JP7032851B1 - Oil squeezing and pelletizing equipment and oil squeezing and pelleting method - Google Patents

Oil squeezing and pelletizing equipment and oil squeezing and pelleting method Download PDF

Info

Publication number
JP7032851B1
JP7032851B1 JP2021203133A JP2021203133A JP7032851B1 JP 7032851 B1 JP7032851 B1 JP 7032851B1 JP 2021203133 A JP2021203133 A JP 2021203133A JP 2021203133 A JP2021203133 A JP 2021203133A JP 7032851 B1 JP7032851 B1 JP 7032851B1
Authority
JP
Japan
Prior art keywords
oil
squeezing
solid material
barrel
containing solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021203133A
Other languages
Japanese (ja)
Other versions
JP2023088431A (en
Inventor
明彦 佐藤
剛志 中塚
智史 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Steer Japan
Original Assignee
Steer Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steer Japan filed Critical Steer Japan
Priority to JP2021203133A priority Critical patent/JP7032851B1/en
Application granted granted Critical
Publication of JP7032851B1 publication Critical patent/JP7032851B1/en
Publication of JP2023088431A publication Critical patent/JP2023088431A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】油分含有固形材料を連続的に搬送しながら搾油しつつ、搾油後の固形材料をその場で、ペレット製品化して再利用可能とする搾油兼ペレット化装置、搾油兼ペレット化方法を提供する。【解決手段】バレル内で、バレルの長手方向に延びる回転シャフトと、該回転シャフトに対して外嵌するスクリューエレメントと、を有し、油分含有固形材料を前記バレル内に供給する供給部と、該供給部により供給される油分含有固形材料から油分を搾油する搾油部と、搾油された油分を回収する油分回収部と、前記搾油部により圧搾されるまでに、固形材料の融点または油分の許容加熱温度のうち低い方の温度以下まで油分含有固形材料が軟化状態となるように加熱する加熱部とが設けられ、前記圧搾部において、前記スクリューエレメントは、油分含有固形材料を圧搾可能な圧搾用スクリューエレメントであり、前記油分回収部は、前記バレルの下部に溜まる搾油された油分のみを回収可能なように、前記バレルの長手方向に対して、側方に設けられ、前記バレルには、前記圧搾用スクリューエレメントの近傍に、油分用流出開口が設けられ、さらに、搾油後の固形材料を押し出す押出部が、前記搾油部の下流側に設けられ、該押出部の近傍には、搾油後の固形材料を溶融状態まで加熱する溶融部が設けられ、前記押出部によりストランド状に外部に押し出された固形材料をカットして、ペレット製品とする、ことを特徴とする搾油兼ペレット化装置。【選択図】 図1PROBLEM TO BE SOLVED: To provide an oil-squeezing / pelletizing device and an oil-squeezing / pelletizing method for squeezing oil-containing solid materials while continuously transporting them, and making the solid materials after oiling into pellet products on the spot for reuse. do. SOLUTION: A supply unit having a rotating shaft extending in the longitudinal direction of the barrel and a screw element externally fitted to the rotating shaft in the barrel and supplying an oil-containing solid material into the barrel. An oil squeezing section that squeezes oil from an oil-containing solid material supplied by the supply section, an oil recovery section that recovers the squeezed oil, and a melting point or oil tolerance of the solid material before being squeezed by the oil squeezing section. A heating unit is provided to heat the oil-containing solid material so that it is in a softened state to a temperature lower than the lower of the heating temperatures. A screw element, the oil recovery unit is provided laterally with respect to the longitudinal direction of the barrel so that only the squeezed oil accumulated in the lower part of the barrel can be recovered. An oil outflow opening is provided in the vicinity of the squeezing screw element, and an extruding portion for extruding the solid material after squeezing is provided on the downstream side of the squeezing portion. An oil squeezing and pelletizing apparatus characterized in that a melting portion for heating a solid material to a molten state is provided, and the solid material extruded to the outside in a strand shape by the extrusion portion is cut into a pellet product. [Selection diagram] Fig. 1

Description

本発明は、搾油兼ペレット化装置および搾油兼ペレット化方法に関し、より詳細には、油分含有固形材料を連続的に搬送しながら搾油しつつ、搾油後の固形材料をその場で、ペレット製品化して再利用可能とする搾油兼ペレット化装置および搾油兼ペレット化方法に関する。 The present invention relates to an oil squeezing / pelleting apparatus and an oil squeezing / pelleting method. The present invention relates to an oil-squeezing and pelletizing device and an oil-squeezing and pelletizing method that can be reused.

従来から、植物等の天然物、または食品、工業物等の人工物を対象として、搾油技術により油分を回収することが行われている。
たとえば、特許文献1に開示されているように、容器に搾油対象物を入れ、バッチ式で圧搾することにより搾油する技術が用いられてきた。
より詳細には、容器に搾油対象物を入れて、容器内で圧搾し、油分と固形物とに分離し、搾油された油分を回収するように構成され、搾油対象物をバッチ式に静的圧搾することにより、搾油している。
このような技術によれば、容器内の搾油対象物を確実に圧搾することが可能であるが、圧搾後の対象物および容器内の搾油された油分を回収してから、次の圧搾対象物を容器に入れる必要があり、連続的な搾油ができない点で、非効率的である。
Conventionally, oil content has been recovered by oil extraction technology for natural products such as plants or artificial products such as foods and industrial products.
For example, as disclosed in Patent Document 1, a technique has been used in which an object to be squeezed is placed in a container and squeezed in a batch manner to squeeze the oil.
More specifically, it is configured to put the object to be squeezed in a container, squeeze it in the container, separate it into oil and solid, and collect the squeezed oil, and statically squeeze the object to be squeezed. Oil is squeezed by squeezing.
According to such a technique, it is possible to reliably squeeze the oil-squeezed object in the container, but after recovering the squeezed object and the squeezed oil in the container, the next squeezed object is used. It is inefficient in that it needs to be put in a container and continuous oil extraction is not possible.

この点、植物性油の回収用に種子を対象として、押出装置を利用して搾油する技術が、たとえば、特許文献2および特許文献3に開示されている。
特許文献2においては、いわゆる押出装置として、バレル内で、バレルの長手方向に延びる回転シャフトと、回転シャフトに対して外嵌するスクリューエレメントと、を有し、油分含有固形材料をバレル内に供給する供給部と、供給部により供給される油分含有固形材料から油分を搾油する搾油部と、搾油部により圧搾されるまでに、油分含有固形材料を加熱する加熱部とが設けられており、最下流部において、逆送りスクリューにより材料に背圧を負荷することにより、種子から搾油している。
In this regard, for example, Patent Document 2 and Patent Document 3 disclose techniques for extracting oil from seeds for recovery of vegetable oil by using an extruder.
In Patent Document 2, as a so-called extruder, a rotating shaft extending in the longitudinal direction of the barrel and a screw element externally fitted to the rotating shaft are provided in the barrel, and an oil-containing solid material is supplied into the barrel. A supply unit, an oil extraction unit that squeezes oil from the oil-containing solid material supplied by the supply unit, and a heating unit that heats the oil-containing solid material before being squeezed by the oil extraction unit are provided. In the downstream part, oil is squeezed from seeds by applying back pressure to the material with a reverse feed screw.

特許文献3においては、特許文献2と同様に、いわゆる押出装置を利用して、バレル内で、バレルの長手方向に延びる回転シャフトと、回転シャフトに対して外嵌するスクリューエレメントと、を有し、油分含有固形材料をバレル内に供給する供給部と、供給部により供給される油分含有固形材料から油分を搾油する搾油部と、搾油部により圧搾されるまでに、油分含有固形材料を加熱する加熱部とが設けられており、最下流部において、圧力調整具を利用して、材料に背圧を負荷することにより、種子から搾油している。 In Patent Document 3, as in Patent Document 2, using a so-called extruder, a rotating shaft extending in the longitudinal direction of the barrel and a screw element externally fitted to the rotating shaft are provided in the barrel. , The supply unit that supplies the oil-containing solid material into the barrel, the oil extraction unit that squeezes the oil from the oil-containing solid material supplied by the supply unit, and the oil-containing solid material that is heated until it is squeezed by the oil extraction unit. A heating section is provided, and in the most downstream section, oil is squeezed from seeds by applying back pressure to the material using a pressure regulator.

特に、特許文献2および3共通に、二軸同方向押出機を利用しており、それぞれ、バレル内で互いに間隔を隔てて軸方向に平行に延在する2軸回転シャフトそれぞれにスクリューが外嵌し、2軸回転シャフトの同方向回転によるスクリューの回転により、対象物を連続的にバレル内に供給しつつ、連続的に軸方向に搬送することが可能である。
しかしながら、このような二軸同方向押出機により、搾油対象物を搾油するとすれば、対象物を連続的に搬送しつつ、各回転シャフトの対応するスクリュー同士の噛み合い部において生じる対象物に対するせん断を利用して動的圧搾はある程度可能だが、このようなせん断により対象物が加熱され、場合により、搾油される油分の熱劣化を引き起こす。この点、油分の熱劣化を抑制するのに、スクリュー回転数を低減すると、油分の回収効率低下を引き起こす。
さらに、スクリュー同士のクリアランスが大きいので、セルフクリーニング性が乏しいことから、固形材料がスクリュ-の外表面に付着したままの状態となり、熱劣化し、熱劣化した固形材料が搾油された油分に異物混入する恐れもある。
In particular, in common with Patent Documents 2 and 3, a biaxial isodirectional extruder is used, and screws are externally fitted to each of the biaxial rotating shafts extending in parallel in the axial direction at intervals in the barrel. However, by rotating the screw by rotating the biaxial rotating shaft in the same direction, it is possible to continuously supply the object into the barrel and continuously convey the object in the axial direction.
However, if the object to be squeezed is squeezed by such a twin-screw co-extruder, while continuously transporting the object, shearing to the object generated at the meshing portion of the corresponding screws of each rotating shaft is performed. Although dynamic squeezing is possible to some extent by utilizing it, such shearing heats the object and, in some cases, causes thermal deterioration of the oil to be squeezed. In this respect, if the screw rotation speed is reduced in order to suppress the thermal deterioration of the oil content, the oil content recovery efficiency is lowered.
Furthermore, since the clearance between the screws is large, the self-cleaning property is poor, so that the solid material remains attached to the outer surface of the screw, and the heat-deteriorated solid material becomes foreign matter in the squeezed oil. There is also a risk of contamination.

以上に加え、このような従来の搾油技術においては、供給部から油分含有固形材料を連続的に供給し、スクリューエレメントの回転によりバレルの長手方向に搬送される間に搾油されるので、連続的な搾油は可能となるが、熱で溶融する物質としての油分含有固形材料を対象としておらず、以下のような技術的問題点を有する。
もともと、植物種子を対象とする以上、搾油後の種皮等の滓は、再利用の対象にはならず、残渣としての廃棄対象である。
搾油により回収された油分と、油分が回収された種皮を含む残渣とを分離することが行われておらず、搾油後の対象物のみをそのまま、下流側で外部に押出すことが困難である。
以上、このような従来の搾油技術においては、たとえば、パラフィン含有ポリエチレン製油分含有固形材料シートのような熱可塑性樹脂およびそれに類する物質の油分含有固形材料を対象に、油分を回収しつつ、油分回収された固定材料をその場で再利用可能な製品とするような示唆、あるいは、発想は言及されていない。
In addition to the above, in such a conventional oil squeezing technique, the oil-containing solid material is continuously supplied from the supply unit, and the oil is squeezed while being conveyed in the longitudinal direction of the barrel by the rotation of the screw element, so that it is continuous. Although it is possible to squeeze oil, it does not target oil-containing solid materials as substances that melt by heat, and has the following technical problems.
Originally, as long as plant seeds are targeted, slags such as seed coats after oil extraction are not subject to reuse, but are subject to disposal as residues.
The oil recovered by oil extraction and the residue containing the seed coat from which the oil has been recovered have not been separated, and it is difficult to extrude only the object after oil extraction to the outside as it is on the downstream side. ..
As described above, in such a conventional oil extraction technique, for example, a thermoplastic resin such as a paraffin-containing polyethylene oil-containing solid material sheet and an oil-containing solid material of a similar substance are recovered while recovering the oil content. No suggestion or idea is made to make the fixed material made into an in-situ reusable product.

実用新案登録番号第3195337号Utility model registration number 3195337 特開昭61-31496号Japanese Patent Application Laid-Open No. 61-31496 特開平07-197074号Japanese Patent Application Laid-Open No. 07-19774

以上の技術的問題点に鑑み、本発明の目的は、油分含有固形材料を連続的に搬送しながら搾油しつつ、搾油後の固形材料をその場で、ペレット製品化して再利用可能とする搾油兼ペレット化装置、搾油兼ペレット化方法を提供することにある。
以上の技術的問題点に鑑み、本発明の目的は、熱劣化を抑制することにより高品質な油分の回収性を確保しつつ、搾油後の固形材料をその場で、ペレット製品化して再利用可能とする搾油兼ペレット化装置、搾油兼ペレット化方法を提供することにある。
In view of the above technical problems, an object of the present invention is to squeeze oil while continuously transporting oil-containing solid materials, and to squeeze the squeezed solid materials on the spot into pellet products so that they can be reused. It is an object of the present invention to provide a dual-pelling apparatus and an oil-squeezing and pelletizing method.
In view of the above technical problems, an object of the present invention is to ensure high quality oil recovery by suppressing thermal deterioration, and to reuse the solid material after oil extraction as a pellet product on the spot. It is an object of the present invention to provide an oil-squeezing and pelletizing apparatus and an oil-squeezing and pelletizing method.

以上の課題を解決するために、本発明の搾油兼ペレット化装置は、
バレル内で、バレルの長手方向に延びる回転シャフトと、
該回転シャフトに対して外嵌するスクリューエレメントと、を有し、
油分含有固形材料を前記バレル内に供給する供給部と、該供給部により供給される油分含有固形材料から油分を搾油する搾油部と、搾油された油分を回収する油分回収部と、前記搾油部により圧搾されるまでに、固形材料の融点または油分の許容加熱温度のうち低い方の温度以下まで油分含有固形材料が軟化状態となるように加熱する加熱部とが設けられ、
前記圧搾部において、前記スクリューエレメントは、油分含有固形材料を圧搾可能な圧搾用スクリューエレメントであり、
前記油分回収部は、前記バレルの下部に溜まる搾油された油分のみを回収可能なように、前記バレルの長手方向に対して、側方に設けられ、前記バレルには、前記圧搾用スクリューエレメントの近傍に、油分用流出開口が設けられ、
さらに、搾油後の固形材料を押し出す押出部が、前記搾油部の下流側に設けられ、
該押出部近傍には、搾油後の固形材料を溶融状態まで加熱する溶融部が設けられ、
前記押出部によりストランド状に外部に押し出された固形材料をカットして、ペレット製品とする、構成としている。
ことを特徴とする搾油兼ペレット化装置。
In order to solve the above problems, the oil squeezing and pelletizing apparatus of the present invention is used.
In the barrel, a rotating shaft that extends in the longitudinal direction of the barrel,
It has a screw element that fits externally to the rotating shaft, and has.
A supply unit that supplies the oil-containing solid material into the barrel, an oil-squeezing unit that squeezes oil from the oil-containing solid material supplied by the supply unit, an oil recovery unit that recovers the squeezed oil, and the oil-squeezing unit. A heating unit is provided to heat the oil-containing solid material so that it is in a softened state to a temperature equal to or lower than the melting point of the solid material or the allowable heating temperature of the oil before being squeezed.
In the squeezing portion, the screw element is a squeezing screw element capable of squeezing an oil-containing solid material.
The oil recovery unit is provided laterally with respect to the longitudinal direction of the barrel so that only the squeezed oil accumulated in the lower part of the barrel can be recovered, and the barrel is provided with the squeezing screw element. An oil outflow opening is provided in the vicinity,
Further, an extrusion section for extruding the solid material after oil extraction is provided on the downstream side of the oil extraction section.
In the vicinity of the extruded portion, a melting portion that heats the solid material after oil extraction to a molten state is provided.
The solid material extruded to the outside in a strand shape by the extruded portion is cut into a pellet product.
An oil squeezing and pelletizing device that is characterized by this.

以上の構成を有する搾油兼ペレット化装置によれば、供給部からバレル内に供給される油分含有固形材料は、回転シャフト、すなわちスクリューエレメントの回転によりバレルの長手方向下流側に搬送されながら、加熱部により、固形材料の融点または油分の許容加熱温度のうち低い方の温度以下まで油分含有固形材料が軟化状態となるように加熱され、圧搾用スクリューエレメントにより圧搾されることにより、搾油され、回収された油分は、油分回収部により、油分用流出開口を介して、バレルの下部に溜まる搾油された油分のみが回収され、一方、搾油後の固形材料は、搾油部の下流側の押出部において、押出部近傍の溶融部により溶融され、ストランド状に外部に押し出され、カットされてペレット製品とされることから、回収された油分と油分が回収された固形材料との分離を通じて、油分含有固形材料を連続的に搬送しながら搾油しつつ、搾油後の固形材料をその場で、ペレット製品化して再利用可能となる。 According to the oil squeezing and pelletizing apparatus having the above configuration, the oil-containing solid material supplied from the supply unit into the barrel is heated while being conveyed to the downstream side in the longitudinal direction of the barrel by the rotation of the rotating shaft, that is, the screw element. The oil-containing solid material is heated to a softened state to a temperature lower than the melting point of the solid material or the allowable heating temperature of the oil content, and is squeezed by a squeezing screw element to be squeezed and recovered. Only the squeezed oil collected in the lower part of the barrel is recovered by the oil recovery section through the oil outflow opening, while the solid material after squeezing is collected in the extrusion section on the downstream side of the oil squeezing section. , It is melted by the melting part near the extrusion part, extruded to the outside in a strand shape, and cut to make a pellet product. Therefore, through the separation of the recovered oil and the recovered solid material, the oil-containing solid While oil is squeezed while continuously transporting the material, the solid material after oil extraction can be made into pellet products on the spot and reused.

また、前記バレルは、2つの円筒シリンダを長手方向に平行に連結し、長手方向に直交する断面において、一対の円弧部が連なるまゆ形であり、
前記回転シャフトは、それぞれ、対応する円筒シリンダ内で該円筒シリンダと同心状に長手方向に延び、
長手方向を中心に、同方向に回転可能な、互いに所定間隔を隔てた2軸の回転シャフトであり、
前記スクリューエレメントは、各々、前記2軸の回転シャフトそれぞれに対して外嵌する、一対をなし、
該一対のスクリューエレメントは、互いに同一であり、前記バレルの長手方向の同位置に設けられ、前記2軸の回転シャフト間で所定間隔を隔てて噛み合うように配置されるのがよい。
Further, the barrel is a eyebrows shape in which two cylindrical cylinders are connected in parallel in the longitudinal direction and a pair of arc portions are connected in a cross section orthogonal to the longitudinal direction.
Each of the rotary shafts extends longitudinally concentrically with the cylindrical cylinder within the corresponding cylindrical cylinder.
It is a two-axis rotating shaft that can rotate in the same direction around the longitudinal direction and is separated from each other by a predetermined distance.
The screw elements are paired with each other and are fitted to each of the two-axis rotating shafts.
It is preferable that the pair of screw elements are the same as each other, are provided at the same position in the longitudinal direction of the barrel, and are arranged so as to mesh with each other at a predetermined distance between the rotating shafts of the two axes.

さらに、前記搾油部は、長手方向に隣接配置された搬送部と圧搾部とを有し、
前記搬送部において、前記一対のスクリューエレメントは、油分含有固形材料を前記バレルの長手方向下流側に搬送可能な搬送用スクリューエレメントであり、
前記圧搾用スクリューエレメントの外表面と前記バレルの内面との間に構成される油分含有固形材料の流路断面積は、前記搬送用スクリューエレメントの外表面と前記バレルの内面との間に構成される油分含有固形材料の流路断面積より小さく設定されるのがよい。
Further, the oil squeezing portion has a transporting portion and a squeezing portion arranged adjacent to each other in the longitudinal direction.
In the transport section, the pair of screw elements are transport screw elements capable of transporting an oil-containing solid material to the downstream side in the longitudinal direction of the barrel.
The flow path cross-sectional area of the oil-containing solid material formed between the outer surface of the squeezing screw element and the inner surface of the barrel is formed between the outer surface of the transport screw element and the inner surface of the barrel. It is preferable to set it smaller than the cross-sectional area of the flow path of the oil-containing solid material.

さらにまた、前記圧搾用スクリューエレメントは、前記回転シャフトが内嵌する円形開口を有し、周方向に2以上のチップを有するディスクが長手方向に積み重ねられ、長手方向に隣接するディスクの対応するチップは、周方向にずれている、長手方向に不連続タイプであり、前記バレルの中心に対して、前記円形開口の中心がオフセット配置されるのでもよい。
加えて、前記圧搾用スクリューエレメントは、前記回転シャフトが内嵌する円形開口を有するモノリシック状であり、長手方向に離間する両端面それぞれにおいて、周方向に2以上のチップを有し、周側面には、両端面のチップに連なる螺旋状リードが設けられる、長手方向に連続タイプであり、前記バレルの中心に対して、前記円形開口の中心がオフセット配置されるのでもよい。
Furthermore, the squeezing screw element has a circular opening into which the rotating shaft fits, discs with two or more chips in the circumferential direction are stacked longitudinally, and the corresponding inserts of the discs adjacent in the longitudinal direction. Is a type that is discontinuous in the longitudinal direction and is offset in the circumferential direction, and the center of the circular opening may be offset with respect to the center of the barrel.
In addition, the squeezing screw element is monolithic with a circular opening into which the rotary shaft fits, with two or more tips in the circumferential direction on each of the longitudinally spaced end faces and on the peripheral side surface. Is a continuous type in the longitudinal direction in which spiral leads connected to the chips on both end faces are provided, and the center of the circular opening may be offset with respect to the center of the barrel.

また、前記搾油部は、前記バレルの長手方向に直列に、複数設けられ、前記押出部は、最下流側の前記搾油部の下流に設けられるのがよい。
さらに、前記油分回収部は、前記油分用流出開口に連通接続され、油分回収開口を有するケーシングと、該ケーシング内に設けられ、前記油分用流出開口に向かって進む向きに回転するスクリューとが設けられ、前記油分回収開口を通じて、搾油される油分は回収され、搾油された油分含有固形材料は回収されないようにするのがおい。
さらにまた、油分含有固形材料は、固形材料が熱可塑性樹脂でよい。
Further, it is preferable that a plurality of the oil-squeezing portions are provided in series in the longitudinal direction of the barrel, and the extrusion portions are provided downstream of the oil-squeezing portion on the most downstream side.
Further, the oil recovery unit is provided with a casing that is communicated with the oil outflow opening and has an oil recovery opening, and a screw that is provided in the casing and rotates in a direction toward the oil outflow opening. The oil to be squeezed is recovered through the oil recovery opening, and the squeezed oil-containing solid material is not recovered.
Furthermore, as the oil-containing solid material, the solid material may be a thermoplastic resin.

以上の課題を解決するために、本発明の搾油兼ペレット化方法は、
固形材料中に油分が含浸した油分含有固形材料を連続的に順方向に密閉空間内で密閉空間の延び方向に沿って搬送しながら、固形材料の融点または油分の許容加熱温度のうち低い方の温度以下まで油分含有固形材料が軟化状態となるように加熱する段階と、
密閉空間の下流側に圧力障壁を形成することにより、圧力障壁上流側における密閉空間内の加熱された油分含有固形材料の充満度を高めつつ、油分含有固形材料を圧搾し、圧搾のみにより油分を搾油する段階と、
搾油された油分を連続的に回収しつつ、搾油後の固形材料を溶融して、ストランド状に外部に押し出す段階と、
外部に押し出された固形材料をカットして、ペレット化する段階とを、
有する、構成としている。
In order to solve the above problems, the oil-squeezing and pelletizing method of the present invention is used.
The oil-containing solid material impregnated with oil in the solid material is continuously transported in the forward direction in the closed space along the extension direction of the closed space, and the lower of the melting point of the solid material or the allowable heating temperature of the oil is lower. At the stage of heating the oil-containing solid material to a softened state to below the temperature,
By forming a pressure barrier on the downstream side of the closed space, the oil-containing solid material is squeezed while increasing the filling degree of the heated oil-containing solid material in the closed space on the upstream side of the pressure barrier, and the oil content is squeezed only by squeezing. The stage of oil extraction and
At the stage of continuously recovering the squeezed oil, melting the squeezed solid material and pushing it out in a strand shape,
The stage of cutting the solid material extruded to the outside and pelletizing it,
It has a structure.

また、前記ペレット化段階は、外部に押し出された固形材料を長手方向の所定長さごとにカット可能なように、空冷または水冷してから、カットするのがよい。
さらに、油分含有固形材料は、固形材料が熱可塑性樹脂でよい。
Further, in the pelletization step, it is preferable that the solid material extruded to the outside is air-cooled or water-cooled so that it can be cut at predetermined lengths in the longitudinal direction, and then cut.
Further, as the oil-containing solid material, the solid material may be a thermoplastic resin.

図面を参照しながら、本発明の搾油兼ペレット化装置および搾油兼ペレット化方法を以下に詳細に説明する。
図1ないし図3に示すように、搾油兼ペレット化装置10は、油分含有固形材料Mをバレル16内に供給する供給部22と、供給部22により供給される油分含有固形材料Mから油分Oを搾油する搾油部24と、搾油された油分Oを回収する油分回収部26と、搾油部24により圧搾されるまでに、固形材料の融点または油分Oの許容加熱温度のうち低い方の温度以下まで油分含有固形材料Mを加熱する加熱部28と、油分O搾油済の残渣固形材料Mを外部に押し出す押出部33とから概略構成されている。
より具体的には、内部に油分含有固形材料Mを搬送するバレル16が設けられ、適宜間隔でスタンド25により支持された長手方向Xに延びるシリンダ12が備えられ、シリンダ12の一端には、供給部22、シリンダ12の他端には、押出部33が設けられ、一端から他端に向かって長手方向Xに、搾油部24および加熱部28が設けられ、搾油部24には、シリンダ12から側方に、シリンダ12の長手方向Xに直交する向きに油分回収部26が設けられ、供給部22から供給された油分含有固形材料Mが、バレル16内で長手方向Xの下流側に搬送されつつ、加熱され、搾油され、搾油された油分Oが回収される一方、油分O搾油済の残渣固形材料Mを外部に押し出すようにしている。
The oil-squeezing and pelletizing apparatus and the oil-squeezing and pelletizing method of the present invention will be described in detail below with reference to the drawings.
As shown in FIGS. 1 to 3, the oil squeezing and pelletizing apparatus 10 has a supply unit 22 for supplying the oil-containing solid material M into the barrel 16 and an oil content O from the oil-containing solid material M supplied by the supply unit 22. The temperature below the melting point of the solid material or the allowable heating temperature of the oil O before being squeezed by the oil squeezing unit 24 for squeezing the oil, the oil recovery unit 26 for recovering the squeezed oil O, and the oil squeezing unit 24. It is roughly composed of a heating unit 28 that heats the oil-containing solid material M up to, and an extrusion unit 33 that extrudes the residual solid material M that has been oil-squeezed with oil O to the outside.
More specifically, a barrel 16 for transporting the oil-containing solid material M is provided inside, and a cylinder 12 extending in the longitudinal direction X supported by the stand 25 is provided at appropriate intervals, and a supply is provided at one end of the cylinder 12. An extrusion portion 33 is provided at the other end of the portion 22 and the cylinder 12, an oil squeezing portion 24 and a heating portion 28 are provided in the longitudinal direction X from one end toward the other end, and the oil squeezing portion 24 is provided from the cylinder 12. An oil recovery section 26 is provided on the side in a direction orthogonal to the longitudinal direction X of the cylinder 12, and the oil-containing solid material M supplied from the supply section 22 is conveyed to the downstream side of the longitudinal direction X in the barrel 16. At the same time, the oil O that has been heated, squeezed, and squeezed is recovered, while the residual solid material M that has been squeezed with the oil O is pushed out.

図4に示すように、バレル16は、2つの円筒シリンダ13を長手方向に平行に連結し、長手方向Xに直交する断面において、一対の円弧部14が連なるまゆ形であり、それぞれ、対応する円筒シリンダ13内で円筒シリンダ13と同心状に長手方向Xに延び、長手方向Xを中心に回転可能な、互いに所定間隔を隔てた2軸の回転シャフト18が設けられる、各回転シャフト18は、通常どおり、長手方向Xを中心に回転可能なように、たとえば、軸受け(図示せず)により軸支され、各回転シャフト18は、回転駆動モーター19に回転伝達機構21を介して、同じ方向に同期し回転するように連結されている。
2軸の回転シャフト18それぞれにおいて、一対のスクリューエレメント20(後に説明する搬送用スクリューエレメント20A、圧搾用スクリューエレメント20Bを含む)が、回転シャフト18の長手方向Xを中心に回転可能なように、たとえば、回転シャフト18の外周面に対してスプライン外嵌され、一対のスクリューエレメント20は、金属製で、互いに同一であり、バレル16の長手方向Xの同位置に設けられ、2軸の回転シャフト18間で所定間隔D(図6参照)を隔てて噛み合うように配置される。
シリンダ12は、図2(C1からC12)に示すように、内部に形成されるバレル16(後に説明)とともに長手方向に分割され、各分割された部分の端面には、張り出しフランジ41が設けられ、張り出しフランジ41に設けられるねじ穴43(図4)を介して、長手方向に隣接する分割部同士を液封状にねじ締結しており、各分割部は、押出し部を除き、搬送部か、搾油部かのいずれかを構成する。これにより、搬送部および搾油部それぞれに対応したバレル16内のスクリューエレメント20を点検、交換等する場合に、有効である。
As shown in FIG. 4, the barrel 16 is a eyebrows shape in which two cylindrical cylinders 13 are connected in parallel in the longitudinal direction and a pair of arc portions 14 are connected in a cross section orthogonal to the longitudinal direction X, respectively. In the cylindrical cylinder 13, biaxial rotating shafts 18 extending in the longitudinal direction X concentrically with the cylindrical cylinder 13 and rotating about the longitudinal direction X at predetermined intervals are provided. As usual, they are pivotally supported by, for example, a bearing (not shown) so that they can rotate about the longitudinal direction X, and each rotary shaft 18 is connected to the rotary drive motor 19 via a rotation transmission mechanism 21 in the same direction. They are connected so that they rotate in synchronization.
In each of the two-axis rotary shafts 18, the pair of screw elements 20 (including the transport screw element 20A and the squeeze screw element 20B described later) can rotate about the longitudinal direction X of the rotary shaft 18. For example, a spline outer fit to the outer peripheral surface of the rotary shaft 18, the pair of screw elements 20 are made of metal, are identical to each other, are provided at the same position in the longitudinal direction X of the barrel 16, and are biaxial rotary shafts. They are arranged so as to mesh with each other at a predetermined interval D (see FIG. 6).
As shown in FIG. 2 (C1 to C12), the cylinder 12 is divided in the longitudinal direction together with the barrel 16 (described later) formed inside, and an overhanging flange 41 is provided on the end face of each divided portion. , The divided portions adjacent to each other in the longitudinal direction are screwed together in a liquid-sealed manner via a screw hole 43 (FIG. 4) provided in the overhanging flange 41, and each divided portion is a transport portion except for an extruded portion. , Consists of either the oil squeezing section. This is effective when inspecting, replacing, or the like in the screw element 20 in the barrel 16 corresponding to each of the transport section and the oil squeezing section.

油分含有固形材料は、油分を含有し、加熱により軟化する固形材料である限り、任意であり、工業用材料、天然物、または食品残渣であり、態様は、バルク状、ペレット状、フレーク状片、粒状、粉状のいずれでもよい。
特に、後述するように、搾油済の固形材料をそのままストランド状に押し出して、ペレット化して再利用可能とする観点から、たとえば、熱可塑性樹脂が好ましく、油分含有固形材料は、産業用廃材でもよい。
原料供給部10は、ホッパー23、いずれも従来既知のコイルフィーダー(図示せず)、シューター(図示せず)、強制フィーダー(図示せず)から構成され、シューターが、材料供給口31で接続されている。
ホッパー23の下部のコイルフィーダーは、ホッパー23に投入された油分含有固形材料Mを、シューターに供給するものであり、シューターには、油分含有固形材料Mを強制フィードするために、押し込み能力とフィード能力を有する強制フィーダーが挿入され、時間当たりの油分含有固形材料Mのバレル16内への供給量を設定可能としている。変形例として、シューターを介さず、材料供給口31にホッパー23を直接接続するのでもよい。
The oil-containing solid material is arbitrary as long as it is a solid material containing oil and softened by heating, and is an industrial material, a natural product, or a food residue, and the embodiment is bulk, pellet, or flake-like pieces. , Granular or powdery.
In particular, as will be described later, for example, a thermoplastic resin is preferable, and the oil-containing solid material may be industrial waste material from the viewpoint that the oil-extracted solid material is extruded into a strand shape as it is and pelletized so that it can be reused. ..
The raw material supply unit 10 is composed of a hopper 23, a coil feeder (not shown), a shooter (not shown), and a forced feeder (not shown), all of which are conventionally known, and the shooter is connected by the material supply port 31. ing.
The coil feeder at the lower part of the hopper 23 supplies the oil-containing solid material M charged into the hopper 23 to the shooter, and the shooter has a pushing capacity and a feed to forcibly feed the oil-containing solid material M to the shooter. A force feeder having the ability is inserted, and the supply amount of the oil-containing solid material M per hour into the barrel 16 can be set. As a modification, the hopper 23 may be directly connected to the material supply port 31 without using a shooter.

加熱部28は、従来既知のシリンダ12の内部に設けられる加熱ヒーターにより、バレル16内の油分含有固形材料Mをバレル16の内面を介して、外部加熱するように構成され、油分含有固形材料Mが後に説明する搾油部24に到達するまでに、固形材料の融点または油分Oの許容加熱温度のうち低い方の温度以下まで油分含有固形材料Mが加熱されるようにしている。
これにより、油分含有固形材料Mが搾油部24に到達する時点において、圧搾可能なように軟化状態とされるとともに、油分含有固形材料Mが過熱されて、搾油された油分Oが熱劣化されないようにする、または、熱劣化した固形材料Mが搾油された油分Oに混入しないようにすることにより、油分Oの材質を確保する。以上のように、加熱部28による加熱温度は、油分含有固形材料M、油分Oの種類に応じて、設定されるのが好ましい。
押出部33は、従来、溶融混練押出装置に用いられているものと同様に、ダイス35を設けて、油分O搾油済の残渣固形材料Mを絞って外部に押し出すようにしている。
The heating unit 28 is configured to externally heat the oil-containing solid material M in the barrel 16 via the inner surface of the barrel 16 by a heating heater provided inside a conventionally known cylinder 12, and the oil-containing solid material M is configured. The oil-containing solid material M is heated to a temperature equal to or lower than the melting point of the solid material or the allowable heating temperature of the oil O, whichever is lower, by the time it reaches the oil squeezing unit 24 described later.
As a result, when the oil-containing solid material M reaches the oil-squeezed portion 24, it is softened so that it can be squeezed, and the oil-containing solid material M is overheated so that the squeezed oil O is not thermally deteriorated. Or, by preventing the heat-deteriorated solid material M from being mixed with the squeezed oil content O, the material of the oil content O is secured. As described above, the heating temperature by the heating unit 28 is preferably set according to the types of the oil-containing solid material M and the oil O.
The extrusion unit 33 is provided with a die 35 in the same manner as that conventionally used in the melt-kneading extruder, and the oil content O oil-squeezed residual solid material M is squeezed and extruded to the outside.

図1に示すように、搾油部24は、長手方向Xに直列に複数(3基)設けられ、各々は、上流側から下流側に向かって搬送部30と圧搾部32とが隣接して設けられている。
以下、各スクリューエレメント20が対応する回転シャフト18に設けられる一対のスクリューエレメント20は、互いに同一であるので、その一方について、説明する。
搬送部30において、一対のスクリューエレメント20は、各々油分含有固形材料Mをバレル16の長手方向X下流側に搬送可能な搬送用スクリューエレメント20Aであり、搬送用スクリューエレメント20Aは、従来既知のフルフライトスクリューでよい。
圧搾部32において、一対のスクリューエレメント20は、各々油分含有固形材料Mを圧搾可能な圧搾用スクリューエレメント20Bである。
図5に示すように、圧搾用スクリューエレメント20Bは、回転シャフト18が内嵌する円形開口48を有し、周方向に2以上のチップ50を有するディスク52が長手方向Xに積み重ねられ(図5において、7枚)、長手方向Xに隣接するディスク52の対応するチップ50は、周方向にずれている、長手方向Xに不連続タイプであり、バレル16の中心に対して、円形開口48の中心がオフセット配置される。より具体的には、各端部に設けられるディスク52は、3条であり、両端部の間に設けられるディスク52は、4条である。各ディスク52には、当接面に凹凸を設け、長手方向に隣接するディスク52が嵌合固定されるようにしている。
各ディスクの厚みtは、後に説明するように、圧搾用スクリューエレメント20Bの長手方向長さLにより、油分含有固形材料Mが圧搾用スクリューエレメント20Bを通過する時間を調整する観点から定めるのがよい。
圧搾用スクリューエレメント20Bは、搬送用スクリューエレメント20Aと同様に、回転シャフト18の軸線方向を中心とする回転により、油分含有固形材料Mを長手方向Xの下流方向に搬送するように構成され、ディスク52は、回転シャフト18の軸方向に傾斜して設けられている(図面上、傾斜は図示省略)。
バレル16の分割部C4、C7およびC9それぞれにおいて、図5に示す圧搾用スクリューエレメント20Bが2組、長手方向に直列に配置されている。
As shown in FIG. 1, a plurality (3 units) of oil squeezing portions 24 are provided in series in the longitudinal direction X, and each of them is provided with a transport portion 30 and a squeezing portion 32 adjacent to each other from the upstream side to the downstream side. Has been done.
Hereinafter, since the pair of screw elements 20 provided on the rotating shaft 18 to which each screw element 20 corresponds is the same as each other, one of them will be described below.
In the transport unit 30, the pair of screw elements 20 are transport screw elements 20A capable of transporting the oil-containing solid material M to the downstream side X in the longitudinal direction of the barrel 16, respectively, and the transport screw element 20A is a conventionally known full. A flight screw is fine.
In the squeezing section 32, the pair of screw elements 20 are squeezing screw elements 20B capable of squeezing the oil-containing solid material M, respectively.
As shown in FIG. 5, the squeezing screw element 20B has a circular opening 48 into which a rotary shaft 18 is fitted, and disks 52 having two or more chips 50 in the circumferential direction are stacked in the longitudinal direction X (FIG. 5). The corresponding chip 50 of the disk 52 adjacent to the longitudinal direction X is a discontinuous type in the longitudinal direction X, which is offset in the circumferential direction, and has a circular opening 48 with respect to the center of the barrel 16. The center is offset. More specifically, the disk 52 provided at each end has three threads, and the disk 52 provided between both ends has four threads. Each disc 52 is provided with irregularities on the contact surface so that the discs 52 adjacent to each other in the longitudinal direction are fitted and fixed.
As will be described later, the thickness t of each disc is preferably determined from the viewpoint of adjusting the time for the oil-containing solid material M to pass through the pressing screw element 20B by the longitudinal length L of the pressing screw element 20B. ..
Similar to the transport screw element 20A, the squeeze screw element 20B is configured to transport the oil-containing solid material M in the downstream direction of the longitudinal direction X by rotating the rotary shaft 18 about the axial direction, and is a disk. The 52 is provided so as to be inclined in the axial direction of the rotary shaft 18 (inclination is not shown in the drawing).
In each of the divided portions C4, C7 and C9 of the barrel 16, two sets of squeezing screw elements 20B shown in FIG. 5 are arranged in series in the longitudinal direction.

図8に示すように、4条のディスク52それぞれは、外周縁は、円弧の組み合わせから構成され、4つのチップ50は、周方向に所定間隔を隔てて配置され、1つは、チップアングルΘ1、1つは、Θ1より大きいチップアングルΘ2により構成され、他の2つは、チップアングルΘ1、Θ2より小さい角度で構成され、バレル16の内面36と圧搾用スクリューエレメント20Bの外周縁34との間に構成される流路断面積SAは、3条のディスク52と同様に、チップ50により区分されている。
チップの周方向の配置、チップアングルは、偏心量dと同様に、油分含有固形材料Mに対する所望の圧搾度を達成する観点から定めればよい。
2組の圧搾用スクリューエレメント20Bは、上流側の組の最下流側の3条ディスク52と、下流側の組の最上流側の3条ディスク52とが当接する態様で、回転シャフト18にそれぞれ連結され、最下流側の3条ディスク52と最上流側の3条ディスク52とは、回転シャフト18の周方向にずらして当接させるのでもよく、周方向にずらさずに当接させるのでもよい。一方、上流側の組の最上流側の3条ディスク52、および下流側の組の最下流側の3条ディスク52はそれぞれ、隣接する搬送用スクリューエレメント20Aの端面と当接する態様で、回転シャフト18にそれぞれ連結されている。
As shown in FIG. 8, each of the four discs 52 has an outer peripheral edge composed of a combination of arcs, four chips 50 are arranged at predetermined intervals in the circumferential direction, and one is a chip angle Θ1. One is composed of a tip angle Θ2 larger than Θ1, and the other two is composed of an angle smaller than the tip angles Θ1 and Θ2. The flow path cross-sectional area SA configured between them is divided by the chip 50, similarly to the disk 52 of the third row.
The arrangement in the circumferential direction of the tip and the tip angle may be determined from the viewpoint of achieving a desired degree of pressing with respect to the oil-containing solid material M, similarly to the eccentricity d.
The two sets of squeezing screw elements 20B each come into contact with the rotary shaft 18 in such a manner that the most downstream three-row disk 52 of the upstream set and the most upstream three-row disk 52 of the downstream set come into contact with each other. The three-row disc 52 on the most downstream side and the three-row disc 52 on the most upstream side, which are connected to each other, may be brought into contact with each other by shifting them in the circumferential direction of the rotary shaft 18, or may be brought into contact with each other without shifting in the circumferential direction. good. On the other hand, the three-row disk 52 on the most upstream side of the upstream set and the three-row disk 52 on the most downstream side of the downstream set are in contact with the end faces of the adjacent transfer screw elements 20A, respectively. Each of them is connected to 18.

以上、圧搾用スクリューエレメント20Bの両端部の3条ディスク52は、それぞれ、圧搾用スクリューエレメント20Bの組付け性の観点から設けられており、所望の圧搾度が確保される限りにおいて、両端部の3条ディスク52の一方、または両方は、中間部の4条ディスク52と同様に、4条としてもよく、または、中間部の4条ディスク52すべて、または一部を両端部の3条ディスク52と同様に、3条としてもよい。
なお、図5に図示する7枚のディスクから構成される圧搾用スクリューエレメントについては、両端面側はいずれも、いわゆるおむすび形の3条であり、両端面の間の5枚のディスクは、いずれも4条であり、流路断面積は、両端面側に比べて、より小さく構成されており、両端面の間を通過する間に、油分含有固形材料は、半径方向を含め、より圧搾力が負荷されるようにしている。このように、各ディスクの条数を個別に設定することにより、上流側に隣接して配置される搬送用スクリューエレメントに対する流路断面積の狭まり方を調整し、それにより、油分含有固形材料に対する半径方向を含めた圧搾力の負荷、かくして、圧搾度を調整することが可能である。
一方において、各ディスクの厚みを個別に設定することにより、油分含有固形材料が圧搾用スクリューエレメントを通過する間の圧搾時間を調整し、それにより、同様に、圧搾度を調整することが可能である。
また、上述のように、圧搾用スクリューエレメントの隣接するディスク間において、チップの位置を周方向にずらすことにより、隣接するディスクすべて、チップの位置を周方向に整列する場合に比して、軟質化された油分含有固形材料Mが、バレル16の内面36と圧搾用スクリューエレメント20Bの外表面の間の流路を流れる際、油分含有固形材料Mの流れに対する抵抗となり、場合により乱流が引き起され、その分、圧搾度が向上し、搾油性がより増大する。よって、隣接するディスク間において、チップの位置を周方向にずらす角度は、このような観点から定めるのがよく、ずらす角度は、たとえば、隣接するディスク間の対応するチップ同士で、数度ないし数十度である。
As described above, the three-row discs 52 at both ends of the squeezing screw element 20B are provided from the viewpoint of the assembling property of the squeezing screw element 20B, respectively, and as long as the desired degree of squeezing is secured, both ends thereof are provided. One or both of the three-row discs 52 may be four-row discs in the same manner as the four-row discs 52 in the middle portion, or all or part of the four-row discs 52 in the middle portion may be the three-row discs 52 at both ends. Similarly, it may be Article 3.
Regarding the squeezing screw element composed of the seven discs shown in FIG. 5, each of the two end faces is a so-called rice ball-shaped three-row, and the five discs between the two end faces are any of them. The cross-sectional area of the flow path is smaller than that of both end faces, and the oil-containing solid material has more squeezing force, including the radial direction, while passing between both end faces. Is loaded. In this way, by setting the number of rows of each disc individually, it is possible to adjust how the cross-sectional area of the flow path is narrowed with respect to the transport screw element arranged adjacent to the upstream side, thereby, with respect to the oil-containing solid material. It is possible to adjust the load of squeezing force, including the radial direction, and thus the degree of squeezing.
On the other hand, by setting the thickness of each disc individually, it is possible to adjust the squeezing time while the oil-containing solid material passes through the squeezing screw element, thereby similarly adjusting the degree of squeezing. be.
Further, as described above, by shifting the position of the chip in the circumferential direction between the adjacent disks of the squeezing screw element, all the adjacent disks are softer than the case where the positions of the chips are aligned in the circumferential direction. When the converted oil-containing solid material M flows through the flow path between the inner surface 36 of the barrel 16 and the outer surface of the squeezing screw element 20B, it becomes resistance to the flow of the oil-containing solid material M, and in some cases turbulence is drawn. It is raised, and the degree of squeezing is improved by that amount, and the oil-squeezing property is further increased. Therefore, the angle at which the chip position is shifted in the circumferential direction between adjacent disks is often determined from this point of view, and the shifting angle is, for example, several degrees or a number between the corresponding chips between adjacent disks. It is ten degrees.

図6に示すように、各圧搾用スクリューエレメント20Bにおいて、バレル16の長手方向Xに直交する断面外形を構成する外周閉曲線部40は、圧搾用スクリューエレメント20Bの回転シャフト18を中心とする回転により外周閉曲線部40と円弧部14との間に所定間隔dを保持しつつ、外周閉曲線部40と円弧部14との間に形成される領域が複数の部分領域42に区分けされ、いずれかの部分領域42の面積が、圧搾用スクリューエレメント20Bの回転シャフト18を中心とする回転に応じて増減するように、外周閉曲線部40は、非円形状で、対応する回転シャフト18の回転軸線は、円弧部14の中心と同心状である。
より詳細には、外周閉曲線部40と円弧部14との間に形成される領域は、部分領域42として、SA1ないしSA5の5つの領域に区分され、図6(A)ないし図6(C)に示すように、回転シャフト18の回転に応じて、SA1ないしSA5の面積はそれぞれ、増減している。
所定間隔dについて、バレル16の内面36に対して、チップ50の先端が接触しない範囲で、なるべく小さいのが好ましく(たとえば、0.2ミリ以下)、それにより、流路断面積SA1ないしSA5間が区分されることから、流路断面積SA1ないしSA5の総面積が、長手方向上流側に隣接する搬送部における総面積より小さく設定する場合に、流路断面積SA1ないしSA5それぞれにおける、油分の圧搾に有効である。
以上の点は、一対の圧搾用スクリューエレメント20Bそれぞれにおいて、両端部の間に設けられる4条のディスク52により形成される流路断面積SAについても同様である。
As shown in FIG. 6, in each squeezing screw element 20B, the outer peripheral closed curved portion 40 constituting the cross-sectional area orthogonal to the longitudinal direction X of the barrel 16 is rotated around the rotation shaft 18 of the squeezing screw element 20B. A region formed between the outer peripheral closed curve portion 40 and the arc portion 14 is divided into a plurality of partial regions 42 while maintaining a predetermined distance d between the outer peripheral closed curve portion 40 and the arc portion 14, and any portion thereof. The outer peripheral closed curved portion 40 has a non-circular shape, and the rotation axis of the corresponding rotation shaft 18 is an arc so that the area of the region 42 increases or decreases according to the rotation of the pressing screw element 20B about the rotation shaft 18. It is concentric with the center of the portion 14.
More specifically, the region formed between the outer peripheral closed curve portion 40 and the arc portion 14 is divided into five regions SA1 to SA5 as a partial region 42, and FIGS. 6A to 6C are shown. As shown in the above, the areas of SA1 to SA5 are increased or decreased according to the rotation of the rotating shaft 18.
It is preferable that the tip 50 is as small as possible (for example, 0.2 mm or less) within a range where the tip of the tip 50 does not contact the inner surface 36 of the barrel 16 at a predetermined interval d, whereby the cross-sectional area between SA1 and SA5 of the flow path is SA1 to SA5. Therefore, when the total area of the flow path cross-sectional areas SA1 to SA5 is set to be smaller than the total area of the transport portion adjacent to the upstream side in the longitudinal direction, the oil content in each of the flow path cross-sectional areas SA1 to SA5 is set. Effective for squeezing.
The above points are the same for the flow path cross-sectional area SA formed by the four discs 52 provided between both ends of each of the pair of squeezing screw elements 20B.

圧搾用スクリューエレメント20Bの外表面34とバレル16の内面36との間に構成される油分含有固形材料Mの流路断面積SAは、搬送用スクリューエレメント20Aの外表面34Aとバレル16の内面36との間に構成される油分含有固形材料Mの流路断面積SAより小さく設定される。これにより、後に説明するように、軟化状態の油分含有固形材料Mが、搬送部30から圧搾部32に搬送されることにより、半径方向を含め圧搾される。油分含有固形材料Mの流路断面積SAは、このような観点から定めるのがよい。 The flow path cross-sectional area SA of the oil-containing solid material M formed between the outer surface 34 of the squeezing screw element 20B and the inner surface 36 of the barrel 16 is the outer surface 34A of the transport screw element 20A and the inner surface 36 of the barrel 16. It is set smaller than the flow path cross-sectional area SA of the oil-containing solid material M formed between and. As a result, as will be described later, the softened oil-containing solid material M is conveyed from the conveying section 30 to the pressing section 32 and is squeezed including the radial direction. The flow path cross-sectional area SA of the oil-containing solid material M is preferably determined from such a viewpoint.

より詳細には、図6に図示するバレル16の内面36と、圧搾用スクリューエレメント20Bの外表面34Bとの間に形成される油分含有固形材料Mの流路断面の断面積SA(SA1ないしSA5の合計)は、図7に図示するバレル16の内面36と、搬送用スクリューエレメント20Aの外表面34Aとの間に形成される流路断面の断面積SAより小さく設定されており、それにより、搬送部30において、バレル16の長手方向上流側で隣接する搬送用スクリューエレメント20Aの回転により搬送される油分含有固形材料Mは、圧搾部32に流入し、圧搾用スクリューエレメント20Bの回転により、下流方向に搬送されつつ半径方向を含めて圧搾され、油分含有固形材料Mから油分が搾油され、その場で、油分回収部26により、油分のみが回収され、搾油後の油分含有固形材料Mは、バレル16の長手方向下流側に搬送されるように構成している。
以上より、圧搾部32における流路断面の狭め方は、半径方向を含めて圧搾力の調整の観点から定まればよい。なお、搬送用スクリューエレメント20Aは、図7に示すように、2条のフルフライトスクリューだけでなく、圧搾部32における流路断面の狭め方に適合する限り、1条または3条のフルフライトスクリューでもよい。
変形例として、外周閉曲線部40が、円形状であり、対応する回転シャフト18の回転軸線は、円弧部14の中心と偏心状でもよい。
圧搾用スクリューエレメント20Bの外表面34とバレル16の内面36との間に構成される油分含有固形材料Mの流路断面積SAが所定面積となるように、圧搾用スクリューエレメント20Bのバレル16の長手方向Xに直交する横断面の外周縁形状が設定される。
流路断面積をどの程度小さく設定するかに応じて、バレル16の油分含有固形材料Mの流量に依存して、搾油部における油分含有固形材料Mの圧搾度が調整される。
More specifically, the cross-sectional area SA (SA1 to SA5) of the flow path cross section of the oil-containing solid material M formed between the inner surface 36 of the barrel 16 shown in FIG. 6 and the outer surface 34B of the squeezing screw element 20B. Is set smaller than the cross-sectional area SA of the flow path cross section formed between the inner surface 36 of the barrel 16 shown in FIG. 7 and the outer surface 34A of the transport screw element 20A. In the transport section 30, the oil-containing solid material M transported by the rotation of the adjacent transport screw element 20A on the upstream side in the longitudinal direction of the barrel 16 flows into the squeeze section 32 and downstream due to the rotation of the squeeze screw element 20B. While being transported in the direction, it is squeezed including the radial direction, oil is squeezed from the oil-containing solid material M, and on the spot, only the oil is recovered by the oil recovery unit 26, and the oil-containing solid material M after oil extraction is It is configured to be transported to the downstream side in the longitudinal direction of the barrel 16.
From the above, the method of narrowing the cross section of the flow path in the squeezing portion 32 may be determined from the viewpoint of adjusting the squeezing force including the radial direction. As shown in FIG. 7, the transport screw element 20A is not only a full flight screw having two threads, but also a full flight screw having one or three threads as long as it conforms to the narrowing of the cross section of the flow path in the pressing portion 32. But it may be.
As a modification, the outer peripheral closed curve portion 40 may have a circular shape, and the rotation axis of the corresponding rotation shaft 18 may be eccentric with the center of the arc portion 14.
The barrel 16 of the squeezing screw element 20B has a predetermined area so that the flow path cross-sectional area SA of the oil-containing solid material M formed between the outer surface 34 of the squeezing screw element 20B and the inner surface 36 of the barrel 16 has a predetermined area. The outer peripheral edge shape of the cross section orthogonal to the longitudinal direction X is set.
The degree of squeezing of the oil-containing solid material M in the oil-squeezed portion is adjusted depending on the flow rate of the oil-containing solid material M of the barrel 16 depending on how small the flow path cross-sectional area is set.

圧搾用スクリューエレメント20Bの軸方向長さL、圧搾用スクリューエレメント20Bのバレル16の内面36に対向する側周面34Bは、回転シャフト18の所与回転数のもとで、油分含有固形材料Mが圧搾用スクリューエレメント20Bの油分含有固形材料搬送方向上流側端部44から油分含有固形材料搬送方向下流側端部46を通過するまでの圧搾時間が所定時間確保可能なように形状設定される。たとえば、回転シャフト18の所与回転数のもとで、軸方向長さLが長いほど、油分含有固形材料Mが圧搾用スクリューエレメント20Bを通過するのに時間を要し、圧搾時間が長く設定される。
油分含有固形材料Mの種類、嵩比重、または粘度に応じて、スクリューエレメント20の条数、所定チップ50のチップアングル、偏心量、および所定間隔Dが選択される。
所定間隔Dについては、たとえば、0.2ミリ以下であり、そこにおいて、油分含有固形材料Mのせん断による過熱が発生せず、または、圧搾用スクリューエレメント20Bのセルフクリーニングが可能となるように設定される。
変形例として、圧搾用スクリューエレメント20Bにおいて、条数、偏心量のいずれかが異なる、異なる種類のスクリューエレメント20が、バレル16の長手方向Xに整列されるのでもよい。
たとえば、複数の搾油部24において、バレル16の長手方向Xに下流側に位置する搾油部24ほど、圧搾用スクリューエレメント20Bの条数が増大されているのでもよく、これにより、下流ほど圧搾度を高めることが可能となり、ディスク52ごとに条数を変えるのでもよい。
The axial length L of the squeezing screw element 20B and the side peripheral surface 34B facing the inner surface 36 of the barrel 16 of the squeezing screw element 20B are oil-containing solid materials M under a given rotation speed of the rotating shaft 18. The shape is set so that the pressing time from the oil-containing solid material transport direction upstream end 44 to passing through the oil-containing solid material transport direction downstream end 46 of the squeezing screw element 20B can be secured for a predetermined time. For example, under a given rotation speed of the rotary shaft 18, the longer the axial length L, the longer it takes for the oil-containing solid material M to pass through the squeezing screw element 20B, and the longer the squeezing time is set. Will be done.
The number of threads of the screw element 20, the tip angle of the predetermined tip 50, the amount of eccentricity, and the predetermined interval D are selected according to the type, bulk specific gravity, or viscosity of the oil-containing solid material M.
The predetermined interval D is, for example, 0.2 mm or less, and is set so that overheating due to shearing of the oil-containing solid material M does not occur or self-cleaning of the squeezing screw element 20B is possible. Will be done.
As a modification, in the squeezing screw element 20B, different types of screw elements 20 having different numbers of rows and eccentricities may be aligned in the longitudinal direction X of the barrel 16.
For example, in a plurality of oil-squeezing portions 24, the number of threads of the pressing screw element 20B may be increased as the oil-squeezing portion 24 is located on the downstream side in the longitudinal direction X of the barrel 16, whereby the degree of squeezing may be increased toward the downstream side. It becomes possible to increase the number of threads, and the number of threads may be changed for each disk 52.

バレル16の長手方向Xに直列に、複数(図面上3基)の搾油部24を設けており、各搾油部24ごとに、油分O含有固形物から搾油した油分Oをそれぞれの油分回収部26からその場で回収するように構成され、供給部22による油分含有固形材料Mの時間当たりの供給量に応じて、選択可能とされている。
たとえば、供給部22からの油分含有固形材料Mの時間当たりの供給量が小さい場合には、複数の搾油部24のうち、最上流側のみ用い、それより下流側の油分回収部26のスクリュー62を停止するのでもよい。
これにより、上流側の搾油部24で搾油された油分含有固形材料Mを下流側の搾油部24で再度搾油し、それにより、油分回収歩留まりを確保することが可能である。
変形例として、バレル16内で搾油された油分O含有固形物をバレル16の油分O含有固形物供給側に戻し、再度圧搾するように循環させるために、搾油部24の下流部からバレル16の上流部とを連絡する戻し流路が設けられるのでもよい。さらには、複数の搾油部24を設けるとともに、戻し流路を設けるのでもよい。
A plurality of (three units on the drawing) oil squeezing portions 24 are provided in series in the longitudinal direction X of the barrel 16, and the oil content O squeezed from the oil content O-containing solid matter is collected from each oil content recovery unit 26 for each oil squeezing unit 24. It is configured to be recovered on the spot, and can be selected according to the amount of the oil-containing solid material M supplied per hour by the supply unit 22.
For example, when the amount of the oil-containing solid material M supplied from the supply unit 22 per hour is small, only the most upstream side of the plurality of oil extraction units 24 is used, and the screw 62 of the oil recovery unit 26 on the downstream side thereof is used. May be stopped.
As a result, the oil-containing solid material M squeezed by the oil squeezing section 24 on the upstream side can be squeezed again by the oil squeezing section 24 on the downstream side, thereby ensuring the oil recovery yield.
As a modification, the oil O-containing solid matter squeezed in the barrel 16 is returned to the oil O-containing solid matter supply side of the barrel 16 and circulated so as to be squeezed again. A return flow path for connecting to the upstream portion may be provided. Further, a plurality of oil squeezing portions 24 may be provided and a return flow path may be provided.

油分回収部26は、バレル16の下部に溜まる搾油された油分Oのみを回収可能なように、バレル16の圧搾用スクリューエレメント20Bの近傍に、油分用流出開口38を有する。
より詳細には、油分用流出開口38は、バレル16の下部に溜まる搾油された油分Oを回収可能なように、バレル16の底部から上レベルに及び、搾油部24の圧搾用スクリューエレメント20Bの軸方向長さの前後に、一対設けるのが好ましい。
特に、油分回収部26は、圧搾部32の長手方向上流側および下流側それぞれに隣接する搬送部30に、接続されるのがよい。
The oil recovery unit 26 has an oil outflow opening 38 in the vicinity of the squeezing screw element 20B of the barrel 16 so that only the squeezed oil O accumulated in the lower part of the barrel 16 can be recovered.
More specifically, the oil outflow opening 38 extends from the bottom of the barrel 16 to the upper level so that the squeezed oil O accumulated in the lower part of the barrel 16 can be recovered, and the squeezing screw element 20B of the oil squeezing portion 24. It is preferable to provide a pair before and after the axial length.
In particular, the oil recovery unit 26 is preferably connected to the transport unit 30 adjacent to each of the upstream side and the downstream side in the longitudinal direction of the squeeze unit 32.

油分回収部26は、端部がスタンド29により支持され、油分用流出開口38に連通接続され、油分回収開口59を有するケーシング60と、ケーシング60内に設けられ、油分用流出開口38に向かって進む向きに回転するスクリュー62とが設けられ、油分回収開口59を通じて、搾油される油分Oは回収される一方、搾油された油分含有固形材料Mは回収されないようにする構成している。これにより、搾油した油分は回収しつつ、上流側の搾油部24で搾油された油分含有固形材料Mを下流側の搾油部24で再度搾油することが可能となる。 The oil recovery unit 26 is provided in a casing 60 having an oil recovery opening 59 and a casing 60 having an end end supported by a stand 29 and communicated with the oil outflow opening 38, toward the oil outflow opening 38. A screw 62 that rotates in the forward direction is provided, and the oil O to be squeezed is recovered through the oil recovery opening 59, while the oil-containing solid material M squeezed is not recovered. As a result, the oil-containing solid material M squeezed by the oil squeezing unit 24 on the upstream side can be squeezed again by the oil squeezing unit 24 on the downstream side while recovering the oil content that has been squeezed.

図9に示すように、バレルの長手方向最下流部に設けられる押出部33には、従来既知の、溶融した樹脂原料を紐状のストランド88として吐出させるダイアダプター70、ダイヘッド72、ダイプレート77からなるダイアッセンブリー75と、ダイ76を保持するダイホルダ74とが設けられる。ダイプレート77には、複数の流出孔が、たとえば、横方向に並んで形成され、各流出孔から溶融樹脂を吐出させることで紐状のストランド88が生成される。 As shown in FIG. 9, a die adapter 70, a die head 72, and a die plate 77 that discharge a conventionally known molten resin raw material as a string-shaped strand 88 are provided in an extrusion portion 33 provided at the most downstream portion in the longitudinal direction of the barrel. A assembly 75 including the die 76 and a die holder 74 for holding the die 76 are provided. A plurality of outflow holes are formed in the die plate 77 side by side, for example, and a string-shaped strand 88 is generated by discharging the molten resin from each outflow hole.

ダイアッセンブリー75は、搾油済固形材料である樹脂が流入する流入部と、ダイプレート77へと溶融樹脂が流出する流出部からなり、 流入部に設置された圧力計(図示せず)は、圧力を検出する部分が流路に晒されており、溶融樹脂の圧力を検出し、流出部に設置された温度計(図示せず)は、温度を検出する部分が流路に晒されており、溶融樹脂の温度を検出する。
押出部33には、溶融部80が設けられ、ダイプレート77から樹脂原料をストランド88状に押出し可能なように、溶融温度まで加熱する。溶融部80は、油分含有固形材料Mを軟化状態となるまで加熱する加熱部28と同様に、ダイアッセンブリー75の内部に、流入部および流出部を取り囲むように配置された加熱ヒータ78でよく、ダイアッセンブリー75の内周面が伝熱面を構成し、内部の樹脂原料を溶融するようにしている。樹脂原料の種類、または、樹脂原料の時間当たりの供給量に応じて、樹脂原料がダイアッセンブリー75に至る際に押出し可能な溶融状態となるように、加熱ヒータの加熱能力を調整するのがよい。
The diagnosis 75 consists of an inflow section into which the resin, which is an oil-squeezed solid material, flows in, and an outflow section in which the molten resin flows out to the die plate 77. The part that detects the temperature is exposed to the flow path, the pressure of the molten resin is detected, and the thermometer (not shown) installed in the outflow part exposes the part that detects the temperature to the flow path. Detects the temperature of the molten resin.
The extrusion unit 33 is provided with a melting unit 80, and heats the resin raw material from the die plate 77 to a melting temperature so that the resin raw material can be extruded into strands 88. The melting portion 80 may be a heating heater 78 arranged inside the assembly 75 so as to surround the inflow portion and the outflow portion, similarly to the heating portion 28 that heats the oil-containing solid material M until it becomes a softened state. The inner peripheral surface of the die assembly 75 constitutes a heat transfer surface so as to melt the resin raw material inside. Depending on the type of the resin raw material or the amount of the resin raw material supplied per hour, it is preferable to adjust the heating capacity of the heater so that the resin raw material is in a molten state where it can be extruded when it reaches the diagnosis 75. ..

ストランドカッター86は、ダイ76から押し出されるスランド88の押出し方向の先に設置され、従来既知のタイプであり、回転刃(図示せず)及び固定刃(図示せず)で構成されるカッターでよく、回転刃は、水平な回転刃回転軸を中心として回転可能なドラム型カッターとして構成され、ドラムの円周方向に一定間隔で複数の回転刃刃先が設けられ、一方、固定刃は、押し出されるストランド88をガイドする。これにより、回転刃の回転刃刃先が、ダイ76から外部に押し出されたストランド88の直上からストランドに当たることで、ストランド88が回転刃刃先と固定刃とに挟まれてせん断され、ストランド88が切断されてペレット90が形成される。 切断されたペレット90は、たとえば、製品用ボックス(図示せず)へ排出され、新たな製品向けの成形材料として再利用される。回転刃回転軸の回転数は、ぺレット90の所望大きさに応じて、ストランド88の押出し速度との関係で調整すればよい。なお、 ストランドカッター86によるストランドの切断前に、空冷または水冷によりストランドを冷却し、切断しやすいようにするのがよい。 The strand cutter 86 is a conventionally known type installed at the tip of the sland 88 extruded from the die 76 in the extrusion direction, and may be a cutter composed of a rotary blade (not shown) and a fixed blade (not shown). The rotary blade is configured as a drum-type cutter that can rotate around a horizontal rotary blade rotation axis, and a plurality of rotary blade tips are provided at regular intervals in the circumferential direction of the drum, while the fixed blade is extruded. Guide the strand 88. As a result, the rotary blade edge of the rotary blade hits the strand from directly above the strand 88 extruded from the die 76 to the outside, so that the strand 88 is sandwiched between the rotary blade edge and the fixed blade and sheared, and the strand 88 is cut. The pellet 90 is formed. The cut pellets 90 are discharged, for example, into a product box (not shown) and reused as a molding material for new products. The rotation speed of the rotary blade rotation shaft may be adjusted in relation to the extrusion speed of the strand 88 according to the desired size of the pellet 90. Before cutting the strand by the strand cutter 86, it is preferable to cool the strand by air cooling or water cooling to facilitate cutting.

以上の構成を有する搾油兼ペレット化装置10について、以下に、図6を参照しながら、搾油兼ペレット化方法を含め、その作用を説明する。
まず、搾油対象である油分含有固形材料Mの種類に応じて、加熱部28により、固形材料の融点または油分Oの許容加熱温度のうち低い方の温度以下まで油分含有固形材料Mが加熱されるように加熱温度を設定するとともに、溶融部80により、搾油後の固形材料を溶融状態まで加熱するように加熱温度を設定する。
次いで、供給部22におけるフィーダーによる時間当たり材料供給量、搬送部におけるスクリューエレメント20の回転による時間当たりの油分含有固形材料Mの搬送量を設定する。
これにより、油分含有固形材料の順方向の搬送速度を調整することにより、バレル16の内部である密閉空間内の油分含有固形材料Mの充満度を調整する。
特に、油分含有固形材料Mの種類および態様、およびスクリューエレメント20の種類に応じて、搾油回収歩留まりを最大化する最適回転数(以下に説明)を設定する。
The operation of the oil-squeezing and pelletizing apparatus 10 having the above configuration will be described below, including the oil-squeezing and pelletizing method, with reference to FIG.
First, the oil-containing solid material M is heated by the heating unit 28 to a temperature equal to or lower than the melting point of the solid material or the allowable heating temperature of the oil O, whichever is lower, depending on the type of the oil-containing solid material M to be squeezed. The heating temperature is set so as to be such that the melting unit 80 heats the solid material after oil extraction to a molten state.
Next, the amount of material supplied per hour by the feeder in the supply unit 22 and the amount of oil-containing solid material M transported per hour by the rotation of the screw element 20 in the transport unit are set.
Thereby, by adjusting the forward transport speed of the oil-containing solid material, the filling degree of the oil-containing solid material M in the closed space inside the barrel 16 is adjusted.
In particular, the optimum rotation speed (described below) for maximizing the oil extraction recovery yield is set according to the type and mode of the oil-containing solid material M and the type of the screw element 20.

以上、バレル16内に配置され、回転シャフト18の軸線を中心として回転可能な回転シャフト18に外嵌されるスクリューエレメント20の回転により、油分含有固形材料Mを連続的に搬送する準備が完了する。
次いで、バレル16内面が所定温度に保持され、フィーダーおよび駆動モーター19により回転シャフト18が回転した状態で、油分含有固形材料Mを連続的に供給する。
供給された油分含有固形材料Mは、バレル16の長手方向下流に向かって、搬送され、その間に、固形材料の融点または油分Oの許容加熱温度のうち低い方の温度以下まで油分含有固形材料Mが加熱される。
次いで、加熱され、軟化状態とされた油分含有固形材料Mは、各搾油部24において、連続的に長手方向下流に搬送されながら、半径方向を含め圧搾されることにより、以下のように搾油される。
As described above, the preparation for continuously transporting the oil-containing solid material M is completed by the rotation of the screw element 20 which is arranged in the barrel 16 and is fitted onto the rotary shaft 18 which is rotatable about the axis of the rotary shaft 18. ..
Next, the oil-containing solid material M is continuously supplied while the inner surface of the barrel 16 is maintained at a predetermined temperature and the rotary shaft 18 is rotated by the feeder and the drive motor 19.
The supplied oil-containing solid material M is transported toward the downstream of the barrel 16 in the longitudinal direction, and during that time, the oil-containing solid material M is transported to a temperature lower than the melting point of the solid material or the allowable heating temperature of oil O, whichever is lower. Is heated.
Next, the oil-containing solid material M that has been heated and softened is squeezed as follows by being squeezed including the radial direction while being continuously conveyed downstream in the longitudinal direction in each oil squeezing section 24. The radius.

より詳細には、搾油段階は、密閉空間内の延び方向下流側に向かって、油分含有固形材料Mを連続的に搬送しながら、密閉空間内の所定長さに亘って流路断面積が狭められた部分を通過させることにより、油分含有固形材料Mを所定の圧搾力のもとで所定の圧搾時間に亘って圧搾することにより、油分含有固形材料Mから油分を搾油する。
その際、密閉空間の下流側に、流路断面積が狭められることにより、圧力障壁を形成することにより、圧力障壁上流側における密閉空間内の加熱された油分含有固形材料Mの充満度を高めつつ、油分含有固形材料Mを圧搾し、油分を搾油し、搾油された油分を連続的に回収する。
搾油された油分をその場で、各油分回収部26を通じて、密閉空間の延び方向に対して側部に回収する。
More specifically, in the oil squeezing step, the cross-sectional area of the flow path is narrowed over a predetermined length in the closed space while continuously transporting the oil-containing solid material M toward the downstream side in the extending direction in the closed space. The oil content is squeezed from the oil content solid material M by squeezing the oil content solid material M under a predetermined squeezing force for a predetermined squeezing time by passing through the passed portion.
At that time, the cross-sectional area of the flow path is narrowed on the downstream side of the closed space to form a pressure barrier, thereby increasing the filling degree of the heated oil-containing solid material M in the closed space on the upstream side of the pressure barrier. At the same time, the oil-containing solid material M is squeezed, the oil is squeezed, and the squeezed oil is continuously recovered.
The squeezed oil is recovered on the spot through each oil recovery section 26 to the side in the extending direction of the closed space.

一方、搾油済の固形材料は、ダイ76から外部にストランド88として押し出され、ストランドカッター86により、ストランド88は回転刃刃先と固定刃とに挟まれてせん断され、ストランド88が切断されてペレット90が形成される。 切断されたペレット90は、たとえば、製品用ボックス(図示せず)へ排出され、新たな製品向けの成形材料として再利用される。
スクリューエレメント20の外表面に付着する残余固形物は、搾油作業終了後、適宜、除去すればよい。
搾油歩留まりにとって、バレル16内への時間当たり材料供給量が一定のもとで、最適な回転数が存する根拠について、搾油歩留まりは、スクリューエレメント20による圧搾度により定まり、圧搾度は、スクリューエレメント20の外表面とバレル16内面との間の流路断面を支配因子とする圧搾力と、材料搬送速度を支配因子とするスクリューエレメント20の上流側端面から下流側端面までを材料が通過するまでの圧搾時間との積により、定まる。
この点、スクリューエレメント20の回転数を増大すると、圧搾力は増大するが、圧搾時間が減少し、回転数を低減すると、圧搾力は減少するが、圧搾時間が増大する。
よって、圧搾力と圧搾時間との積による定まる圧搾度には、圧搾度を最大にする最適な回転数が存在する。
On the other hand, the oil-squeezed solid material is extruded from the die 76 to the outside as a strand 88, and the strand 88 is sandwiched between the rotary cutting edge and the fixed blade and sheared by the strand cutter 86, and the strand 88 is cut and the pellet 90 is cut. Is formed. The cut pellets 90 are discharged, for example, into a product box (not shown) and reused as a molding material for new products.
Residual solids adhering to the outer surface of the screw element 20 may be appropriately removed after the oil extraction work is completed.
For the oil squeezing yield, the oil squeezing yield is determined by the squeezing degree by the screw element 20, and the squeezing degree is determined by the squeezing degree of the screw element 20 as the basis for the existence of the optimum rotation speed under the constant amount of material supplied into the barrel 16 per hour. Until the material passes from the upstream end surface to the downstream end surface of the screw element 20 whose controlling factor is the squeezing force between the outer surface of the screw element 20 and the inner surface of the barrel 16 and the material transport speed as the controlling factor. It is determined by the product of the squeezing time.
In this respect, when the rotation speed of the screw element 20 is increased, the squeezing force is increased but the squeezing time is decreased, and when the rotation speed is decreased, the squeezing force is decreased but the squeezing time is increased.
Therefore, there is an optimum rotation speed for maximizing the squeezing degree in the squeezing degree determined by the product of the squeezing force and the squeezing time.

以上の構成を有する搾油兼ペレット化装置10によれば、供給部22からバレル16内に供給される油分含有固形材料Mは、回転シャフト18、すなわちスクリューエレメントの回転によりバレル16の長手方向下流側に搬送されながら、加熱部28により、固形材料の融点または油分の許容加熱温度のうち低い方の温度以下まで油分含有固形材料Mが軟化状態となるように加熱され、圧搾用スクリューエレメント20により圧搾されることにより、搾油され、回収された油分は、油分回収部26により、油分用流出開口38を介して、バレルの下部に溜まる搾油された油分のみが回収され、一方、搾油後の固形材料は、搾油部24の下流側の押出部33において、押出部近傍の溶融部80により溶融され、ストランド88状に外部に押し出され、カットされてペレット製品とされることから、回収された油分と油分が回収された固形材料との分離を通じて、油分含有固形材料Mを連続的に搬送しながら搾油しつつ、搾油後の固形材料をその場で、ペレット製品化して再利用可能となる。
また、以上の構成を有する搾油兼ペレット化装置10によれば、回転シャフト18を回転駆動するモーターに対して、過剰トルクとならないように、バレル16の内部空間内で長手方向に完全充満する形態で、加熱により軟化状態の油分含有固形材料Mを搬送することは回避しながら、油分含有固形材料Mを連続的に長手方向に搬送しつつ、半径方向を含め圧搾を可能とすべく、バレル16内面とスクリューエレメント20との間のスペースを狭めるとしても、油分含有固形材料Mから搾油された液体の油分自体は、スクリューエレメント20の回転により、バレル16の長手方向に搬送されることなく、搾油部24のバレル16の内部空間の下方部に溜まるところ、搾油部24のバレル16の長手方向の前方に、好ましくは、前方および後方それぞれに、油分回収部26を設け、バレル16内の密閉空間に溜まる油分を効率的に回収することが可能である。
According to the oil squeezing and pelletizing apparatus 10 having the above configuration, the oil-containing solid material M supplied into the barrel 16 from the supply unit 22 is located on the downstream side in the longitudinal direction of the barrel 16 due to the rotation of the rotating shaft 18, that is, the screw element. The oil-containing solid material M is heated to a softened state by the heating unit 28 to a temperature lower than the melting point of the solid material or the allowable heating temperature of the oil content, and is squeezed by the squeezing screw element 20. As for the oil that has been squeezed and recovered, only the squeezed oil that collects in the lower part of the barrel is recovered by the oil recovery unit 26 through the oil outflow opening 38, while the solid material after oil squeezing. In the extrusion section 33 on the downstream side of the oil extraction section 24, the oil is melted by the melting section 80 in the vicinity of the extrusion section, extruded to the outside in the shape of a strand 88, and cut into a pellet product. Through the separation of the oil-containing solid material from the recovered solid material, the oil-containing solid material M can be continuously transported and squeezed, and the squeezed solid material can be made into pellet products on the spot and reused.
Further, according to the oil squeezing and pelletizing device 10 having the above configuration, the motor that rotationally drives the rotary shaft 18 is completely filled in the longitudinal direction in the internal space of the barrel 16 so as not to cause an excessive torque. Therefore, while avoiding transporting the oil-containing solid material M in a softened state by heating, the barrel 16 is capable of squeezing including the radial direction while continuously transporting the oil-containing solid material M in the longitudinal direction. Even if the space between the inner surface and the screw element 20 is narrowed, the oil itself of the liquid squeezed from the oil-containing solid material M is not conveyed in the longitudinal direction of the barrel 16 by the rotation of the screw element 20, and is squeezed. An oil recovery section 26 is provided in front of the barrel 16 of the oil squeezing section 24 in the longitudinal direction, preferably in the front and rear, respectively, where it accumulates in the lower portion of the internal space of the barrel 16 of the section 24, and a closed space in the barrel 16 is provided. It is possible to efficiently recover the oil accumulated in the barrel.

より詳細には、以上の搾油兼ペレット化装置10によれば、回転シャフト18がその軸線を中心として回転することにより、各回転シャフト18に外嵌される一対のスクリューエレメント20が、同方向に回転し、それにより、バレル16内に投入される油分含有固形材料Mは、バレル16の長手方向X下流に搬送される。
その際、圧搾用スクリューエレメント20Bの外表面34とバレル16の内面36との間に構成される油分含有固形材料Mの流路断面積SAは、搬送用スクリューエレメント20Aの外表面34Aとバレル16の内面36との間に構成される油分含有固形材料Mの流路断面積SAより小さく設定されるので、油分含有固形材料Mは、圧搾部32において、流路断面積SA全体に充満することにより、流路断面積SA内で、油分含有固形材料Mは、圧搾用スクリューエレメント20Bの油分含有固形材料Mの搬送方向上流側端部44から油分含有固形材料M搬送方向下流側端部46を通過するまで、半径方向を含め圧搾され、搾油された油分Oはその場で、バレル16の底部に溜まり、油分回収部26によりバレル16の下部に溜まる搾油された油分Oのみが回収され、搾油された固形物は、バレル16内で長手方向X下流側に搬送されるようにしている。
以上、油分含有固形材料Mは、搾油部24において、流路断面積SAの狭まりにより所定の圧搾力のもとで、所定の圧搾時間に亘って、半径方向を含め圧搾されることにより、搾油され、その場に溜まる油分Oのみが、油分回収部26により油分用流出開口38を介して回収される。
More specifically, according to the above oil squeezing and pelletizing apparatus 10, the pair of screw elements 20 externally fitted to each rotating shaft 18 are rotated in the same direction as the rotating shaft 18 rotates about its axis. The oil-containing solid material M that rotates and is charged into the barrel 16 is conveyed downstream of the barrel 16 in the longitudinal direction X.
At that time, the flow path cross-sectional area SA of the oil-containing solid material M formed between the outer surface 34 of the squeezing screw element 20B and the inner surface 36 of the barrel 16 is the outer surface 34A of the transport screw element 20A and the barrel 16. Since the oil-containing solid material M is set to be smaller than the flow path cross-sectional area SA of the oil-containing solid material M formed between the inner surface 36 and the inner surface 36, the oil-containing solid material M fills the entire flow path cross-sectional area SA in the pressing portion 32. As a result, in the flow path cross-sectional area SA, the oil-containing solid material M has the oil-containing solid material M from the transport direction upstream end 44 of the oil-containing solid material M of the pressing screw element 20B to the oil-containing solid material M transport direction downstream end 46. Until it passes, the oil O that has been squeezed and squeezed including the radial direction is collected on the spot at the bottom of the barrel 16, and only the squeezed oil O that is collected at the bottom of the barrel 16 is collected by the oil recovery unit 26 and squeezed. The solid matter is conveyed in the barrel 16 to the downstream side in the longitudinal direction X.
As described above, the oil-containing solid material M is squeezed in the oil squeezing section 24 under a predetermined squeezing force due to the narrowing of the cross-sectional area SA of the flow path, including the radial direction, to squeeze the oil. Then, only the oil O accumulated in the place is recovered by the oil recovery unit 26 through the oil outflow opening 38.

一方、本実施形態の圧搾方法によれば、油分含有固形材料Mを連続的に順方向に密閉空間内で密閉空間の延び方向に沿って搬送しながら、固形材料の融点または油分の許容加熱温度のうち低い方の温度以下まで加熱することにより、油分含有固形材料Mを搾油可能な軟化状態とし、密閉空間の下流側に圧力障壁を形成することにより、圧力障壁上流側における密閉空間内の加熱された油分含有固形材料Mの充満度を高めることにより、油分含有固形材料Mを半径方向を含め圧搾し、油分を搾油することにより、従来のように、たとえば、油分含有固形材料Mを容器に入れて、静的に圧搾することにより、バッチ式に搾油するのとは異なり、搾油された油分を連続的に回収することが可能である。
また、各回転シャフト18の対応する圧搾用スクリューエレメント20B同士の噛み合い部において生じる対象物に対するせん断を利用して動的圧搾は引き起こさず、このようなせん断により油分含有固形材料Mが加熱され、場合により、搾油される油分の熱劣化を引き起こすのを防止するとともに、油分含有固形材料Mが圧搾用スクリューエレメント20Bの外表面に付着したままの状態となり、熱劣化し、熱劣化した固形材料が搾油された油分に異物混入する恐れも排除することが可能である。
On the other hand, according to the squeezing method of the present embodiment, the melting point of the solid material or the allowable heating temperature of the oil content is continuously conveyed in the closed space in the forward direction along the extension direction of the closed space. By heating to the lower temperature or lower, the oil-containing solid material M is in a softened state where oil can be squeezed, and by forming a pressure barrier on the downstream side of the closed space, heating in the closed space on the upstream side of the pressure barrier is performed. By increasing the filling degree of the oil-containing solid material M, the oil-containing solid material M is squeezed including the radial direction, and by squeezing the oil, for example, the oil-containing solid material M is placed in a container. By putting it in and squeezing it statically, it is possible to continuously recover the squeezed oil, unlike the case of batch squeezing.
Further, dynamic squeezing is not caused by utilizing the shearing on the object generated in the meshing portion between the corresponding squeezing screw elements 20B of each rotating shaft 18, and the oil-containing solid material M is heated by such shearing. This prevents the oil content to be squeezed from causing thermal deterioration, and the oil-containing solid material M remains attached to the outer surface of the squeezing screw element 20B. It is also possible to eliminate the risk of foreign matter getting mixed in the oil.

以下に、本発明の第2実施形態について説明する。以下の説明において、第1実施形態と同様な構成要素については、同様な参照番号を付することによりその説明は省略し、以下では、本実施形態の特徴部分について、図10を参照しながら詳細に説明する。
本発明の第2実施形態の特徴は、圧搾部それぞれに設ける圧搾用スクリューエレメント20Bである。
The second embodiment of the present invention will be described below. In the following description, the same components as those in the first embodiment will be omitted by assigning similar reference numbers, and in the following, the feature portions of the present embodiment will be described in detail with reference to FIG. Explain to.
A feature of the second embodiment of the present invention is a squeezing screw element 20B provided in each squeezing portion.

第1実施形態において、油分含有固形材料Mのバレル16の軸方向への搬送および圧搾を兼ねるスクリューエレメント20Bについて、複数の薄板状のものが、周方向にチップ50の位置(尖点)が非連続にずれながら、軸方向に積み重ねたタイプのものとして説明したが、それに限定されることなく、スクリューの回転により、油分含有固形材料Mのバレル16の軸方向への搬送が可能であるとともに、軸方向に油分含有固形材料Mの流路面積の絞りが形成され、それにより圧搾が可能である限り、複数の薄板状のものが積み重ねられるのではなく、モノリシック状のスクリューであって、外表面34Bに周方向のチップ50の位置が長手方向に連続的に連なるリード30が形成されるものであってもよい。
より詳細には、図10に示すように、圧搾用スクリューエレメント20Bは、4条であり、回転シャフト18が内嵌する円形開口48を有するモノリシック状であり、長手方向Xに離間する両端面44、46それぞれにおいて、周方向に2以上(4つ)のチップ50を有し、周側面には、両端面44、46のチップ50に連なる螺旋状リード56が設けられる、長手方向Xに連続タイプであり、バレル16の中心に対して、円形開口48の中心がオフセット配置される。
螺旋状リード56のピッチを調整することにより、圧搾用スクリューエレメント20Bによる油分含有固形材料Mの搬送速度、すなわち、油分含有固形材料Mの圧搾時間を調整することが可能である。
複数の搾油部24を設ける場合において、ある搾油部24には、第1実施形態における、不連続タイプの圧搾用スクリューエレメント20B、ある搾油部24には、本実施形態における、連続タイプの圧搾用スクリューエレメント20Bを採用してもよい。
なお、搾油済の固形材料について、ダイ76から押し出されたストランド88をストランドダイカッター86によりカットして、ペレット90として再利用可能とする点については、第1実施形態と同様である。
In the first embodiment, regarding the screw element 20B which also serves as axially transporting and squeezing the barrel 16 of the oil-containing solid material M, a plurality of thin plates have a non-position (cusp) of the tip 50 in the circumferential direction. Although it has been described as a type in which the barrel 16 is stacked in the axial direction while being continuously displaced, the description is not limited to this, and the barrel 16 of the oil-containing solid material M can be conveyed in the axial direction by the rotation of the screw. As long as a narrowing of the flow path area of the oil-containing solid material M is formed in the axial direction and thereby squeezing is possible, a plurality of thin plates are not stacked, but are monolithic screws having an outer surface. A lead 30 in which the positions of the chips 50 in the circumferential direction are continuously connected in the longitudinal direction may be formed on the 34B.
More specifically, as shown in FIG. 10, the squeezing screw element 20B has four threads, is a monolithic shape having a circular opening 48 in which the rotating shaft 18 is fitted, and both end faces 44 separated in the longitudinal direction X. , 46 each has two or more (four) chips 50 in the circumferential direction, and a spiral lead 56 connected to the chips 50 on both end faces 44 and 46 is provided on the peripheral side surface, and is a continuous type in the longitudinal direction X. The center of the circular opening 48 is offset from the center of the barrel 16.
By adjusting the pitch of the spiral reed 56, it is possible to adjust the transport speed of the oil-containing solid material M by the squeezing screw element 20B, that is, the squeezing time of the oil-containing solid material M.
When a plurality of oil squeezing parts 24 are provided, a certain oil squeezing part 24 is a discontinuous type pressing screw element 20B in the first embodiment, and a certain oil squeezing part 24 is a continuous type squeezing part in the present embodiment. A screw element 20B may be adopted.
The oil-squeezed solid material is the same as in the first embodiment in that the strand 88 extruded from the die 76 is cut by the strand die cutter 86 so that it can be reused as pellets 90.

以下に、本発明の第3実施形態について説明する。以下の説明において、第1実施形態と同様な構成要素については、同様な参照番号を付することによりその説明は省略し、以下では、本実施形態の特徴部分について、図11を参照しながら詳細に説明する。
本発明の第3実施形態の特徴は、押出部33近傍に設けられる搾油後の固形材料を溶融状態まで加熱する溶融部の態様にあり、第1実施形態においては、最下流部の押出部33に設ける加熱コイル78により、搾油後の固形材料を溶融状態まで加熱するのに対して、本実施形態では、押出部33近傍の上流側において、スクリューエレメントにより搾油後の固形材料を溶融状態まで加熱する点にある。
より詳細には、図11に示すように、第1実施形態においては、ゾーンC11には、通常の搬送用スクリューエレメント20Aを配置していたところ(図2参照)、本実施形態においては、搾油ゾーンC4、C7およびC9それぞれに設ける圧搾用スクリューエレメント20Bと同種のスクリューエレメント20Cを配置し、スクリューエレメント20Cの回転により、ゾーンC11を通過する搾油済の固形材料をせん断加熱して、溶融させるようにしている。
The third embodiment of the present invention will be described below. In the following description, the same components as those in the first embodiment are designated by the same reference numbers, and the description thereof will be omitted. In the following, the feature portions of the present embodiment will be described in detail with reference to FIG. Explain to.
The feature of the third embodiment of the present invention is the aspect of the melting part that heats the solid material after oil extraction provided in the vicinity of the extrusion part 33 to the molten state, and in the first embodiment, the extrusion part 33 at the most downstream part. The heating coil 78 provided in the above heats the solid material after oil extraction to a molten state, whereas in the present embodiment, the solid material after oil extraction is heated to a molten state by a screw element on the upstream side near the extrusion portion 33. There is a point to do.
More specifically, as shown in FIG. 11, in the first embodiment, the normal transport screw element 20A is arranged in the zone C11 (see FIG. 2), but in the present embodiment, oil is squeezed. A screw element 20C of the same type as the squeezing screw element 20B provided in each of the zones C4, C7 and C9 is arranged, and the oiled solid material passing through the zone C11 is shear-heated and melted by the rotation of the screw element 20C. I have to.

ゾーンC11で溶融した搾油済の固形材料は、押出部33において溶融状態となって、ストランド状に押出し可能となるように、ゾーンC12およびゾーンC13においては、加熱部28により保温されるようしている。第1実施形態において、押出部33に設けた溶融部80としての加熱ヒーター78も、溶融でなく、溶融した固形材料を溶融状態に維持可能なように保温機能を奏するようにするのが好ましい。
なお、押出部33において、ダイ76内は溶けた固形材料が均一に排出されるよう完全に溶けた状態であることが条件であることから、C12は、真空排気ゾーンとして設け、通常はフルフライトスクリューエレメントであり、一方、C13は、流出口(ダイ76)の圧力を一定(溶けた固定材料を充満状態)にするためにフルフライトスクリューが必要であり、いずれも、特に、フライト間が狭い、すなわちリードが小さいフルフライトスクリューを採用するのが好ましい。
The oil-squeezed solid material melted in the zone C11 is in a molten state in the extrusion section 33 and can be extruded into a strand shape, so that the zone C12 and the zone C13 are kept warm by the heating section 28. There is. In the first embodiment, it is preferable that the heating heater 78 as the melting unit 80 provided in the extrusion unit 33 also has a heat retaining function so that the molten solid material can be maintained in a molten state instead of being melted.
In the extrusion section 33, since it is a condition that the inside of the die 76 is in a completely melted state so that the melted solid material is uniformly discharged, C12 is provided as a vacuum exhaust zone and is usually full flight. A screw element, on the other hand, the C13 requires a full flight screw to keep the pressure at the outlet (die 76) constant (filled with melted fixing material), both of which are particularly narrow between flights. That is, it is preferable to use a full flight screw having a small lead.

スクリューエレメント20Cとしては、圧搾機能でなくせん断加熱機能が要求されるが、図5に示すようなディスク構成の3条スクリューエレメントでよく、せん断加熱に有効である限り、ディスク構成であれば、4条、5条でもよい。
なお、搾油済の固形材料について、ダイ76から押し出されたストランド88をストランドダイカッター86によりカットして、ペレット90として再利用可能とする点については、第1実施形態と同様である。
The screw element 20C is required to have a shear heating function instead of a squeezing function. However, a three-thread screw element having a disk configuration as shown in FIG. 5 may be used, and as long as it is effective for shear heating, 4 is required. Article 5 may be used.
The oil-squeezed solid material is the same as in the first embodiment in that the strand 88 extruded from the die 76 is cut by the strand die cutter 86 so that it can be reused as pellets 90.

以上、本発明の実施形態を詳細に説明したが、本発明の範囲から逸脱しない範囲内において、当業者であれば、種々の修正あるいは変更が可能である。
たとえば、本実施形態において、圧搾部において、圧搾用スクリューエレメントの外表面とバレルの内面との間に構成される油分含有固形材料の流路断面積が、搬送用スクリューエレメントの外表面とバレルの内面との間に構成される油分含有固形材料の流路断面積より小さく設定される場合を説明したが、それに限定されることなく、従来既知の逆送りスクリューエレメントを用いることにより、油分含有固形材料に背圧を負荷することにより搾油し、搾油後の固形材料をストランド状に押出し、ペレット化してもよい。
たとえば、本実施形態において、圧搾部において、油分含有固形材料Mの種類、態様に応じて、スクリューエレメント20を選択する点を説明したが、スクリューエレメント20の選択に際し、スクリューエレメント20のリードを含む外周面形状、長手方向長さにより、圧搾部における圧搾時間を調整したり、または、スクリューエレメント20の条数を含む外周縁形状により、流路断面積を増減させて、圧搾部における圧搾力を調整したり、または、圧搾部における圧搾時間および圧搾力の両方を調整することにより、このようにして選択したスクリューエレメント20、および油分含有固形材料Mの種類、態様に応じて、最適な回転シャフト18の回転数を設定したうえで、搾油効果を最適化すればよい。
Although the embodiments of the present invention have been described in detail above, those skilled in the art can make various modifications or changes within the scope of the present invention.
For example, in the present embodiment, in the pressing portion, the flow path cross-sectional area of the oil-containing solid material formed between the outer surface of the pressing screw element and the inner surface of the barrel is the outer surface of the conveying screw element and the barrel. The case where the oil-containing solid material is set to be smaller than the flow path cross-sectional area of the oil-containing solid material formed between the inner surface and the inner surface has been described, but the oil-containing solid is not limited to this by using a conventionally known reverse feed screw element. Oil may be squeezed by applying back pressure to the material, and the solid material after oil extraction may be extruded into strands and pelletized.
For example, in the present embodiment, the point that the screw element 20 is selected according to the type and mode of the oil-containing solid material M in the pressed portion has been described, but when the screw element 20 is selected, the lead of the screw element 20 is included. The squeezing time in the squeezed portion is adjusted by the shape of the outer peripheral surface and the length in the longitudinal direction, or the cross-sectional area of the flow path is increased or decreased by the shape of the outer peripheral surface including the number of threads of the screw element 20 to increase the squeezing force in the squeezed portion. Optimal rotating shaft depending on the type and embodiment of the screw element 20 and the oil-containing solid material M thus selected by adjusting or by adjusting both the squeezing time and the squeezing force in the squeezing section. After setting the number of revolutions of 18, the oil squeezing effect may be optimized.

たとえば、本実施形態において、圧搾部において、油分含有固形材料Mの種類、態様に応じて、スクリューエレメント20を選択する点、より詳細には、 スクリューエレメント20の条数を含む外周縁形状により、流路断面積を増減させて、圧搾部における圧搾力を調整したり、または、圧搾部における圧搾時間および圧搾力の両方を調整する点を説明したが、上流側の搬送用スクリューエレメント20Aによりバレル16内を非充満状態で搬送される油分含有固形材料Mが、圧搾用スクリューエレメント20Bを通過する際、バレル16の内面36と圧搾用スクリューエレメント20Bの外周面34との間に構成される流路における油分含有固形材料Mの充満度を上げることにより、所望の圧搾度が達成されるように、バレル16の内面36と圧搾用スクリューエレメント20Bの外周面との間に構成される流路の容積を定めるのでもよい。 For example, in the present embodiment, the screw element 20 is selected according to the type and mode of the oil-containing solid material M in the squeezed portion, and more specifically, the outer peripheral edge shape including the number of threads of the screw element 20 is used. It was explained that the squeezing force in the squeezing part is adjusted by increasing or decreasing the cross-sectional area of the flow path, or both the squeezing time and the squeezing force in the squeezing part are adjusted. When the oil-containing solid material M transported in a non-filled state in 16 passes through the squeezing screw element 20B, a flow formed between the inner surface 36 of the barrel 16 and the outer peripheral surface 34 of the squeezing screw element 20B. A flow path formed between the inner surface 36 of the barrel 16 and the outer peripheral surface of the squeezing screw element 20B so that the desired squeezing degree is achieved by increasing the filling degree of the oil-containing solid material M in the road. The volume may be determined.

たとえば、本実施形態において、バレル16の長手方向に所定間隔を隔てて、それぞれ側方に延びる複数の油分回収部16を設け、油分含有固形材料Mから搾油した油分Oをそれぞれの油分回収部16から回収することにより、時間当たりの回収効率、および回収歩留まりの両方を高めるものとして説明したが、それに限定されることなく、時間当たりの回収効率よりも回収歩留まりを重視するのであれば、バレル16のL/Dを増大することにより、油分含有固形材料Mの搬送および圧搾を兼ねるスクリューエレメント20の数を増やし、バレル16の油分含有固形材料M供給側と反対側の端部に単一の油分回収部16を設けてもよい。この場合、バレル16のL/Dを増大することにより、過剰トルクにならないようにする。 For example, in the present embodiment, a plurality of oil content recovery units 16 extending laterally are provided at predetermined intervals in the longitudinal direction of the barrel 16, and oil content O squeezed from the oil content solid material M is collected from each oil content recovery unit 16. It was explained that collecting from the barrel 16 enhances both the recovery efficiency per hour and the recovery yield, but without limitation, if the recovery yield is more important than the recovery efficiency per hour, the barrel 16 By increasing the L / D of the barrel 16, the number of screw elements 20 that also transport and squeeze the oil-containing solid material M is increased, and a single oil content is provided at the end of the barrel 16 opposite to the oil-containing solid material M supply side. The collection unit 16 may be provided. In this case, the L / D of the barrel 16 is increased to prevent excessive torque.

たとえば、本実施形態において、バレル16の長手方向に所定間隔を隔てて、それぞれ側方に延びる複数の油分回収部16を設け、油分含有固形材料Mから搾油した油分Oをそれぞれの油分回収部16から回収するものとして説明したが、それに限定されることなく、回収歩留まりよりも時間当たりの回収効率を重視するのであれば、バレル16の油分含有固形材料M供給側と反対側の端部に単一の油分回収部16を設けつつ、搾油された油分含有固形材料Mをバレル16の油分含有固形材料M供給側に戻し、再度圧搾するように循環させるのでもよい。なお、戻し部を構成する流路において、油分含有固形材料Mの温度低下を防止するのに、温度保持部を設けてもよい。この場合、バレル16のL/Dを増大する必要はないので、圧搾装置の長尺化が抑制されるとともに、過剰トルクになる恐れは低減する。 For example, in the present embodiment, a plurality of oil content recovery units 16 extending laterally are provided at predetermined intervals in the longitudinal direction of the barrel 16, and oil content O squeezed from the oil content solid material M is collected from each oil content recovery unit 16. However, if the recovery efficiency per hour is more important than the recovery yield, the barrel 16 is simply located at the end opposite to the oil-containing solid material M supply side. The oil-containing solid material M that has been squeezed may be returned to the oil-containing solid material M supply side of the barrel 16 and circulated so as to be squeezed again while providing the oil content recovery unit 16. A temperature holding portion may be provided in the flow path constituting the return portion in order to prevent the temperature of the oil-containing solid material M from dropping. In this case, since it is not necessary to increase the L / D of the barrel 16, the lengthening of the squeezing device is suppressed and the possibility of excessive torque is reduced.

本発明の第1実施形態に係る搾油兼ペレット化装置10の概略全体斜視断面図である。It is a schematic whole perspective sectional view of the oil squeezing and pelletizing apparatus 10 which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る搾油兼ペレット化装置10の概略部分断面図である。It is a schematic partial sectional view of the oil squeezing and pelletizing apparatus 10 which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る搾油兼ペレット化装置10のサイド回収部16の、図1のA-Aに沿う概略断面図である。It is schematic cross-sectional view along AA of FIG. 1 of the side recovery part 16 of the oil squeezing and pelletizing apparatus 10 which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る搾油兼ペレット化装置10の搾油部24の概略断面図である。It is a schematic sectional drawing of the oil-squeezing part 24 of the oil-squeezing and pelletizing apparatus 10 which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る搾油兼ペレット化装置10の搾油部24のスクリューエレメント20Bの側面図、端面図および斜視部図である。It is a side view, end view and perspective view of the screw element 20B of the oil squeezing part 24 of the oil squeezing and pelletizing apparatus 10 which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る搾油兼ペレット化装置10の搾油部24のスクリューエレメント20Bの回転に応じて(6(A)から6(C))、バレル16内面とスクリューエレメント20との間に形成される流路断面SAの変化を示す概略断面図である。Between the inner surface of the barrel 16 and the screw element 20 according to the rotation of the screw element 20B of the oil squeezing portion 24 of the oil squeezing and pelletizing device 10 according to the first embodiment of the present invention (6 (A) to 6 (C)). It is a schematic cross-sectional view which shows the change of the flow path cross-section SA formed in. 本発明の第1実施形態に係る搾油兼ペレット化装置10の搬送部30のスクリューエレメント20Aの図6と同様な図である。It is the same figure as FIG. 6 of the screw element 20A of the transport part 30 of the oil squeezing and pelletizing apparatus 10 which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る図5のスクリューエレメント20Bにおいて、中間部の4条ディスク同士の図7と同様な図である。In the screw element 20B of FIG. 5 according to the first embodiment of the present invention, the figure is the same as that of FIG. 7 between the four discs in the middle portion. 本発明の第1実施形態に係る搾油兼ペレット化装置10の押出部33まわりの部分断面図である。It is a partial sectional view around the extrusion part 33 of the oil squeezing and pelletizing apparatus 10 which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る搾油兼ペレット化装置10のスクリューエレメント20Bの斜視図である。It is a perspective view of the screw element 20B of the oil squeezing and pelletizing apparatus 10 which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る搾油兼ペレット化装置10の図2と同様な図である。It is the same figure as FIG. 2 of the oil squeezing and pelletizing apparatus 10 which concerns on 3rd Embodiment of this invention.

X 長手方向
D 所定間隔
M 油分含有固形材料
O 油分
SA 流路断面積
L スクリューエレメントの軸方向長さ
d 所定クリアランス
t ディスクの厚み
10 搾油兼ペレット化装置
12 シリンダ
13 円筒シリンダ
14 円弧部
16 バレル
17 内部スペース
18 回転シャフト
19 駆動モーター
20 スクリューエレメント
20A 搬送用スクリューエレメント
20B 圧搾用スクリューエレメント
20C 溶融用スクリューエレメント
21 回転伝達機構
22 供給部
23 ホッパー
24 搾油部
25 支持スタンド
26 油分回収部
27 駆動モーター
28 加熱部
29 支持スタンド
30 搬送部
31 回転伝達機構
32 圧搾部
33 押出部
34A 搬送用スクリューエレメント20Aの外表面
34B 圧搾用スクリューエレメント20Bの外表面
36 内面
38 油分用流出開口
40 外周閉曲線部
41 張り出しフランジ
42 部分領域
43 ねじ穴
44 油分含有固形材料M搬送方向上流側端部
46 油分含有固形材料M搬送方向下流側端部
48 円形開口
50 チップ
52 ディスク
56 螺旋状リード
58 戻し流路
60 ケーシング
61 シャフト
62 スクリュー
63 油分回収開口
70 ダイアダプター
72 ダイヘッド
74 ダイホルダ
75 ダイアッセンブリー
76 ダイ
77 ダイプレート
78 加熱ヒーター
80 溶融部
82 スペース
84 流出部
86 ストランドカッター
88 ストランド
90 ペレット
X Longitudinal direction D Predetermined interval M Oil-containing solid material O Oil content SA Channel cross-sectional area L Axial length of screw element
d Prescribed clearance
t Disc thickness 10 Oil squeezing and pelletizing device 12 Cylinder 13 Cylindrical cylinder 14 Arc part 16 Barrel 17 Internal space 18 Rotating shaft 19 Drive motor 20 Screw element 20A Transport screw element 20B Squeezing screw element 20C Melting screw element 21 Rotation transmission Mechanism 22 Supply part 23 Hopper 24 Oil squeezing part 25 Support stand 26 Oil recovery part 27 Drive motor 28 Heating part 29 Support stand 30 Transport part 31 Rotation transmission mechanism 32 Squeezing part 33 Extruding part 34A Outer surface 34B of screw element 20A for squeezing Outer surface 36 Inner surface 38 Oil outflow opening 40 Outer peripheral closed curved part 41 Overhanging flange 42 Partial area 43 Screw hole 44 Oil-containing solid material M Transport direction upstream end 46 Oil-containing solid material M Transport direction downstream end 48 Circular opening 50 Chip 52 Disk 56 Spiral lead 58 Return flow path 60 Casing 61 Shaft 62 Screw 63 Oil recovery opening 70 Die adapter 72 Die head 74 Die holder 75 Cylinder 76 Die 77 Die plate 78 Heating heater 80 Melting part 82 Space 84 Outflow Part 86 Strand Cutter 88 Strand 90 Pellet

Claims (11)

バレル内で、バレルの長手方向に延びる回転シャフトと、
該回転シャフトに対して外嵌するスクリューエレメントと、を有し、
油分含有固形材料を前記バレル内に供給する供給部と、該供給部により供給される油分含有固形材料から油分を搾油する搾油部と、搾油された油分を回収する油分回収部と、前記搾油部により圧搾されるまでに、固形材料の融点または油分の許容加熱温度のうち低い方の温度以下まで油分含有固形材料が軟化状態となるように加熱する加熱部とが設けられ、
前記搾油部は、長手方向に隣接配置された搬送部と圧搾部とを有し、
前記搬送部において、前記一対のスクリューエレメントは、油分含有固形材料を前記バレルの長手方向下流側に搬送可能な搬送用スクリューエレメントであり、
前記圧搾部において、前記スクリューエレメントは、油分含有固形材料を圧搾可能な圧搾用スクリューエレメントであり、
前記油分回収部は、前記バレルの下部に溜まる搾油された油分のみを回収可能なように、前記バレルの長手方向に対して、側方に設けられ、前記バレルには、前記圧搾用スクリューエレメントの近傍に、油分用流出開口が設けられ、
さらに、搾油後の固形材料を押し出す押出部が、前記搾油部の下流側に設けられ、
該押出部には、搾油後の固形材料を溶融状態まで加熱する溶融部が設けられ、
前記押出部によりストランド状に外部に押し出された固形材料をカットして、ペレット製品とする、
ことを特徴とする搾油兼ペレット化装置。
In the barrel, a rotating shaft that extends in the longitudinal direction of the barrel,
It has a screw element that fits externally to the rotating shaft, and has.
A supply unit that supplies the oil-containing solid material into the barrel, an oil-squeezing unit that squeezes oil from the oil-containing solid material supplied by the supply unit, an oil recovery unit that recovers the squeezed oil, and the oil-squeezing unit. A heating unit is provided to heat the oil-containing solid material so that it is in a softened state to a temperature equal to or lower than the melting point of the solid material or the allowable heating temperature of the oil before being squeezed.
The oil squeezing portion has a transporting portion and a squeezing portion arranged adjacent to each other in the longitudinal direction.
In the transport section, the pair of screw elements are transport screw elements capable of transporting an oil-containing solid material to the downstream side in the longitudinal direction of the barrel.
In the squeezing portion, the screw element is a squeezing screw element capable of squeezing an oil-containing solid material.
The oil recovery unit is provided laterally with respect to the longitudinal direction of the barrel so that only the squeezed oil accumulated in the lower part of the barrel can be recovered, and the barrel is provided with the squeezing screw element. An oil outflow opening is provided in the vicinity,
Further, an extrusion section for extruding the solid material after oil extraction is provided on the downstream side of the oil extraction section.
The extruded portion is provided with a melting portion that heats the solid material after oil extraction to a molten state.
The solid material extruded to the outside in a strand shape by the extruded portion is cut into a pellet product.
An oil squeezing and pelletizing device that is characterized by this.
前記バレルは、2つの円筒シリンダを長手方向に平行に連結し、長手方向に直交する断面において、一対の円弧部が連なるまゆ形であり、
前記回転シャフトは、それぞれ、対応する円筒シリンダ内で該円筒シリンダと同心状に長手方向に延び、
長手方向を中心に、同方向に回転可能な、互いに所定間隔を隔てた2軸の回転シャフトであり、
前記スクリューエレメントは、各々、前記2軸の回転シャフトそれぞれに対して外嵌する、一対をなし、
該一対のスクリューエレメントは、互いに同一であり、前記バレルの長手方向の同位置に設けられ、前記2軸の回転シャフト間で所定間隔を隔てて噛み合うように配置される、
請求項1に記載の搾油兼ペレット化装置。
The barrel is a eyebrows shape in which two cylindrical cylinders are connected in parallel in the longitudinal direction and a pair of arcs are connected in a cross section orthogonal to the longitudinal direction.
Each of the rotary shafts extends longitudinally concentrically with the cylindrical cylinder within the corresponding cylindrical cylinder.
It is a two-axis rotating shaft that can rotate in the same direction around the longitudinal direction and is separated from each other by a predetermined distance.
The screw elements are paired with each other and are fitted to each of the two-axis rotating shafts.
The pair of screw elements are identical to each other, are provided at the same position in the longitudinal direction of the barrel, and are arranged so as to mesh with each other at a predetermined distance between the rotating shafts of the two axes.
The oil squeezing and pelletizing apparatus according to claim 1.
前記圧搾用スクリューエレメントの外表面と前記バレルの内面との間に構成される油分含有固形材料の流路断面積は、前記搬送用スクリューエレメントの外表面と前記バレルの内面との間に構成される油分含有固形材料の流路断面積より小さく設定される、
請求項2に記載の搾油兼ペレット化装置。
The flow path cross-sectional area of the oil-containing solid material formed between the outer surface of the squeezing screw element and the inner surface of the barrel is formed between the outer surface of the transport screw element and the inner surface of the barrel. It is set smaller than the flow path cross-sectional area of the oil-containing solid material.
The oil squeezing and pelletizing apparatus according to claim 2.
前記圧搾用スクリューエレメントは、前記回転シャフトが内嵌する円形開口を有し、周方向に2以上のチップを有するディスクが長手方向に積み重ねられ、長手方向に隣接するディスクの対応するチップは、周方向にずれている、長手方向に不連続タイプであり、前記バレルの中心に対して、前記円形開口の中心がオフセット配置される、請求項3に記載の搾油兼ペレット化装置。 The squeezing screw element has a circular opening into which the rotating shaft fits, discs with two or more chips in the circumferential direction are stacked in the longitudinal direction, and the corresponding inserts of adjacent discs in the longitudinal direction are circumferential. The oil squeezing and pelletizing apparatus according to claim 3, which is a discontinuous type in the longitudinal direction and is offset in the direction, and the center of the circular opening is offset with respect to the center of the barrel. 前記圧搾用スクリューエレメントは、前記回転シャフトが内嵌する円形開口を有するモノリシック状であり、長手方向に離間する両端面それぞれにおいて、周方向に2以上のチップを有し、周側面には、両端面のチップに連なる螺旋状リードが設けられる、長手方向に連続タイプであり、前記バレルの中心に対して、前記円形開口の中心がオフセット配置される、請求項3に記載の搾油兼ペレット化装置。 The squeezing screw element has a monolithic shape having a circular opening into which the rotary shaft is fitted, has two or more tips in the circumferential direction on each of both end faces separated in the longitudinal direction, and both ends on the peripheral side surface. The oil squeezing and pelletizing apparatus according to claim 3, wherein a spiral lead connected to a chip on the surface is provided, and the center of the circular opening is offset with respect to the center of the barrel, which is a continuous type in the longitudinal direction. .. 前記搾油部は、前記バレルの長手方向に直列に、複数設けられ、前記押出部は、最下流側の前記搾油部の下流に設けられる、請求項1ないし請求項5のいずれか1項に記載の搾油兼ペレット化装置。 6. Oil extraction and pelletization equipment. 前記油分回収部は、前記油分用流出開口に連通接続され、油分回収開口を有するケーシングと、該ケーシング内に設けられ、前記油分用流出開口に向かって進む向きに回転するスクリューとが設けられ、前記油分回収開口を通じて、搾油される油分は回収され、搾油された油分含有固形材料は回収されないようにする、請求項1に記載の搾油兼ペレット化装置。 The oil recovery unit is provided with a casing that is communicated with and connected to the oil outflow opening and has an oil recovery opening, and a screw that is provided in the casing and rotates in a direction toward the oil outflow opening. The oil-squeezing and pelletizing apparatus according to claim 1, wherein the oil to be squeezed is recovered through the oil-recovering opening, and the squeezed oil-containing solid material is not recovered. 油分含有固形材料は、熱可塑性樹脂の産業用廃材である、請求項1ないし請求項7のいずれか1項に記載の搾油兼ペレット化装置。 The oil-squeezing and pelletizing apparatus according to any one of claims 1 to 7, wherein the oil-containing solid material is an industrial waste material of a thermoplastic resin. 固形材料中に油分が含浸した油分含有固形材料を連続的に順方向に密閉空間内で密閉空間の延び方向に沿って搬送しながら、固形材料の融点または油分の許容加熱温度のうち低い方の温度以下まで油分含有固形材料が軟化状態となるように加熱する段階と、
密閉空間の下流側に圧力障壁を形成することにより、圧力障壁上流側における密閉空間内の加熱された油分含有固形材料の充満度を高めつつ、油分含有固形材料を圧搾し、圧搾のみにより油分を搾油する段階と、
搾油された油分を連続的に回収しつつ、搾油後の固形材料を溶融して、ストランド状に外部に押し出す段階と、
外部に押し出された固形材料をカットして、ペレット化する段階とを、
有する、ことを特徴とする搾油兼ペレット化方法。
The oil-containing solid material impregnated with oil in the solid material is continuously transported in the forward direction in the closed space along the extension direction of the closed space, and the lower of the melting point of the solid material or the allowable heating temperature of the oil is lower. At the stage of heating the oil-containing solid material to a softened state to below the temperature,
By forming a pressure barrier on the downstream side of the closed space, the oil-containing solid material is squeezed while increasing the filling degree of the heated oil-containing solid material in the closed space on the upstream side of the pressure barrier, and the oil content is squeezed only by squeezing. The stage of oil extraction and
At the stage of continuously recovering the squeezed oil, melting the squeezed solid material and pushing it out in a strand shape,
The stage of cutting the solid material extruded to the outside and pelletizing it,
An oil-squeezing and pelletizing method characterized by having.
前記ペレット化段階は、外部に押し出された固形材料を長手方向の所定長さごとにカット可能なように、空冷または水冷してから、カットする、請求項9に記載の搾油兼ペレット化方法。 The oil-squeezing and pelletizing method according to claim 9, wherein the pelletization step is performed by air-cooling or water-cooling the solid material extruded to the outside so that it can be cut into predetermined lengths in the longitudinal direction, and then cutting the solid material. 油分含有固形材料は、熱可塑性樹脂の産業用廃材である、請求項9または請求項10に記載の搾油兼ペレット化方法。
The oil-squeezing and pelletizing method according to claim 9, wherein the oil-containing solid material is an industrial waste material of a thermoplastic resin.
JP2021203133A 2021-12-15 2021-12-15 Oil squeezing and pelletizing equipment and oil squeezing and pelleting method Active JP7032851B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021203133A JP7032851B1 (en) 2021-12-15 2021-12-15 Oil squeezing and pelletizing equipment and oil squeezing and pelleting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021203133A JP7032851B1 (en) 2021-12-15 2021-12-15 Oil squeezing and pelletizing equipment and oil squeezing and pelleting method

Publications (2)

Publication Number Publication Date
JP7032851B1 true JP7032851B1 (en) 2022-03-09
JP2023088431A JP2023088431A (en) 2023-06-27

Family

ID=81213011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021203133A Active JP7032851B1 (en) 2021-12-15 2021-12-15 Oil squeezing and pelletizing equipment and oil squeezing and pelleting method

Country Status (1)

Country Link
JP (1) JP7032851B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060535A (en) 2003-08-13 2005-03-10 Denki Kagaku Kogyo Kk Polyvinyl acetal resin and its manufacturing process
JP2018008438A (en) 2016-07-14 2018-01-18 日本シーム株式会社 Granulator
JP2018030312A (en) 2016-08-25 2018-03-01 日本製紙クレシア株式会社 Pellet molding device of moisture accompanying waste plastic

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131496A (en) * 1984-07-25 1986-02-13 三菱化工機株式会社 Pretreatment of oil-containing plant
JPH07197074A (en) * 1993-12-29 1995-08-01 Nisshin Oil Mills Ltd:The Production of vegetable oil by using twin-screw extruder
JPH11226945A (en) * 1998-02-10 1999-08-24 Mitsubishi Rayon Co Ltd Method for pelletizing acrylic resin, device for pelletizing acrylic resin, and manufacture of acrylic film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060535A (en) 2003-08-13 2005-03-10 Denki Kagaku Kogyo Kk Polyvinyl acetal resin and its manufacturing process
JP2018008438A (en) 2016-07-14 2018-01-18 日本シーム株式会社 Granulator
JP2018030312A (en) 2016-08-25 2018-03-01 日本製紙クレシア株式会社 Pellet molding device of moisture accompanying waste plastic

Also Published As

Publication number Publication date
JP2023088431A (en) 2023-06-27

Similar Documents

Publication Publication Date Title
JP4431201B2 (en) Multi-screw extruder, especially twin-screw extruder
US4421412A (en) Process and apparatus for processing plastic and polymeric materials
US6378705B1 (en) Apparatus for filtering plasticized thermoplastics
JP6076356B2 (en) Plastic material processing equipment
JP6356067B2 (en) Plastic material processing equipment
US4639143A (en) Extrusion screw
EP0529333B1 (en) Continuous kneading apparatus
JP4448510B2 (en) Waste plastic processing equipment
JP2014534092A (en) Plastic material processing equipment
CN107009626A (en) A kind of 3D printing plastic recycling device
KR101086079B1 (en) Kneading disc segment and twin-screw extruder
JP6982214B1 (en) Oil squeezing device, oil squeezing method and oil squeezing method using co-rotating twin-screw extruder
CN102205620A (en) Differential-speed conical twin-screw extruder
JP7032851B1 (en) Oil squeezing and pelletizing equipment and oil squeezing and pelleting method
CN206589348U (en) A kind of retracting device of small-sized 3D printing plastics
JP2018535128A (en) Apparatus and method with temperature controller for transfer screw processing thermoplastics
CN109647286A (en) A kind of pair of roller biological coal granulator
US4501543A (en) Rotary extruder
US4773762A (en) Continuous mixing and shearing rolling mill
CN202062635U (en) Differential cone-shaped double-screw extruder
JP7232301B2 (en) Oil extraction method and oil extraction method using co-rotating twin-screw extruder
CN116786027A (en) Dry-method granulator
CN209631157U (en) A kind of pair of roller biological coal granulator
CN104482383B (en) A kind of lubricating system of granulator
CN116100697B (en) Mixed material conveying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211215

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220224

R150 Certificate of patent or registration of utility model

Ref document number: 7032851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350