない。ただし、硫酸及びスルホン酸化合物の酸に対する、ジアルカノールアミンのアミンのモル比(ジアルカノールアミンのアミン/(硫酸及びスルホン酸化合物の酸))は、0.1~2が好ましく、0.5~1.5がより好ましい。 Combining a dialkanolamine with a sulfuric acid and / or a sulfonic acid compound means neutralizing the dialkanolamine with a sulfuric acid and / or a sulfonic acid compound. The molar ratio of dialkanolamine to the acid of sulfuric acid and the sulfonic acid compound is not particularly limited. However, the molar ratio of the amine of dialkanolamine to the acid of the sulfuric acid and the sulfonic acid compound (amine of dialkanolamine / (acid of the sulfuric acid and the sulfonic acid compound)) is preferably 0.1 to 2, preferably 0.5 to 2. 1.5 is more preferred.

本実施形態の添加剤は、更に分散剤を含有したものが好ましい。このような分散剤としては、ナフタレン系分散剤、フェノール系分散剤、リグニン系分散剤等の芳香族スルホン酸系分散剤、ポリカルボン酸系分散剤、及びリン酸エステル系分散剤等の分散剤が挙げられる。なかでも分散剤としては、早強性を確保する観点から、ナフタレン系分散剤、メラミン系分散剤の芳香族スルホン酸系分散剤、及びポリカルボン酸系分散剤が好ましく、ナフタレン系分散剤、及びポリカルボン酸系分散剤がさらに好ましい。 The additive of the present embodiment preferably further contains a dispersant. Examples of such a dispersant include aromatic sulfonic acid-based dispersants such as naphthalene-based dispersants, phenol-based dispersants, and lignin-based dispersants, polycarboxylic acid-based dispersants, and dispersants such as phosphoric acid ester-based dispersants. Can be mentioned. Among them, as the dispersant, a naphthalene-based dispersant, an aromatic sulfonic acid-based dispersant as a melamine-based dispersant, and a polycarboxylic acid-based dispersant are preferable, and a naphthalene-based dispersant and a naphthalene-based dispersant are preferable from the viewpoint of ensuring quick toughness. A polycarboxylic acid-based dispersant is more preferable.

ナフタレン系分散剤としては、ナフタレンスルホン酸ホルムアルデヒド縮合物(花王株式会社製のマイテイ150(商品名)、竹本油脂株式会社製のポールファイン510-AN(商品名)等)等を用いることができる。メラミン系分散剤としては、メラミンスルホン酸ホルムアルデヒド縮合物(竹本油脂株式会社製のポールファインMF(商品名)、日産化学工業株式会社製のアクセリート100(商品名)等)等を用いることができる。フェノール系分散剤としては、フェノールスルホン酸ホルムアルデヒド縮合物(特開昭46-104919号公報に記載の化合物等)、フェノールリン酸ホルムアルデヒド縮合物(特開2012-504695号公報に記載の化合物)等を用いることができる。リグニン系分散剤としては、リグニンスルホン酸塩(日本製紙ケミカル株式会社製のサンエキス(商品名)、バニレックス(商品名)、パールレックス(商品名)等)等を用いることができる。 As the naphthalene-based dispersant, a naphthalene sulfonic acid formaldehyde condensate (Mighty 150 (trade name) manufactured by Kao Corporation, Paul Fein 510-AN (trade name) manufactured by Takemoto Oil & Fats Co., Ltd., etc.) can be used. As the melamine-based dispersant, a melamine sulfonic acid formaldehyde condensate (Paul Fein MF (trade name) manufactured by Takemoto Oil & Fat Co., Ltd., Accelerate 100 (trade name) manufactured by Nissan Chemical Industry Co., Ltd., etc.) can be used. .. Examples of the phenol-based dispersant include a phenol sulfonic acid formaldehyde condensate (compound described in JP-A-46-104919), a phenol phosphate formaldehyde condensate (compound described in JP-A-2012-504695), and the like. Can be used. As the lignin-based dispersant, lignin sulfonate (Sun extract (trade name), Vanillex (trade name), Pearllex (trade name), etc. manufactured by Nippon Paper Chemicals Co., Ltd.) can be used.

ポリカルボン酸系共重合体としては、ポリアルキレングリコールと(メタ)アクリル酸とのモノエステルと(メタ)アクリル酸等のカルボン酸の共重合体;ポリアルキレングリコールを有する不飽和アルコールと(メタ)アクリル酸等のカルボン酸との共重合体(例えば、特開2007-119337号公報);ポリアルキレングリコールを有する不飽和アルコールとマレイン酸等のジカルボン酸との共重合物などを用いることができる。なお、(メタ)アクリル酸とは、アクリル酸又はメタクリル酸のことを意味する。 Examples of the polycarboxylic acid-based copolymer include a monoester of polyalkylene glycol and (meth) acrylic acid and a copolymer of a carboxylic acid such as (meth) acrylic acid; an unsaturated alcohol having polyalkylene glycol and (meth). A copolymer with a carboxylic acid such as acrylic acid (for example, JP-A-2007-119337); a copolymer of an unsaturated alcohol having a polyalkylene glycol and a dicarboxylic acid such as maleic acid can be used. In addition, (meth) acrylic acid means acrylic acid or methacrylic acid.

ポリカルボン酸系共重合体は、下記式(1)で表される単量体とカルボン酸単量体を重合して得られる共重合体を用いることができる。 As the polycarboxylic acid-based copolymer, a copolymer obtained by polymerizing a monomer represented by the following formula (1) with a carboxylic acid monomer can be used.

Figure 0007037170000001
Figure 0007037170000001

式(1)において、
は、炭素数2~5のアルケニル基又は炭素数3又は4の不飽和アシル基を示す。
は、水素原子、炭素数1~22のアルキル基又は炭素数1~22の脂肪族アシル基を示す。
Xは、炭素原子数2~4のオキシアルキレン基で構成された平均付加モル数1~300個の(ポリ)オキシアルキレン基を示す。
In equation (1)
R1 represents an alkenyl group having 2 to 5 carbon atoms or an unsaturated acyl group having 3 or 4 carbon atoms.
R2 represents a hydrogen atom, an alkyl group having 1 to 22 carbon atoms or an aliphatic acyl group having 1 to 22 carbon atoms.
X represents a (poly) oxyalkylene group having an average number of moles of 1 to 300, which is composed of an oxyalkylene group having 2 to 4 carbon atoms.

式(1)中のRの炭素数2~5のアルケニル基としては、ビニル基、アリル基、メタリル基、3-ブテニル基、2-メチル-1-ブテニル基、3-メチル-1-ブテニル基、2-メチル-3-ブテニル基、3-メチル-3-ブテニル基等が挙げられる。また、Rの炭素数3又は4の不飽和アシル基としては、アクリロイル基とメタクリロイル基が挙げられる。これらの中でも、アリル基、メタリル基、3-メチル-1-ブテニル基、アクリロイル基、メタクリロイル基が好ましい。これらの式(1)で示される単量体は一つ又は二つ以上用いてもよい。 Examples of the alkenyl group having 2 to 5 carbon atoms of R1 in the formula (1) include a vinyl group, an allyl group, a methallyl group, a 3-butenyl group, a 2-methyl-1-butenyl group and a 3-methyl-1-butenyl group. Examples thereof include a group, a 2-methyl-3-butenyl group, a 3-methyl-3-butenyl group and the like. Examples of the unsaturated acyl group having 3 or 4 carbon atoms of R 1 include an acryloyl group and a methacryloyl group. Among these, an allyl group, a methallyl group, a 3-methyl-1-butenyl group, an acryloyl group, and a methacryloyl group are preferable. One or two or more of these monomers represented by the formula (1) may be used.

式(1)中のRとしては、1)水素原子、2)炭素数1~22のアルキル基、3)炭素数1~22の脂肪族アシル基が挙げられる。 Examples of R 2 in the formula (1) include 1) a hydrogen atom, 2) an alkyl group having 1 to 22 carbon atoms, and 3) an aliphatic acyl group having 1 to 22 carbon atoms.

式(1)中のXとしては、1~300個の(ポリ)オキシアルキレン単位で構成されたポリオキシアルキレン基が挙げられる。なかでも1~160個のオキシエチレン単位及び/又はオキシプロピレン単位で構成された(ポリ)オキシアルキレン基が好ましい。 Examples of X in the formula (1) include a polyoxyalkylene group composed of 1 to 300 (poly) oxyalkylene units. Of these, a (poly) oxyalkylene group composed of 1 to 160 oxyethylene units and / or oxypropylene units is preferable.

上記(共)重合体を構成することになるカルボン酸単量体としては、(メタ)アクリル酸、クロトン酸、ジカルボン酸。マレイン酸、イタコン酸、フマル酸、コハク酸モノ(2-(メタ)アクリロイルオキシエチル)等及びそれらの塩がある。なかでも(メタ)アクリル酸、マレイン酸、(メタ)アクリル酸塩、マレイン酸塩が好ましい。 Examples of the carboxylic acid monomer constituting the (co) polymer include (meth) acrylic acid, crotonic acid, and dicarboxylic acid. There are maleic acid, itaconic acid, fumaric acid, succinic acid mono (2- (meth) acryloyloxyethyl) and the like and salts thereof. Of these, (meth) acrylic acid, maleic acid, (meth) acrylic acid salt, and maleic acid salt are preferable.

カルボン酸単量体の塩としては、ナトリウム塩やカリウム塩等のアルカリ金属塩、カルシウム塩やマグネシウム塩等のアルカリ土類金属塩、アンモニウム塩、ジエタノールアミン塩やトリエタノールアミン塩等のアミン塩等が挙げられる。 Examples of the carboxylic acid monomer salt include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, ammonium salts, diethanolamine salts and amine salts such as triethanolamine salt. Can be mentioned.

上記(共)重合体を製造する際には、共重合可能な他の単量体、例えば、スチレン、アクリルアミド、(メタ)アリルスルホン酸(塩)などを併用してもよい。 When producing the above (co) polymer, other copolymerizable monomers such as styrene, acrylamide, and (meth) allylsulfonic acid (salt) may be used in combination.

本実施形態の添加剤は、水硬性組成物を調製する際に用いる。例えば、セメントを含有する水硬性結合材、水、細骨材、粗骨材、AE剤等を用いて水硬性組成物を調製するときに用いる。 The additive of this embodiment is used when preparing a hydraulic composition. For example, it is used when preparing a hydraulic composition using a hydraulic binder containing cement, water, fine aggregate, coarse aggregate, AE agent and the like.

水硬性結合材としては、セメント、高炉スラグ微粉末、フライアッシュ、シリカフーム等が挙げられる。なかでもセメントを含有するものが好ましい。セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント等の各種ポルトランドセメントの他に、高炉セメント、フライアッシュセメント、シリカフュームセメント等の各種混合セメントを使用できる。 Examples of the hydraulic binder include cement, blast furnace slag fine powder, fly ash, silica foam and the like. Of these, those containing cement are preferable. As the cement, various Portland cements such as ordinary Portland cement, early-strength Portland cement, and moderate heat Portland cement, as well as various mixed cements such as blast furnace cement, fly ash cement, and silica fume cement can be used.

また細骨材としては、いずれも公知の川砂、山砂、海砂、砕砂、スラグ砂等を使用できる。更に粗骨材としては、いずれも公知の川砂利、砕石、軽量骨材等を使用できる。 Further, as the fine aggregate, known river sand, mountain sand, sea sand, crushed sand, slag sand and the like can be used. Further, as the coarse aggregate, known river gravel, crushed stone, lightweight aggregate and the like can be used.

また水硬性組成物を調製するに際し、1)ロジン石鹸、アルキル芳香族スルホン酸塩、脂肪族アルキル(エーテル)硫酸塩、アルキルリン酸エステル等の空気量調節剤、2)ジメチルポリシロキサン系、ポリアルキレングリコール脂肪酸エステル系、鉱油系、油脂系、オキシアルキレン系、アルコール系、アミド系等の消泡剤を用いることができる。 In preparing the water-hardening composition, 1) an air amount adjuster such as rosin soap, alkyl aromatic sulfonate, aliphatic alkyl (ether) sulfate, and alkyl phosphate ester, and 2) dimethylpolysiloxane-based, poly. Antifoaming agents such as alkylene glycol fatty acid ester-based, mineral oil-based, oil-based, oxyalkylene-based, alcohol-based, and amide-based defoaming agents can be used.

本実施形態の添加剤の使用に際しては、目的の範囲内で、凝結促進剤、凝結遅延剤、防錆剤、防水剤等を併用することができる。また、本実施形態の添加剤の使用方法は、コンクリート組成物の調製時に練り混ぜ水と一緒に添加する方法、練り混ぜ直後のコンクリート組成物に後添加する方法等、いずれでもよい。 When using the additive of the present embodiment, a coagulation accelerator, a coagulation retarder, a rust preventive agent, a waterproof agent and the like can be used in combination within a target range. Further, the method of using the additive of the present embodiment may be either a method of adding the additive together with the kneading water at the time of preparing the concrete composition, a method of adding the additive to the concrete composition immediately after kneading, or the like.

本実施形態の添加剤は、種々成分を予め混合して1液型の多機能性混和剤とすることが好ましい。 The additive of the present embodiment is preferably a one-component multifunctional admixture in which various components are mixed in advance.

本実施形態の添加剤を使用した水硬性組成物を型枠に充填し養生し硬化させる工程では、得られた水硬性組成物を型枠に充填し養生する。型枠としては、建築物の型枠、及びコンクリート製品用の型枠等が挙げられる。水硬性組成物を型枠へ充填する方法として、ミキサーから直接投入する方法や、水硬性組成物をポンプで圧送して型枠に導入する方法等が挙げられる。 In the step of filling the mold with the hydraulic composition using the additive of the present embodiment, curing and curing, the obtained hydraulic composition is filled in the mold and cured. Examples of the formwork include formwork for buildings and formwork for concrete products. Examples of the method of filling the hydraulic composition into the mold include a method of directly charging the hydraulic composition from a mixer and a method of pumping the hydraulic composition into the mold.

水硬性組成物の硬化を促進させるために加熱養生をすることができる。加熱養生は、40℃以上80℃以下の温度で水硬性組成物を保持して行う。 Heat curing can be performed to accelerate the curing of the hydraulic composition. The heat curing is carried out by holding the hydraulic composition at a temperature of 40 ° C. or higher and 80 ° C. or lower.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。 Hereinafter, examples and the like will be given in order to make the configuration and effect of the present invention more specific, but the present invention is not limited to the examples. In the following examples and the like, unless otherwise specified,% means mass% and parts mean parts by mass.

・水硬性組成物用添加剤の調製(実施例1~14):
ジアルカノールアミン、ジエチレングリコール(DEG)及びイオン交換水等を表1に示す割合に従い配合して水硬性組成物用添加剤の水溶液を調製した。
Preparation of Additives for Hydraulic Composition (Examples 1 to 14):
Dialkanolamine, diethylene glycol (DEG), ion-exchanged water and the like were blended in the proportions shown in Table 1 to prepare an aqueous solution of an additive for a water-hard composition.

Figure 0007037170000002
Figure 0007037170000002

表1において、下記用語は、以下の意味を示す。
DEA:ジエタノールアミン。
DIPA:ジイソプロパノールアミン。
DEG:ジエチレングリコール。
MSA:メタンスルホン酸。
PTS:パラトルエンスルホン酸・一水和物。
TEA:トリエタノールアミン(試薬)。
TIPA:トリイソプロパノールアミン(試薬)。
A/B:ジアルカノールアミン/ジエチレングリコールの質量比。
A/C:ジアルカノールアミンのアミン/(硫酸及びスルホン酸化合物の酸)のモル比。
In Table 1, the following terms have the following meanings.
DEA: Diethanolamine.
DIPA: Diisopropanolamine.
DEF: Diethylene glycol.
MSA: Methanesulfonic acid.
PTS: Paratoluenesulfonic acid / monohydrate.
TEA: Triethanolamine (reagent).
TIPA: Triisopropanolamine (reagent).
A / B: Mass ratio of dialkanolamine / diethylene glycol.
A / C: Amine ratio of dialkanolamine / (acid of sulfuric acid and sulfonic acid compound).

以下の例に示す重合して得られた共重合体(分散剤)の質量平均分子量は、ゲルパーミエーションクロマトグラフィーにて測定した。
(測定条件)
装置:Shodex GPC-101(昭和電工製)。
カラム:OHpak SB-G+SB-806M HQ+SB-806M HQ(昭和電工製)。
検出器:示差屈折計(RI)。
溶離液:50mM硝酸ナトリウム水溶液。
流量:0.7mL/分。
カラム温度:40℃。
試料濃度:試料濃度0.5重量%の溶離液溶液。
標準物質:ポリエチレンオキシド、ポリエチレングリコール。
The mass average molecular weight of the copolymer (dispersant) obtained by the polymerization shown in the following example was measured by gel permeation chromatography.
(Measurement condition)
Equipment: Shodex GPC-101 (manufactured by Showa Denko).
Column: OHpak SB-G + SB-806M HQ + SB-806M HQ (manufactured by Showa Denko).
Detector: Differential refractometer (RI).
Eluent: 50 mM sodium nitrate aqueous solution.
Flow rate: 0.7 mL / min.
Column temperature: 40 ° C.
Sample concentration: Eluent solution with a sample concentration of 0.5% by weight.
Standard material: polyethylene oxide, polyethylene glycol.

・分散剤(PC-1)の製造:
まず、イオン交換水165.5g、α-メタクリロイル-ω-メトキシ-ポリ(n=45)オキシエチレン133.4g、メタクリル酸22.2g、3-メルカプトプロピオン酸1.6gを温度計、撹拌機、滴下ロート、窒素導入管を備えた反応容器(以下、同様のものを使用した)に仕込み、攪拌しながら均一に溶解した。その後、上述した各成分を溶解させた反応系の雰囲気を窒素置換し、反応系の温度を水浴にて65℃とした。次に、1.0%過酸化水素水27.3gを加え、その後、6時間65℃を維持し、重合反応を終了した。その後、30%水酸化ナトリウム水溶液を加えpH6に調整し、イオン交換水にて濃度を40%に調整して、反応混合物を得た。得られた反応混合物の質量平均分子量を測定すると35000であった。この反応混合物を、分散剤(PC-1)とした。
-Manufacturing of dispersant (PC-1):
First, ion-exchanged water 165.5 g, α-methacryloyl-ω-methoxy-poly (n = 45) oxyethylene 133.4 g, methacrylic acid 22.2 g, and 3-mercaptopropionic acid 1.6 g were added to a thermometer, agitator, and the like. It was placed in a reaction vessel equipped with a dropping funnel and a nitrogen introduction tube (hereinafter, the same was used), and the mixture was uniformly dissolved with stirring. Then, the atmosphere of the reaction system in which each of the above-mentioned components was dissolved was replaced with nitrogen, and the temperature of the reaction system was set to 65 ° C. in a water bath. Next, 27.3 g of 1.0% hydrogen peroxide solution was added, and then the temperature was maintained at 65 ° C. for 6 hours to complete the polymerization reaction. Then, a 30% aqueous sodium hydroxide solution was added to adjust the pH to 6, and the concentration was adjusted to 40% with ion-exchanged water to obtain a reaction mixture. The mass average molecular weight of the obtained reaction mixture was measured and found to be 35,000. This reaction mixture was used as a dispersant (PC-1).

・分散剤(PC-2)の製造:
イオン交換水41.4gを温度計、撹拌機、滴下ロート、窒素導入管を備えた反応容器に仕込み、撹拌しながら雰囲気を窒素置換し、反応系の温度を温水浴にて70℃とした。イオン交換水188.0gに、α-メタクリロイル-ω-メトキシ-ポリ(n=130)
オキシエチレン188.0g、メタクリル酸12.0g、メタリルスルホン酸ナトリウム2.0g、3-メルカプトプロピオン酸4.0gを溶解した水溶液を3時間かけて滴下した。同時に、過硫酸アンモニウム3.0gをイオン交換水26.0gで溶解した水溶液を4時間かけて滴下し、その後、1時間70℃を維持し、重合反応を終了した。その後、30%水酸化ナトリウム水溶液を加えpH6に調整し、イオン交換水にて濃度を40%に調整して反応混合物を得た。得られた反応混合物の質量平均分子量を測定すると45000であった。この反応混合物を、分散剤(PC-2)とした。
-Manufacturing of dispersant (PC-2):
41.4 g of ion-exchanged water was charged in a reaction vessel equipped with a thermometer, a stirrer, a dropping funnel, and a nitrogen introduction tube, the atmosphere was replaced with nitrogen while stirring, and the temperature of the reaction system was set to 70 ° C. in a warm water bath. In 188.0 g of ion-exchanged water, α-methacryloyl-ω-methoxy-poly (n = 130)
An aqueous solution in which 188.0 g of oxyethylene, 12.0 g of methacrylic acid, 2.0 g of sodium methallyl sulfonate and 4.0 g of 3-mercaptopropionic acid were dissolved was added dropwise over 3 hours. At the same time, an aqueous solution prepared by dissolving 3.0 g of ammonium persulfate in 26.0 g of ion-exchanged water was added dropwise over 4 hours, and then the temperature was maintained at 70 ° C. for 1 hour to complete the polymerization reaction. Then, a 30% aqueous sodium hydroxide solution was added to adjust the pH to 6, and the concentration was adjusted to 40% with ion-exchanged water to obtain a reaction mixture. The mass average molecular weight of the obtained reaction mixture was measured and found to be 45,000. This reaction mixture was used as a dispersant (PC-2).

・分散剤(PC-3)の製造:
イオン交換水72.0g、温度計、撹拌機、滴下ロート、窒素導入管を備えた反応容器に仕込み、雰囲気を窒素置換し、反応系の温度を温水浴にて70℃とした。次に、α-メタクリロイル-ω-ヒドロキシ-オキシプロピレンポリ(n=68)オキシエチレン147.7gとイオン交換水135.0gとメタクリル酸16.4gとメルカプトエタノール1.0gを溶解させた水溶液を3時間かけて滴下した。同時に、過硫酸ナトリウム2.5gをイオン交換水22.9gに溶解させた水溶液を4時間かけて滴下した。その後、1時間70℃を維持し、重合反応を終了した。その後、30%水酸化ナトリウム水溶液を加えpH6に調整し、イオン交換水にて濃度を40%に調整して反応混合物を得た。得られた反応混合物の質量平均分子量を測定すると50000であった。この反応混合物を、分散剤(PC-3)とした。
-Manufacturing of dispersant (PC-3):
It was charged in a reaction vessel equipped with 72.0 g of ion-exchanged water, a thermometer, a stirrer, a dropping funnel, and a nitrogen introduction tube, the atmosphere was replaced with nitrogen, and the temperature of the reaction system was set to 70 ° C. in a warm water bath. Next, an aqueous solution prepared by dissolving 147.7 g of α-methacryloyl-ω-hydroxy-oxypropylene poly (n = 68) oxyethylene, 135.0 g of ion-exchanged water, 16.4 g of methacrylic acid and 1.0 g of mercaptoethanol was added. Dropped over time. At the same time, an aqueous solution prepared by dissolving 2.5 g of sodium persulfate in 22.9 g of ion-exchanged water was added dropwise over 4 hours. Then, the temperature was maintained at 70 ° C. for 1 hour to complete the polymerization reaction. Then, a 30% aqueous sodium hydroxide solution was added to adjust the pH to 6, and the concentration was adjusted to 40% with ion-exchanged water to obtain a reaction mixture. The mass average molecular weight of the obtained reaction mixture was measured and found to be 50,000. This reaction mixture was used as a dispersant (PC-3).

・分散剤(PC-4)の製造:
イオン交換水117.0gにα-(3-メチル-3-ブテニル)-ω-ヒドロキシ-ポリ(n=53)オキシエチレン98.2gを温度計、撹拌機、滴下ロート、窒素導入管を備えた反応容器に仕込み、攪拌しながら均一に溶解した。その後、上述した各成分を溶解させた反応系の雰囲気を窒素置換し、反応系の温度を温水浴にて70℃とした。次に、3.5%過酸化水素水7.9gを3時間かけて滴下し、それと同時にイオン交換水47.2gにアクリル酸9.5gを溶解させた水溶液を3時間かけて滴下し、それと同時にイオン交換水5.0gにL-アスコルビン酸0.6gと3-メルカプトプロピオン酸0.6gを溶解させた水溶液を4時間かけて滴下した。その後、2時間70℃を維持し、重合反応を終了した。その後、30%水酸化ナトリウム水溶液を加えpH6に調整し、イオン交換水にて濃度を40%に調整して反応混合物を得た。得られた反応混合物の質量平均分子量を測定すると46000であった。この反応混合物を、分散剤(PC-4)とした。
-Manufacturing of dispersant (PC-4):
117.0 g of ion-exchanged water with 98.2 g of α- (3-methyl-3-butenyl) -ω-hydroxy-poly (n = 53) oxyethylene was provided with a thermometer, agitator, a dropping funnel, and a nitrogen introduction tube. It was charged into a reaction vessel and dissolved uniformly with stirring. Then, the atmosphere of the reaction system in which each of the above-mentioned components was dissolved was replaced with nitrogen, and the temperature of the reaction system was set to 70 ° C. in a warm water bath. Next, 7.9 g of 3.5% hydrogen peroxide solution was added dropwise over 3 hours, and at the same time, an aqueous solution prepared by dissolving 9.5 g of acrylic acid in 47.2 g of ion-exchanged water was added dropwise over 3 hours. At the same time, an aqueous solution prepared by dissolving 0.6 g of L-ascorbic acid and 0.6 g of 3-mercaptopropionic acid in 5.0 g of ion-exchanged water was added dropwise over 4 hours. Then, the temperature was maintained at 70 ° C. for 2 hours to complete the polymerization reaction. Then, a 30% aqueous sodium hydroxide solution was added to adjust the pH to 6, and the concentration was adjusted to 40% with ion-exchanged water to obtain a reaction mixture. The mass average molecular weight of the obtained reaction mixture was measured and found to be 46000. This reaction mixture was used as a dispersant (PC-4).

・水硬性組成物の調製(実施例15~28及び比較例1~6):
水硬性組成物の調製を、以下の方法で行った。55Lの強制二軸ミキサーに普通ポルトランドセメント(太平洋セメント社、宇部三菱セメント社、住友大阪セメント社製、3銘柄等量混合、比重=3.16)、細骨材(大井川水系砂、比重=2.58)及び粗骨材(岡崎産砕石、比重=2.66)を、表2に示す割合で順次投入して10秒間空練りした。その後、目標スランプが18±2.0cm及び空気量が2.0%以下となるよう、分散剤と、消泡剤(竹本油脂社製のAFK-2(商品名))をセメントに対して0.005%となる量を練混ぜ水に加え、上記分散剤及び消泡剤を練り混ぜ水の一部とみなして、練り混ぜ水と共に投入し、90秒練混ぜた。結果を表3にまとめて示した。
Preparation of hydraulic composition (Examples 15 to 28 and Comparative Examples 1 to 6):
The hydraulic composition was prepared by the following method. 55L forced twin-screw mixer with ordinary Portland cement (Pacific cement, Ube-Mitsubishi cement, Sumitomo Osaka Cement, 3 brands equal volume mixture, specific gravity = 3.16), fine aggregate (Oigawa water-based sand, specific gravity = 2) .58) and coarse aggregate (crushed stone from Okazaki, specific gravity = 2.66) were sequentially added at the ratios shown in Table 2 and kneaded for 10 seconds. After that, the dispersant and defoamer (AFK-2 (trade name) manufactured by Takemoto Oil & Fat Co., Ltd.) were added to the cement to 0 so that the target slump was 18 ± 2.0 cm and the air volume was 2.0% or less. An amount of .005% was added to the kneading water, the dispersant and the defoaming agent were regarded as a part of the kneading water, and the mixture was added together with the kneading water and kneaded for 90 seconds. The results are summarized in Table 3.

Figure 0007037170000003
Figure 0007037170000003

・スランプ:練り混ぜ直後の水硬性組成物について、JIS-A1150に準拠して測定した。
・空気量:練り混ぜ直後のコンクリート組成物について、JIS-A1128に準拠して測定した。
・圧縮強度:JIS-A1132に基づき、円柱型ブリキ製のコンクリート供試体成形型枠(商品名「サミットモールド」、住友商事製、型枠の底面の直径:100mm、型枠の高さ:200mm)の型枠3個に、それぞれ二層詰め方式によりコンクリートを充填した。その後、20℃の室内にて気中(20℃)養生を行い、コンクリートを硬化させた。コンクリートの調製から24時間後に、硬化した供試体を型枠から脱型し、供試体を得た。供試体の24時間強度を、JIS-A1108に基づいて測定し、供試体3個の平均値を求めた。さらに、別の供試体を上記と同様の方法で作製し同様に脱型した後、20℃の水中にて14日養生し、その供試体の14日強度を、JIS-A1108に基づいて測定し、供試体3個の平均値を求めた。
-Slump: The hydraulic composition immediately after kneading was measured according to JIS-A1150.
-Amount of air: The concrete composition immediately after kneading was measured according to JIS-A1128.
-Compressive strength: Based on JIS-A1132, concrete specimen molding formwork made of cylindrical tin (trade name "Summit Mold", manufactured by Sumitomo Corporation, bottom diameter of formwork: 100 mm, height of formwork: 200 mm) Each of the three formwork was filled with concrete by a two-layer packing method. Then, it was cured in the air (20 ° C.) in a room at 20 ° C. to harden the concrete. Twenty-four hours after the preparation of the concrete, the cured specimen was removed from the mold to obtain a specimen. The 24-hour strength of the specimen was measured based on JIS-A1108, and the average value of three specimens was obtained. Further, another specimen was prepared by the same method as above, demolded in the same manner, cured in water at 20 ° C. for 14 days, and the 14-day strength of the specimen was measured based on JIS-A1108. , The average value of 3 specimens was calculated.

・加熱養生圧縮強度:JIS-A1132に基づき、円柱型ブリキ製のコンクリート供試体成形型枠(商品名「サミットモールド」住友商事製、型枠の底面の直径:100mm、型枠の高さ:200mm)の型枠3個に、それぞれ二層詰め方式によりコンクリートを充填した。その後、充填したコンクリートの上部を均し、ポリエチレンラップにてキャップした。供試体を注水から2時間、気中(20℃)養生を行い、その後、65℃に加温しておいた恒温器に移し、更に3時間養生した。所定の養生時間後、硬化した供試体を型枠から脱型し、供試体を得た。供試体の5時間強度を、JIS-A1108に基づいて測定し、供試体3個の平均値を求めた。各結果を表3に示す。 -Heat curing compressive strength: Based on JIS-A1132, concrete specimen molding formwork made of columnar tin (trade name "Summit Mold" manufactured by Sumitomo Corporation, bottom diameter of formwork: 100 mm, height of formwork: 200 mm ), Each of the three formwork was filled with concrete by a two-layer packing method. Then, the upper part of the filled concrete was leveled and capped with polyethylene wrap. The specimen was cured in the air (20 ° C.) for 2 hours after water injection, then transferred to an incubator heated to 65 ° C., and cured for another 3 hours. After a predetermined curing time, the cured specimen was removed from the mold to obtain a specimen. The 5-hour intensity of the specimen was measured based on JIS-A1108, and the average value of the three specimens was obtained. The results are shown in Table 3.

Figure 0007037170000004
Figure 0007037170000004

表3において、下記用語は、以下の意味を示す。なお、表1に示す用語と重複するものについては、その説明を省略する。なお、比較例2~6において、各添加剤は試薬のまま使用した。
添加率:セメントに対しての有り姿での添加率(%)。
NA:ナフタレンスルホン酸ホルムアルデヒド縮合物(竹本油脂株式会社製のポールファイン510-AN(商品名)、濃度40%)。
In Table 3, the following terms have the following meanings. The explanation of the terms that overlap with those shown in Table 1 will be omitted. In Comparative Examples 2 to 6, each additive was used as a reagent.
Addition rate: Addition rate (%) as it is to cement.
NA: Naphthalene sulfonic acid formaldehyde condensate (Paul Fein 510-AN (trade name) manufactured by Takemoto Oil & Fats Co., Ltd., concentration 40%).

(結果)
実施例15~28においては、ジアルカノールアミン及びジエチレングリコールを含む添加剤を用いることにより、比較例1~6に比して、24時間強度、14日強度、5時間強度のいずれにおいても高い値を示すことが確認された。
(result)
In Examples 15 to 28, by using an additive containing dialkanolamine and diethylene glycol, higher values were obtained in both 24-hour intensity, 14-day intensity, and 5-hour intensity as compared with Comparative Examples 1 to 6. It was confirmed to show.

本発明の水硬性組成物用添加剤は、水硬性組成物を調製する際の添加剤として利用することができる。 The additive for a hydraulic composition of the present invention can be used as an additive when preparing a hydraulic composition.

Claims (5)

水硬性結合材を含む水硬性組成物に使用する水硬性組成物用添加剤であって、ジアルカノールアミン及びジエチレングリコールからなり、前記ジアルカノールアミンが、ジエタノールアミン及び/又はジイソプロパノールアミンであり、且つ、前記ジエチレングリコールに対する、前記ジアルカノールアミンの質量比(ジアルカノールアミン/ジエチレングリコール)が、0.2~100の範囲内であり、前記水硬性結合材に練り混ぜ水を加えて前記水硬性組成物を調製する際に用いられる水硬性組成物用添加剤。 An additive for a water-hard composition used for a water-hard composition containing a water-hard binder, which comprises a dialkanolamine and a diethylene glycol , wherein the dialkanolamine is a diethanolamine and / or a diisopropanolamine, and The mass ratio of the dialkanolamine to the diethylene glycol (dialkanolamine / diethylene glycol) is in the range of 0.2 to 100, and the water-hardening binder is kneaded with water to obtain the water-hardening composition. Additive for water-hard composition used in preparation. 更に硫酸及び/又はスルホン酸化合物を含有する、請求項1に記載の水硬性組成物用添加剤。 The additive for a hydraulic composition according to claim 1 , further containing sulfuric acid and / or a sulfonic acid compound. 前記スルホン酸化合物が、トルエンスルホン酸又はメタンスルホン酸である、請求項に記載の水硬性組成物用添加剤。 The additive for a water-hard composition according to claim 2 , wherein the sulfonic acid compound is toluenesulfonic acid or methanesulfonic acid. 前記硫酸及び前記スルホン酸化合物の酸に対する、前記ジアルカノールアミンのアミンのモル比(ジアルカノールアミンのアミン/(硫酸及びスルホン酸化合物の酸))が、0.1~2の範囲内である、請求項又はに記載の水硬性組成物用添加剤。 The molar ratio of the amine of the dialkanolamine to the acid of the sulfuric acid and the sulfonic acid compound (amine of the dialkanolamine / (acid of the sulfuric acid and the sulfonic acid compound)) is in the range of 0.1 to 2. The additive for a water-hardening composition according to claim 2 or 3 . 更に分散剤を含有する、請求項1~のいずれか一つの項に記載の水硬性組成物用添加剤。 The additive for a hydraulic composition according to any one of claims 1 to 4 , further comprising a dispersant.
JP2017239965A 2017-12-14 2017-12-14 Additives for hydraulic compositions Active JP7037170B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017239965A JP7037170B2 (en) 2017-12-14 2017-12-14 Additives for hydraulic compositions
RU2020123076A RU2772920C2 (en) 2017-12-14 2018-10-05 Additives for hydraulic compositions
PCT/JP2018/037437 WO2019116694A1 (en) 2017-12-14 2018-10-05 Additive for water-curable composition
KR1020207016304A KR102628442B1 (en) 2017-12-14 2018-10-05 Additives for hydraulic compositions
CN201880079537.8A CN111448172B (en) 2017-12-14 2018-10-05 Additive for hydraulic composition
TW107137060A TW201930227A (en) 2017-12-14 2018-10-19 Additive for water-curable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017239965A JP7037170B2 (en) 2017-12-14 2017-12-14 Additives for hydraulic compositions

Publications (2)

Publication Number Publication Date
JP2019104665A JP2019104665A (en) 2019-06-27
JP7037170B2 true JP7037170B2 (en) 2022-03-16

Family

ID=66819145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017239965A Active JP7037170B2 (en) 2017-12-14 2017-12-14 Additives for hydraulic compositions

Country Status (5)

Country Link
JP (1) JP7037170B2 (en)
KR (1) KR102628442B1 (en)
CN (1) CN111448172B (en)
TW (1) TW201930227A (en)
WO (1) WO2019116694A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018677A (en) 2011-07-11 2013-01-31 Kao Corp Method of producing hydraulic powder
CN103539376A (en) 2012-07-12 2014-01-29 宁波市中达利建材科技有限公司 Chloride-free cement grinding aid
US20140150694A1 (en) 2011-05-26 2014-06-05 Sika Technology Ag Dialkanolamines as additives for grinding solids
JP2015508384A (en) 2012-01-13 2015-03-19 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH Dispersant for inorganic particles
JP2015526371A (en) 2012-06-25 2015-09-10 ダウ グローバル テクノロジーズ エルエルシー Cement grinding aid composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347428B2 (en) * 1993-10-26 2002-11-20 住友大阪セメント株式会社 Manufacturing method of high fluidity cement
CN1934049A (en) * 2004-03-16 2007-03-21 株式会社日本触媒 Additive for hydraulic material
JP5306011B2 (en) 2008-03-26 2013-10-02 花王株式会社 Early strength agent for hydraulic composition
KR100893585B1 (en) * 2008-07-07 2009-04-17 명흥식 Cement aid for early strength enhancement
JP5798395B2 (en) * 2010-07-16 2015-10-21 花王株式会社 Method for producing hydraulic powder
JP5473997B2 (en) 2011-07-06 2014-04-16 株式会社日本触媒 Cement admixture
KR101668809B1 (en) * 2013-12-31 2016-10-24 한국화학연구원 Cement clinker grinding aid composition comprising the cement clinker surface active compounds having improved water solubility
KR20150093938A (en) * 2014-02-10 2015-08-19 한국화학연구원 Composition of Cement Clinker Grinding Aid
KR101713828B1 (en) * 2014-11-04 2017-03-10 (주)에스엠테크 Cementless promotion-type admixture, and cementless composition comprising it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140150694A1 (en) 2011-05-26 2014-06-05 Sika Technology Ag Dialkanolamines as additives for grinding solids
JP2013018677A (en) 2011-07-11 2013-01-31 Kao Corp Method of producing hydraulic powder
JP2015508384A (en) 2012-01-13 2015-03-19 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH Dispersant for inorganic particles
JP2015526371A (en) 2012-06-25 2015-09-10 ダウ グローバル テクノロジーズ エルエルシー Cement grinding aid composition
CN103539376A (en) 2012-07-12 2014-01-29 宁波市中达利建材科技有限公司 Chloride-free cement grinding aid

Also Published As

Publication number Publication date
KR20200097708A (en) 2020-08-19
JP2019104665A (en) 2019-06-27
TW201930227A (en) 2019-08-01
WO2019116694A1 (en) 2019-06-20
RU2020123076A (en) 2022-01-14
KR102628442B1 (en) 2024-01-23
CN111448172B (en) 2022-08-16
CN111448172A (en) 2020-07-24
RU2020123076A3 (en) 2022-01-14

Similar Documents

Publication Publication Date Title
JP6359772B2 (en) Cement additive, cement composition, and raw material for cement additive
JP6001357B2 (en) Hydraulic composition
JP5632108B2 (en) Hydraulic composition
JP6054736B2 (en) Hydraulic composition
JP6016615B2 (en) Hydraulic composition
JP7037170B2 (en) Additives for hydraulic compositions
JP7055338B2 (en) Additives for hydraulic compositions, and hydraulic compositions
JP7020668B2 (en) Additives for hydraulic composition and method for preparing hydraulic composition
RU2772920C2 (en) Additives for hydraulic compositions
JP6564307B2 (en) Early strength agent for hydraulic composition
JP6416837B2 (en) Hydraulic composition for centrifugal molding
JP6564293B2 (en) Early strength agent for hydraulic composition
JP5965305B2 (en) Hydraulic composition
JP2015124104A (en) Method for producing hardened body of hydraulic composition
JP7488732B2 (en) Additives for hydraulic compositions
JP6401986B2 (en) Hydraulic composition
JP2016108208A (en) Hydraulic composition
JP6200315B2 (en) Additive composition for hydraulic composition
JP2014210683A (en) Hydraulic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220225

R150 Certificate of patent or registration of utility model

Ref document number: 7037170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150