JP7035385B2 - Driving force adjustment device - Google Patents

Driving force adjustment device Download PDF

Info

Publication number
JP7035385B2
JP7035385B2 JP2017168707A JP2017168707A JP7035385B2 JP 7035385 B2 JP7035385 B2 JP 7035385B2 JP 2017168707 A JP2017168707 A JP 2017168707A JP 2017168707 A JP2017168707 A JP 2017168707A JP 7035385 B2 JP7035385 B2 JP 7035385B2
Authority
JP
Japan
Prior art keywords
shaft
gear
axis
motor
driving force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017168707A
Other languages
Japanese (ja)
Other versions
JP2019044866A (en
Inventor
卓也 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2017168707A priority Critical patent/JP7035385B2/en
Priority to EP18191335.1A priority patent/EP3459772B1/en
Priority to US16/117,876 priority patent/US10550923B2/en
Priority to CN201811001355.7A priority patent/CN109421501B/en
Publication of JP2019044866A publication Critical patent/JP2019044866A/en
Application granted granted Critical
Publication of JP7035385B2 publication Critical patent/JP7035385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • B60K17/165Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing provided between independent half axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/04Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • F16H1/22Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/36Toothed gearings for conveying rotary motion with gears having orbital motion with two central gears coupled by intermeshing orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/12Differential gearings without gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/04Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
    • B60K2023/043Control means for varying left-right torque distribution, e.g. torque vectoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • F16H2048/364Differential gearings characterised by intentionally generating speed difference between outputs using electric or hydraulic motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • F16H2048/368Differential gearings characterised by intentionally generating speed difference between outputs using additional orbital gears in combination with clutches or brakes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Retarders (AREA)

Description

本発明は、車両の左右輪の駆動力を調整する装置に関する。 The present invention relates to a device for adjusting the driving force of the left and right wheels of a vehicle.

従来、車両の左右輪の間に介装される差動装置(ディファレンシャル装置)とモータとを組み合わせて、左右輪の駆動力配分(トルク配分)を変更できるようにした駆動力調整装置が知られている。このような駆動力調整装置では、車両の旋回時に左右輪の回転数差に応じてモータが受動的に回転し、回転数差が吸収される。また、モータを能動的に作動させることで左右輪の駆動力差が増減し、左右の駆動力配分が変更される(例えば、特許文献1,2参照)。 Conventionally, there is known a driving force adjusting device that can change the driving force distribution (torque distribution) of the left and right wheels by combining a differential device (differential device) interposed between the left and right wheels of the vehicle and a motor. ing. In such a driving force adjusting device, the motor passively rotates according to the difference in rotation speed between the left and right wheels when the vehicle turns, and the difference in rotation speed is absorbed. Further, by actively operating the motor, the difference in driving force between the left and right wheels increases or decreases, and the distribution of driving force between the left and right wheels is changed (see, for example, Patent Documents 1 and 2).

特開2007-177915号公報Japanese Unexamined Patent Publication No. 2007-177915 特開2014-037884号公報Japanese Unexamined Patent Publication No. 2014-037884

既存の駆動力調整装置には、左右輪を駆動するための駆動源とは別個に左右輪の駆動力配分を調整するためのモータが設けられるため、軽量化や小型化が難しく、搭載性が悪化しやすい。また、駆動力調整装置の重量増加によって車両運動性能が低下しうる。
本発明の目的は、上記のような課題に鑑みて創案されたものであり、簡素な構成で左右輪の駆動機能と駆動力配分の調整機能とを両立させた駆動力調整装置を提供することである。
Since the existing driving force adjusting device is provided with a motor for adjusting the driving force distribution of the left and right wheels separately from the driving source for driving the left and right wheels, it is difficult to reduce the weight and size, and the mountability is high. It is easy to get worse. In addition, the vehicle kinetic performance may deteriorate due to the increase in the weight of the driving force adjusting device.
An object of the present invention has been devised in view of the above problems, and to provide a driving force adjusting device having both a driving function of left and right wheels and an adjusting function of driving force distribution in a simple configuration. Is.

(1)上記目的を達成するため、請求項1に記載された駆動力調整装置は、デフケースに支持された差動歯車と左右一対の出力軸とを有し、車両の左軸及び右軸の間に介装される差動装置と、前記差動装置に接続されるモータとを備える。また、前記差動装置における一方の前記出力軸に接続され、前記一方の前記出力軸と同一回転数の逆回転を生成する逆回転機構と、前記左軸または前記右軸と前記一方の前記出力軸との間に介装されて動力伝達状態を制御する切替機構とを備える。前記切替機構は、前記左軸または前記右軸を前記一方の前記出力軸に接続する第一状態と、前記左軸または前記右軸を前記差動装置及び前記逆回転機構に対して非接続にする第二状態と、前記左軸または前記右軸を前記逆回転機構に接続する第三状態とを有する。また、前記差動装置の前記一方及び他方の前記出力軸が、前記左軸及び前記右軸と同軸とされ、前記逆回転機構が、前記差動装置よりも前記一方の前記出力軸側に配置され、前記モータが、前記差動装置よりも前記他方の前記出力軸側に位置して、前記左軸及び前記右軸と同軸に配置される。 (1) In order to achieve the above object, the driving force adjusting device according to claim 1 has a differential gear supported by a differential case and a pair of left and right output shafts, and has a left shaft and a right shaft of the vehicle. It includes a differential device interposed between the differential device and a motor connected to the differential device. Further, a reverse rotation mechanism connected to one of the output shafts in the differential device to generate a reverse rotation having the same rotation speed as the one output shaft, and the left shaft or the right shaft and the output of the one. It is equipped with a switching mechanism that is interposed between the shaft and controls the power transmission state. The switching mechanism disconnects the left axis or the right axis from the first state of connecting the left axis or the right axis to the one output shaft, and disconnects the left axis or the right axis from the differential device and the reverse rotation mechanism. It has a second state and a third state in which the left axis or the right axis is connected to the reverse rotation mechanism. Further, the one and the other output shafts of the differential device are coaxial with the left axis and the right axis, and the reverse rotation mechanism is arranged on the one output shaft side of the differential device. The motor is located on the output shaft side of the other side of the differential device and is arranged coaxially with the left axis and the right axis.

(2)請求項2記載の駆動力調整装置は、請求項1記載の駆動力調整装置において、前記逆回転機構が、前記一方の前記出力軸に平行な回転軸を有する複数の歯車を含む第一ギヤ列及び第二ギヤ列を有するとともに、前記第二ギヤ列の減速比が前記第一ギヤ列の減速比の逆数の符号を反転させた値に設定される。
(3)請求項3記載の駆動力調整装置は、請求項1記載の駆動力調整装置において、前記逆回転機構が、前記左軸及び前記右軸と同軸に配置された遊星歯車機構を有し、前記切替機構が、前記左軸または前記右軸と前記遊星歯車機構との間で前記遊星歯車機構と同軸に配置される。
(2) The driving force adjusting device according to claim 2 is the driving force adjusting device according to claim 1, wherein the reverse rotation mechanism includes a plurality of gears having a rotation axis parallel to the output shaft of the one. It has one gear train and a second gear train, and the reduction ratio of the second gear train is set to a value obtained by reversing the sign of the inverse number of the reduction ratio of the first gear train.
(3) The driving force adjusting device according to claim 3 has, in the driving force adjusting device according to claim 1, a planetary gear mechanism in which the reverse rotation mechanism is arranged coaxially with the left axis and the right axis. , The switching mechanism is arranged coaxially with the planetary gear mechanism between the left axis or the right axis and the planetary gear mechanism.

(4)請求項4記載の駆動力調整装置は、請求項3記載の駆動力調整装置において、前記遊星歯車機構が、前記出力軸に接続されたサンギヤと、回転が拘束されたリングギヤと、前記サンギヤに噛合する第一プラネタリギヤと、前記第一プラネタリギヤと前記リングギヤとに噛合する第二プラネタリギヤと、前記サンギヤと同軸に回転可能とされて前記第一プラネタリギヤ及び前記第二プラネタリギヤの回転軸を支持するキャリアと、を有し、前記切替機構が、前記左軸または前記右軸と前記キャリアとの間の動力伝達経路を断接する第一クラッチと、前記左軸または前記右軸と前記サンギヤとの間の動力伝達経路を断接する第二クラッチと、を有する。 (4) The driving force adjusting device according to claim 4 is the driving force adjusting device according to claim 3, wherein the planetary gear mechanism is connected to the output shaft, a sun gear, a ring gear whose rotation is constrained, and the above. The first planetary gear that meshes with the sun gear, the second planetary gear that meshes with the first planetary gear and the ring gear, and the rotation shaft of the first planetary gear and the second planetary gear that can rotate coaxially with the sun gear are supported. A first clutch having a carrier and the switching mechanism engaging and disconnecting a power transmission path between the left shaft or the right shaft and the carrier, and between the left shaft or the right shaft and the sun gear. It has a second clutch that engages and disconnects the power transmission path of the.

)請求項記載の駆動力調整装置は、請求項1~のいずれか1項に記載の駆動力調整装置において、駆動ギヤ列とモータギヤ列とをさらに備える。前記駆動ギヤ列は、前記モータと前記差動装置との間に介装され、前記差動装置に入力される駆動力の減速比を調整する。前記モータギヤ列は、前記駆動ギヤ列と前記モータとの間に介装され、前記駆動ギヤ列に入力される駆動力の減速比を調整するとともに、前記モータの回転軸を前記左軸及び前記右軸と同軸に配置する。 ( 5 ) The driving force adjusting device according to claim 5 further includes a driving gear train and a motor gear train in the driving force adjusting device according to any one of claims 1 to 4 . The drive gear train is interposed between the motor and the differential device, and adjusts the reduction ratio of the driving force input to the differential device. The motor gear train is interposed between the drive gear train and the motor to adjust the reduction ratio of the driving force input to the drive gear train, and the rotation shaft of the motor is set to the left shaft and the right shaft. Place it coaxially with the axis.

左右輪を駆動する機能と左右輪の駆動力差を調整する機能とを単一のモータに担わせることができ、駆動力調整装置を簡素化することができる。これにより、駆動力調整装置の軽量化や小型化が容易となり、搭載性を向上させることができるとともに車両運動性能の低下を防止することができる。 The function of driving the left and right wheels and the function of adjusting the driving force difference between the left and right wheels can be assigned to a single motor, and the driving force adjusting device can be simplified. As a result, the weight and size of the driving force adjusting device can be easily reduced, the mountability can be improved, and the deterioration of the vehicle kinetic performance can be prevented.

実施例としての駆動力調整装置のスケルトン図である。It is a skeleton diagram of the driving force adjusting device as an Example. 逆回転機構,切替機構を示すスケルトン図である。It is a skeleton diagram which shows a reverse rotation mechanism and a switching mechanism. (A),(B)は切替機構の第一状態を説明するための図である。(A) and (B) are diagrams for explaining the first state of the switching mechanism. (A),(B)は切替機構の第二状態を説明するための図である。(A) and (B) are diagrams for explaining the second state of the switching mechanism. (A)~(D)は切替機構の第三状態を説明するための図である。(A) to (D) are diagrams for explaining the third state of the switching mechanism. 変形例としての駆動力調整装置のスケルトン図である。It is a skeleton diagram of a driving force adjusting device as a modification. 変形例としての駆動力調整装置のスケルトン図である。It is a skeleton diagram of a driving force adjusting device as a modification. 変形例としての駆動力調整装置のスケルトン図である。It is a skeleton diagram of a driving force adjusting device as a modification.

[1.構成]
以下、図面を参照して実施形態としての駆動力調整装置10について説明する。図1に示す駆動力調整装置10は、駆動源であるモータ2の駆動力を左右輪に伝達して車両を走行させる機能と、旋回時に発生する左右輪の回転数差を受動的に吸収する機能と、左右輪の回転数差を能動的に調整することによって駆動力配分を変更する機能とを併せ持つ。駆動力調整装置10は、車両の左輪Lに接続される左軸3と、右輪Rに接続される右軸4との間に介装される。左軸3,右軸4は同軸に配置される。以下、左軸3及び右軸4のことを単に車軸3,4とも呼ぶ。
[1. Constitution]
Hereinafter, the driving force adjusting device 10 as an embodiment will be described with reference to the drawings. The driving force adjusting device 10 shown in FIG. 1 passively absorbs the function of transmitting the driving force of the motor 2 which is the driving source to the left and right wheels to drive the vehicle and the difference in the number of rotations of the left and right wheels generated during turning. It has both a function and a function to change the driving force distribution by actively adjusting the difference in the number of rotations of the left and right wheels. The driving force adjusting device 10 is interposed between the left shaft 3 connected to the left wheel L of the vehicle and the right shaft 4 connected to the right wheel R. The left axis 3 and the right axis 4 are arranged coaxially. Hereinafter, the left axis 3 and the right axis 4 are also simply referred to as axles 3 and 4.

駆動力調整装置10には、差動装置1,モータ2,逆回転機構5,切替機構6,駆動ギヤ列11,モータギヤ列12が設けられる。差動装置1は、容器状のデフケース17に支持された差動歯車を左軸3と右軸4との間に介装させてなるディファレンシャル装置である。差動装置1は、左右一対の出力軸13,14を有し、車両の左軸3及び右軸4の間に介装される。本実施形態では、切替機構6を介して一方の出力軸13が左軸3に接続され、他方の出力軸14が直接的に右軸4に接続される。 The driving force adjusting device 10 is provided with a differential device 1, a motor 2, a reverse rotation mechanism 5, a switching mechanism 6, a driving gear train 11, and a motor gear train 12. The differential device 1 is a differential device in which a differential gear supported by a container-shaped differential case 17 is interposed between the left shaft 3 and the right shaft 4. The differential device 1 has a pair of left and right output shafts 13 and 14, and is interposed between the left shaft 3 and the right shaft 4 of the vehicle. In the present embodiment, one output shaft 13 is connected to the left shaft 3 and the other output shaft 14 is directly connected to the right shaft 4 via the switching mechanism 6.

デフケース17の内部には、左側の出力軸13に接続される左傘歯車15と、デフケース17に枢支されたデフピニオンギヤ18と、右側の出力軸14に接続される右傘歯車16とが噛合した状態で収納される。左傘歯車15,デフケース17,右傘歯車16の三者は、相互に動力を伝達可能であるとともに、速度線図(共線図)上における回転速度がこの順序で直線状に配置されるように各々の構造(位置,形状,歯数)が設定される。左傘歯車15及び右傘歯車16の回転軸は同一直線上に配置され、デフピニオンギヤ18の回転軸はこれに直交して配置される。 Inside the differential case 17, the left bevel gear 15 connected to the left output shaft 13, the differential pinion gear 18 pivotally supported by the differential case 17, and the right bevel gear 16 connected to the right output shaft 14 are meshed with each other. It is stored in a closed state. The left bevel gear 15, the differential case 17, and the right bevel gear 16 can transmit power to each other, and the rotational speeds on the speed diagram (collinear diagram) are arranged linearly in this order. Each structure (position, shape, number of teeth) is set in. The rotation axes of the left bevel gear 15 and the right bevel gear 16 are arranged on the same straight line, and the rotation axes of the differential pinion gear 18 are arranged orthogonal to this.

モータ2は車両の左輪L及び右輪Rを駆動するための電動機であり、差動装置1に接続される。モータ2の出力軸35は、車軸3,4と同軸に配置される。本実施形態のモータ2は差動装置1よりも右側に配置され、モータ2の出力軸35が右軸4と同軸に配置される。モータ2を駆動するための電力は、図示しない車載バッテリーから供給される。また、モータ2の駆動力は、図示しない電子制御装置(コンピュータ)によって制御される。例えば、モータ2が交流電動機である場合には、電子制御装置がモータ2に供給される交流電力の周波数を調整することでモータ2の駆動力を制御する。また、モータ2が直流電動機である場合には、電子制御装置がモータ2に供給される電流を調整することでモータ2の駆動力を制御する。 The motor 2 is an electric motor for driving the left wheel L and the right wheel R of the vehicle, and is connected to the differential device 1. The output shaft 35 of the motor 2 is arranged coaxially with the axles 3 and 4. The motor 2 of the present embodiment is arranged on the right side of the differential device 1, and the output shaft 35 of the motor 2 is arranged coaxially with the right shaft 4. The electric power for driving the motor 2 is supplied from an in-vehicle battery (not shown). Further, the driving force of the motor 2 is controlled by an electronic control device (computer) (not shown). For example, when the motor 2 is an AC motor, the electronic control device controls the driving force of the motor 2 by adjusting the frequency of the AC power supplied to the motor 2. When the motor 2 is a DC motor, the electronic control device controls the driving force of the motor 2 by adjusting the current supplied to the motor 2.

モータ2の駆動力が出力される対象は、差動装置1のデフケース17とされる。モータ2は、あるときは走行用モータとして機能し、左軸3と右軸4との双方に同等の駆動力を与える。またあるときには、調整用モータとして機能し、左右輪間に回転数差を生じさせる。このようにモータ2は、車両の走行状況に応じて異なる能力を発揮する。モータ2の能力は、逆回転機構5や切替機構6などの動力伝達経路を変更することによって切り替えられる。したがって、モータ2が前者の機能を発揮しているときには後者の機能が停止し、後者の機能を発揮しているときには前者の機能が停止する。 The target to which the driving force of the motor 2 is output is the differential case 17 of the differential device 1. At one point, the motor 2 functions as a traveling motor, and imparts the same driving force to both the left shaft 3 and the right shaft 4. At other times, it functions as an adjustment motor, causing a difference in rotation speed between the left and right wheels. In this way, the motor 2 exhibits different capabilities depending on the traveling condition of the vehicle. The capacity of the motor 2 is switched by changing the power transmission path of the reverse rotation mechanism 5 or the switching mechanism 6. Therefore, when the motor 2 is exhibiting the former function, the latter function is stopped, and when the latter function is being exerted, the former function is stopped.

逆回転機構5は、差動装置1に設けられる二つの出力軸13,14のうちの一方と同一回転数の逆回転を生成するための機構であり、二つの出力軸13,14のうちの一方に接続される。図1に示す例では、出力軸13がここでいう「二つの出力軸13,14のうちの一方」である。逆回転機構5は、出力軸13と同一回転数の逆回転を生成し、後述するギヤ24を回転させる。したがって、出力軸13と左軸3とが直結状態であれば、ギヤ24が左軸3の反対方向に回転することになる。 The reverse rotation mechanism 5 is a mechanism for generating a reverse rotation having the same rotation speed as one of the two output shafts 13 and 14 provided in the differential device 1, and is a mechanism among the two output shafts 13 and 14. Connected to one. In the example shown in FIG. 1, the output shaft 13 is “one of the two output shafts 13 and 14” here. The reverse rotation mechanism 5 generates reverse rotation at the same rotation speed as the output shaft 13 to rotate the gear 24 described later. Therefore, if the output shaft 13 and the left shaft 3 are directly connected, the gear 24 will rotate in the opposite direction of the left shaft 3.

逆回転機構5は、モータ2の駆動力で車両を走行させる必要がないとき(例えば、車両が惰性走行しているときや、図示しない他の駆動源により走行駆動力を十分得られるとき)に使用され、差動装置1の左傘歯車15と右傘歯車16とを同一の回転数で反対方向に回転させるように機能する。図1に示すように、逆回転機構5が左側の出力軸13に接続されている場合(逆回転機構5が左輪Lに適用されている場合)には、左輪Lとは逆回転で出力軸13を回転させるような動力伝達経路が形成される。なお、モータ2が走行用モータとして機能しているときには逆回転機構5は使用されず、モータ2が調整用モータとして機能するときに逆回転機構5が使用される。 The reverse rotation mechanism 5 is used when it is not necessary to drive the vehicle by the driving force of the motor 2 (for example, when the vehicle is coasting or when a sufficient traveling driving force can be obtained by another drive source (not shown)). It is used and functions to rotate the left bevel gear 15 and the right bevel gear 16 of the differential device 1 in opposite directions at the same rotation speed. As shown in FIG. 1, when the reverse rotation mechanism 5 is connected to the left output shaft 13 (when the reverse rotation mechanism 5 is applied to the left wheel L), the output shaft rotates in the opposite direction to the left wheel L. A power transmission path that rotates 13 is formed. The reverse rotation mechanism 5 is not used when the motor 2 functions as a traveling motor, and the reverse rotation mechanism 5 is used when the motor 2 functions as an adjustment motor.

切替機構6は、逆回転機構5が適用される車輪と逆回転機構5との間の動力伝達状態を制御するための機構である。本実施形態の切替機構6は、ドグクラッチである。ここでいうドグクラッチとは、スリーブ29を回転軸と平行な方向に摺動させて複数の回転要素と係合させることによって、回転要素間の断接状態を切り替える機能を持った連軸器を意味する。切替機構6は、図2に示すように、左軸3と出力軸13との間に介装される。なお、逆回転機構5が右輪Rに対して適用される場合には、切替機構6を右軸4と出力軸14との間に介装させればよい。 The switching mechanism 6 is a mechanism for controlling the power transmission state between the wheel to which the reverse rotation mechanism 5 is applied and the reverse rotation mechanism 5. The switching mechanism 6 of the present embodiment is a dog clutch. The dog clutch referred to here means a connecting shaft having a function of switching the disconnection state between the rotating elements by sliding the sleeve 29 in a direction parallel to the rotating shaft and engaging with a plurality of rotating elements. do. As shown in FIG. 2, the switching mechanism 6 is interposed between the left shaft 3 and the output shaft 13. When the reverse rotation mechanism 5 is applied to the right wheel R, the switching mechanism 6 may be interposed between the right shaft 4 and the output shaft 14.

切替機構6は、動力伝達状態を三つの状態(第一状態,第二状態,第三状態)に切り替え可能とされる。第一状態は、左軸3を差動装置1の出力軸13に対して接続する状態である。第一状態では、左傘歯車15の回転方向と左輪Lの回転方向とが一致する。第二状態は、左軸3を差動装置1及び逆回転機構5に対して非接続にする状態である。第二状態では、左輪Lがモータ2や差動装置1,逆回転機構5などから完全に切り離されたフリーの状態となる。第三状態は、左軸3を逆回転機構5に接続する状態である。第三状態では、左傘歯車15の回転方向と左輪Lの回転方向とが逆方向となる。切替機構6の作動状態(三つの状態)は、図示しない電子制御装置(コンピュータ)によって制御される。 The switching mechanism 6 is capable of switching the power transmission state to three states (first state, second state, and third state). The first state is a state in which the left shaft 3 is connected to the output shaft 13 of the differential device 1. In the first state, the rotation direction of the left bevel gear 15 and the rotation direction of the left wheel L coincide with each other. The second state is a state in which the left shaft 3 is disconnected from the differential device 1 and the reverse rotation mechanism 5. In the second state, the left wheel L is completely separated from the motor 2, the differential device 1, the reverse rotation mechanism 5, and the like, and is in a free state. The third state is a state in which the left shaft 3 is connected to the reverse rotation mechanism 5. In the third state, the rotation direction of the left bevel gear 15 and the rotation direction of the left wheel L are opposite. The operating states (three states) of the switching mechanism 6 are controlled by an electronic control device (computer) (not shown).

逆回転機構5及び切替機構6の構造について詳述する。図2に示すように、逆回転機構5には、第一ギヤ列7と第二ギヤ列8とが内蔵される。第一ギヤ列7は、差動装置1の出力軸13に平行な回転軸を有する複数のギヤ19,20を含むギヤ列である。同様に、第二ギヤ列8も、出力軸13に平行な回転軸を有する複数のギヤ22,23,24を含む。ギヤ19はその回転中心を出力軸13に接続され、ギヤ20はその回転中心を軸21に接続されるとともに、軸21を介してギヤ22に対して同軸とされる。また、ギヤ23の回転軸は出力軸13に対して平行に配置され、ギヤ24の回転軸(軸25)は左軸3と同軸に配置される。ギヤ23及びギヤ24は、図2中に一点鎖線(動力伝達経路)で示すように噛合状態で接続される。 The structures of the reverse rotation mechanism 5 and the switching mechanism 6 will be described in detail. As shown in FIG. 2, the reverse rotation mechanism 5 includes a first gear row 7 and a second gear row 8. The first gear train 7 is a gear train including a plurality of gears 19 and 20 having a rotation shaft parallel to the output shaft 13 of the differential device 1. Similarly, the second gear train 8 also includes a plurality of gears 22, 23, 24 having a rotation axis parallel to the output shaft 13. The center of rotation of the gear 19 is connected to the output shaft 13, and the center of rotation of the gear 20 is connected to the shaft 21 and is coaxial with the gear 22 via the shaft 21. Further, the rotating shaft of the gear 23 is arranged parallel to the output shaft 13, and the rotating shaft (shaft 25) of the gear 24 is arranged coaxially with the left shaft 3. The gear 23 and the gear 24 are connected in a meshed state as shown by a alternate long and short dash line (power transmission path) in FIG.

第二ギヤ列8は、出力軸13の回転と左軸3の回転とを同一回転数の逆回転にする機能を持つ。すなわち、第二ギヤ列8の減速比は、第一ギヤ列7の減速比の逆数の符号を反転させた値に設定される。例えば、第一ギヤ列7の減速比が0.8であるとすれば、第二ギヤ列8の減速比は-1/0.8に設定される。つまり、第一ギヤ列7の減速比と第二ギヤ列8の減速比との積が-1になるように、それぞれの減速比が設定される。これにより、出力軸13から伝達される回転とは逆方向の回転が左軸3に伝達される。あるいは、左軸3から伝達される回転とは逆方向の回転が出力軸13に伝達される。本実施形態の第一ギヤ列7は、動力伝達経路が一本の歯車列であってギヤ数が偶数個とされる。これに対し、第二ギヤ列8は、動力伝達経路が一本の歯車列であってギヤ数が奇数個とされる。 The second gear train 8 has a function of making the rotation of the output shaft 13 and the rotation of the left shaft 3 reverse rotations at the same rotation speed. That is, the reduction ratio of the second gear row 8 is set to a value obtained by inverting the sign of the reciprocal of the reduction ratio of the first gear row 7. For example, if the reduction ratio of the first gear row 7 is 0.8, the reduction ratio of the second gear row 8 is set to -1 / 0.8. That is, each reduction ratio is set so that the product of the reduction ratio of the first gear row 7 and the reduction ratio of the second gear row 8 becomes -1. As a result, the rotation in the direction opposite to the rotation transmitted from the output shaft 13 is transmitted to the left shaft 3. Alternatively, a rotation in the direction opposite to the rotation transmitted from the left shaft 3 is transmitted to the output shaft 13. In the first gear train 7 of the present embodiment, the power transmission path is one gear train and the number of gears is an even number. On the other hand, in the second gear train 8, the power transmission path is one gear train and the number of gears is an odd number.

切替機構6には、第一ハブ26,第二ハブ27,第三ハブ28,スリーブ29が設けられる。第一ハブ26は軸25を介してギヤ24と同期回転する係合要素である。また、第二ハブ27は左軸3に固定された係合要素であり、第三ハブ28は出力軸13に固定された係合要素である。スリーブ29は、上記のハブ26~28の外周部に設けられ、ハブ26~28の回転軸と平行な方向へ摺動可能に設けられる。 The switching mechanism 6 is provided with a first hub 26, a second hub 27, a third hub 28, and a sleeve 29. The first hub 26 is an engaging element that rotates synchronously with the gear 24 via the shaft 25. Further, the second hub 27 is an engaging element fixed to the left shaft 3, and the third hub 28 is an engaging element fixed to the output shaft 13. The sleeve 29 is provided on the outer peripheral portion of the hubs 26 to 28, and is slidably provided in a direction parallel to the rotation axis of the hubs 26 to 28.

ハブ26~28の外周面には、左軸3や出力軸13の軸心と平行な方向に延設された凸条が形成される。一方、スリーブ29の内周面にはこれに嵌合する凹溝が形成される。スリーブ29を摺動させることによって、スリーブ29に対するハブ26~28の係合状態が変更され、上記の三つの状態(第一状態,第二状態,第三状態)が切り替えられる。第一状態は、スリーブ29が第二ハブ27と第三ハブ28とに係合した状態である。第二状態は、スリーブ29が第二ハブ27のみ(または第一ハブ26のみ、あるいは第三ハブ28のみ)に係合した状態である。第三状態は、スリーブ29が第一ハブ26と第二ハブ27とに係合した状態である。 On the outer peripheral surface of the hubs 26 to 28, ridges extending in a direction parallel to the axis of the left shaft 3 and the output shaft 13 are formed. On the other hand, a concave groove that fits into the inner peripheral surface of the sleeve 29 is formed. By sliding the sleeve 29, the engagement state of the hubs 26 to 28 with the sleeve 29 is changed, and the above three states (first state, second state, third state) are switched. The first state is a state in which the sleeve 29 is engaged with the second hub 27 and the third hub 28. The second state is a state in which the sleeve 29 is engaged only with the second hub 27 (or only with the first hub 26, or only with the third hub 28). The third state is a state in which the sleeve 29 is engaged with the first hub 26 and the second hub 27.

駆動ギヤ列11は、モータ2と差動装置1との間に介装されるギヤ列であり、差動装置1に入力される駆動力の減速比(モータギヤ列12側から入力される駆動力についての減速比)を調整する機能を持つ。この駆動ギヤ列11には、差動装置1の出力軸14に平行な回転軸を有する複数のギヤ30,31が設けられる。ギヤ30は、差動装置1のデフケース17と一体に形成され、ギヤ31は軸32を介してモータギヤ列12に接続される。 The drive gear train 11 is a gear train interposed between the motor 2 and the differential device 1, and is a reduction ratio of the drive force input to the differential device 1 (driving force input from the motor gear train 12 side). Has a function to adjust the reduction ratio). The drive gear train 11 is provided with a plurality of gears 30 and 31 having a rotation shaft parallel to the output shaft 14 of the differential device 1. The gear 30 is integrally formed with the differential case 17 of the differential device 1, and the gear 31 is connected to the motor gear train 12 via the shaft 32.

モータギヤ列12は、駆動ギヤ列11とモータ2との間に介装されるギヤ列であり、モータ2の減速比(モータ2側から入力される駆動力についての減速比)を調整する機能を持つ。このモータギヤ列12には、差動装置1の出力軸14やモータ2の出力軸35に平行な回転軸を有する複数のギヤ33,34が設けられる。ギヤ34は、モータ2の出力軸35に接続され、ギヤ33は駆動ギヤ列11のギヤ31に対して接続される。 The motor gear train 12 is a gear train interposed between the drive gear train 11 and the motor 2, and has a function of adjusting the reduction ratio of the motor 2 (reduction ratio for the driving force input from the motor 2 side). Have. The motor gear train 12 is provided with a plurality of gears 33, 34 having a rotation shaft parallel to the output shaft 14 of the differential device 1 and the output shaft 35 of the motor 2. The gear 34 is connected to the output shaft 35 of the motor 2, and the gear 33 is connected to the gear 31 of the drive gear train 11.

[2.作用]
[2-1.第一状態]
図3(A)は、切替機構6が第一状態であるときの動力伝達経路を説明するためのスケルトン図であり、図3(B)はその速度線図である。速度線図とは、連関する複数の回転要素についての回転数(角速度)の関係を簡潔に表現した図である。図3(B)に示すように、本実施形態の速度線図における縦軸の座標は、回転要素の回転数を表す。また、回転数が0となる基準線に相当する横軸の座標は、連関した回転要素の一つを基準とした角速度比(あるいは、回転数比,周長比,歯数比など)に応じて設定される。一般に、各回転要素の横軸方向の位置は、連関した複数の回転要素間における回転数がその大小に関わらず同一直線上に位置するように(すなわち、各回転要素間を接続する直線が共線関係となるように)設定される。
[2. Action]
[2-1. First state]
FIG. 3A is a skeleton diagram for explaining a power transmission path when the switching mechanism 6 is in the first state, and FIG. 3B is a speed diagram thereof. The speed diagram is a diagram that simply expresses the relationship between the number of rotations (angular velocity) of a plurality of related rotating elements. As shown in FIG. 3B, the coordinates of the vertical axis in the speed diagram of the present embodiment represent the number of rotations of the rotating element. The coordinates of the horizontal axis corresponding to the reference line at which the rotation speed becomes 0 depend on the angular velocity ratio (or rotation speed ratio, circumference ratio, tooth number ratio, etc.) based on one of the related rotation elements. Is set. In general, the position of each rotating element in the horizontal axis direction is such that the number of rotations among a plurality of related rotating elements is on the same straight line regardless of the magnitude (that is, the straight lines connecting the respective rotating elements are co-located. It is set so that it has a line relationship).

切替機構6が第一状態であるとき、切替機構6のスリーブ29が第二ハブ27と第三ハブ28とに係合し、出力軸13が左軸3に直結される。第一状態において、モータ2は走行用モータとして機能する。図3(A)に示すように、モータ2の駆動力が差動装置1のデフケース17を介して二つの出力軸13,14に伝達され、左軸3,右軸4が駆動される。図3(A)中の黒矢印は、モータ2から差動装置1のデフケース17に伝達される駆動力の伝達経路を表す。また、白抜き矢印は左軸3側への動力伝達経路を表し、ハッチング矢印は右軸4への動力伝達経路を示す。デフケース17の回転数は、モータ2の回転数に比例する。また、差動装置1の出力軸13は、切替機構6を介して左軸3に接続されている。これにより、左輪L,右輪Rに作用する負荷(抵抗)が同一の状態で車両が発進すれば、左軸3の回転数と右軸4の回転数とが同一となる。つまり、図3(B)に示すように、左軸3,右軸4,出力軸13,デフケース17が水平な直線で結ばれる回転状態となり、車両が直進する。 When the switching mechanism 6 is in the first state, the sleeve 29 of the switching mechanism 6 engages with the second hub 27 and the third hub 28, and the output shaft 13 is directly connected to the left shaft 3. In the first state, the motor 2 functions as a traveling motor. As shown in FIG. 3A, the driving force of the motor 2 is transmitted to the two output shafts 13 and 14 via the differential case 17 of the differential device 1, and the left shaft 3 and the right shaft 4 are driven. The black arrow in FIG. 3A represents a transmission path of the driving force transmitted from the motor 2 to the differential case 17 of the differential device 1. The white arrow indicates the power transmission path to the left axis 3 side, and the hatched arrow indicates the power transmission path to the right axis 4. The rotation speed of the differential case 17 is proportional to the rotation speed of the motor 2. Further, the output shaft 13 of the differential device 1 is connected to the left shaft 3 via the switching mechanism 6. As a result, if the vehicle starts with the load (resistance) acting on the left wheel L and the right wheel R being the same, the rotation speed of the left shaft 3 and the rotation speed of the right shaft 4 become the same. That is, as shown in FIG. 3B, the left shaft 3, the right shaft 4, the output shaft 13, and the differential case 17 are in a rotational state connected by a horizontal straight line, and the vehicle goes straight.

また、このとき左右輪に回転数差が生じると、その回転数差に応じてデフピニオンギヤ18が受動的に回転し、回転数差が吸収される。なお、逆回転機構5のギヤ19,20,22,23は出力軸13によって駆動された状態となっている。しかし、逆回転機構5のギヤ24が左軸3に接続されておらず、左軸3に対して空転する。したがって、逆回転機構5は動力伝達経路にはならず、左軸3の回転方向は出力軸13の回転方向と同一の方向となる。 Further, if a difference in rotation speed occurs between the left and right wheels at this time, the differential pinion gear 18 passively rotates according to the difference in rotation speed, and the difference in rotation speed is absorbed. The gears 19, 20, 22, and 23 of the reverse rotation mechanism 5 are driven by the output shaft 13. However, the gear 24 of the reverse rotation mechanism 5 is not connected to the left shaft 3 and slips with respect to the left shaft 3. Therefore, the reverse rotation mechanism 5 does not serve as a power transmission path, and the rotation direction of the left shaft 3 is the same as the rotation direction of the output shaft 13.

[2-2.第二状態]
図4(A)に示すように、車両の走行中に切替機構6を第一状態から第二状態へと切り替えると、切替機構6のスリーブ29が第二ハブ27のみに係合し、左軸3が出力軸13から切断されるとともに、左輪L,右輪Rが惰性回転した状態(フリー回転状態)となる。ここでモータ2の制御を停止(回転数を0に)すると、右輪Rが惰性回転したままデフケース17の回転数が0となる。これにより、図4(B)に示すように、出力軸13が出力軸14とは逆方向に同一回転数で回転する。このとき、左軸3はモータ2から切り離され、右軸4は回転数が0のデフケース17を介してモータ2に接続されるため、惰性走行がモータ2の回転損失の影響を受けない状態となる。
[2-2. Second state]
As shown in FIG. 4A, when the switching mechanism 6 is switched from the first state to the second state while the vehicle is running, the sleeve 29 of the switching mechanism 6 engages only with the second hub 27, and the left shaft. 3 is disconnected from the output shaft 13, and the left wheel L and the right wheel R are in a state of inertial rotation (free rotation state). When the control of the motor 2 is stopped (the rotation speed is set to 0), the rotation speed of the differential case 17 becomes 0 while the right wheel R is inertially rotating. As a result, as shown in FIG. 4B, the output shaft 13 rotates in the direction opposite to the output shaft 14 at the same rotation speed. At this time, the left shaft 3 is separated from the motor 2, and the right shaft 4 is connected to the motor 2 via the differential case 17 having a rotation speed of 0, so that the coasting running is not affected by the rotation loss of the motor 2. Become.

[2-3.第三状態]
図5(A)に示すように、切替機構6を第二状態から第三状態へと切り替えると、切替機構6のスリーブ29が第一ハブ26と第二ハブ27とに係合し、逆回転機構5を介して出力軸13と左軸3とが接続される。つまり、図5(B)に示すように、左軸3と右軸4とが逆回転機構5,差動装置1を介して接続される。このとき、出力軸13と左軸3は逆方向に同一回転数で回転する。ここで、左輪Lと右輪Rが同一回転数である場合は、デフケース17、駆動ギヤ列11、モータギヤ列12、およびモータ2の回転数が0となる。
[2-3. Third state]
As shown in FIG. 5A, when the switching mechanism 6 is switched from the second state to the third state, the sleeve 29 of the switching mechanism 6 engages with the first hub 26 and the second hub 27 and rotates in the reverse direction. The output shaft 13 and the left shaft 3 are connected via the mechanism 5. That is, as shown in FIG. 5B, the left axis 3 and the right axis 4 are connected via the reverse rotation mechanism 5 and the differential device 1. At this time, the output shaft 13 and the left shaft 3 rotate in opposite directions at the same rotation speed. Here, when the left wheel L and the right wheel R have the same rotation speed, the rotation speeds of the differential case 17, the drive gear row 11, the motor gear row 12, and the motor 2 become 0.

第三状態において、モータ2は調整用モータとして機能する。モータ2を回転駆動すると、これに応じて差動装置1のデフケース17の回転数が増減する。一方、差動装置1の左傘歯車15,デフケース17,右傘歯車16の三者は、速度線図上で同一直線上に位置することから、デフケース17の回転数の変化によって右軸4及び左軸3の回転数も変化する。例えば、モータ2の回転数を右軸4の回転方向と同一な方向に増加させた場合には、図5(C)に示すように、右軸4の回転数が左軸3よりも大きくなる。反対に、モータ2を反対方向に回転させた場合には、図5(D)に示すように、右軸4の回転数が左軸3よりも小さくなる。左軸3及び右軸4の回転数差は、モータ2の回転数及び回転方向に応じたものとなる。このとき、左輪L及び右輪Rに、上記の回転数変化を抑制する負荷がある場合は、モータ2の駆動力に応じて、左右輪に駆動力の差が生じる。 In the third state, the motor 2 functions as an adjusting motor. When the motor 2 is rotationally driven, the rotation speed of the differential case 17 of the differential device 1 increases or decreases accordingly. On the other hand, since the left bevel gear 15, the differential case 17, and the right bevel gear 16 of the differential device 1 are located on the same straight line on the speed diagram, the right axis 4 and the right axis 4 and the right bevel gear 16 are changed by the change in the rotation speed of the differential case 17. The rotation speed of the left axis 3 also changes. For example, when the rotation speed of the motor 2 is increased in the same direction as the rotation direction of the right axis 4, the rotation speed of the right axis 4 becomes larger than that of the left axis 3 as shown in FIG. 5 (C). .. On the contrary, when the motor 2 is rotated in the opposite direction, the rotation speed of the right axis 4 becomes smaller than that of the left axis 3, as shown in FIG. 5 (D). The difference in rotation speed between the left shaft 3 and the right shaft 4 depends on the rotation speed and rotation direction of the motor 2. At this time, if the left wheel L and the right wheel R have a load for suppressing the above-mentioned change in the rotation speed, a difference in the driving force is generated between the left and right wheels according to the driving force of the motor 2.

[3.効果]
(1)上記の駆動力調整装置10によれば、切替機構6を第一状態や第三状態に制御することで、左右輪を駆動する機能と左右輪の駆動力差を調整する機能とを単一のモータ2に担わせることができ、駆動力調整装置10を簡素化することができる。これにより、駆動力調整装置10の小型化や軽量化が容易となり、車両への搭載性を向上させることができるとともに、重量増加による車両運動性能の低下を防止することができる。一方、切替機構6を第二状態に制御することで、モータ2から駆動輪(左輪L,右輪R)への動力伝達経路を切断することもでき、惰性走行中のモータ損失を抑えることができる。また、逆回転機構5を設けることで、差動装置1の左右に設けられる一対の出力軸13,14を互いに逆方向に回転させることができる。つまり、第二状態の図4(B)や、第三状態の図5(B)に示すように、車両が惰性走行や直進走行をしている時にデフケース17、駆動ギヤ列11、モータギヤ列12、およびモータ2の回転数を0に保つことができるため、不必要な回転損失を抑えることができる。
[3. effect]
(1) According to the above-mentioned driving force adjusting device 10, the function of driving the left and right wheels and the function of adjusting the driving force difference between the left and right wheels are provided by controlling the switching mechanism 6 to the first state or the third state. It can be carried by a single motor 2, and the driving force adjusting device 10 can be simplified. As a result, the driving force adjusting device 10 can be easily made smaller and lighter, can be mounted on a vehicle, and can be prevented from deteriorating the vehicle kinetic performance due to an increase in weight. On the other hand, by controlling the switching mechanism 6 to the second state, it is possible to cut the power transmission path from the motor 2 to the drive wheels (left wheel L, right wheel R), and it is possible to suppress the motor loss during coasting. can. Further, by providing the reverse rotation mechanism 5, the pair of output shafts 13 and 14 provided on the left and right sides of the differential device 1 can be rotated in opposite directions to each other. That is, as shown in FIG. 4 (B) in the second state and FIG. 5 (B) in the third state, the differential case 17, the drive gear row 11, and the motor gear row 12 when the vehicle is coasting or traveling straight. , And since the rotation speed of the motor 2 can be kept at 0, unnecessary rotation loss can be suppressed.

(2)上記の駆動力調整装置10には、第一ギヤ列7と第二ギヤ列8とが設けられる。第一ギヤ列7にはギヤ19,20が設けられ、これらの回転軸が出力軸13に平行に配置される。同様に、第二ギヤ列8にはギヤ22,23,24が設けられ、これらの回転軸も出力軸13に平行に配置される。さらに、第二ギヤ列8の減速比は、第一ギヤ列7の減速比の逆数の符号を反転させた値に設定される。このように、平行軸の歯車列を二列のみ用いる簡素な構造のため、効率よく逆回転を生成することができ、左右輪の駆動力差の調整に係る損失を軽減することができる。 (2) The driving force adjusting device 10 is provided with a first gear row 7 and a second gear row 8. Gears 19 and 20 are provided in the first gear train 7, and these rotating shafts are arranged in parallel with the output shaft 13. Similarly, gears 22, 23, 24 are provided in the second gear row 8, and these rotating shafts are also arranged in parallel with the output shaft 13. Further, the reduction ratio of the second gear row 8 is set to a value obtained by inverting the sign of the reciprocal of the reduction ratio of the first gear row 7. As described above, since the simple structure uses only two parallel-axis gear trains, reverse rotation can be efficiently generated, and the loss related to the adjustment of the driving force difference between the left and right wheels can be reduced.

(3)上記の駆動力調整装置10では切替機構6として、引きずり損失の小さいドグクラッチが使用されているため、駆動力の伝達効率の悪化を抑えることができる。また、装置構成を簡素化することができ、駆動力調整装置10のさらなる軽量化や小型化を促すことができる。
(4)上記の駆動力調整装置10には、駆動ギヤ列11とモータギヤ列12とが設けられ、モータ2が車軸3,4と同軸に配置される。これにより、駆動力調整装置10の車両前後方向の寸法を小さくすることができ、車両搭載性をさらに改善することができる。例えば、小型車や超小型モビリティといった空間の少ない車にも搭載できる。
(3) In the driving force adjusting device 10 described above, a dog clutch having a small drag loss is used as the switching mechanism 6, so that deterioration of the driving force transmission efficiency can be suppressed. In addition, the device configuration can be simplified, and further weight reduction and miniaturization of the driving force adjusting device 10 can be promoted.
(4) The driving force adjusting device 10 is provided with a driving gear train 11 and a motor gear train 12, and the motor 2 is arranged coaxially with the axles 3 and 4. As a result, the dimension of the driving force adjusting device 10 in the vehicle front-rear direction can be reduced, and the vehicle mountability can be further improved. For example, it can be installed in a car with a small space such as a small car or an ultra-small mobility.

[4.変形例]
上記の実施形態はあくまでも例示に過ぎず、本実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。例えば、図1に示す駆動力調整装置10では、逆回転機構5が左側の出力軸13に接続された構造となっているが、右側の出力軸14に接続してもよい。
[4. Modification example]
The above embodiment is merely an example, and there is no intention of excluding the application of various modifications and techniques not specified in this embodiment. Each configuration of the present embodiment can be variously modified and implemented without departing from the gist thereof. In addition, it can be selected as needed, or it can be combined as appropriate. For example, the driving force adjusting device 10 shown in FIG. 1 has a structure in which the reverse rotation mechanism 5 is connected to the output shaft 13 on the left side, but may be connected to the output shaft 14 on the right side.

図6に示すように、モータ2,逆回転機構5,切替機構6を差動装置1よりも右側にまとめて配置してもよい。あるいは、差動装置1よりも左側にまとめて配置し、図6を左右反転した構造としてもよい。このようなレイアウトにすることで、車両の左右いずれか一方向から駆動力調整装置10を組み付けることが容易となり、生産性の向上が期待できる。また、切替機構6の電子制御装置とモータ2の電子制御装置とをまとめることができ、電子制御装置の搭載性を向上させることができる。 As shown in FIG. 6, the motor 2, the reverse rotation mechanism 5, and the switching mechanism 6 may be arranged together on the right side of the differential device 1. Alternatively, they may be arranged together on the left side of the differential device 1 and have a structure in which FIG. 6 is inverted left and right. With such a layout, it becomes easy to assemble the driving force adjusting device 10 from either the left or right direction of the vehicle, and improvement in productivity can be expected. Further, the electronic control device of the switching mechanism 6 and the electronic control device of the motor 2 can be combined, and the mountability of the electronic control device can be improved.

図7に示すように、ダブルピニオン式の遊星歯車機構40を用いて逆回転機構5を構成してもよい。この遊星歯車機構40は、出力軸13に接続されたサンギヤ41,第一プラネタリギヤ42,第二プラネタリギヤ43,リングギヤ44,キャリア45を備えたものである。サンギヤ41及びキャリア45の回転中心は同軸に配置され、リングギヤ44の回転は拘束される。また、サンギヤ41とリングギヤ44との間には、第一プラネタリギヤ42と第二プラネタリギヤ43とが介装される。第一プラネタリギヤ42は、周面(歯車)がサンギヤ41と第二プラネタリギヤ43とに噛合するように配置され、第二プラネタリギヤ43は、周面(歯車)が第一プラネタリギヤ42とリングギヤ44とに噛合するように配置される。 As shown in FIG. 7, the reverse rotation mechanism 5 may be configured by using the double pinion type planetary gear mechanism 40. The planetary gear mechanism 40 includes a sun gear 41, a first planetary gear 42, a second planetary gear 43, a ring gear 44, and a carrier 45 connected to the output shaft 13. The rotation centers of the sun gear 41 and the carrier 45 are arranged coaxially, and the rotation of the ring gear 44 is restricted. Further, a first planetary gear 42 and a second planetary gear 43 are interposed between the sun gear 41 and the ring gear 44. The first planetary gear 42 is arranged so that the peripheral surface (gear) meshes with the sun gear 41 and the second planetary gear 43, and the peripheral surface (gear) of the second planetary gear 43 meshes with the first planetary gear 42 and the ring gear 44. Arranged to do.

キャリア45は、第一プラネタリギヤ42,第二プラネタリギヤ43の回転軸を支持した状態で、サンギヤ41の回転軸と同軸に回転可能とされる。この構造では、サンギヤ41を駆動してキャリア45を従動させたときの減速比が(λ-1)/λとなり(ただし、λはリングギヤ44の歯数に対するサンギヤ41の歯数の比であってλ<1)、キャリア45が出力軸13の反対方向に回転する。したがって、サンギヤ41,第一プラネタリギヤ42,第二プラネタリギヤ43,リングギヤ44の歯数を適切に設定すれば、逆回転機構5と同様の機能を実現することができる。また、このような遊星歯車機構40は、切替機構6の出力軸と同軸に配置できることから、車両前後方向の寸法をさらにコンパクトにすることができ、駆動力調整装置10の前後に空間的な余裕がない車両にも搭載することができる。 The carrier 45 is capable of rotating coaxially with the rotation shaft of the sun gear 41 while supporting the rotation shafts of the first planetary gear 42 and the second planetary gear 43. In this structure, the reduction ratio when the sun gear 41 is driven to drive the carrier 45 is (λ-1) / λ (where λ is the ratio of the number of teeth of the sun gear 41 to the number of teeth of the ring gear 44). λ <1), the carrier 45 rotates in the opposite direction of the output shaft 13. Therefore, if the number of teeth of the sun gear 41, the first planetary gear 42, the second planetary gear 43, and the ring gear 44 is appropriately set, the same function as that of the reverse rotation mechanism 5 can be realized. Further, since such a planetary gear mechanism 40 can be arranged coaxially with the output shaft of the switching mechanism 6, the dimensions in the vehicle front-rear direction can be further made compact, and there is a spatial margin in front of and behind the driving force adjusting device 10. It can also be installed in vehicles that do not have.

図7に示すように、摩擦クラッチ46を用いて切替機構6を構成してもよい。この摩擦クラッチ46は、第一クラッチ47,第二クラッチ48を備えたものである。第一クラッチ47は、左軸3とキャリア45との間の動力伝達経路を断接する係合要素であり、第二クラッチ48は左軸3とサンギヤ41との間の動力伝達経路を断接する係合要素である。第二クラッチ48のみを接続した状態が第一状態に相当し、第一クラッチ47のみを接続した状態が第三状態に相当する。また、両方のクラッチ47,48を解放した状態が第二状態に相当する。このように、摩擦クラッチ46を用いることで、出力軸13と左軸3とを断接するときに生じうる切り替えショックを抑えることができ、乗り心地の悪化を抑えることができる。 As shown in FIG. 7, the switching mechanism 6 may be configured by using the friction clutch 46. The friction clutch 46 includes a first clutch 47 and a second clutch 48. The first clutch 47 is an engaging element that connects and disconnects the power transmission path between the left shaft 3 and the carrier 45, and the second clutch 48 engages in connecting and disconnecting the power transmission path between the left shaft 3 and the sun gear 41. It is a combined element. The state in which only the second clutch 48 is connected corresponds to the first state, and the state in which only the first clutch 47 is connected corresponds to the third state. Further, the state in which both clutches 47 and 48 are released corresponds to the second state. In this way, by using the friction clutch 46, it is possible to suppress the switching shock that may occur when the output shaft 13 and the left shaft 3 are connected to each other, and it is possible to suppress deterioration of riding comfort.

図8に示すように、モータ2,逆回転機構5,切替機構6を車軸3,4からオフセットした位置に配置してもよい。この場合、逆回転機構5の第一ギヤ列7と第二ギヤ列8との間に切替機構6を介装させてもよい。このように、モータ2,逆回転機構5,切替機構6を車軸3,4上から排することで、左軸3,右軸4を長くとることができ、車両接地性能の悪化を抑えることができる。なお、逆回転機構5,切替機構6は、前輪の車軸3,4にも後輪の車軸3,4にも適用可能であり、前後輪の双方に適用することも可能である。したがって、駆動力調整装置10は、車両の前輪,後輪のいずれにも適用可能である。 As shown in FIG. 8, the motor 2, the reverse rotation mechanism 5, and the switching mechanism 6 may be arranged at positions offset from the axles 3 and 4. In this case, the switching mechanism 6 may be interposed between the first gear row 7 and the second gear row 8 of the reverse rotation mechanism 5. In this way, by removing the motor 2, the reverse rotation mechanism 5, and the switching mechanism 6 from the axles 3 and 4, the left axis 3 and the right axis 4 can be lengthened, and the deterioration of the vehicle ground contact performance can be suppressed. can. The reverse rotation mechanism 5 and the switching mechanism 6 can be applied to both the front wheel axles 3 and 4 and the rear wheel axles 3 and 4, and can also be applied to both the front and rear wheels. Therefore, the driving force adjusting device 10 can be applied to both the front wheels and the rear wheels of the vehicle.

1 差動装置
2 モータ
3 左軸
4 右軸
5 逆回転機構
6 切替機構
7 第一ギヤ列
8 第二ギヤ列
10 駆動力調整装置
11 駆動ギヤ列
12 モータギヤ列
13 出力軸(一方の出力軸)
17 デフケース
1 Differential device 2 Motor 3 Left shaft 4 Right shaft 5 Reverse rotation mechanism 6 Switching mechanism 7 First gear row 8 Second gear row 10 Driving force adjustment device 11 Drive gear row 12 Motor gear row 13 Output shaft (one output shaft)
17 differential case

Claims (5)

デフケースに支持された差動歯車と左右一対の出力軸とを有し、車両の左軸及び右軸の間に介装される差動装置と、
前記差動装置に接続されるモータと、
前記差動装置における一方の前記出力軸に接続され、前記一方の前記出力軸と同一回転数の逆回転を生成する逆回転機構と、
前記左軸または前記右軸と前記一方の前記出力軸との間に介装されて動力伝達状態を制御する切替機構とを備え、
前記切替機構が、前記左軸または前記右軸を前記一方の前記出力軸に接続する第一状態と、前記左軸または前記右軸を前記差動装置及び前記逆回転機構に対して非接続にする第二状態と、前記左軸または前記右軸を前記逆回転機構に接続する第三状態とを有し、
前記差動装置の前記一方及び他方の前記出力軸が、前記左軸及び前記右軸と同軸とされ、
前記逆回転機構が、前記差動装置よりも前記一方の前記出力軸側に配置され、
前記モータが、前記差動装置よりも前記他方の前記出力軸側に位置して、前記左軸及び前記右軸と同軸に配置される
ことを特徴とする、駆動力調整装置。
A differential device that has a differential gear supported by a differential case and a pair of left and right output shafts and is interposed between the left and right axes of the vehicle.
The motor connected to the differential and
A reverse rotation mechanism that is connected to one of the output shafts in the differential device and generates a reverse rotation of the same rotation speed as the one output shaft.
It is provided with a switching mechanism interposed between the left shaft or the right shaft and the one output shaft to control the power transmission state.
The switching mechanism disconnects the left axis or the right axis from the first state of connecting the left axis or the right axis to the one output shaft and the left axis or the right axis to the differential device and the reverse rotation mechanism. It has a second state and a third state in which the left axis or the right axis is connected to the reverse rotation mechanism .
The output shafts of the one and the other of the differential device are coaxial with the left shaft and the right shaft.
The reverse rotation mechanism is arranged on the output shaft side of the one side of the differential device.
The motor is located on the output shaft side of the other side of the differential device and is arranged coaxially with the left axis and the right axis.
A driving force adjusting device characterized by this.
前記逆回転機構が、前記一方の前記出力軸に平行な回転軸を有する複数の歯車を含む第一ギヤ列及び第二ギヤ列を有するとともに、前記第二ギヤ列の減速比が前記第一ギヤ列の減速比の逆数の符号を反転させた値に設定される
ことを特徴とする、請求項1記載の駆動力調整装置。
The reverse rotation mechanism has a first gear train and a second gear train including a plurality of gears having a rotation shaft parallel to the output shaft, and the reduction ratio of the second gear train is the first gear. The driving force adjusting device according to claim 1, wherein the sign of the inverse number of the reduction ratio of the column is set to an inverted value.
前記逆回転機構が、前記左軸及び前記右軸と同軸に配置された遊星歯車機構を有し、
前記切替機構が、前記左軸または前記右軸と前記遊星歯車機構との間で前記遊星歯車機構と同軸に配置される
ことを特徴とする、請求項1記載の駆動力調整装置。
The reverse rotation mechanism has a planetary gear mechanism coaxially arranged with the left axis and the right axis.
The switching mechanism is arranged coaxially with the planetary gear mechanism between the left axis or the right axis and the planetary gear mechanism.
The driving force adjusting device according to claim 1.
前記遊星歯車機構が、前記出力軸に接続されたサンギヤと、回転が拘束されたリングギヤと、前記サンギヤに噛合する第一プラネタリギヤと、前記第一プラネタリギヤと前記リングギヤとに噛合する第二プラネタリギヤと、前記サンギヤと同軸に回転可能とされて前記第一プラネタリギヤ及び前記第二プラネタリギヤの回転軸を支持するキャリアと、を有し、 The planetary gear mechanism includes a sun gear connected to the output shaft, a ring gear whose rotation is constrained, a first planetary gear that meshes with the sun gear, and a second planetary gear that meshes with the first planetary gear and the ring gear. It has a carrier that is rotatable coaxially with the sun gear and supports the rotation shaft of the first planetary gear and the second planetary gear.
前記切替機構が、前記左軸または前記右軸と前記キャリアとの間の動力伝達経路を断接する第一クラッチと、前記左軸または前記右軸と前記サンギヤとの間の動力伝達経路を断接する第二クラッチと、を有する The switching mechanism connects and disconnects a first clutch that connects and disconnects a power transmission path between the left shaft or the right shaft and the carrier, and a power transmission path between the left shaft or the right shaft and the sun gear. Has a second clutch,
ことを特徴とする、請求項3記載の駆動力調整装置。3. The driving force adjusting device according to claim 3.
前記モータと前記差動装置との間に介装され、前記差動装置に入力される駆動力の減速比を調整する駆動ギヤ列と、
前記駆動ギヤ列と前記モータとの間に介装され、前記駆動ギヤ列に入力される駆動力の減速比を調整するとともに、前記モータの回転軸を前記左軸及び前記右軸と同軸に配置するモータギヤ列とをさらに備える
ことを特徴とする、請求項1~のいずれか1項に記載の駆動力調整装置。
A drive gear train interposed between the motor and the differential device to adjust the reduction ratio of the driving force input to the differential device.
It is interposed between the drive gear train and the motor, adjusts the reduction ratio of the driving force input to the drive gear train, and arranges the rotation axis of the motor coaxially with the left axis and the right axis. The driving force adjusting device according to any one of claims 1 to 4 , further comprising a motor gear train.
JP2017168707A 2017-09-01 2017-09-01 Driving force adjustment device Active JP7035385B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017168707A JP7035385B2 (en) 2017-09-01 2017-09-01 Driving force adjustment device
EP18191335.1A EP3459772B1 (en) 2017-09-01 2018-08-28 Driving force adjustment apparatus
US16/117,876 US10550923B2 (en) 2017-09-01 2018-08-30 Driving force adjustment apparatus
CN201811001355.7A CN109421501B (en) 2017-09-01 2018-08-30 Driving force adjusting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017168707A JP7035385B2 (en) 2017-09-01 2017-09-01 Driving force adjustment device

Publications (2)

Publication Number Publication Date
JP2019044866A JP2019044866A (en) 2019-03-22
JP7035385B2 true JP7035385B2 (en) 2022-03-15

Family

ID=63556124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017168707A Active JP7035385B2 (en) 2017-09-01 2017-09-01 Driving force adjustment device

Country Status (4)

Country Link
US (1) US10550923B2 (en)
EP (1) EP3459772B1 (en)
JP (1) JP7035385B2 (en)
CN (1) CN109421501B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6911652B2 (en) * 2017-09-01 2021-07-28 三菱自動車工業株式会社 Driving force adjustment device
KR102609059B1 (en) * 2022-06-08 2023-12-04 현대트랜시스 주식회사 Rear axle for four wheel drive vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351471A (en) 2004-05-10 2005-12-22 Toyoda Mach Works Ltd Differential gear, front and rear wheel drive device using the differential gear, and control method for the front and rear wheel drive device
WO2015093454A1 (en) 2013-12-16 2015-06-25 本田技研工業株式会社 Drive apparatus
WO2017072329A1 (en) 2015-10-30 2017-05-04 Borgwarner Sweden Ab Torque vectoring device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3599847B2 (en) * 1995-09-11 2004-12-08 本田技研工業株式会社 Connecting device between left and right wheels of vehicle
KR100418730B1 (en) * 1995-09-11 2004-05-20 혼다 기켄 고교 가부시키가이샤 Connecting device between left and right wheel of vehicle
JP4715507B2 (en) 2005-12-28 2011-07-06 三菱自動車工業株式会社 Left / right driving force distribution device
WO2009034471A2 (en) * 2007-09-10 2009-03-19 Toyota Jidosha Kabushiki Kaisha Driving force distribution mechanism
US8663051B2 (en) * 2010-07-14 2014-03-04 E-Aam Driveline Systems Ab Axle assembly with torque distribution drive mechanism
JP5951410B2 (en) 2012-08-20 2016-07-13 本田技研工業株式会社 Driving force transmission device
EP3140144B1 (en) * 2014-05-06 2019-12-25 BorgWarner Sweden AB A torque vectoring device
CN104675951B (en) * 2015-02-11 2017-02-01 吉林大学 Electric differential with double-row planetary gear torque directional distribution mechanism
JP2016217430A (en) * 2015-05-19 2016-12-22 Ntn株式会社 Drive shaft and vehicle including the same
WO2018087375A2 (en) * 2016-11-14 2018-05-17 Borgwarner Sweden Ab Vehicle driveline system
JP6911652B2 (en) * 2017-09-01 2021-07-28 三菱自動車工業株式会社 Driving force adjustment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351471A (en) 2004-05-10 2005-12-22 Toyoda Mach Works Ltd Differential gear, front and rear wheel drive device using the differential gear, and control method for the front and rear wheel drive device
WO2015093454A1 (en) 2013-12-16 2015-06-25 本田技研工業株式会社 Drive apparatus
WO2017072329A1 (en) 2015-10-30 2017-05-04 Borgwarner Sweden Ab Torque vectoring device

Also Published As

Publication number Publication date
CN109421501B (en) 2021-07-20
EP3459772B1 (en) 2020-04-15
EP3459772A1 (en) 2019-03-27
US20190072169A1 (en) 2019-03-07
CN109421501A (en) 2019-03-05
US10550923B2 (en) 2020-02-04
JP2019044866A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
US11035448B2 (en) Multi-axis final drive assembly
US10569647B2 (en) Driving force adjustment apparatus
JP4636073B2 (en) Driving force distribution mechanism
JP5757337B2 (en) Electric drive device for vehicle
JP6911652B2 (en) Driving force adjustment device
JP2019044867A (en) Driving force adjustment apparatus
JP7035385B2 (en) Driving force adjustment device
JP6194399B1 (en) Power equipment
JP4952520B2 (en) Hybrid vehicle drive system
JP6546669B1 (en) Differential
JP2019002475A (en) Power transmission device for vehicle
JP5682242B2 (en) Vehicle drive device
JP7456127B2 (en) drive wheel drive device
JP7327098B2 (en) drive wheel drive
JP6194398B1 (en) Power equipment
JP2014043161A (en) Transfer of vehicle
JP6156632B2 (en) Vehicle transaxle device
JP2006029438A (en) Driving device for vehicle and automobile comprising the same
JP2018179212A (en) Gear transmission
JP2007045220A (en) Drive device for vehicle
JP6499053B2 (en) Hybrid vehicle drive device
JP6361614B2 (en) Transfer device
JP5367624B2 (en) Vehicle transfer
JP2013086787A (en) Transfer of vehicle
JP2020121701A (en) Drive device for three-wheel vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R151 Written notification of patent or utility model registration

Ref document number: 7035385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151