JP7031900B2 - Method for manufacturing layered particles and layered particles - Google Patents

Method for manufacturing layered particles and layered particles Download PDF

Info

Publication number
JP7031900B2
JP7031900B2 JP2020186295A JP2020186295A JP7031900B2 JP 7031900 B2 JP7031900 B2 JP 7031900B2 JP 2020186295 A JP2020186295 A JP 2020186295A JP 2020186295 A JP2020186295 A JP 2020186295A JP 7031900 B2 JP7031900 B2 JP 7031900B2
Authority
JP
Japan
Prior art keywords
particles
gel
core
shell
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020186295A
Other languages
Japanese (ja)
Other versions
JP2021021083A (en
Inventor
大介 鈴木
拓巳 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2020186295A priority Critical patent/JP7031900B2/en
Publication of JP2021021083A publication Critical patent/JP2021021083A/en
Application granted granted Critical
Publication of JP7031900B2 publication Critical patent/JP7031900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高分子粒子に関し、特に、物性の異なる成分が層状に積層した階層構造を有する粒子、およびその製造方法に関する。 The present invention relates to polymer particles, and more particularly to particles having a hierarchical structure in which components having different physical properties are laminated in layers, and a method for producing the same.

中空微粒子は、低密度、高比表面積、熱膨張係数の低さ、屈折率の低さなどの特徴を有することから、触媒材料、反射防止コーティング剤、太陽電池、充電式バッテリー、ガスセンサー、DNA/薬剤担持担体など、多様な分野への応用が期待されている。これまでに、中空粒子の合成に関する研究が盛んに行われており、Layer-by-Layer法、化学析出法、化学吸着法などの多くの方法が提案されてきた。これらの方法により作製される中空構造粒子は、その多くが単層構造であり、多くの機能化が試みられてはいるが、未だ課題は多い。そのような中、近年、マテリアルの機能の向上という観点から、階層構造粒子の合成に注目が集まっている。 Hollow fine particles have characteristics such as low density, high specific surface area, low thermal expansion coefficient, and low refractive index, so that they are catalytic materials, antireflection coating agents, solar cells, rechargeable batteries, gas sensors, and DNA. / It is expected to be applied to various fields such as drug-supporting carriers. So far, research on the synthesis of hollow particles has been actively carried out, and many methods such as the Layer-by-Layer method, the chemical precipitation method, and the chemisorption method have been proposed. Most of the hollow-structured particles produced by these methods have a single-layer structure, and although many attempts have been made to make them functional, there are still many problems. Under such circumstances, in recent years, attention has been focused on the synthesis of hierarchically structured particles from the viewpoint of improving the function of materials.

階層構造を構築することで、非表面積が劇的に増大し、分子吸着、反応性、熱安定性の向上が期待される。さらに、いくつかの報告では、シェルを有する多層構造複合金属微粒子の合成も達成しており、より顕著な機能の向上が期待される(非特許文献1-4)。 By constructing a hierarchical structure, the non-surface area is dramatically increased, and it is expected that molecular adsorption, reactivity, and thermal stability will be improved. Furthermore, in some reports, the synthesis of multi-layered composite metal fine particles having a shell has also been achieved, and more remarkable functional improvement is expected (Non-Patent Documents 1-4).

Xu,H.;Wang,W.Template Synthesis of Multishelled Cu2O Hollw Spheres with a Single-Crystalline Shell Wall.Angew.Chem.Int.Ed.2007,46,1489-1492.Xu, H. Wang, W. et al. Template Synthesis of Multisheled Cu2O Hollw Surfaces with a Single-Crystalline Shell Wall. Angew. Chem. Int. Ed. 2007,46,1489-1492. Gao,S.;Chang,J.;Fang,L.;Wu,L.Metal Nanoparticles Confined in the Nanospace of Double-Shelled Hollow Silica Spheres for Highly Efficient and Selective Catalysis.Chem.Mater.2016,28,5596-5600.Gao, S.A. Chang, J. et al. Fang, L. et al. Wu, L. Metal Nanoparticles Confined in the Nanospace of Double-Sheled Hollow Silka Phases for Highly Efficient and Selective Catalysis. Chem. Mater. 2016, 28, 5596-5600. Li,J.;Wang,J.;Liang,X.;Zhang,Z.;Liu,H.;Quan,Y.Xiong,S.Hollow MnCo2O4 Submicrospheres with Multilevel Interiors:FromMesoporous Spheres to Yolk-in-Double-Shell Structures.ACS Appl.Mater.Interfaces.2014,6,24-30.Li, J. Wang, J. et al. Liang, X. Zhang, Z. Liu, H. et al. Quant, Y. Xiong, S.M. Hollow MnCo2O4 Submicrospheres with Multilevel Inters.: FromMotherous Phases to Yolk-in-Double-Thell Structures. ACS Apple. Mater. Interfaces. 2014, 6, 24-30. Yabu,H.;Jinno,T.;Koike,K.;Higuchi,T.;Shimomura,M.Nanoparticle Arrangements in Block Copolymer Particles With Microphase-Separated Structures.J.Polym.Sci.BPolym.Phys.2011,49,1717-1722.Yabu, H. et al. Jinno, T. et al. Koike, K.K. Higuchi, T.I. Shimamura, M. et al. Nanoparticle Arrangements in Block Copolymer Particles With Microphase-Specified Structures. J. Polym. Sci. BPolym. Phys. 2011, 49, 1717-1722.

しかし、従来の階層構造微粒子の合成方法では、多段階の複雑な手順を要する事や、構造が多分散になってしまうといった課題があった。また、高分子(ポリマーともいう)により構成された階層構造微粒子の報告例は極めて少なく、ブロックコポリマーの自己集積を活用したもののみであり、先に上げた合成の複雑さに加え、架橋構造を導入出来ない点、粒子構造やその特性が1次元のポリマー組成に依存し応用が利かない点、溶媒との相溶性が悪い高分子(水中で使用するなら難水溶性高分子)でしか作製出来ない点など、応用展開を進める際の多くの課題が残されていた。このため、架橋構造を備え産業上利用可能性の高い階層構造微粒子や、それらを簡便かつ大量に合成可能で、かつ多様な成分への適用が可能な合成法の開発が望まれていた。 However, the conventional method for synthesizing hierarchical fine particles has problems that a complicated procedure in multiple steps is required and the structure becomes multi-dispersed. In addition, there are very few reports of hierarchical structure fine particles composed of polymers (also called polymers), and only those that utilize the self-accumulation of block copolymers. It can only be manufactured with a polymer that cannot be introduced, that the particle structure and its characteristics depend on the one-dimensional polymer composition and is not applicable, and that it has poor compatibility with the solvent (a poorly water-soluble polymer if used in water). Many issues remained when advancing application development, such as the lack of points. Therefore, it has been desired to develop hierarchical fine particles having a crosslinked structure and having high industrial applicability, and a synthetic method capable of synthesizing them easily and in large quantities and applying them to various components.

発明者らは、上記課題を解決するために鋭意研究を行ってきた。その結果、感温性ヒドロゲル微粒子をテンプレートに用いた、シード乳化重合により、固体複合化ゲル微粒子の創製が可能なこと、またこの方法が、テンプレートとなるヒドロゲル微粒子の刺激応答性や、優れた分散安定性を引き継ぎながら、粒子径の整った異形複合ゲル微粒子を、簡便かつ大量に、高収率で作製することができ、かつ多様な成分へ適用可能な方法であること見出した。 The inventors have been diligently researching to solve the above problems. As a result, it is possible to create solid composite gel fine particles by seed emulsification polymerization using temperature-sensitive hydrogel fine particles as a template, and this method provides stimulus responsiveness and excellent dispersion of the hydrogel fine particles as a template. It has been found that it is a method that can easily, in large quantities, and produce high-yield deformed composite gel fine particles having a uniform particle size while inheriting stability, and is applicable to various components.

また同時に本発明者らは、反応性比の観点から、電荷がゲル微粒子中心部に局在化する所望のポリマーから構成されるゲル微粒子をシードに用い、塩基性条件下でシード乳化重合を行うことで、当該複合粒子中の固体成分がゲル微粒子表面に局在することを見出し、本発明を完成させるに至った。すなわち本発明は、ポリマーから構成され、その構造として階層構造を有する、階層構造粒子を提供することを目的とする。 At the same time, from the viewpoint of the reactivity ratio, the present inventors use gel fine particles composed of a desired polymer whose charge is localized in the center of the gel fine particles as seeds, and perform seed emulsification polymerization under basic conditions. As a result, it was found that the solid component in the composite particle was localized on the surface of the gel fine particles, and the present invention was completed. That is, it is an object of the present invention to provide hierarchical structure particles which are composed of a polymer and have a hierarchical structure as the structure thereof.

請求項1に記載の本発明は、架橋剤による架橋構造が導入され、フリーラジカル重合によって形成された、荷電基を有さないポリマーを含むゲルからなるコアと、その外側に、荷電基を有さないモノマーと該モノマーとは反応性比の異なるカルボキシル基またはスルホン酸基の荷電基を有するコモノマーとを沈殿重合によって共重合して得られ、架橋剤による架橋構造が導入されたポリマーを含むゲルからなり、内部に荷電基が偏在するのシェル層または当該シェル層を積層形成した複数のシェル層とで構成されるコアシェルゲル粒子をシード粒子として、前記シード粒子に対し異なる成分の疎水性モノマーを乳化重合したポリマーが、前記コアに形成され、さらに前記1または複数のシェル層において層状に形成された、階層構造粒子である。
The present invention according to claim 1 has a core made of a gel containing a polymer having no charged group , which is formed by free radical polymerization into which a cross-linked structure by a cross-linking agent is introduced, and is charged on the outside thereof. A polymer obtained by copolymerizing a monomer having no group and a comonomer having a charged group of a carboxyl group or a sulfonic acid group having a different reactivity ratio from the monomer by precipitation polymerization, and introducing a cross-linking structure by a cross-linking agent. A core shell gel particle composed of one shell layer in which a charged group is unevenly distributed inside or a plurality of shell layers formed by laminating the shell layer is used as a seed particle and has a component different from that of the seed particle. The polymer obtained by emulsifying and cross-linking the hydrophobic monomer of the above is a layered structure particle formed in the core and further formed in a layer in the one or a plurality of shell layers .

請求項2に記載の本発明は、前記荷電基を有さないモノマーおよび前記荷電基を有するコモノマーの少なくとも何れかは、外部刺激応答性を有することを特徴とする、請求項1に記載の階層構造粒子である。 The hierarchy according to claim 1, wherein at least one of the uncharged monomer and the charged comonomer has an external stimulus response. It is a structural particle.

請求項3に記載の本発明は、前記荷電基を有さないポリマーは、フリーラジカル重合により調整される、ポリアルキレンオキシド誘導体、ポリエチレングリコール(PEG)誘導体、ポリエチレンオキシド(PEO)誘導体、ポリプロピレンオキシド(PPO)誘導体、ポリメチルビニルエーテル、ポリ-N-ビニルカプロラクタムおよびポリアクリルアミド誘導体からなる群から選択される少なくとも1種のLCSTポリマーであることを特徴とする、請求項1または請求項2に記載の階層構造粒子である。
According to the third aspect of the present invention, the polymer having no charged group is a polyalkylene oxide derivative, a polyethylene glycol (PEG) derivative, a polyethylene oxide (PEO) derivative, or a polypropylene oxide prepared by free radical polymerization. The layer according to claim 1 or 2, wherein the LCST polymer is at least one selected from the group consisting of PPO) derivatives, polymethyl vinyl ethers, poly-N-vinyl caprolactams and polyacrylamide derivatives. It is a structural particle.

請求項4に記載の本発明は、前記荷電基を有するコモノマーはメタクリル酸、アクリル酸、フマル酸、ビニル酢酸、マレイン酸、2-アクリルアミド-メチルプロパンスルホン酸、およびスチレンスルホン酸からなる群から選択される少なくとも1種のビニルモノマーであることを特徴とする、請求項1乃至請求項3のいずれか一項に記載の階層構造粒子である。
In the present invention according to claim 4, the comonomer having a charged group comprises methacrylic acid, acrylic acid, fumaric acid, vinylacetic acid, maleic acid, 2-acrylamide-methylpropanesulfonic acid, and styrenesulfonic acid . The layered structure particle according to any one of claims 1 to 3, characterized in that it is at least one vinyl monomer selected from the group.

請求項5に記載の本発明は、前記疎水性モノマーはスチレンであることを特徴とする、請求項1乃至請求項4のいずれか一項に記載の階層構造粒子である。 The fifth aspect of the present invention is the hierarchical structure particle according to any one of claims 1 to 4, wherein the hydrophobic monomer is styrene.

請求項6に記載の本発明は、前記コアシェルゲル粒子の表面には、表面に荷電基が局在化したゲル層がさらに設けられ、これをシード粒子として乳化重合した最外周のポリマーの表面には、電解質ゲル層が存在することを特徴とする、請求項1乃至請求項5のいずれか一項に記載の階層構造粒子である。 According to the sixth aspect of the present invention, a gel layer in which a charged group is localized is further provided on the surface of the core-shell gel particles, and the gel layer is emulsified and polymerized as seed particles on the surface of the outermost polymer. Is the hierarchical structure particle according to any one of claims 1 to 5, characterized in that an electrolyte gel layer is present.

請求項7に記載の本発明は、前記荷電基が局在化したゲル層は、前記荷電基を有さないモノマーとフマル酸との共重合体であることを特徴とする請求項6に記載の階層構造粒子である。 The sixth aspect of the present invention according to claim 6, wherein the gel layer in which the charged group is localized is a copolymer of a monomer having no charged group and fumaric acid. It is a hierarchical structure particle of.

請求項8に記載の本発明は、請求項1乃至請求項7のいずれか一項に記載の階層構造粒子の製造方法であって、
イオン交換水中の荷電基を有さないモノマーに架橋剤を添加し、フリーラジカル重合によりコアゲル粒子を調製する第1の工程と、
前記コアゲル粒子を含むイオン交換水に前記荷電基を有さないモノマーと架橋剤とカルボキシル基またはスルホン酸基の荷電基を有するコモノマーを添加してシード沈殿重合を行い、コアシェルゲル粒子を調製する第2の工程と、
前記第2の工程を1または複数回行った後、前記コアシェルゲル粒子を含むイオン交換水に疎水性モノマーを添加し、シード乳化重合を行う第3の工程を含む、階層構造粒子の製造方法で
ある。
The present invention according to claim 8 is the method for producing hierarchical structural particles according to any one of claims 1 to 7.
The first step of adding a cross-linking agent to a monomer having no charged group in ion-exchanged water and preparing core gel particles by free radical polymerization, and
The core-shell gel particles are prepared by adding a monomer having no charged group, a cross-linking agent, and a comonomer having a charged group of a carboxyl group or a sulfonic acid group to ion-exchanged water containing the core gel particles and performing seed precipitation polymerization. Step 2 and
A method for producing hierarchical structure particles, which comprises a third step of adding a hydrophobic monomer to ion-exchanged water containing the core-shell gel particles and performing seed emulsion polymerization after performing the second step one or more times. be.

本発明に係る階層構造粒子は、産業上有用な、高分子により構成された階層構造粒子を提供することができる。また、本発明に係る階層構造粒子は、シードとして使用したコアシェルゲル粒子由来の刺激応答性など、優れた機能の発現が期待される。 The hierarchical structure particles according to the present invention can provide industrially useful hierarchical structure particles composed of a polymer. Further, the hierarchical structure particles according to the present invention are expected to exhibit excellent functions such as stimulus responsiveness derived from the core-shell gel particles used as seeds.

本発明に係る階層構造粒子の製造方法では、シードにヒドロゲル粒子を用いることができる。ヒドロゲル粒子は、そのサイズや剛直性、電荷密度などの諸物性を容易に変化させることが可能な物質であり、得られた階層構造粒子は、刺激に応じて、サイズやドメイン間距離を変化させることが出来る。 In the method for producing hierarchical structure particles according to the present invention, hydrogel particles can be used as seeds. Hydrogel particles are substances whose size, rigidity, charge density, and other physical properties can be easily changed, and the obtained hierarchical structure particles change their size and interdomain distance in response to stimuli. Can be done.

また本発明に係る階層構造粒子は、公知の物質を複合化して、新たな用途や機能性を付与することが可能である。複合化させる物質の例としては、エラストマーや、疎水性(撥水性)材料、生体適合性材料などが例示できる。 Further, the hierarchical structure particles according to the present invention can be given new uses and functionality by compounding known substances. Examples of the compounding substance include an elastomer, a hydrophobic (water-repellent) material, and a biocompatible material.

また本発明に係る階層構造粒子の製造方法は、テンプレートとなるコアシェルゲル微粒子が単分散であれば、粒子径、複合形態ともに整った階層構造粒子を得ることが出来る。また、その階層数にも厳しい際限は無く、2層、3層、4層と、多様な階層構造粒子の創製が可能となる。 Further, in the method for producing hierarchically structured particles according to the present invention, if the core-shell gel fine particles used as templates are monodisperse, it is possible to obtain hierarchically structured particles having a uniform particle size and composite morphology. In addition, there is no strict limit on the number of layers, and it is possible to create particles having various hierarchical structures such as two layers, three layers, and four layers.

階層構造粒子の作製手順に関するイメージ図である。It is an image diagram about the manufacturing procedure of a hierarchical structure particle. コアゲル粒子(N粒子)およびコアシェルゲル粒子(N-NM粒子)のFE-SEM画像である。FE-SEM images of core gel particles (N particles) and core shell gel particles (N-NM particles). 3層構造の電荷分布を有するコアシェルゲル粒子のイメージである。It is an image of a core-shell gel particle having a charge distribution having a three-layer structure. 階層構造粒子(N-NM(40mM)-S300粒子)のFE-SEM画像および超薄切片のTEM画像である。FE-SEM images of hierarchical structure particles (N-NM (40 mM) -S300 particles) and TEM images of ultrathin sections. 階層構造粒子(N-NM(150mM)-S300粒子)のFE-SEM画像および超薄切片のTEM画像である。FE-SEM images of hierarchical structure particles (N-NM (150 mM) -S300 particles) and TEM images of ultrathin sections. 階層構造粒子(N-NM-NM-S100粒子)のFE-SEM画像および超薄切片のTEM画像である。FE-SEM images of hierarchical structure particles (N-NM-NM-S100 particles) and TEM images of ultrathin sections. 階層構造粒子(N-NM-NM-NF-S200粒子)のFE-SEM画像および超薄切片のTEM画像である。FE-SEM images of hierarchical structure particles (N-NM-NM-NF-S200 particles) and TEM images of ultrathin sections.

以下、本発明に係る粒子およびその製造方法の実施の形態について説明する。 Hereinafter, embodiments of the particles according to the present invention and the method for producing the same will be described.

本発明は、電荷分布が、層状に明確に区別された、コアシェルゲル粒子をシードに用い、疎水モノマーのシード乳化重合を行うことで、階層構造を有する、新規複合ゲル微粒子を提供するものである。
The present invention provides novel composite gel fine particles having a hierarchical structure by performing seed emulsion polymerization of hydrophobic monomers using core-shell gel particles whose charge distribution is clearly distinguished in layers. be.

本発明において、階層構造粒子とは、粒子中心から粒子表面に向かって、固体成分からなる固体層と、ゲル成分からなるゲル層が、夫々1または2以上周期的に存在することで、全体として階層状を呈する構造という場合がある。ここでいう固体とは、積層した一方の層に対する、他方の層の相対的な粘性、流動性の大小で比較してゲル層と区別する表現であり、ゲルに対して、粘性、流動性のいずれも低い状態である。例えば、コアシェルゲル粒子にシード乳化重合により導入されたポリスチレン粒子を、固体あるいは固体層と称する場合がある。
In the present invention, the hierarchical structure particle means that a solid layer composed of a solid component and a gel layer composed of a gel component are periodically present at least one or two, respectively, from the center of the particle toward the surface of the particle. It may be called a structure that presents a hierarchical structure as a whole. The term "solid" as used herein is an expression that distinguishes a gel layer from a gel layer by comparing the relative viscosity and fluidity of the other layer with respect to one of the laminated layers. Both are in a low state. For example, polystyrene particles introduced into core-shell gel particles by seed emulsion polymerization may be referred to as a solid or a solid layer.

アシェルゲル粒子は、粒子の中心部から表面に向かって、電荷を有するゲル部分と、電荷を有さないゲル部分とが、積層した形態となったものである。本発明に係るコアシェルゲル粒子では、粒子内の荷電基モノマーの分布を制御できる。コアシェルゲル粒子を作成するためには、異なる種類のモノマーを複合して作成する。適切なポリマーの存在下で、モノマーと、それとは反応性比が異なる適切なコモノマーを選択する必要がある。例としては、荷電基を有さないLCSTポリマーと、荷電基を有さないモノマーと、荷電基を有するコモノマーとを複合する例が挙げられる。
The core-shell gel particles are formed by laminating a charged gel portion and an uncharged gel portion from the center of the particles toward the surface. In the core-shell gel particles according to the present invention, the distribution of charge group monomers in the particles can be controlled . In order to prepare core-shell gel particles, different types of monomers are compounded and prepared. In the presence of the appropriate polymer, it is necessary to select the monomer and the appropriate comonomer with a different reactivity ratio. Examples include a composite of an LCST polymer having no charged group, a monomer having no charged group, and a comonomer having a charged group.

LCSTポリマーとは、低温で溶媒に可溶なポリマーであり、温度を上昇させ、いわゆるLCST(下限臨界溶解温度)に達すると、溶液から別の相として堆積するポリマーである。荷電基を有さないLCSTポリマーの例としては、フリーラジカル重合により調製される、ポリアルキレンオキシド誘導体、好ましくは、ポリエチレングリコール(PEG)誘導体、ポリエチレンオキシド(PEO)誘導体、ポリプロピレンオキシド(PPO)誘導体、ポリメチルビニルエーテル、などのポリエーテル、ポリ-N-ビニルカプロラクタム、ポリアクリルアミド誘導体、およびポリシロキサンが例示できる。
The LCST polymer is a polymer that is soluble in a solvent at a low temperature, and is a polymer that deposits as another phase from a solution when the temperature is raised and the so-called LCST (lower limit critical dissolution temperature) is reached. Examples of non-charged LCST polymers include polyalkylene oxide derivatives, preferably polyethylene glycol (PEG) derivatives, polyethylene oxide (PEO) derivatives, polypropylene oxide (PPO) derivatives, prepared by free radical polymerization . Examples thereof include polyethers such as polymethyl vinyl ether, poly-N-vinylcaprolactum, polyacrylamide derivatives, and polysiloxane.

電基を有するコモノマーには、ビニルモノマーであれば特に制限は無く、例としては、メタクリル酸などのメタクリル酸モノマー、アクリル酸などのアクリル酸モノマー、フマル酸、ビニル酢酸、マレイン酸、2-アクリルアミド-メチルプロパンスルホン酸(AMPS)、スチレンスルホン酸などのスルホン酸系ビニルモノマー、が挙げられる。制限は特に無いが、モノマーとの反応性比が既知な物質から任意に選択することができる。
The comonomer having a charged group is not particularly limited as long as it is a vinyl monomer, and examples thereof include a methacrylic acid monomer such as methacrylic acid, an acrylic acid monomer such as acrylic acid, fumaric acid, vinyl acetic acid, and maleic acid. -Acrylic-methylpropanesulfonic acid (AMPS) , sulfonic acid-based vinyl monomers such as styrenesulfonic acid, and the like. There is no particular limitation, but it can be arbitrarily selected from substances having a known reactivity ratio with the monomer.

本発明で使用するシード乳化重合法は、高分子粒子存在下において、乳化重合を行うことで、シード粒子に対し、異なる成分の高分子を複合することが出来る重合手法である。これらの手法は、これまで広く研究されてきたが、その殆どが、シード粒子として、固体様微粒子(水に不溶、高密度、硬質粒子)を用いた検討であった。即ち、水を嫌う疎水性物質に対し、水に不溶な油を用いた重合法により、固体-固体複合微粒子の作製が行われてきた。 The seed emulsion polymerization method used in the present invention is a polymerization method capable of compounding polymers having different components with seed particles by performing emulsion polymerization in the presence of polymer particles. These methods have been widely studied so far, but most of them have been studied using solid-like fine particles (water-insoluble, high-density, hard particles) as seed particles. That is, solid-solid composite fine particles have been produced by a polymerization method using a water-insoluble oil for a hydrophobic substance that dislikes water.

そうした中で、本発明者らは、ヒドロゲル微粒子をシードに用いたシード乳化重合により、ゲル-固体の複合ゲル微粒子を創製してきた。このような複合ゲル微粒子は、ゲル微粒子に由来する、外部刺激応答性(温度/pHなど)を引き継ぎ、かつ、異形構造を有しているため、ゲル微粒子単独成分では成し得ない、光散乱特性や濡れ性を示す点で、優位な新規複合材料である。外部刺激応答性とは、外部環境からの様々な刺激に反応して物理化学的な特性を可逆的にまたは不可逆的に変化させる性質をいい、例えばモノマーにNIPAmを使用した場合、作製された粒子は温度応答性を有することとなり、コモノマーにアクリル酸やメタクリル酸を使用した場合には、pH応答性を有する。また、アゾベンゼンモノマーが有する光応答性等、材料が有する外部刺激応答性を引き継ぐことが可能である。 Under such circumstances, the present inventors have created gel-solid composite gel fine particles by seed emulsion polymerization using hydrogel fine particles as seeds. Such composite gel fine particles inherit the external stimulus responsiveness (temperature / pH, etc.) derived from the gel fine particles and have a modified structure, so that light scattering cannot be achieved by the gel fine particles alone. It is a novel composite material that is superior in terms of properties and wettability. External stimulus responsiveness refers to the property of reversibly or irreversibly changing the physicochemical properties in response to various stimuli from the external environment. For example, when NIPAm is used as a monomer, the produced particles Will have temperature responsiveness, and when acrylic acid or methacrylic acid is used as the comonomer, it will have pH responsiveness. In addition, it is possible to inherit the external stimulus responsiveness of the material, such as the photoresponsiveness of the azobenzene monomer.

以下に本発明に係る階層構造粒子の実施例として、シードにN-イソプロピルアクリルアミド(NIPAm)とメタクリル酸(MAc)共重合ゲル粒子を使用して、ポリスチレンとの複合ゲル微粒子を作成した例について説明する。 Hereinafter, as an example of the hierarchical structure particles according to the present invention, an example in which composite gel fine particles with polystyrene are prepared by using N-isopropylacrylamide (NIPAm) and methacrylic acid (MAc) copolymer gel particles as seeds will be described. do.

pNIPAmは摂氏33度付近に下弦臨界共溶温度(LCST)を有する感温性のポリマーである。本実施例で作成する粒子は、pNIPAmを主骨格に有するヒドロゲル微粒子であって、温度応答性を引き継ぎ、ポリマーのLCST以下では粒子は膨潤し、LSCT以上では脱水和することで、粒子は迅速に収縮する。さらに、pNIPAmにMAc等の荷電基を有するコモノマーを共重合すると、荷電基が解離する条件ではLCSTが高温にシフトすることで、ゲル微粒子は高温状態(およそ摂氏70度以上)においても膨潤状態を保つことが知られている。また同様に、本実施例で作成する粒子は、pNIPAmが有するpH応答性を引き継ぐことも可能である。 pNIPAm is a temperature sensitive polymer having a lower string critical symbiotic temperature (LCST) near 33 degrees Celsius. The particles produced in this example are hydrogel fine particles having pNIPAm as a main skeleton, and inherit the temperature responsiveness. Shrink. Furthermore, when a comonomer having a charged group such as MAc is copolymerized with pNIPAm, the LCST shifts to a high temperature under the condition that the charged group is dissociated, so that the gel fine particles are in a swollen state even in a high temperature state (about 70 degrees Celsius or higher). It is known to keep. Similarly, the particles produced in this example can inherit the pH responsiveness of pNIPAm.

本発明に係る製造方法では、粒子の製造に水系の重合が好適に適用できる。水系の沈殿重合法では、水中で析出したpNIPAmのグロビュール鎖が、疎水的な引力により互いに凝集し、核を形成する。そして、その核に対して新たに形成したグロビュール鎖が沈着することでゲル微粒子が形成していく。即ち、重合初期に形成したポリマー鎖は得られるゲル微粒子の中心部に、重合後期に形成したポリマー鎖は得られるゲル微粒子の表面層付近に存在することになる。このメカニズムによれば、(1)NIPAmとの反応性比が異なる適切なコモノマーを選択すること、(2)シード粒子存在下で沈殿重合を行う、シード沈殿重合を行うこと、により、粒子の中心部と表面部にそれぞれ偏在させることが可能になる。本実施例では、pNIPAmゲル微粒子をシードに、pNIPAm-co-MAc共重合ゲル微粒子のシェル層を有するようなコアシェルゲル粒子をシード沈殿重合法により作製した。作製手順に関するイメージ図を図1に示す。 In the production method according to the present invention, water-based polymerization can be suitably applied to the production of particles. In the aqueous precipitation polymerization method, the globule chains of pNIPAm precipitated in water aggregate with each other due to hydrophobic attraction to form nuclei. Then, gel fine particles are formed by depositing newly formed globule chains on the nucleus. That is, the polymer chain formed in the early stage of polymerization is present in the center of the obtained gel fine particles, and the polymer chain formed in the late stage of polymerization is present in the vicinity of the surface layer of the obtained gel fine particles. According to this mechanism, the center of the particles is obtained by (1) selecting an appropriate comonomer having a different reaction ratio with NIPAm, (2) performing precipitation polymerization in the presence of seed particles, and performing seed precipitation polymerization. It becomes possible to unevenly distribute the portion and the surface portion, respectively. In this example, core-shell gel particles having a shell layer of pNIPAm-co-MAc copolymer gel fine particles were prepared by a seed precipitation polymerization method using pNIPAm gel fine particles as seeds. An image diagram of the manufacturing procedure is shown in FIG.

(コアゲル粒子の作製)
まず、pNIPAmのコアゲル粒子を作製した。N-イソプロピルアクリルアミド(N-Isopropylacrylamide(NIPAm,純度98%,和光純薬製))と、N,N’-メチレンビス(アクリルアミド)(N,N’-methylenebis(acrylamide)(BIS,純度97%,和光純薬製)、イオン交換水を3首丸底フラスコに入れ、スターラーを用いて混合した。架橋剤としてBISを添加することで、作製された粒子に架橋構造を導入することが可能となり、作製された粒子の物性向上等に好適である。混合した溶液を、攪拌(250rpm)、および窒素バブリング(30分)下で摂氏70度まで加熱した。その後、ペルオキソ二硫酸カリウム(potassium peroxodisulfate(KPS,純度95%,和光純薬製))水溶液(5mL)を添加し、フリーラジカル重合を行った。反応は4時間行い、その後室温まで自然冷却した。反応時間、反応温度、攪拌速度その他は、選択するモノマーや、開始剤の種類等により、適当な実験条件を任意に設定することが可能である。
(Preparation of core gel particles)
First, core gel particles of pNIPAm were prepared. N-isopropylacrylamide (N-Isotropylacrylamide (NIPAm, purity 98%, manufactured by Wako Pure Chemical Industries, Ltd.)) and N, N'-methylenebis (acrylamide) (N, N'-methylenebis (acrylamide) (BIS, purity 97%, sum) (Made by Kojunyaku), ion-exchanged water was placed in a three-necked round-bottom flask and mixed using a stirrer. By adding BIS as a cross-linking agent, it became possible to introduce a cross-linking structure into the prepared particles. It is suitable for improving the physical properties of the obtained particles. The mixed solution was heated to 70 ° C. under stirring (250 rpm) and nitrogen bubbling (30 minutes). Then, potassium peroxodisulfate (KPS,). (Purity 95%, manufactured by Wako Pure Chemical Industries, Ltd.)) Aqueous solution (5 mL) was added and free radical polymerization was carried out. The reaction was carried out for 4 hours and then naturally cooled to room temperature. The reaction time, reaction temperature, stirring speed and others were selected. Appropriate experimental conditions can be arbitrarily set depending on the type of monomer to be used and the type of initiator.

作成されたコアゲル粒子は、精製のため、遠心分離(70,000xg)を二度行った。図2(a)に得られたコアゲル粒子(N粒子)のFE-SEM画像を示す。また、重合反応の機構を考慮すると、N粒子の内部には開始剤であるKPSの末端基に由来する負電荷が存在する。しかし、この電荷は微量であるため、油溶性ポリマーの可溶化に影響しない。本発明では、電荷の量が油溶性ポリマーの可溶化に影響しない程度以下の場合には、これを中性として、中性のゲルからなる層は中性ゲル層とする。 The core gel particles produced were centrifuged (70,000 xg) twice for purification. FIG. 2A shows an FE-SEM image of the core gel particles (N particles) obtained. Further, considering the mechanism of the polymerization reaction, a negative charge derived from the terminal group of KPS, which is an initiator, exists inside the N particles. However, since this charge is very small, it does not affect the solubilization of the oil-soluble polymer. In the present invention, when the amount of electric charge is less than or equal to the extent that does not affect the solubilization of the oil-soluble polymer, this is regarded as neutral, and the layer made of neutral gel is regarded as a neutral gel layer.

(コアシェルゲル粒子の作製)
コアシェルゲル粒子を作成する際のコモノマーとして使用したメタクリル酸は、反応性比の観点から、ゲル粒子の中心部側に偏位して電荷が局在することが知られている。このため、本実施例において得られるコアシェルゲル粒子は、中心から、中性ゲル層-電荷ゲル層-中性ゲル層、という3層構造の電荷分布を有することとなる。図3に、3層構造の電荷分布を有するコアシェルゲル粒子のイメージを示す。
(Preparation of core shell gel particles)
It is known that methacrylic acid used as a comonomer in producing core-shell gel particles is displaced toward the center of the gel particles and the charge is localized from the viewpoint of the reactivity ratio . Therefore , the core-shell gel particles obtained in this example have a charge distribution having a three-layer structure of a neutral gel layer-charged gel layer-neutral gel layer from the center. FIG. 3 shows an image of core-shell gel particles having a three-layered charge distribution.

上記の実験で作製したコアゲル粒子をイオン交換水で分散した分散液(コアゲル固体成分濃度:0.4wt%)を、攪拌(250rpm)、および窒素バブリング(30分)下で摂氏70度まで加熱した。その後、NIPAm(45mol.%),BIS(5mol.%),MAc(50mol.%)、KPS水溶液(5mL)を添加し、シード沈殿重合を行った。反応は4時間行い、その後室温まで自然冷却した。 The dispersion liquid (core gel solid component concentration: 0.4 wt%) in which the core gel particles prepared in the above experiment were dispersed in ion-exchanged water was heated to 70 degrees Celsius under stirring (250 rpm) and nitrogen bubbling (30 minutes). .. Then, NIPAm (45 mol.%), BIS (5 mol.%), MAc (50 mol.%), And KPS aqueous solution (5 mL) were added, and seed precipitation polymerization was carried out. The reaction was carried out for 4 hours and then naturally cooled to room temperature.

作成されたコアシェルゲル粒子は、精製のため、遠心分離(70,000xg)を二度行った。図2(b)、(c)に得られたコアシェルゲル粒子(N-NM粒子)のFE-SEM画像を示す。なお、N-NM粒子をシードとして、上記と同様の重合を行うことにより、作製されるコアシェル粒子の階層数を、例えばN-NM-NMや、N-NM-NM-NMのように増加することが可能であることも同時に確認した。 The core-shell gel particles produced were centrifuged (70,000 xg) twice for purification. The FE-SEM images of the core-shell gel particles (N-NM particles) obtained in FIGS. 2 (b) and 2 (c) are shown. By using N-NM particles as seeds and performing the same polymerization as described above, the number of layers of the core-shell particles produced is increased, for example, N-NM-NM and N-NM-NM-NM. At the same time, it was confirmed that it was possible.

(シェル厚の制御)
シード沈殿重合時のモノマー濃度を変化させ、得られるコアシェルゲル粒子のシェル厚
の制御を試みた。重合条件を表1に示す。
(Control of shell thickness)
An attempt was made to control the shell thickness of the obtained core-shell gel particles by changing the monomer concentration during seed precipitation polymerization. The polymerization conditions are shown in Table 1.

FE-SEM観察結果より、いずれのゲル微粒子も、シェルモノマー成分のみで構成される二次粒子は観察されていない。Nゲル微粒子、N-NM(40mM)ゲル粒子、N-NM(150mM)ゲル粒子のそれぞれの乾燥時の粒子径は、D=325±13nm(CV=4%)、D=351±16nm(CV=4%)、D=423±21nm(CV=5%)であった。 From the FE-SEM observation results, no secondary particles composed of shell monomer components were observed in any of the gel fine particles. The particle diameters of the N gel fine particles, N-NM (40 mM) gel particles, and N-NM (150 mM) gel particles at the time of drying are D = 325 ± 13 nm (CV = 4%) and D = 351 ± 16 nm (CV). = 4%), D = 423 ± 21 nm (CV = 5%).

乾燥時の粒子径は、コアシェルゲル粒子の方がコア粒子よりも大きく、また、重合時の
モノマー濃度が高い場合の方が(N-NM(150mM)ゲル粒子)、モノマー濃度が低い場合と比較し(N-NM(40mM)ゲル粒子)、粒子径は増大した。
The particle size at the time of drying is larger in the core-shell gel particles than in the core particles, and the case where the monomer concentration at the time of polymerization is high (N-NM (150 mM) gel particles) is compared with the case where the monomer concentration is low. (N-NM (40 mM) gel particles), the particle size increased.

加えて、水中でのゲル粒子収縮時の流体力学的直径を測定すると、それぞれ、Dh=320±13nm(Nゲル粒子、pH3,70°)、Dh=352±14nm(N-NM(40mM)ゲル粒子、pH3,70°C)、Dh=519±5nm(N-NM(150mM)ゲル粒子、pH3,70°C)であった。コアシェルゲル粒子のシェル厚を以下の式:

shell thickness = α
= (Dh(core-shellmicrogel))(pH3,70°C) - Dh(coremicrogel))(pH3,70°C))/2

で定義すると、シェル厚はそれぞれ、α=21nm(N-NM(40mM)ゲル粒子)とα=100nm(N-NM(150mM)ゲル粒子)となる。これにより、モノマーの濃度を変化させることにより、シェル厚の制御が可能であることが確認された。
In addition, when the hydrodynamic diameter of the gel particles in water was measured, Dh = 320 ± 13 nm (N gel particles, pH 3,70 °) and Dh = 352 ± 14 nm (N-NM (40 mM) gel, respectively). Particles, pH 3,70 ° C), Dh = 519 ± 5 nm (N-NM (150 mM) gel particles, pH 3,70 ° C). The shell thickness of the core-shell gel particles is calculated by the following formula:

shell thickness = α
= (D h (core-shell microgel)) (pH 3,70 ° C) --D h (core microgel)) (pH 3,70 ° C)) / 2

The shell thickness is α = 21 nm (N-NM (40 mM) gel particles) and α = 100 nm (N-NM (150 mM) gel particles), respectively. From this, it was confirmed that the shell thickness can be controlled by changing the concentration of the monomer.

Figure 0007031900000001
Figure 0007031900000001

(階層構造粒子の創製)
続いて、上記で作製したコアシェルゲル粒子をシードに用いた、スチレンのシード乳化重合により、階層構造粒子の作製を行った。ゲル粒子内部のカルボキシ基を解離させるために、全ての重合において、シード乳化重合時は、1MのNaOH溶液により重合系内のpHをおおよそ10程度に調整した。
(Creation of hierarchical particles)
Subsequently, the hierarchical structure particles were prepared by seed emulsion polymerization of styrene using the core-shell gel particles prepared above as seeds. In order to dissociate the carboxy group inside the gel particles, the pH in the polymerization system was adjusted to about 10 with a 1 M NaOH solution during the seed emulsion polymerization in all the polymerizations.

上記の実験で作製したコアシェルゲル粒子をイオン交換水で分散した分散液(100mL,コアシェルゲル固体成分濃度:0.17wt%)を、攪拌(250rpm)、および窒素バブリング(30分)下で摂氏70度まで加熱した。その後、KPS(0.0271g,1mM)、スチレンモノマーを添加し、シード乳化重合を行った。反応は24時間行い、その後室温まで自然冷却した。 A dispersion (100 mL, core-shell gel solid component concentration: 0.17 wt%) in which the core-shell gel particles prepared in the above experiment were dispersed in ion-exchanged water was stirred (250 rpm) and nitrogen bubbling (30 minutes) at 70 degrees Celsius. Heated to a degree. Then, KPS (0.0271 g, 1 mM) and styrene monomer were added, and seed emulsion polymerization was carried out. The reaction was carried out for 24 hours and then naturally cooled to room temperature.

作成されたコアシェルゲル粒子は、精製のため、遠心分離(20,000xg)を二度行った。図4に、比較的にシェル厚の薄いコアシェルゲル粒子(N-NM(40mM)粒子)をシードに用い、得られた階層構造粒子(N-NM(40mM)-S300粒子)のFE-SEM画像を示す。図中、図4(b)は、作製された階層構造粒子の超薄切片観察結果であり、図から、粒子内部に多くのポリスチレン粒子が形成され、粒子が大小異なるポリスチレン粒子から成る、2層の階層構造を形成していることが確認できる。階層構造粒子の径とポリスチレンの突起径を、それぞれ計測すると、複合粒子径D=867±51nm(CV=6%),大突起径D=213±31nm(CV=15nm),小突起径D=64±8.3nm(CV=13%)であった。 The core-shell gel particles produced were centrifuged (20,000 xg) twice for purification. FIG. 4 shows an FE-SEM image of the obtained hierarchical structure particles (N-NM (40 mM) -S300 particles) using core shell gel particles (N-NM (40 mM) particles) having a relatively thin shell thickness as seeds. Is shown. In the figure, FIG. 4B is an observation result of an ultrathin section of the produced hierarchical structure particles. From the figure, many polystyrene particles are formed inside the particles, and the particles are composed of two layers of different sizes of polystyrene particles. It can be confirmed that the hierarchical structure of is formed. When the diameter of the hierarchical structure particles and the protrusion diameter of polystyrene are measured, the composite particle diameter D = 867 ± 51 nm (CV = 6%), the large protrusion diameter D 1 = 213 ± 31 nm (CV = 15 nm), and the small protrusion diameter D. 2 = 64 ± 8.3 nm (CV = 13%).

(濃度を変えた階層構造粒子の作製)
N-NM50(40mM)ゲル微粒子よりも、シェル厚の厚い、N-NM50(150mM)ゲル粒子をシードに用い、階層構造粒子の作製を行った。使用した試料、方法は、シードのコアシェルゲル粒子以外は、実施例1と同様である。得られた階層構造粒子(N-NM(150mM)-S300粒子)のFE-SEM画像およびTEM画像を図5に示す。図5中、(a)、(b)はFE-SEM画像であり、(c)、(d)がTEM画像である。
(Preparation of hierarchical structure particles with different concentrations)
Hierarchical particles were prepared using N-NM50 (150 mM) gel particles having a thicker shell than N-NM50 (40 mM) gel fine particles as seeds. The sample and method used are the same as in Example 1 except for the core-shell gel particles of the seed. The FE-SEM image and the TEM image of the obtained hierarchical structure particles (N-NM (150 mM) -S300 particles) are shown in FIG. In FIG. 5, (a) and (b) are FE-SEM images, and (c) and (d) are TEM images.

図5から、重合時のスチレン濃度が100mMの場合(図5(a))、真空条件下で階層構造粒子は潰れたような形状であることが確認された。また、この時、階層構造粒子径D=666±50nm(CV=8%)小突起径D=57±9nm(CV=15%)であった。重合時のスチレン濃度を300mMに増大させると、階層構造粒子径D=969±31nm(CV=4%)、小突起径D=166±38nm(CV=23%)となり、階層構造粒子径、小突起径共に増大した(図5(b))。 From FIG. 5, it was confirmed that when the styrene concentration at the time of polymerization was 100 mM (FIG. 5 (a)), the hierarchical structure particles had a crushed shape under vacuum conditions. At this time, the hierarchical structure particle diameter D = 666 ± 50 nm (CV = 8%) and the small protrusion diameter D = 57 ± 9 nm (CV = 15%). When the styrene concentration at the time of polymerization is increased to 300 mM, the hierarchical structure particle diameter D = 969 ± 31 nm (CV = 4%) and the small protrusion diameter D = 166 ± 38 nm (CV = 23%). Both protrusion diameters increased (FIG. 5 (b)).

N-NM(150mM)-S300粒子では、N-NM(40mM)-S300粒子に見られたような、表面構造のばらつきは確認されない。図5(c)に示す超薄切片観察により、階層構造粒子内部構造を評価すると、N-NM(150mM)-S300粒子は、中心から、ポリスチレン-中間層-ポリスチレンの3層構造を有していることが確認できる。中心部のゲルの厚さを計測すると75nm程度であった。ゲル粒子の密度が低く、電子顕微鏡ではそのネットワーク構造を確認することは出来ないが、中間層には、ヒドロゲル層が存在していると考えられる。N-NM(150mM)-S100ゲル粒子の超薄切片観察結果からでは、そのような中間層を明確に確認することは出来ないが、これは、ポリスチレンの複合量が低く、樹脂埋包時に粒子が変形したためであると考えられる。おそらくN-NM(40mM)-S300ゲル微粒子も同様に固体-ゲル-固体の3層構造を有していると考えられるが、シェルゲル層の厚さが薄いため、電子顕微鏡の評価では固体-固体の2層粒子のように観察されたと考えられる。このことから、シェルゲル層の厚さを変えることで、固体(ポリスチレン)層間の間隔を調整可能である事が示された。
In the N-NM (150 mM) -S300 particles, the variation in the surface structure as seen in the N-NM (40 mM) -S300 particles is not confirmed. When the internal structure of the hierarchical structure particles is evaluated by the observation of the ultrathin section shown in FIG. 5 (c), the N-NM (150 mM) -S300 particles have a three-layer structure of polystyrene-intermediate layer-polystyrene from the center. It can be confirmed that there is. The thickness of the gel in the center was measured and found to be about 75 nm. Although the density of gel particles is low and its network structure cannot be confirmed with an electron microscope, it is considered that a hydrogel layer is present in the intermediate layer. It is not possible to clearly confirm such an intermediate layer from the observation results of ultrathin sections of N-NM (150 mM) -S100 gel particles, but this is because the composite amount of polystyrene is low and the particles are embedded in the resin. Is thought to be due to the deformation. Probably, the N-NM (40 mM) -S300 gel fine particles also have a solid-gel-solid three-layer structure, but since the shell gel layer is thin, the solid-solid is evaluated by an electron microscope. It is considered that it was observed like the two-layer particles of. From this, it was shown that the spacing between the solid (polystyrene) layers can be adjusted by changing the thickness of the shell gel layer.

(5層構造複合ゲル粒子の作製)
さらに構造が制御された、階層構造複合ゲル粒子を創製するため、N-NM(150mM)ゲル粒子に対し、シード沈殿重合法により、poly(NIPAm-co-MAc)共重合ゲルシェル層の付与を試みた(N-NM-NMゲル粒子)。使用した試料、方法は、シードのコアシェルゲル粒子以外は、実施例1と同様である。上記N-NM-NMゲル粒子をシードに用い、スチレンのソープフリーシード乳化重合を行うと、重合時のスチレン濃度が200mMの際は重合中に粗大な凝集物が形成したが、スチレン濃度が100mMの時は、分散安定な複合ゲル粒子が得られた(N-NM-NM-S100粒子)。
(Preparation of 5-layer composite gel particles)
In order to create a hierarchical composite gel particle with a controlled structure, an attempt was made to add a poly (NIPAm-co-MAc) copolymer gel shell layer to N-NM (150 mM) gel particles by a seed precipitation polymerization method. (N-NM-NM gel particles). The sample and method used are the same as in Example 1 except for the core-shell gel particles of the seed. When the above N-NM-NM gel particles were used as seeds and soap-free seed emulsion polymerization of styrene was performed, when the styrene concentration at the time of polymerization was 200 mM, coarse aggregates were formed during the polymerization, but the styrene concentration was 100 mM. At the time of, dispersion-stable composite gel particles were obtained (N-NM-NM-S100 particles).

図6(a)(c)は、N-NM-NM-S100粒子のFE-SEM画像と得られた階層構造粒子のイメージ図を示す。FE-SEM観察結果より、粒子径D=1017±52nm(CV=5%),小粒子径D=68±5nm(CV=7%)の複合ゲル粒子が得られたことが確認される。複合ゲル粒子径Dは、N-NM50(40mM)ゲル粒子をシードにした時よりも、200nm程度増大しており、これは、シードとなるゲル粒子径が増大した事に起因すると考えられる。 6 (a) and 6 (c) show an FE-SEM image of N-NM-NM-S100 particles and an image diagram of the obtained hierarchical structure particles. From the FE-SEM observation results, it is confirmed that composite gel particles having a particle diameter D = 1017 ± 52 nm (CV = 5%) and a small particle diameter D = 68 ± 5 nm (CV = 7%) were obtained. The composite gel particle size D is increased by about 200 nm as compared with the case where the N-NM50 (40 mM) gel particles are used as seeds, which is considered to be due to the increase in the gel particle size as the seed.

図6(b)は、この階層構造粒子の内部構造を、超薄切片観察した結果である。図により評価すると、中心から、固体(1層目)-ゲル(2層目)-固体(3層目)-ゲル(4層目)-固体(5層目)の5層の階層構造を形成していることが確認できる。2層目のゲルの厚さは34±5nm、4層目のゲルの厚さは45±17nmであった。2層目の厚さが-NM-S300ゲル微粒子(図5)と比較し、薄くなったのは、乾燥に伴うゲルの変形と、35層目の圧縮効果であると考えられる。しかし、N-NM-NM-S100粒子は、N-MM-S100ゲル粒子同様、超薄切片観察時に大きく変形している。 FIG. 6B is the result of observing the internal structure of the hierarchical structure particles in ultrathin sections. Evaluating from the figure, a five-layer structure of solid (1st layer) -gel (2nd layer) -solid (3rd layer) -gel (4th layer) -solid (5th layer) is formed from the center. It can be confirmed that it is done. The thickness of the gel in the second layer was 34 ± 5 nm, and the thickness of the gel in the fourth layer was 45 ± 17 nm. It is considered that the thickness of the second layer became thinner than that of the -NM-S300 gel fine particles (FIG. 5) due to the deformation of the gel due to drying and the compression effect of the 35th layer. However, the N-NM-NM-S100 particles, like the N-MM-S100 gel particles, are greatly deformed when the ultrathin section is observed.

(ゲル粒子の荷電分布の変更)
シードとなるコアシェルゲル粒子に対し、より多くのポリスチレンを複合化させるためには、ゲル微粒子表面に荷電基を局在化させ、粒子間の静電反発力を増大させることで、複合ゲル微粒子の分散安定性を向上させることが効果的である。
(Change of charge distribution of gel particles)
In order to composite more polystyrene with the core-shell gel particles that serve as seeds, the charged groups are localized on the surface of the gel fine particles and the electrostatic repulsive force between the particles is increased to make the composite gel fine particles. It is effective to improve the dispersion stability.

シードのコアシェルゲル粒子に、より多くのポリスチレンを複合化させ、階層構造を明確とするために、N-NM-NM粒子に対し、poly(NIPAm-co-FAc)ゲルシェル層の付与を試みた。使用した試料、方法は、シードのコアシェルゲル粒子、および共重合させるモノマー(FAc)以外は、実施例1と同様である。NIPAmとFAcを共重合した際は、FAcの反応性が非常に低く、FAcはゲル粒子表面に局在化することが知られている。そのため、得られたコアシェルゲル粒子(N-NM-NM-NF粒子)表面には、フマル酸由来の荷電基が局在していることとなる。また、使用するFAcの量を増減することにより、作製される粒子のサイズを任意に設定することが可能である。 In order to composite more polystyrene with the seed core-shell gel particles and clarify the hierarchical structure, an attempt was made to add a poly (NIPAm-co-FAc) gel-shell layer to the N-NM-NM particles. The sample and method used are the same as in Example 1 except for the core-shell gel particles of the seed and the monomer (FAc) to be copolymerized. It is known that when NIPAm and FAc are copolymerized, the reactivity of FAc is very low, and FAc is localized on the surface of gel particles. Therefore, a charged group derived from fumaric acid is localized on the surface of the obtained core-shell gel particles (N-NM-NM-NF particles). Further, the size of the produced particles can be arbitrarily set by increasing or decreasing the amount of FAc used.

図7(a)は、N-NM-NM-NFゲル粒子をシードに用い、スチレンのソープフリー乳化重合を行って得られた階層構造粒子のFE-SEM画像を示す。この実験では、スチレン濃度200mMの重合条件でも、分散安定性の高い階層構造粒子が得られた(N-NM-NM-NF-S200粒子)。得られた粒子は、表面に大きさの異なる突起を有しており、階層構造粒子径D=1586±47nm(CV=3%)、大突起径D=217±41nm(CV=19%)、小突起径D=86±8nm(CV=9%)であった。 FIG. 7A shows an FE-SEM image of hierarchical structure particles obtained by performing soap-free emulsion polymerization of styrene using N-NM-NM-NF gel particles as seeds. In this experiment, hierarchically structured particles with high dispersion stability were obtained even under polymerization conditions with a styrene concentration of 200 mM (N-NM-NM-NF-S200 particles). The obtained particles have protrusions of different sizes on the surface, and have a hierarchical structure particle diameter D = 1586 ± 47 nm (CV = 3%) and a large protrusion diameter D 1 = 217 ± 41 nm (CV = 19%). , Small protrusion diameter D 2 = 86 ± 8 nm (CV = 9%).

図7(b)は、N-NM-NM-NF-S200粒子を超薄切片観察した結果を示す。図から、N-NM-NM-NF-S200粒子が、5層構造を有した階層構造粒子であることが確認できる。しかし、実際には、この階層構造粒子表面には、粒子の分散安定性に寄与する、電子顕微鏡では観察出来ない、電解質ゲル層が存在すると考えられる。その点を考慮すると、N-NM-NM-NF-S200粒子は、実際には、粒子の中心から、固体(1層目)-ゲル(2層目)-固体(3層目)-ゲル(4層目)-固体(5層目)-ゲル(6層目)の階層性を有した、6層階層構造粒子である。 FIG. 7B shows the results of ultrathin section observation of N-NM-NM-NF-S200 particles. From the figure, it can be confirmed that the N-NM-NM-NF-S200 particles are layered particles having a five-layer structure. However, in reality, it is considered that there is an electrolyte gel layer on the surface of the hierarchically structured particles, which contributes to the dispersion stability of the particles and cannot be observed with an electron microscope. Considering this point, the N-NM-NM-NF-S200 particles are actually solid (first layer) -gel (second layer) -solid (third layer) -gel (from the center of the particles. 4th layer) -Solid (5th layer) -Gel (6th layer), 6-layer hierarchical structure particles.

また、図7(b)から、2層目の厚さは39±11nm、4層目の厚さは152±19nmであった。N-NM-NM-NF-S200粒子は、前述のN-NM-NM-S100粒子と比較し、明らかに4層目のゲル層の厚さが増大していることが確認できる。これは、粒子表面に荷電基を存在させ、より多くのポリスチレンを複合化することで、階層構造粒子の強度が向上し、乾燥過程や、樹脂埋包時に変形し難くなったためだと考えらえられる。これは、言い換えると、シードとなるゲル微粒子は、水中では高膨潤しており、図7(b)に示すような膨潤構造を示していることが推察される。このことは、本発明に係る方法が、階層構造粒子の合成のみならず、膨潤時のゲル微粒子ナノ構造や、階層構造等の構造評価にも活用できることを示している。

Further, from FIG. 7B, the thickness of the second layer was 39 ± 11 nm, and the thickness of the fourth layer was 152 ± 19 nm. It can be confirmed that the thickness of the fourth gel layer is clearly increased in the N-NM-NM-NF-S200 particles as compared with the above-mentioned N-NM-NM-S100 particles. It is thought that this is because the strength of the hierarchical structure particles is improved by the presence of charged groups on the particle surface and the composite of more polystyrene, which makes it difficult to deform during the drying process and resin embedding. Be done. In other words, it is presumed that the gel fine particles serving as seeds are highly swelled in water and show a swelling structure as shown in FIG. 7 (b). This indicates that the method according to the present invention can be utilized not only for the synthesis of hierarchical structure particles but also for the structural evaluation of gel fine particle nanostructures at the time of swelling and the hierarchical structure.

Claims (8)

架橋剤による架橋構造が導入され、フリーラジカル重合によって形成された、荷電基を有さないポリマーを含むゲルからなるコアと
その外側に、前記コアをシードとして、荷電基を有さないモノマーと該モノマーとは反応性比の異なるカルボキシル基またはスルホン酸基の荷電基を有するコモノマーとを沈殿重合によって共重合して得られ、架橋剤による架橋構造が導入されたポリマーを含むゲルからなり、内部に荷電基が偏在するのシェル層または当該シェル層を積層形成した複数のシェル層とで構成されるコアシェルゲル粒子をシード粒子として、
前記シード粒子に対し異なる成分の疎水性モノマーを乳化重合したポリマーが、前記コアに形成され、さらに前記1または複数のシェル層において層状に形成された、階層構造粒子。
A core consisting of a gel containing a polymer having no charged group , which is formed by free radical polymerization and has a cross-linked structure introduced by a cross-linking agent .
On the outside thereof , using the core as a seed, a monomer having no charged group and a comonomer having a charged group of a carboxyl group or a sulfonic acid group having a different reactivity ratio from the monomer are copolymerized by precipitation polymerization. , A core-shell gel particle composed of a gel containing a polymer into which a cross-linking structure with a cross-linking agent has been introduced, and one shell layer in which charged groups are unevenly distributed or a plurality of shell layers formed by laminating the shell layer . As a seed particle
Hierarchical particles in which a polymer obtained by emulsion polymerization of hydrophobic monomers having different components with respect to the seed particles is formed in the core and further formed in layers in the one or a plurality of shell layers .
前記荷電基を有さないモノマーおよび前記荷電基を有するコモノマーの少なくとも何れかは、外部刺激応答性を有することを特徴とする、請求項1に記載の階層構造粒子。 The hierarchical structure particle according to claim 1, wherein at least one of the uncharged monomer and the charged comonomer has an external stimulus response. 前記荷電基を有さないポリマーは、フリーラジカル重合により調製される、ポリアルキレンオキシド誘導体、ポリエチレングリコール(PEG)誘導体、ポリエチレンオキシド(PEO)誘導体、ポリプロピレンオキシド(PPO)誘導体、ポリメチルビニルエーテル、ポリ-N-ビニルカプロラクタムおよびポリアクリルアミド誘導体からなる群から選択される少なくとも1種のLCSTポリマーであることを特徴とする、請求項1または請求項2に記載の階層構造粒子。 The polymer having no charged group is a polyalkylene oxide derivative, a polyethylene glycol (PEG) derivative, a polyethylene oxide (PEO) derivative, a polypropylene oxide (PPO) derivative, a polymethylvinyl ether, or a poly-, which is prepared by free radical polymerization. The layered structure particle according to claim 1 or 2, wherein the LCST polymer is at least one selected from the group consisting of N-vinylcaprolactum and a polyacrylamide derivative. 前記荷電基を有するコモノマーはメタクリル酸、アクリル酸、フマル酸、ビニル酢酸、マレイン酸、2-アクリルアミド-メチルプロパンスルホン酸、およびスチレンスルホン酸からなる群から選択される少なくとも1種のビニルモノマーであることを特徴とする、請求項1乃至請求項3のいずれか一項に記載の階層構造粒子。 The comonomer having a charged group is at least one vinyl selected from the group consisting of methacrylic acid, acrylic acid, fumaric acid, vinyl acetic acid, maleic acid, 2-acrylamide-methylpropanesulfonic acid, and styrenesulfonic acid . The hierarchical structure particle according to any one of claims 1 to 3, which is a monomer. 前記疎水性モノマーはスチレンであることを特徴とする、請求項1乃至請求項4のいずれか一項に記載の階層構造粒子。 The hierarchical structure particle according to any one of claims 1 to 4, wherein the hydrophobic monomer is styrene. 前記コアシェルゲル粒子の表面には、表面に荷電基が局在化したゲル層がさらに設けられ、これをシード粒子として乳化重合した最外周のポリマーの表面には、電解質ゲル層が存在することを特徴とする、請求項1乃至請求項5のいずれか一項に記載の階層構造粒子。 A gel layer in which charged groups are localized is further provided on the surface of the core-shell gel particles, and an electrolyte gel layer is present on the surface of the outermost polymer emulsified and polymerized using this as seed particles. The hierarchical structure particle according to any one of claims 1 to 5, which is characterized. 前記荷電基が局在化したゲル層は、前記荷電基を有さないモノマーとフマル酸との共重合体であることを特徴とする請求項6に記載の階層構造粒子。 The hierarchical structure particle according to claim 6, wherein the gel layer in which the charged group is localized is a copolymer of a monomer having no charged group and fumaric acid. 請求項1乃至請求項7のいずれか一項に記載の階層構造粒子の製造方法であって、
イオン交換水中の荷電基を有さないモノマーに架橋剤を添加し、フリーラジカル重合によりコアゲル粒子を調製する第1の工程と、
前記コアゲル粒子を含むイオン交換水に前記荷電基を有さないモノマーと架橋剤とカルボキシル基またはスルホン酸基の荷電基を有するコモノマーを添加してシード沈殿重合を行い、コアシェルゲル粒子を調製する第2の工程と、
前記第2の工程を1または複数回行った後、前記コアシェルゲル粒子を含むイオン交換水に疎水性モノマーを添加し、シード乳化重合を行う第3の工程を含む、階層構造粒子の製造方法。
The method for producing hierarchically structured particles according to any one of claims 1 to 7.
The first step of adding a cross-linking agent to a monomer having no charged group in ion-exchanged water and preparing core gel particles by free radical polymerization, and
The core-shell gel particles are prepared by adding a monomer having no charged group, a cross-linking agent, and a comonomer having a charged group of a carboxyl group or a sulfonic acid group to ion-exchanged water containing the core gel particles and performing seed precipitation polymerization. Step 2 and
A method for producing hierarchical structure particles, which comprises a third step of adding a hydrophobic monomer to ion-exchanged water containing the core-shell gel particles and performing seed emulsion polymerization after performing the second step one or more times.
JP2020186295A 2020-11-09 2020-11-09 Method for manufacturing layered particles and layered particles Active JP7031900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020186295A JP7031900B2 (en) 2020-11-09 2020-11-09 Method for manufacturing layered particles and layered particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020186295A JP7031900B2 (en) 2020-11-09 2020-11-09 Method for manufacturing layered particles and layered particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016217222A Division JP6796325B2 (en) 2016-11-07 2016-11-07 Hierarchical particles and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2021021083A JP2021021083A (en) 2021-02-18
JP7031900B2 true JP7031900B2 (en) 2022-03-08

Family

ID=74574669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020186295A Active JP7031900B2 (en) 2020-11-09 2020-11-09 Method for manufacturing layered particles and layered particles

Country Status (1)

Country Link
JP (1) JP7031900B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261845A (en) 2000-03-14 2001-09-26 Mitsubishi Chemicals Corp Hydrogel particulate
JP2002194011A (en) 2000-10-12 2002-07-10 Rohm & Haas Co Method for producing aqueous polymer dispersion
JP2006257139A (en) 2005-03-15 2006-09-28 Osaka Prefecture Core-shell type polymer particulate and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0842184B1 (en) * 1996-03-20 2003-01-29 Bio Merieux Nucleic acid isolation
CA2288863C (en) * 1998-04-27 2008-03-18 Kaneka Corporation Resin composition containing graft polymer having multilayer structure
JP6082770B2 (en) * 2015-05-19 2017-02-15 富士重工業株式会社 Governor equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261845A (en) 2000-03-14 2001-09-26 Mitsubishi Chemicals Corp Hydrogel particulate
JP2002194011A (en) 2000-10-12 2002-07-10 Rohm & Haas Co Method for producing aqueous polymer dispersion
JP2006257139A (en) 2005-03-15 2006-09-28 Osaka Prefecture Core-shell type polymer particulate and method for producing the same

Also Published As

Publication number Publication date
JP2021021083A (en) 2021-02-18

Similar Documents

Publication Publication Date Title
Ramli et al. Core–shell polymers: a review
Zhang et al. Phase separation behavior and crew-cut micelle formation of polystyrene-b-poly (acrylic acid) copolymers in solutions
Wurm et al. Polymeric janus particles
Zhang et al. Fabrication of hybrid nanoparticles with thermoresponsive coronas via a self-assembling approach
Tu et al. Recent advances towards applications of molecular bottlebrushes and their conjugates
Upadhyaya et al. Nanostructured mixed matrix membranes from supramolecular assembly of block copolymer nanoparticles and iron oxide nanoparticles
Munoz-Bonilla et al. Block copolymer surfactants in emulsion polymerization: Influence of the miscibility of the hydrophobic block on kinetics, particle morphology, and film formation
Yan et al. Insight into the polymerization-induced self-assembly via a realistic computer simulation strategy
Pham et al. Aqueous polymeric hollow particles as an opacifier by emulsion polymerization using macro-RAFT amphiphiles
Dupont et al. Green hydrophilic capsules from cellulose nanocrystal-stabilized Pickering emulsion polymerization: Morphology control and spongelike behavior
Yan et al. Raspberry-like patchy particles achieved by decorating carboxylated polystyrene cores with snowman-like poly (vinylidene fluoride)/poly (4-vinylpyridiene) Janus particles
Xu et al. Morphological variation of an LB film of giant amphiphiles composed of poly (ethylene oxide) and hydrophobically modified POSS
JP7031900B2 (en) Method for manufacturing layered particles and layered particles
Coban et al. Morphology control of multicompartment micelles in water through hierarchical self-assembly of amphiphilic terpolymers
Cao et al. A versatile technique to fabricate capsules: miniemulsion
Morimoto et al. Preparation of Polypropylene-Composite Particles by Dispersion Polymerization
You et al. Anion Specificity Effects on the Interfacial Aggregation Behavior of Poly (lauryl acrylate)-block-poly (N-isopropylacrylamide)
Zhang et al. Synthesis and characterization of gibbsite nanoplatelet brushes by surface-initiated atom transfer radical polymerization
JP6796325B2 (en) Hierarchical particles and their manufacturing methods
Wang et al. Revisiting the classical emulsion polymerization: An intriguing occurrence of monodispersed bowl-shaped particles
Lotierzo et al. Effect of the addition of salt to Pickering emulsion polymerizations using polymeric nanogels as stabilizers
Zhang et al. Extremely asymmetric phase diagram of homopolymer-monotethered nanoparticles: Competition between chain conformational entropy and particle steric interaction
Wang et al. Asymmetrical Morphology and Performance of Composite Colloidal Particles Controlled via Hydrophilic Comonomer Addition Time in the Presence of Polyvinylidene Fluoride Latex
Aseyev et al. Conformation-dependent design of sequences in copolymers II
Vasilaki et al. Non-cross-linked hollow polymer nanocapsules of controlled size and shell thickness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220216

R150 Certificate of patent or registration of utility model

Ref document number: 7031900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150