JP7036301B1 - Rotary press-fit steel pipe pile - Google Patents

Rotary press-fit steel pipe pile Download PDF

Info

Publication number
JP7036301B1
JP7036301B1 JP2022501369A JP2022501369A JP7036301B1 JP 7036301 B1 JP7036301 B1 JP 7036301B1 JP 2022501369 A JP2022501369 A JP 2022501369A JP 2022501369 A JP2022501369 A JP 2022501369A JP 7036301 B1 JP7036301 B1 JP 7036301B1
Authority
JP
Japan
Prior art keywords
steel pipe
pipe pile
tip
blade
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022501369A
Other languages
Japanese (ja)
Other versions
JPWO2021235450A1 (en
JPWO2021235450A5 (en
Inventor
正道 澤石
仁 大木
孝佳 福村
智之 東海林
武志 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2021235450A1 publication Critical patent/JPWO2021235450A1/ja
Application granted granted Critical
Publication of JP7036301B1 publication Critical patent/JP7036301B1/en
Publication of JPWO2021235450A5 publication Critical patent/JPWO2021235450A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/56Screw piles

Abstract

地中へのスムーズな貫入性と支持力の発現を妨げることなく、貫入時の抵抗による破損を抑制することが可能な回転圧入鋼管杭を提供する。回転圧入鋼管杭10は、先端に螺旋状羽根12を備え、螺旋状羽根12が回転しながら掘削することで地中に回転圧入される羽根付き鋼管杭であって、鋼管杭外径を直径とする円の面積に対して0.1倍以上から0.9倍以下の開口部を設けた螺旋状羽根12が、側面から見て非対称な先端形状を有する鋼管杭先端部13に同心円状に溶接固定され、鋼管杭10の内外に螺旋状羽根12が張り出されている。Provided is a rotary press-fit steel pipe pile capable of suppressing damage due to resistance during penetration without hindering smooth penetration into the ground and development of bearing capacity. The rotary press-fit steel pipe pile 10 is a steel pipe pile with blades that is provided with a spiral blade 12 at the tip and is rotationally press-fitted into the ground by excavating the spiral blade 12 while rotating, and the outer diameter of the steel pipe pile is defined as the diameter. The spiral blade 12 having an opening of 0.1 times or more and 0.9 times or less with respect to the area of the circle is welded concentrically to the tip portion 13 of the steel pipe pile having an asymmetric tip shape when viewed from the side surface. It is fixed, and the spiral blade 12 is projected inside and outside the steel pipe pile 10.

Description

本発明は、回転圧入鋼管杭に関する。 The present invention relates to a rotary press-fit steel pipe pile.

従来より、鋼管の先端に螺旋状の羽根を取り付けた回転圧入鋼管杭に回転力を与え、地盤に貫入させる工法が公知である(例えば、特許文献1を参照)。 Conventionally, there has been known a method of applying a rotational force to a rotary press-fit steel pipe pile in which a spiral blade is attached to the tip of a steel pipe to penetrate the ground (see, for example, Patent Document 1).

特開2001-193063号公報Japanese Unexamined Patent Publication No. 2001-193063

回転圧入鋼管杭は、施工機械により回転力が作用されることで、地盤に貫入される。具体的に、回転圧入鋼管杭を地上から回転させることで、螺旋状の羽根の先端で土砂を掘削し、羽根の上面で掘削した土砂を羽根の回転に伴って上方に押し上げ、地盤の反力によって生じる推進力により地中に貫入される。 The rotary press-fit steel pipe pile is penetrated into the ground by the rotational force applied by the construction machine. Specifically, by rotating the rotary press-fit steel pipe pile from the ground, earth and sand are excavated at the tip of the spiral blade, and the earth and sand excavated on the upper surface of the blade is pushed upward as the blade rotates, and the reaction force of the ground. It penetrates into the ground by the propulsive force generated by.

回転圧入鋼管杭が地中に貫入される際には、貫入抵抗により、鋼管杭を構成する鋼管に対して回転方向と逆向きの回転モーメントが作用する。この回転モーメントが増大すると、鋼管が破断する場合がある。特に、地中の岩盤層などの固い地盤に回転圧入鋼管杭が貫入する場合、貫入抵抗が増大し、鋼管に対して大きな回転モーメントが作用する。この場合、鋼管が破断する蓋然性が高くなる。 When a rotary press-fit steel pipe pile is penetrated into the ground, a rotational moment in the direction opposite to the rotational direction acts on the steel pipe constituting the steel pipe pile due to the penetration resistance. When this rotational moment increases, the steel pipe may break. In particular, when a rotary press-fit steel pipe pile penetrates into hard ground such as a bedrock layer in the ground, the penetration resistance increases and a large rotational moment acts on the steel pipe. In this case, the probability that the steel pipe will break is high.

本発明者らが繰り返し実験を行って実証した結果、鋼管の先端における羽根との接合部に沿って、鋼管の回転方向の始端から亀裂が入り、亀裂が回転方向に進行することで亀裂が伝播し、亀裂に沿って最終的に鋼管が破断し、鋼管と羽根が分離することが確認された。 As a result of repeated experiments and demonstrations by the present inventors, cracks are formed from the starting end of the steel pipe in the rotational direction along the joint with the blade at the tip of the steel pipe, and the crack propagates as the crack progresses in the rotational direction. It was confirmed that the steel pipe finally broke along the crack and the steel pipe and the blade were separated.

一方、上記特許文献1に記載された回転圧入鋼管杭は、杭先端を支持層(れき、砂、粘性土等の地盤であって、例えばN値50以上の層をいう。なお、N値とは、標準貫入試験のN値である。)に到達させる際の施工性と、支持力の確保を課題として挙げ、これらの課題を解決するための構成を挙げているものの、貫入抵抗により鋼管が破断することに対しては何ら対策が成されていなかった。 On the other hand, in the rotary press-fit steel pipe pile described in Patent Document 1, the tip of the pile is a support layer (ground such as debris, sand, cohesive soil, etc., and refers to, for example, a layer having an N value of 50 or more. Is the N value of the standard penetration test.) The issues are workability and securing of bearing capacity when reaching the standard penetration test. No measures were taken against the breakage.

そこで、本発明は、地中へのスムーズな貫入性と支持力の発現を妨げることなく、貫入時の抵抗による破損を抑制することが可能な回転圧入鋼管杭を提供することを目的とする。 Therefore, an object of the present invention is to provide a rotary press-fit steel pipe pile capable of suppressing damage due to resistance during penetration without hindering smooth penetration into the ground and development of bearing capacity.

本開示の要旨は以下のとおりである。 The gist of this disclosure is as follows.

(1)先端に羽根を備え、前記羽根が回転しながら掘削することで地中に回転圧入される羽根付き鋼管杭であって、
鋼管杭外径を直径とする円の面積に対して0.1倍以上0.9倍以下の開口部を設けた前記羽根が、側面から見て非対称な先端形状を有する鋼管杭先端部に同心円状に溶接固定され、前記鋼管杭の内外に前記羽根が張り出された、回転圧入鋼管杭。
(1) A steel pipe pile with blades, which is provided with blades at the tip and is rotationally press-fitted into the ground by excavating while rotating the blades.
The blade provided with an opening of 0.1 times or more and 0.9 times or less the area of the circle whose diameter is the outer diameter of the steel pipe pile is concentric with the tip of the steel pipe pile having an asymmetric tip shape when viewed from the side surface. A rotary press-fit steel pipe pile that is welded and fixed in a shape and the blades overhang inside and outside the steel pipe pile.

(2)前記鋼管杭の肉厚は、前記鋼管杭の軸方向において少なくとも前記鋼管杭先端部から鋼管杭外径に相当する距離以上の所定範囲では、当該所定範囲外よりも厚肉とされた、上記(1)に記載の回転圧入鋼管杭。 (2) The wall thickness of the steel pipe pile is thicker than the outside of the predetermined range in a predetermined range of at least a distance corresponding to the outer diameter of the steel pipe pile from the tip of the steel pipe pile in the axial direction of the steel pipe pile. , The rotary press-fit steel pipe pile according to (1) above.

(3)前記所定範囲の肉厚に対する前記所定範囲外の肉厚の比が0.5以上であり、且つ鋼管杭外径に対する前記所定範囲の肉厚の比が0.02以上である、上記(2)に記載の回転圧入鋼管杭。 (3) The ratio of the wall thickness outside the predetermined range to the wall thickness within the predetermined range is 0.5 or more, and the ratio of the wall thickness within the predetermined range to the outer diameter of the steel pipe pile is 0.02 or more. The rotary press-fit steel pipe pile according to (2).

(4)前記羽根は、螺旋状羽根であり、螺旋状に切断された前記鋼管杭先端部に溶接固定される、上記(1)~(3)のいずれか1項に記載の回転圧入鋼管杭。 (4) The rotary press-fit steel pipe pile according to any one of (1) to (3) above, wherein the blade is a spiral blade and is welded and fixed to the tip of the steel pipe pile cut in a spiral shape. ..

(5)前記鋼管杭先端部が螺旋状に切断され、前記螺旋状に切断された前記鋼管杭先端部の始端と終端の段差部分は、円弧、任意の曲線、または円弧若しくは任意の曲線と直線との組み合わせ、からなる形状とされ、前記螺旋状の前記鋼管杭先端部を平面に展開した場合に、前記鋼管杭外周の周長を底辺とし、前記螺旋状のピッチを高さとし、前記螺旋状の前記鋼管杭先端部を斜辺とする直角三角形の面積に対して、前記直角三角形の高さを底辺とし、前記終端を頂点とする三角形の面積が、0.25倍以下である、上記(1)~(4)のいずれかに記載の回転圧入鋼管杭。 (5) The tip of the steel pipe pile is cut in a spiral shape, and the stepped portion between the start end and the end of the tip portion of the steel pipe pile cut in a spiral shape is an arc, an arbitrary curve, or an arc or a straight line with an arbitrary curve. When the tip of the spiral steel pipe pile is developed in a plane, the circumference of the outer circumference of the steel pipe pile is the base, the pitch of the spiral is the height, and the spiral shape is formed. The area of the triangle whose base is the height of the right triangle and whose apex is the end is 0.25 times or less the area of the right triangle whose diagonal is the tip of the steel pipe pile. )-(4). The rotary press-fit steel pipe pile according to any one of (4).

(6)前記鋼管杭先端部が螺旋状に切断され、前記螺旋状に切断された前記鋼管杭先端部の始端と終端の段差部分は円弧状に形成され、前記円弧の半径Rが下記(1)式で規定される、上記(1)~(5)のいずれかに記載の回転圧入鋼管杭。
R=k×P ・・・(1)
但し、(1)式において、Pは螺旋状のピッチ、kは所定の係数(0.8≦k≦1.5)である。
(6) The tip of the steel pipe pile is cut in a spiral shape, and the stepped portion between the start end and the end of the tip of the steel pipe pile cut in a spiral shape is formed in an arc shape, and the radius R of the arc is as follows (1). ), The rotary press-fit steel pipe pile according to any one of (1) to (5) above.
R = k × P ・ ・ ・ (1)
However, in the equation (1), P is a spiral pitch and k is a predetermined coefficient (0.8 ≦ k ≦ 1.5).

(7)前記回転圧入における回転方向の始端において、
前記羽根と前記鋼管杭先端部とを溶接するビードが前記鋼管杭の外周から内周に連なるように形成された、上記(1)~(6)のいずれかに記載の回転圧入鋼管杭。
(7) At the beginning of the rotational press-fitting in the rotational direction,
The rotary press-fit steel pipe pile according to any one of (1) to (6) above, wherein the bead for welding the blade and the tip of the steel pipe pile is formed so as to be continuous from the outer circumference to the inner circumference of the steel pipe pile.

(8)前記回転圧入における回転方向の始端において、
前記羽根と前記鋼管杭先端部とを溶接するビードの前記回転方向に沿った断面形状が、前記羽根の表面に対して鋭角に交わる斜面をなす、上記(1)~(7)のいずれかに記載の回転圧入鋼管杭。
(8) At the beginning of the rotational press-fitting in the rotational direction,
Any of the above (1) to (7), wherein the cross-sectional shape of the bead for welding the blade and the tip of the steel pipe pile forms an acute-angled slope with respect to the surface of the blade. Described rotary press-fit steel pipe pile.

(9)前記鋼管杭先端部を下にして直立した状態で、前記羽根は、内縁よりも外縁が下、あるいは内縁と外縁が同等の高さに位置するように配置された、上記(1)~(8)のいずれかに記載の回転圧入鋼管杭。 (9) The blade is arranged so that the outer edge is lower than the inner edge or the inner edge and the outer edge are located at the same height in an upright state with the tip of the steel pipe pile facing down. The rotary press-fit steel pipe pile according to any one of (8).

本発明によれば、地中へのスムーズな貫入性と支持力の発現を妨げることなく、貫入時の抵抗による破損を抑制することができる。 According to the present invention, it is possible to suppress damage due to resistance during penetration without hindering smooth penetration into the ground and development of bearing capacity.

一実施形態に係る鋼管杭を示す図である。It is a figure which shows the steel pipe pile which concerns on one Embodiment. 一実施形態に係る鋼管杭を示す図である。It is a figure which shows the steel pipe pile which concerns on one Embodiment. 一実施形態に係る鋼管杭を示す図である。It is a figure which shows the steel pipe pile which concerns on one Embodiment. 一実施形態に係る鋼管杭を示す図である。It is a figure which shows the steel pipe pile which concerns on one Embodiment. 一実施形態に係る鋼管杭を示す図である。It is a figure which shows the steel pipe pile which concerns on one Embodiment. 貫入時に鋼管杭にかかる応力の分布の解析結果を示す特性図である。It is a characteristic diagram which shows the analysis result of the distribution of the stress applied to the steel pipe pile at the time of penetration. 貫入時に鋼管杭にかかる応力の分布の解析結果を示す特性図である。It is a characteristic diagram which shows the analysis result of the distribution of the stress applied to the steel pipe pile at the time of penetration. 貫入時に鋼管杭にかかる応力の分布の解析結果を示す特性図である。It is a characteristic diagram which shows the analysis result of the distribution of the stress applied to the steel pipe pile at the time of penetration. 貫入時に鋼管杭にかかる応力の分布の解析結果を示す特性図である。It is a characteristic diagram which shows the analysis result of the distribution of the stress applied to the steel pipe pile at the time of penetration. 本実施形態の比較例に係る鋼管杭を示す図である。It is a figure which shows the steel pipe pile which concerns on the comparative example of this embodiment. 段差部分の近傍で鋼管杭を展開した展開図である。It is a development view which developed the steel pipe pile in the vicinity of a step portion. 図5に示した平面図において、領域A1を拡大して示す図である。In the plan view shown in FIG. 5, it is an enlarged view which shows the region A1. 図3に示した始端の近傍を拡大して示す図である。FIG. 3 is an enlarged view showing the vicinity of the starting end shown in FIG. 図9の矢印A3方向から始端の近傍を見た状態を示す図である。9 is a diagram showing a state in which the vicinity of the start end is viewed from the direction of arrow A3 in FIG. 図2の螺旋状羽根の近傍を拡大して示す縦断面図である。FIG. 3 is an enlarged vertical cross-sectional view showing the vicinity of the spiral blade of FIG. 2. 段差部分の形状を説明するための模式図である。It is a schematic diagram for demonstrating the shape of a step portion. 段差部分の形状を説明するための模式図である。It is a schematic diagram for demonstrating the shape of a step portion. 非対称な先端形状を有する鋼管杭先端部の例を示す側面図である。It is a side view which shows the example of the steel pipe pile tip part having an asymmetric tip shape. 鋼管杭の肉厚が厚肉から薄肉に変化する境界の近傍を詳細に示す断面図である。It is sectional drawing which shows in detail the vicinity of the boundary where the wall thickness of a steel pipe pile changes from thick wall to thin wall. 鋼管杭の肉厚が厚肉から薄肉に変化する境界の近傍を詳細に示す断面図である。It is sectional drawing which shows in detail the vicinity of the boundary where the wall thickness of a steel pipe pile changes from thick wall to thin wall.

まず、図1~図5を参照して、本発明の一実施形態に係る回転圧入鋼管杭10の構成について説明する。図1~図5は、一実施形態に係る鋼管杭10を示す図である。具体的に、図1は鋼管杭10の正面図、図2は鋼管杭10の縦断面図、図3は鋼管杭10の上方斜視図、図4は鋼管杭10の下方斜視図、図5は鋼管杭10の平面図である。なお、図1~図5では、後述するビード30の図示は省略している。 First, the configuration of the rotary press-fit steel pipe pile 10 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 5. 1 to 5 are views showing a steel pipe pile 10 according to an embodiment. Specifically, FIG. 1 is a front view of the steel pipe pile 10, FIG. 2 is a vertical sectional view of the steel pipe pile 10, FIG. 3 is an upward perspective view of the steel pipe pile 10, FIG. 4 is a downward perspective view of the steel pipe pile 10, and FIG. It is a top view of the steel pipe pile 10. In FIGS. 1 to 5, the bead 30 described later is not shown.

この鋼管杭10は、先端が開端であり、その先端には、内縁20と外縁21が鋼管杭10の内側と外側に所定寸法張り出した螺旋状羽根12を備えている。また、鋼管杭先端部13は螺旋状に切断されており、その始端15と終端14の段差部分16を円弧状に形成してある。 The tip of the steel pipe pile 10 is an open end, and the tip thereof is provided with a spiral blade 12 whose inner edge 20 and outer edge 21 project to the inside and outside of the steel pipe pile 10 by predetermined dimensions. Further, the tip portion 13 of the steel pipe pile is cut in a spiral shape, and the stepped portion 16 between the start end 15 and the end 14 is formed in an arc shape.

螺旋状羽根12の外径(D)は、鋼管杭外径(D)の略1.2~3倍の外径で、螺旋状羽根12の内径(D)は、鋼管杭内径(D)の略0.2~0.3倍の内径とし、環状鋼板(ドーナツ状鋼板)を用いて当該螺旋状羽根12が構成される。つまり、この環状鋼板を半径方向に1箇所切断し、一方を円周方向始端18、他方を円周方向終端17として、螺旋状に切断した鋼管杭先端部13に同心円状に溶接固定し、この螺旋状羽根12の内縁20と外縁21を鋼管杭先端部13の内外に張り出して構成する。円周方向始端18には掘削歯24が設けられている。The outer diameter (D 2 ) of the spiral blade 12 is approximately 1.2 to 3 times the outer diameter of the steel pipe pile outer diameter (D), and the inner diameter (D 3 ) of the spiral blade 12 is the inner diameter of the steel pipe pile (D). The spiral blade 12 is configured by using an annular steel plate (doughnut-shaped steel plate) having an inner diameter approximately 0.2 to 0.3 times that of 1 ). That is, this annular steel plate is cut at one point in the radial direction, one is set as the circumferential start end 18 and the other is the circumferential end 17, and is welded and fixed concentrically to the spirally cut steel pipe pile tip portion 13. The inner edge 20 and the outer edge 21 of the spiral blade 12 are formed so as to project inside and outside the steel pipe pile tip portion 13. An excavation tooth 24 is provided at the start end 18 in the circumferential direction.

前述したように、鋼管杭10は、地中への貫入時に生じる貫入抵抗により、破断する場合がある。本発明者らは、鋼管杭10が破断する原因を究明するため、貫入時に鋼管杭10にかかる応力の分布を有限要素法(FEM)により解析した。図6A~図6Dは、貫入時に鋼管杭10にかかる応力の分布の解析結果を示す特性図である。図6A~図6Dは、後述する厚肉部を設けておらず、鋼管杭10の肉厚が全域で一定である場合の解析結果を示している。図6A及び図6Bは、ねじり角6.15°の時点での周方向の応力を示しており、図6Aは鋼管杭10の外面の応力を、図6Bは鋼管杭10の内面の応力を示している。また、図6C及び図6Dは、ねじり角6.15°の時点での鋼管杭10の軸方向の応力を示しており、図6Cは鋼管杭10の外面の応力を、図6Dは鋼管杭10の内面の応力を示している。図6A~図6Dでは、ドットの濃度が高いほど応力が高いことを示している。なお、ねじり角は、円筒において、下面を固定した時に上面の円の初期位置にある半径と、トルクが作用することで回転移動した半径とのなす角である。 As described above, the steel pipe pile 10 may break due to the penetration resistance generated at the time of penetration into the ground. In order to investigate the cause of the breakage of the steel pipe pile 10, the present inventors analyzed the distribution of stress applied to the steel pipe pile 10 at the time of penetration by the finite element method (FEM). 6A to 6D are characteristic diagrams showing the analysis results of the stress distribution applied to the steel pipe pile 10 at the time of penetration. 6A to 6D show analysis results when the thick portion described later is not provided and the wall thickness of the steel pipe pile 10 is constant over the entire area. 6A and 6B show the stress in the circumferential direction at the torsion angle of 6.15 °, FIG. 6A shows the stress on the outer surface of the steel pipe pile 10, and FIG. 6B shows the stress on the inner surface of the steel pipe pile 10. ing. 6C and 6D show the axial stress of the steel pipe pile 10 at the torsion angle of 6.15 °, FIG. 6C shows the stress on the outer surface of the steel pipe pile 10, and FIG. 6D shows the stress of the outer surface of the steel pipe pile 10. Shows the stress on the inner surface of. 6A to 6D show that the higher the density of dots, the higher the stress. The torsion angle is an angle formed by the radius at the initial position of the circle on the upper surface when the lower surface is fixed in the cylinder and the radius rotated by the action of torque.

図6A~図6Dから判るように、貫入時に鋼管杭10に発生する応力は、鋼管杭10の先端から上方へ所定距離Lの範囲で高くなっている。所定距離Lの範囲よりも上側では、鋼管杭10に発生する応力は許容範囲内である。ここで、所定距離Lは、鋼管の直径程度である。 As can be seen from FIGS. 6A to 6D, the stress generated in the steel pipe pile 10 at the time of penetration is high within a predetermined distance L upward from the tip of the steel pipe pile 10. Above the range of the predetermined distance L, the stress generated in the steel pipe pile 10 is within the allowable range. Here, the predetermined distance L is about the diameter of the steel pipe.

また、特に、螺旋状羽根12と接合される鋼管杭先端部13において、最初に地中に入る始端15と最後に地中に入る終端14の位置、および段差部分16の近傍で応力が高くなっている。 Further, in particular, in the steel pipe pile tip portion 13 joined to the spiral blade 12, the stress becomes high near the positions of the start end 15 that first enters the ground, the end 14 that finally enters the ground, and the step portion 16. ing.

図7は、本実施形態の比較例に係る、後述する(1)~(6)の改良がされていない鋼管杭10’を示す図であって、地中に貫入する際に亀裂32が発生する様子を示している。比較例に係る鋼管杭10’では、地中に貫入する際の貫入抵抗が大きいと、亀裂32が回転方向に進行して鋼管杭10’が破断する。本発明者らが繰り返し実験を行って実証した結果によれば、亀裂32は、最も応力の高い始端15から始まり、回転方向に沿って伝播する。亀裂32は最終的に鋼管杭10を一周に渡って伝播し、これによって鋼管杭10が破断する。これにより、鋼管杭10と螺旋状羽根12とが分離してしまう。最初に亀裂32が入る位置は、図6に示す応力分布の解析結果において、特に応力が高い始端15の位置に対応している。 FIG. 7 is a diagram showing a steel pipe pile 10'without improvement of (1) to (6) described later according to a comparative example of the present embodiment, in which a crack 32 is generated when penetrating into the ground. It shows how to do it. In the steel pipe pile 10'according to the comparative example, if the penetration resistance at the time of penetrating into the ground is large, the crack 32 advances in the rotational direction and the steel pipe pile 10'breaks. According to the results demonstrated by the present inventors through repeated experiments, the crack 32 starts from the most stressful starting end 15 and propagates along the rotation direction. The crack 32 finally propagates around the steel pipe pile 10 so that the steel pipe pile 10 breaks. As a result, the steel pipe pile 10 and the spiral blade 12 are separated from each other. The position where the crack 32 first enters corresponds to the position of the starting end 15 where the stress is particularly high in the analysis result of the stress distribution shown in FIG.

このため、図6A~図6Dに示した応力分布の解析結果に基づいて、応力の高い箇所の応力が低減されるように対策を施して鋼管杭10の形状、構造を定めることで、貫入時に破断が生じることが抑制された鋼管杭10を構成することが可能である。 Therefore, based on the analysis results of the stress distribution shown in FIGS. 6A to 6D, measures are taken to reduce the stress in the high stress area, and the shape and structure of the steel pipe pile 10 are determined at the time of penetration. It is possible to construct a steel pipe pile 10 in which breakage is suppressed.

本実施形態では、比較例に係る鋼管杭10’に対して、貫入時に破断が生じることを抑制するため、4つの対策を施している。これらの対策により、図7に示すような亀裂32の発生が抑制される。更に、鋼管杭10の貫入後の支持機能を高めるため、対策を施している。以下、改良点のそれぞれについて説明する。 In the present embodiment, four measures are taken for the steel pipe pile 10'according to the comparative example in order to prevent breakage during penetration. By these measures, the generation of the crack 32 as shown in FIG. 7 is suppressed. Further, measures are taken to enhance the support function after the steel pipe pile 10 is penetrated. Each of the improvements will be described below.

(1)鋼管厚肉部
図6A~図6Dに示した応力解析結果によれば、貫入時に鋼管杭10に発生する応力は、鋼管杭10の先端から上方へ所定距離Lの範囲で特に高くなっている。このため、図2の縦断面図に示すように、鋼管杭10の肉厚は、鋼管杭10の軸方向において少なくとも鋼管杭先端部13から鋼管杭外径D程度に相当する距離(所定距離L)以上の所定範囲では、当該所定範囲外よりも厚肉とされている。一例として、鋼管杭10の杭径が1000[mm]の場合、鋼管杭10の肉厚は、所定距離Lの範囲ではt=22[mm]であり、所定距離Lの範囲外ではt=13[mm]である。上述したように、応力の高い所定距離Lは鋼管杭10の直径程度であるため、鋼管杭10の先端から鋼管杭10の直径程度に相当する距離において、鋼管杭10が厚肉とされている。ただし、この所定距離Lは、一般的に支持層とされるN値50以上の硬質な地盤へ貫入する場合の破損防止を条件としたものであるため、例えば鋼管杭10の上部構造物が比較的軽量であり、例えばN値15を支持層とするような場合には距離Lを短縮することもあり得る。なお、応力を低減する観点から鋼管杭10の全体に渡って厚肉にすることも考えられるが、鋼管杭10の重量が増加し、製造コストも高くなることから、所定距離Lの範囲外では鋼管杭10を薄肉とすることが好ましい。
(1) Steel pipe thick portion According to the stress analysis results shown in FIGS. 6A to 6D, the stress generated in the steel pipe pile 10 at the time of penetration becomes particularly high within a predetermined distance L from the tip of the steel pipe pile 10 upward. ing. Therefore, as shown in the vertical sectional view of FIG. 2, the wall thickness of the steel pipe pile 10 is a distance (predetermined distance L) corresponding to at least the outer diameter D of the steel pipe pile from the tip portion 13 of the steel pipe pile 10 in the axial direction of the steel pipe pile 10. ) In the above predetermined range, the wall thickness is thicker than that outside the predetermined range. As an example, when the pile diameter of the steel pipe pile 10 is 1000 [mm], the wall thickness of the steel pipe pile 10 is t 1 = 22 [mm] in the range of the predetermined distance L, and t 2 outside the range of the predetermined distance L. = 13 [mm]. As described above, since the predetermined distance L with high stress is about the diameter of the steel pipe pile 10, the steel pipe pile 10 is thickened at a distance corresponding to about the diameter of the steel pipe pile 10 from the tip of the steel pipe pile 10. .. However, since this predetermined distance L is a condition of preventing damage when penetrating into hard ground having an N value of 50 or more, which is generally regarded as a support layer, for example, the superstructure of the steel pipe pile 10 is compared. It is lightweight, and the distance L may be shortened when, for example, the N value 15 is used as the support layer. From the viewpoint of reducing stress, it is conceivable to increase the thickness of the entire steel pipe pile 10, but since the weight of the steel pipe pile 10 increases and the manufacturing cost also increases, it is outside the range of the predetermined distance L. It is preferable that the steel pipe pile 10 is thin.

肉厚が厚肉とされた所定距離Lの部分は、短管として構成されていてもよく、所定距離Lよりも上側の長管とこの短管とが溶接により接合されていてもよい。一方、肉厚が厚肉とされた所定距離Lの部分と、所定距離Lよりも上側の部分とは、一体の管で構成されていてもよい。 The portion of the predetermined distance L having a thick wall thickness may be configured as a short pipe, or the long pipe above the predetermined distance L and the short pipe may be joined by welding. On the other hand, the portion of the predetermined distance L having a thick wall thickness and the portion above the predetermined distance L may be configured by an integral pipe.

所定距離Lの範囲で鋼管杭10の肉厚を厚肉にすることで、鋼管杭10を回転させて地中に貫入する際に、応力集中が緩和される。したがって、図7に示すような亀裂32の発生が確実に抑制される。 By increasing the wall thickness of the steel pipe pile 10 within a predetermined distance L, stress concentration is relaxed when the steel pipe pile 10 is rotated and penetrates into the ground. Therefore, the generation of the crack 32 as shown in FIG. 7 is surely suppressed.

一方、所定距離Lの範囲で鋼管杭10の肉厚を厚肉にした場合であっても、鋼管杭10の肉厚が厚肉から薄肉に変化する境界19の近傍で応力の集中が発生し、破断が生じる可能性がある。このため、所定距離Lの鋼管杭10の肉厚と所定距離L以外の鋼管杭10の肉厚との比、または所定距離Lの鋼管杭10の肉厚と鋼管杭外径Dとの比を破断が生じない適正な値にしておくことが好ましい。表1は、図2に示した所定距離Lの範囲における鋼管杭10の肉厚t(短管の肉厚)と所定距離Lの範囲外の鋼管杭10の肉厚t(長管の肉厚)との肉厚比(t/t)、および肉厚tと鋼管杭外径Dとの比(t/D)の適正な値を実験とシミュレーションにより検討した結果を示している。表1に示すように肉厚比(t/t)が0.5以上かつ肉厚と杭径との比(t/D)が2%以上であれば、境界19の近傍で鋼管杭10の肉厚が厚肉から薄肉に変化する肉厚変化部で破断を生じさせることなく、一般の支持層(N値≧50)に杭を貫入できることが判明した(表1中の〇印(good))。さらに、肉厚比(t/t)が0.7以上であるか、肉厚比(t/t)が0.5以上かつ肉厚と杭径との比(t/D)が4%以上であれば、鋼管杭10の肉厚が厚肉から薄肉に変化する肉厚変化部で破断を生じさせることなく、不均等な荷重が掛かり易い、れき地盤(N値≧50)の支持層に対しても杭を貫入できることが判明した(表1中の◎印(very good))。On the other hand, even when the wall thickness of the steel pipe pile 10 is increased within the range of the predetermined distance L, stress concentration occurs in the vicinity of the boundary 19 where the wall thickness of the steel pipe pile 10 changes from thick to thin. , Breakage may occur. Therefore, the ratio of the wall thickness of the steel pipe pile 10 having a predetermined distance L to the wall thickness of the steel pipe pile 10 other than the predetermined distance L, or the ratio of the wall thickness of the steel pipe pile 10 having a predetermined distance L to the outer diameter D of the steel pipe pile is set. It is preferable to set an appropriate value that does not cause breakage. Table 1 shows the wall thickness t 1 (thickness of the short pipe) of the steel pipe pile 10 in the range of the predetermined distance L shown in FIG. 2 and the wall thickness t 2 (wall thickness of the long pipe) of the steel pipe pile 10 outside the range of the predetermined distance L. The results of examining the appropriate values of the wall thickness ratio (t 2 / t 1 ) to the wall thickness) and the ratio of the wall thickness t 1 to the outer diameter D of the steel pipe pile (t 1 / D) are shown. ing. As shown in Table 1, if the wall thickness ratio (t 2 / t 1 ) is 0.5 or more and the ratio of wall thickness to pile diameter (t 1 / D) is 2% or more, the steel pipe is near the boundary 19. It was found that the pile can be penetrated into the general support layer (N value ≧ 50) without causing breakage at the wall thickness change portion where the wall thickness of the pile 10 changes from thick to thin (○ mark in Table 1). (good)). Further, the wall thickness ratio (t 2 / t 1 ) is 0.7 or more, or the wall thickness ratio (t 2 / t 1 ) is 0.5 or more, and the ratio of the wall thickness to the pile diameter (t 1 / D). ) Is 4% or more, rubble ground (N value ≧ 50) in which an uneven load is likely to be applied without causing breakage at the wall thickness change portion where the wall thickness of the steel pipe pile 10 changes from thick wall to thin wall. It was found that the pile can be penetrated into the support layer of) (marked with ◎ (very good) in Table 1).

Figure 0007036301000001
Figure 0007036301000001

図16および図17は、鋼管杭10の肉厚が厚肉から薄肉に変化する境界19の近傍を詳細に示す断面図である。図16および図17は、肉厚が厚肉とされた所定距離Lの範囲で鋼管杭10が短管10bとして構成され、所定距離Lの範囲外の長管10aと短管10bとが溶接により接合されて鋼管杭10が構成される場合に、図2に示す領域A4の近傍を拡大して示している。図16に示す例では、長管10aと短管10bの軸方向の端面同士の間が溶接のビード40によって接合され、溶接のビード40は、向かい合う端面同士の間で周方向に沿って形成されている。図16に示す構成例によれば、溶接のビード40が長管10aと短管10bの向かい合う端面同士の間に溶け込んでいるため、貫入時に肉厚変化部が破断することが抑制される。図17に示す例では、図16の構成に加えて、長管10aと短管10bとが接合されている部位の内周に沿って裏当て金42が設けられており、裏当て金42は長管10aと短管10bのどちらか一方の内周面に溶接されている。 16 and 17 are cross-sectional views showing in detail the vicinity of the boundary 19 where the wall thickness of the steel pipe pile 10 changes from thick to thin. In FIGS. 16 and 17, the steel pipe pile 10 is configured as a short pipe 10b within a predetermined distance L in which the wall thickness is thick, and the long pipe 10a and the short pipe 10b outside the range of the predetermined distance L are welded. When the steel pipe pile 10 is joined and formed, the vicinity of the region A4 shown in FIG. 2 is enlarged and shown. In the example shown in FIG. 16, the axial end faces of the long pipe 10a and the short pipe 10b are joined by the weld bead 40, and the weld bead 40 is formed along the circumferential direction between the opposite end faces. ing. According to the configuration example shown in FIG. 16, since the weld bead 40 is melted between the opposite end faces of the long pipe 10a and the short pipe 10b, it is possible to prevent the wall thickness change portion from breaking during penetration. In the example shown in FIG. 17, in addition to the configuration of FIG. 16, a backing metal 42 is provided along the inner circumference of the portion where the long pipe 10a and the short pipe 10b are joined, and the backing metal 42 is provided. It is welded to the inner peripheral surface of either the long pipe 10a or the short pipe 10b.

(2)段差部分の曲率半径
上述したように、螺旋状に切断された鋼管杭先端部13の始端15と終端14の段差部分16は、円弧状に形成されている。図8は、段差部分16の近傍で鋼管杭10を展開した展開図である。また、図9は、図5に示した平面図において、領域A1を拡大して示す図である。
(2) Radius of curvature of the stepped portion As described above, the stepped portion 16 of the start end 15 and the end 14 of the spirally cut steel pipe pile tip portion 13 is formed in an arc shape. FIG. 8 is a developed view of the steel pipe pile 10 developed in the vicinity of the step portion 16. Further, FIG. 9 is an enlarged view of the region A1 in the plan view shown in FIG.

図8に示す展開図において、螺旋状に切断された鋼管杭先端部13の始端15と終端14を接続する段差部分16の円弧の半径Rは、螺旋状羽根12の螺旋状のピッチPを用いて、以下の(1)式で表される。なお、螺旋状のピッチPは、螺旋状の鋼管杭先端部13に沿って鋼管杭10の中心軸を中心に360°回転したときの軸方向の変位に相当する。また、kは所定の係数である。kの値の変化に伴い図9に示す始端15と終端14の間の角度θは変化し、θ=360-360×k[deg]の関係がある。
R=k×P ・・・(1)
In the developed view shown in FIG. 8, the radius R of the arc of the stepped portion 16 connecting the start end 15 and the end end 14 of the spirally cut steel pipe pile tip portion 13 uses the spiral pitch P of the spiral blade 12. It is expressed by the following equation (1). The spiral pitch P corresponds to an axial displacement when rotated by 360 ° about the central axis of the steel pipe pile 10 along the spiral steel pipe pile tip portion 13. Further, k is a predetermined coefficient. As the value of k changes, the angle θ 1 between the start end 15 and the end end 14 shown in FIG. 9 changes, and there is a relationship of θ 1 = 360-360 × k [deg].
R = k × P ・ ・ ・ (1)

本発明者らは、kの値を変化させて図6A~図6Dと同様の応力分布の解析を行い、段差部分16の近傍における応力のレベルを検証し、以下の表2に示す結果を得た。表2において、○印は段差部分16の応力が315N/mm以下であったことを示している。一方、表2において、×印は段差部分16の応力が315N/mm(降伏点)を超え、鋼管に塑性化部分が生じたことを示している。この結果から、kの値は、0.8≦k≦1.5とすることが好適である。The present inventors analyzed the stress distribution in the same manner as in FIGS. 6A to 6D by changing the value of k, verified the stress level in the vicinity of the step portion 16, and obtained the results shown in Table 2 below. rice field. In Table 2, the circles indicate that the stress of the step portion 16 was 315 N / mm 2 or less. On the other hand, in Table 2, the x mark indicates that the stress of the step portion 16 exceeded 315 N / mm 2 (yield point), and a plasticized portion was formed in the steel pipe. From this result, it is preferable that the value of k is 0.8 ≦ k ≦ 1.5.

Figure 0007036301000002
Figure 0007036301000002

以上のように、段差部分16の円弧の曲率半径を螺旋状羽根12のピッチP程度とすることで、破断の起点となり易い始端15、段差部分16および終端14での応力集中が緩和され、貫入抵抗による鋼管杭10の破断が抑制される。 As described above, by setting the radius of curvature of the arc of the step portion 16 to about the pitch P of the spiral blade 12, the stress concentration at the start end 15, the step portion 16 and the end 14, which are likely to be the starting points of fracture, is relaxed and penetrates. Breaking of the steel pipe pile 10 due to resistance is suppressed.

なお、図8の展開図では、段差部分16が円で接続される例を示したが、段差部分16は任意の曲線、または円弧若しくは任意の曲線と直線の組み合わせにより接続されてもよい。 Although the developed view of FIG. 8 shows an example in which the step portion 16 is connected by a circle, the step portion 16 may be connected by an arbitrary curve, an arc, or a combination of an arbitrary curve and a straight line.

図13及び図14は、段差部分16の形状を更に説明するための模式図である。図13は、上段に鋼管杭先端部13を含む鋼管杭10の側面図を示し、下段に段差部分16を含む鋼管杭先端部13を展開した展開図を示している。図13において、羽根12の図示は省略している。また、図14は、段差部分16を含む全周で鋼管杭10を展開した展開図である。 13 and 14 are schematic views for further explaining the shape of the step portion 16. FIG. 13 shows a side view of the steel pipe pile 10 including the steel pipe pile tip portion 13 in the upper stage, and shows a developed view of the steel pipe pile tip portion 13 including the step portion 16 in the lower stage. In FIG. 13, the blade 12 is not shown. Further, FIG. 14 is a developed view of the steel pipe pile 10 developed all around the circumference including the step portion 16.

図13に示すように、鋼管杭10の外径をDpとすると、鋼管杭10の外径の周長はπ・Dpとなる。図14に示すように、螺旋状に切断された鋼管杭先端部13は、展開図上では斜めの直線となり、この直線を斜辺とし、ピッチPを高さとし、周長π・Dpを底辺とする直角三角形が構成される。なお、図14では、ピッチPが外径Dpの0.3倍である場合が示されている。この直角三角形の面積に対して、ピッチP(=0.3Dp)の両端と終端14の3点で構成される三角形の面積は0.25倍以下である。つまり、鋼管杭10の中心軸に対し、始端15と終端14の間の角度は、(π/4)・Dp以下である。鋼管杭10を回転圧入する際に、鋼管杭先端部13の段差部分16でできる側部開口から、鋼管杭10の内部へ土砂が取り込まれるが、直角三角形の面積に対して、ピッチPの両端と終端14の3点で構成される三角形の面積が0.25倍以下であると、直角三角形の底辺から終端14までの距離(段差部分16の鋼管杭10の軸方向の高さ)を十分に確保できるため、側部開口が大きくなり土砂が管内に入り易くなる。これにより、貫入抵抗が低減される。一方、直角三角形の面積に対する、ピッチPの両端と終端14の3点で構成される三角形の面積が0.25倍を超えると、直角三角形の底辺から終端14までの距離が短くなるため、側部開口が小さくなり土砂が管内に入り難くなる。管内に入らない土砂は、鋼管杭10の周辺に押し出さなければならないため、貫入抵抗が大きくなり、その結果、回転圧入が困難となる。 As shown in FIG. 13, assuming that the outer diameter of the steel pipe pile 10 is Dp, the peripheral length of the outer diameter of the steel pipe pile 10 is π · Dp. As shown in FIG. 14, the tip portion 13 of the steel pipe pile cut in a spiral shape becomes a diagonal straight line on the developed view, and this straight line is the hypotenuse, the pitch P is the height, and the peripheral lengths π and Dp are the bases. A right triangle is constructed. Note that FIG. 14 shows a case where the pitch P is 0.3 times the outer diameter Dp. The area of the triangle composed of both ends of the pitch P (= 0.3Dp) and the three points of the terminal 14 is 0.25 times or less with respect to the area of the right triangle. That is, the angle between the start end 15 and the end end 14 with respect to the central axis of the steel pipe pile 10 is (π / 4) · Dp or less. When the steel pipe pile 10 is rotationally press-fitted, earth and sand are taken into the inside of the steel pipe pile 10 from the side opening formed by the step portion 16 of the steel pipe pile tip portion 13, but both ends of the pitch P with respect to the area of the right triangle. If the area of the triangle composed of the three points of the end 14 and the end 14 is 0.25 times or less, the distance from the bottom of the right triangle to the end 14 (the axial height of the steel pipe pile 10 of the step portion 16) is sufficient. Because it can be secured, the side opening becomes large and it becomes easy for earth and sand to enter the pipe. This reduces the penetration resistance. On the other hand, if the area of the triangle composed of both ends of the pitch P and the end 14 exceeds 0.25 times the area of the right triangle, the distance from the base of the right triangle to the end 14 becomes short, so that the side The opening becomes smaller and it becomes difficult for earth and sand to enter the pipe. Since the earth and sand that do not enter the pipe must be extruded around the steel pipe pile 10, the penetration resistance becomes large, and as a result, rotational press-fitting becomes difficult.

段差部分16の形状(円弧、任意の曲線、または円弧若しくは任意の曲線と直線の組み合わせ)は、以上のようにして定義される始端15と終端14を接続するように定められる。ここで、以上のようにして定義された終端14と、始端15とを直線で結んだ場合、側部開口が大きく確保されるので貫入抵抗を低減することはできるが、始端15、終端14、および段差部分16の近傍で応力が集中するため、段差部分16の形状は、円弧、任意の曲線、または円弧若しくは任意の曲線と直線の組み合わせにより始端15と終端14を接続することで規定されることが好ましい。これにより、側部開口を大きく確保して貫入抵抗が低減されるとともに、始端15、終端14、および段差部分16の近傍での応力集中が抑制される。 The shape of the step portion 16 (arc, arbitrary curve, or combination of arc or arbitrary curve and straight line) is defined to connect the start end 15 and the end point 14 defined as described above. Here, when the end point 14 defined as described above and the start end point 15 are connected by a straight line, the penetration resistance can be reduced because a large side opening is secured, but the start end point 15, the end point 14, And because stress is concentrated in the vicinity of the step portion 16, the shape of the step portion 16 is defined by connecting the start end 15 and the end 14 by an arc, an arbitrary curve, or a combination of an arc or an arbitrary curve and a straight line. Is preferable. As a result, a large side opening is secured to reduce the penetration resistance, and stress concentration in the vicinity of the start end 15, the end 14, and the step portion 16 is suppressed.

(3)羽根先端部と鋼管の溶接部の形状
図10は、鋼管杭先端部13の始端15の近傍を拡大して示す図であって、図3に示す領域A2を拡大して示す斜視図である。図11は、図9の矢印A3方向から始端15の近傍を見た状態を示す図である。鋼管杭10は、螺旋状に切断された鋼管杭先端部13が螺旋状羽根12の螺旋状の上面に突き当てられ、螺旋状羽根12に対して溶接により接合されている。
(3) Shape of welded portion between blade tip and steel pipe FIG. 10 is an enlarged view showing the vicinity of the start end 15 of the steel pipe pile tip 13, and is a perspective view showing the region A2 shown in FIG. 3 in an enlarged manner. Is. FIG. 11 is a diagram showing a state in which the vicinity of the start end 15 is viewed from the direction of arrow A3 in FIG. In the steel pipe pile 10, the tip portion 13 of the steel pipe pile cut in a spiral shape is abutted against the spiral upper surface of the spiral blade 12, and is joined to the spiral blade 12 by welding.

図9~図11に示すように、鋼管杭10の外周に沿って溶接のビード30が形成され、鋼管杭10と螺旋状羽根12とが接合される。更に、始端15の近傍においては、まわし溶接により、始端15をU字形に囲むようにビード30が形成される。つまり、ビード30は、始端15の近傍では、鋼管杭10の外周から内周に連なるように形成される。 As shown in FIGS. 9 to 11, a weld bead 30 is formed along the outer periphery of the steel pipe pile 10, and the steel pipe pile 10 and the spiral blade 12 are joined to each other. Further, in the vicinity of the start end 15, a bead 30 is formed so as to surround the start end 15 in a U shape by turning welding. That is, the bead 30 is formed so as to be continuous from the outer circumference to the inner circumference of the steel pipe pile 10 in the vicinity of the starting end 15.

なお、鋼管杭10の内周においては、鋼管杭先端部13と螺旋状羽根12が接合される部位の鋼管杭内周に沿って、図9に示したように螺旋状の裏当て金25が配置されていてもよい。裏当て金25は、例えば鋼管杭10の軸方向の長さが30mm程度、径方向の厚さが10mm程度とされる。鋼管杭10の内周では、まわし溶接が施された部位以外は溶接されていないが、鋼管杭10の外周に沿って形成された溶接のビード30は内周の裏当て金まで到達して溶け込んでいる。裏当て金25は、片側(鋼管杭10の外周側)から溶接をして、ビード30の溶接金属を開先部分に留めるためのものであるため、両側(鋼管杭10の外周側および内周側)から溶接が行われるまわし溶接部には裏当て金25が無くてもよい。すなわち、鋼管杭10の内周において、まわし溶接が施される部分には裏当て金25が設けられていなくてもよい。一方、鋼管杭10の内周において、裏当て金25を始端15の位置まで延ばし、まわし溶接が施される部分にも裏当て金25を設け、まわし溶接で裏当て金25を共に溶かし込んでもよい。 In the inner circumference of the steel pipe pile 10, a spiral backing metal 25 is provided along the inner circumference of the steel pipe pile at the portion where the tip portion 13 of the steel pipe pile and the spiral blade 12 are joined, as shown in FIG. It may be arranged. The backing metal 25 has, for example, a steel pipe pile 10 having an axial length of about 30 mm and a radial thickness of about 10 mm. At the inner circumference of the steel pipe pile 10, welding is not performed except for the portion where the rotation welding is performed, but the weld bead 30 formed along the outer circumference of the steel pipe pile 10 reaches the backing metal of the inner circumference and melts into it. I'm out. Since the backing metal 25 is for welding from one side (outer peripheral side of the steel pipe pile 10) to fasten the weld metal of the bead 30 to the groove portion, both sides (outer peripheral side and inner circumference of the steel pipe pile 10) are used. The backing metal 25 may not be provided in the rotating welded portion where welding is performed from the side). That is, in the inner circumference of the steel pipe pile 10, the backing metal 25 may not be provided at the portion where the rotation welding is performed. On the other hand, even if the backing metal 25 is extended to the position of the starting end 15 on the inner circumference of the steel pipe pile 10, the backing metal 25 is also provided in the portion where the turning welding is performed, and the backing metal 25 is melted together by the turning welding. good.

まわし溶接により、ビード30が始端15の近傍で鋼管杭10の外周から内周に連なるように形成されることで、特に回転圧入における螺旋状羽根12の回転方向の先端(掘削歯24の近傍)において、鋼管杭10の外周から始端15を経て内周に渡って螺旋状羽根12が鋼管杭先端部13に強固に固定されるので、回転圧入時の螺旋状羽根12の掘削歯24の近傍の動きが抑制され、螺旋状羽根12の先端の変形量が少なくなるので、応力が低下する。したがって、螺旋状羽根12または鋼管杭10の破断が抑制される。 By turning welding, the bead 30 is formed so as to be continuous from the outer circumference to the inner circumference of the steel pipe pile 10 in the vicinity of the start end 15, so that the tip of the spiral blade 12 in the rotational direction (near the excavation tooth 24) in particular during rotational press fitting. In the above, since the spiral blade 12 is firmly fixed to the tip portion 13 of the steel pipe pile from the outer periphery of the steel pipe pile 10 through the start end 15 to the inner circumference, the vicinity of the excavation tooth 24 of the spiral blade 12 at the time of rotational press fitting is performed. Since the movement is suppressed and the amount of deformation of the tip of the spiral blade 12 is reduced, the stress is reduced. Therefore, the breakage of the spiral blade 12 or the steel pipe pile 10 is suppressed.

鋼管杭10の内周におけるビード30の終端の位置P1は、図9に示したように、掘削歯24と螺旋状羽根12の内縁20が交わる点P2(または掘削歯24と螺旋状羽根12の外縁21が交わる点P3)と鋼管杭10の中心Oを結ぶ一点鎖線L1よりも始端15と反対側に位置していることが好ましい。回転圧入時には掘削歯24が大きな力を受けるが、鋼管杭10の内周におけるビード30の終端の位置P1が一点鎖線L1よりも始端15と反対側に位置していることで、回転圧入時の螺旋状羽根12の掘削歯24の近傍の動きが抑制され、螺旋状羽根12の先端の変形量が少なくなるので、応力が低下する。したがって、螺旋状羽根12または鋼管杭10の破断が抑制される。 As shown in FIG. 9, the position P1 of the end of the bead 30 on the inner circumference of the steel pipe pile 10 is the point P2 (or the excavated tooth 24 and the spiral blade 12 where the inner edge 20 of the drilled tooth 24 and the spiral blade 12 intersects. It is preferably located on the opposite side of the starting end 15 from the one-dot chain line L1 connecting the point P3) where the outer edges 21 intersect and the center O of the steel pipe pile 10. The excavated tooth 24 receives a large force during rotational press-fitting, but since the end position P1 of the bead 30 on the inner circumference of the steel pipe pile 10 is located on the opposite side of the one-dot chain line L1 to the start end 15, during rotational press-fitting. The movement of the spiral blade 12 in the vicinity of the excavated tooth 24 is suppressed, and the amount of deformation of the tip of the spiral blade 12 is reduced, so that the stress is reduced. Therefore, the breakage of the spiral blade 12 or the steel pipe pile 10 is suppressed.

図9~図11に示すように、始端15では、溶接のビード30が斜面状に形成されている。ビード30は、始端15において、螺旋状羽根12の表面に対して45°以下の角度で交わる斜面として構成されている。より好ましくは、始端15では、溶接のビード30が凹状の斜面として形成されている。換言すれば、始端15において、ビード30は船の舳先形状とされている。このような形状は、例えば、ビード30の形成後、グラインダー等でビード30を切削し、平滑に仕上げることによって形成される。始端15の近傍でビード30を凹状の斜面とし、平滑に仕上げることで、鋼管杭10を貫入する際に、ビード30の斜面によって土砂が掘削されるため、貫入抵抗が抑えられ、より小さい回転トルクで鋼管杭10の貫入が行われる。また、ビード30の斜面によって土砂が掘削されることで、鋼管杭10の貫入時における応力集中が緩和されるため、鋼管杭10に亀裂や破断が生じることが抑制される。 As shown in FIGS. 9 to 11, at the start end 15, the weld bead 30 is formed in a slope shape. The bead 30 is configured as a slope that intersects the surface of the spiral blade 12 at an angle of 45 ° or less at the starting end 15. More preferably, at the start end 15, the weld bead 30 is formed as a concave slope. In other words, at the start end 15, the bead 30 has the shape of the bow of a ship. Such a shape is formed, for example, by forming the bead 30 and then cutting the bead 30 with a grinding machine or the like to finish it smoothly. By making the bead 30 a concave slope in the vicinity of the starting end 15 and finishing it smoothly, when the steel pipe pile 10 is penetrated, the earth and sand are excavated by the slope of the bead 30, so that the penetration resistance is suppressed and the rotational torque is smaller. The steel pipe pile 10 is pierced at. Further, since the earth and sand are excavated by the slope of the bead 30, the stress concentration at the time of penetrating the steel pipe pile 10 is relaxed, so that the steel pipe pile 10 is suppressed from cracking or breaking.

(4)羽根の開口率
図示例において、鋼管杭10の外径(D)を100mm~1600mmとしたとき、螺旋状羽根12の外径(D)を250mm~2400mmの範囲としている。
(4) Aperture ratio of blades In the illustrated example, when the outer diameter (D) of the steel pipe pile 10 is 100 mm to 1600 mm, the outer diameter (D 2 ) of the spiral blade 12 is in the range of 250 mm to 2400 mm.

螺旋状羽根12の内縁20と外縁21を鋼管杭先端部13の内側と外側に張り出して構成することで、その中心部に開口部22が形成されて、回転圧入鋼管杭10は開端杭となる。螺旋状羽根12の外径(D)を、鋼管杭外径(D)の略1.2~3倍とし、鋼管杭10を軸方向から見たときに内縁20の円の開口部22の面積は、鋼管杭10の外径Dを直径とする円の面積に対して0.1倍以上から0.9倍以下とした。鋼管杭10の外径Dを直径とする円の面積に対する開口部22の面積の比率(開口率(%))は、以下の表3に示したように、実験とシミュレーションの結果得られた数値であって、開口率が0.1倍以上0.9倍以下であると、大径杭の地中への円滑な貫入と、鋼管杭10の支持機能確保の両条件を満たすことが可能である。一方、この数値を外れると両条件を円滑に満たすことがむずかしかった。なお、表3に示すように開口率0.1倍(10%)以上0.9倍(90%)以下であれば、通常の地盤(N値≧15)に破損することなく杭を貫入でき、支持機能を確保することができる(表3中の〇印(good))。さらに、開口率20~50%であれば、硬い地盤(N値≧50)の支持層に対しても円滑な貫入と支持機能を確保することができる(表3中の◎印(very good))。By projecting the inner edge 20 and the outer edge 21 of the spiral blade 12 to the inside and the outside of the steel pipe pile tip portion 13, an opening 22 is formed in the central portion thereof, and the rotary press-fit steel pipe pile 10 becomes an open end pile. .. The outer diameter (D 2 ) of the spiral blade 12 is approximately 1.2 to 3 times the outer diameter of the steel pipe pile (D), and the circular opening 22 of the inner edge 20 when the steel pipe pile 10 is viewed from the axial direction. The area was set to 0.1 times or more and 0.9 times or less with respect to the area of the circle whose diameter is the outer diameter D of the steel pipe pile 10. The ratio of the area of the opening 22 (opening ratio (%)) to the area of the circle whose diameter is the outer diameter D of the steel pipe pile 10 is a numerical value obtained as a result of experiments and simulations as shown in Table 3 below. When the opening ratio is 0.1 times or more and 0.9 times or less, it is possible to satisfy both the conditions of smooth penetration of the large-diameter pile into the ground and securing of the support function of the steel pipe pile 10. be. On the other hand, if it deviates from this value, it was difficult to satisfy both conditions smoothly. As shown in Table 3, if the opening ratio is 0.1 times (10%) or more and 0.9 times (90%) or less, the pile can be penetrated without damage to the normal ground (N value ≧ 15). , Support function can be secured (○ mark (good) in Table 3). Furthermore, if the aperture ratio is 20 to 50%, smooth penetration and support function can be ensured even for the support layer of hard ground (N value ≧ 50) (◎ mark (very good) in Table 3). ).

Figure 0007036301000003
Figure 0007036301000003

鋼管杭10の地中への貫入時に、鋼管杭10内に土砂が詰まると、貫入に必要な回転トルクが上昇し、鋼管杭10が破断する可能性が高まる。表3に示したように、貫入抵抗と支持機能はトレードオフの関係にあり、開口率が大きいほど、開口から土砂が鋼管杭10の内部に進入し易くなるため、貫入抵抗は低下する。一方、開口率が大きいほど、平面図上での螺旋状羽根12の面積が小さくなることで鋼管杭10の地盤に対する設置面が小さくなることから安定性が低下し、また螺旋状羽根12の剛性が低下することから、貫入後の鋼管杭10を支持する支持機能が低下する。 If the steel pipe pile 10 is clogged with earth and sand when the steel pipe pile 10 penetrates into the ground, the rotational torque required for the penetration increases and the possibility that the steel pipe pile 10 breaks increases. As shown in Table 3, there is a trade-off relationship between the penetration resistance and the support function, and the larger the opening ratio, the easier it is for earth and sand to enter the inside of the steel pipe pile 10 from the opening, so that the penetration resistance decreases. On the other hand, the larger the aperture ratio, the smaller the area of the spiral blade 12 on the plan view, and the smaller the installation surface of the steel pipe pile 10 with respect to the ground, resulting in lower stability and the rigidity of the spiral blade 12. Therefore, the support function for supporting the steel pipe pile 10 after penetration is reduced.

実験とシミュレーションの結果、開口率を20%~50%の範囲とすることで、硬い地盤(N値≧50)の支持層に対しても上述した両条件を満たすことが可能であるが、30%を超えると羽根に必要な剛性を確保するための肉厚が大きくなるため、開口率20%~30%がより好適であった。より詳細には、開口率が10%以上であれば通常の地盤(N値≧15)に破損することなく杭を貫入でき、開口率が20%以上であれば硬い地盤(N値≧50)の支持層に対しても円滑な貫入が可能であった。また、開口率が90%以下であれば、支持機能として貫入後の杭安定性と羽根剛性の双方を確保することができた(表3中の〇印(good))が、開口率が80%以下であれば、支持機能として貫入後の杭安定性を良好に確保することができ(表3中の◎印(very good))、更に開口率が50%以下であれば、杭安定性と羽根剛性の双方を良好に確保することができた(表3中の◎印(very good))。 As a result of experiments and simulations, by setting the aperture ratio in the range of 20% to 50%, it is possible to satisfy both of the above conditions even for a support layer with hard ground (N value ≥ 50). If it exceeds%, the wall thickness for ensuring the rigidity required for the blade becomes large, so that an aperture ratio of 20% to 30% is more suitable. More specifically, if the opening ratio is 10% or more, the pile can be penetrated into the normal ground (N value ≧ 15) without damage, and if the opening ratio is 20% or more, the hard ground (N value ≧ 50). It was possible to penetrate smoothly into the support layer of. Further, when the aperture ratio was 90% or less, both pile stability and blade rigidity after penetration could be secured as a support function (marked with ◯ (good) in Table 3), but the aperture ratio was 80. If it is% or less, the pile stability after penetration can be ensured well as a support function (◎ mark (very good) in Table 3), and if the opening ratio is 50% or less, the pile stability can be secured. Both the blade rigidity and the blade rigidity were successfully secured (◎ mark (very good) in Table 3).

(5)羽根の形状
図12は、図2の螺旋状羽根12の近傍を拡大して示す縦断面図である。図12に示すように、螺旋状羽根12は、内縁20と外縁21が水平に位置するか、あるいは、内縁20ほど上に位置し、外縁21ほど下に位置するように傾斜している。
(5) Blade Shape FIG. 12 is a vertical cross-sectional view showing the vicinity of the spiral blade 12 of FIG. 2 in an enlarged manner. As shown in FIG. 12, the spiral blade 12 is inclined so that the inner edge 20 and the outer edge 21 are located horizontally, or are located above the inner edge 20 and below the outer edge 21.

鋼管杭10は、地中に貫入された後、鉛直方向下向きに大きな荷重を受ける。螺旋状羽根12の内縁20よりも外縁21が鉛直方向で上の位置にあると、鉛直方向下向きの荷重を受けた際に、螺旋状羽根12の外側が上方向に撓み易くなる。そして、螺旋状羽根12の外側が上方向に撓んでしまうと、鋼管杭10の支持機能が低下してしまう。したがって、内縁20と外縁21が水平に位置するか、あるいは、内縁20ほど上に位置し、外縁21ほど下に位置するように傾斜させることが好適である。 After being penetrated into the ground, the steel pipe pile 10 receives a large load in the vertical direction downward. When the outer edge 21 is located above the inner edge 20 of the spiral blade 12 in the vertical direction, the outer side of the spiral blade 12 tends to bend upward when a load downward in the vertical direction is applied. Then, if the outside of the spiral blade 12 bends upward, the support function of the steel pipe pile 10 deteriorates. Therefore, it is preferable to incline the inner edge 20 and the outer edge 21 so that they are located horizontally or are located above the inner edge 20 and below the outer edge 21.

(6)非対称な先端形状
鋼管杭先端部13は、側面から見て非対称な先端形状を有する。鋼管杭先端部13が対称形状の場合、鋼管杭10を貫入させようとする力と硬質地盤による反力とが釣り合って、貫入が困難となり易い。これに対して、側面から見て非対称な先端形状を有する鋼管杭先端部13を回転させると、鋼管杭10を貫入させようとする力と反力とが釣り合いにくく、貫入性が向上する。
(6) Asymmetric tip shape The steel pipe pile tip portion 13 has an asymmetric tip shape when viewed from the side surface. When the tip portion 13 of the steel pipe pile has a symmetrical shape, the force for penetrating the steel pipe pile 10 and the reaction force due to the hard ground are balanced, and the penetration tends to be difficult. On the other hand, when the steel pipe pile tip portion 13 having an asymmetric tip shape when viewed from the side surface is rotated, the force for penetrating the steel pipe pile 10 and the reaction force are difficult to balance, and the penetrability is improved.

図15は、側面から見て非対称な先端形状を有する鋼管杭先端部13の例を示す側面図である。側面から見て非対称な先端形状を有する鋼管杭先端部13として、段差部分16を有する形状の他、図15に示したような斜面34を有するものが挙げられる。 FIG. 15 is a side view showing an example of a steel pipe pile tip portion 13 having an asymmetric tip shape when viewed from the side surface. Examples of the steel pipe pile tip portion 13 having an asymmetric tip shape when viewed from the side surface include a shape having a step portion 16 and a steel pipe pile having a slope 34 as shown in FIG.

以上説明した実施形態では、鋼管杭10に固定される羽根として螺旋状羽根12を例示したが、鋼管杭10に固定される羽根は螺旋状に限定されるものではない。例えば、羽根は平板から構成されていてもよい。また、螺旋状羽根12が円周方向で段差部分16の1箇所で分断されているものを例示したが、螺旋状羽根12は複数箇所で分断されていてもよい。 In the embodiment described above, the spiral blade 12 is exemplified as the blade fixed to the steel pipe pile 10, but the blade fixed to the steel pipe pile 10 is not limited to the spiral shape. For example, the blade may be composed of a flat plate. Further, although the example in which the spiral blade 12 is divided at one position of the step portion 16 in the circumferential direction is exemplified, the spiral blade 12 may be divided at a plurality of points.

10 回転圧入鋼管杭
12 螺旋状羽根
13 鋼管杭先端部
14 終端
15 始端
16 段差部分
17 円周方向終端
18 円周方向始端
19 境界
20 内縁
21 外縁
22 開口部
25,42 裏当て金
30 ビード
32 亀裂
34 斜面
10 Rotational press-fit steel pipe pile 12 Spiral blade 13 Steel pipe pile tip 14 Termination 15 Starting end 16 Stepped part 17 Circumferential ending 18 Circumferential starting end 19 Boundary 20 Inner edge 21 Outer edge 22 Opening 25, 42 Backing metal 30 Bead 32 Crack 34 slope

Claims (7)

先端に羽根を備え、前記羽根が回転しながら掘削することで地中に回転圧入される羽根付き鋼管杭であって、
鋼管杭外径を直径とする円の面積に対して0.1倍以上0.9倍以下の開口部を設けた前記羽根が、側面から見て非対称な先端形状を有する鋼管杭先端部に同心円状に溶接固定され、前記鋼管杭の内外に前記羽根が張り出され
前記鋼管杭先端部が螺旋状に切断され、前記螺旋状に切断された前記鋼管杭先端部の始端と終端の段差部分は、円弧、任意の曲線、または円弧若しくは任意の曲線と直線との組み合わせ、からなる形状とされ、前記螺旋状の前記鋼管杭先端部を平面に展開した場合に、前記鋼管杭外周の周長を底辺とし、前記螺旋状のピッチを高さとし、前記螺旋状の前記鋼管杭先端部を斜辺とする直角三角形の面積に対して、前記直角三角形の高さを底辺とし、前記終端を頂点とする三角形の面積が、0.25倍以下であり、
前記段差部分は円弧状に形成され、前記円弧の半径Rが下記(1)式で規定される、回転圧入鋼管杭。
R=k×P ・・・(1)
但し、(1)式において、Pは螺旋状のピッチ、kは所定の係数(0.8≦k≦1.5)である。
It is a steel pipe pile with blades that has blades at the tip and is rotationally press-fitted into the ground by excavating the blades while rotating.
The blade provided with an opening of 0.1 times or more and 0.9 times or less the area of a circle whose diameter is the outer diameter of the steel pipe pile is concentric with the tip of the steel pipe pile having an asymmetric tip shape when viewed from the side surface. It is welded and fixed in a shape, and the blades are projected inside and outside the steel pipe pile.
The tip of the steel pipe pile is cut in a spiral shape, and the stepped portion between the start end and the end of the tip portion of the steel pipe pile cut in a spiral shape is an arc, an arbitrary curve, or a combination of an arc or an arbitrary curve and a straight line. When the tip of the spiral steel pipe pile is developed in a plane, the circumference of the outer circumference of the steel pipe pile is the base, the spiral pitch is the height, and the spiral steel pipe is formed. The area of the triangle whose base is the height of the right triangle and whose apex is the end is 0.25 times or less with respect to the area of the right triangle whose diagonal is the tip of the pile.
A rotary press-fit steel pipe pile in which the step portion is formed in an arc shape and the radius R of the arc is defined by the following equation (1) .
R = k × P ・ ・ ・ (1)
However, in the equation (1), P is a spiral pitch and k is a predetermined coefficient (0.8 ≦ k ≦ 1.5).
前記鋼管杭の肉厚は、前記鋼管杭の軸方向において少なくとも前記鋼管杭先端部から鋼管杭外径に相当する距離以上の所定範囲では、当該所定範囲外よりも厚肉とされた、請求項1に記載の回転圧入鋼管杭。 The wall thickness of the steel pipe pile is thicker than the outside of the predetermined range in a predetermined range of at least a distance corresponding to the outer diameter of the steel pipe pile from the tip of the steel pipe pile in the axial direction of the steel pipe pile. The rotary press-fit steel pipe pile according to 1. 前記所定範囲の肉厚に対する前記所定範囲外の肉厚の比が0.5以上であり、且つ鋼管杭外径に対する前記所定範囲の肉厚の比が0.02以上である、請求項2に記載の回転圧入鋼管杭。 According to claim 2, the ratio of the wall thickness outside the predetermined range to the wall thickness within the predetermined range is 0.5 or more, and the ratio of the wall thickness within the predetermined range to the outer diameter of the steel pipe pile is 0.02 or more. Described rotary press-fit steel pipe pile. 前記羽根は、螺旋状羽根であり、螺旋状に切断された前記鋼管杭先端部に溶接固定される、請求項1~3のいずれか1項に記載の回転圧入鋼管杭。 The rotary press-fit steel pipe pile according to any one of claims 1 to 3, wherein the blade is a spiral blade and is welded and fixed to the tip of the steel pipe pile cut in a spiral shape. 前記回転圧入における回転方向の始端において、 At the beginning of the rotational press-fitting in the rotational direction,
前記羽根と前記鋼管杭先端部とを溶接するビードが前記鋼管杭の外周から内周に連なるように形成された、請求項1~4のいずれか1項に記載の回転圧入鋼管杭。 The rotary press-fit steel pipe pile according to any one of claims 1 to 4, wherein a bead for welding the blade and the tip of the steel pipe pile is formed so as to be continuous from the outer circumference to the inner circumference of the steel pipe pile.
前記回転圧入における回転方向の始端において、 At the beginning of the rotational press-fitting in the rotational direction,
前記羽根と前記鋼管杭先端部とを溶接するビードの前記回転方向に沿った断面形状が、前記羽根の表面に対して鋭角に交わる斜面をなす、請求項1~5のいずれか1項に記載の回転圧入鋼管杭。 The invention according to any one of claims 1 to 5, wherein the cross-sectional shape of the bead for welding the blade and the tip of the steel pipe pile forms an acute-angled slope with respect to the surface of the blade. Rotational press-fit steel pipe pile.
前記鋼管杭先端部を下にして直立した状態で、前記羽根は、内縁よりも外縁が下、あるいは内縁と外縁が同等の高さに位置するように配置された、請求項1~6のいずれか1項に記載の回転圧入鋼管杭。 Any of claims 1 to 6, wherein the blade is arranged so that the outer edge is lower than the inner edge or the inner edge and the outer edge are located at the same height in an upright state with the tip of the steel pipe pile facing down. The rotary press-fit steel pipe pile according to item 1.
JP2022501369A 2020-05-19 2021-05-18 Rotary press-fit steel pipe pile Active JP7036301B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020087600 2020-05-19
JP2020087600 2020-05-19
PCT/JP2021/018853 WO2021235450A1 (en) 2020-05-19 2021-05-18 Rotary press-in steel pipe pile

Publications (3)

Publication Number Publication Date
JPWO2021235450A1 JPWO2021235450A1 (en) 2021-11-25
JP7036301B1 true JP7036301B1 (en) 2022-03-15
JPWO2021235450A5 JPWO2021235450A5 (en) 2022-05-12

Family

ID=78708535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022501369A Active JP7036301B1 (en) 2020-05-19 2021-05-18 Rotary press-fit steel pipe pile

Country Status (2)

Country Link
JP (1) JP7036301B1 (en)
WO (1) WO2021235450A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019238A (en) * 2002-06-17 2004-01-22 Nippon Steel Corp Rotary jacked steel pipe pile provided with in-pipe soil agitating member
JP2005220662A (en) * 2004-02-06 2005-08-18 Kajima Road Co Ltd Steel pipe pile
WO2010116884A1 (en) * 2009-04-10 2010-10-14 新日鉄エンジニアリング株式会社 Steel pipe pile and method of installing steel pipe pile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019238A (en) * 2002-06-17 2004-01-22 Nippon Steel Corp Rotary jacked steel pipe pile provided with in-pipe soil agitating member
JP2005220662A (en) * 2004-02-06 2005-08-18 Kajima Road Co Ltd Steel pipe pile
WO2010116884A1 (en) * 2009-04-10 2010-10-14 新日鉄エンジニアリング株式会社 Steel pipe pile and method of installing steel pipe pile

Also Published As

Publication number Publication date
WO2021235450A1 (en) 2021-11-25
JPWO2021235450A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP5954654B2 (en) Concrete pile
JP2009138487A (en) Steel pipe pile
JP5013384B2 (en) Rotating penetrating steel pipe pile
JP7036301B1 (en) Rotary press-fit steel pipe pile
JP3643303B2 (en) Rotary press-fit steel pipe pile
JP2009046833A (en) Rotary-penetration steel pipe pile
JP3905294B2 (en) Rotating penetrating steel pipe pile
JP4707512B2 (en) Rotating penetrating steel pipe pile
JP2021063356A (en) Manufacturing method of rotary penetration steel pipe pile with tip blade
JP4206958B2 (en) Rotating penetrating pile
JP4232743B2 (en) Rotating penetrating pile and its construction method
JP6709464B2 (en) Steel pipe pile
JP3927763B2 (en) Rotating penetrating steel pipe pile and its construction method
JP7269277B2 (en) steel pipe pile
JP2002212947A (en) Steel pipe with bottom widened and construction method for steel pipe pile with bottom widened
KR101370072B1 (en) A piles with durability improvement functions
JP3264910B2 (en) Steel pipe pile
JP2020172750A (en) Backing ring for welding connection of different diameter pipes in steel pipe pile
JP5298859B2 (en) Screwed pile
JP5109493B2 (en) Winged steel pipe pile
JP4018522B2 (en) Rotating press-fit steel pipe pile reinforced against torsional buckling and method for reinforcing rotary press-fit steel pipe pile
JP2023119726A (en) Winged pile
JP2022177788A (en) Screw-in type steel pipe pile, and design method and construction method for the same
JP5413336B2 (en) Steel pipe pile manufacturing method and pile construction method
JP2023119722A (en) Manufacturing method of winged pile and design method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220111

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R151 Written notification of patent or utility model registration

Ref document number: 7036301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151