JP7031033B2 - ニューラルネットワークプロセッサにおけるバッチ処理 - Google Patents

ニューラルネットワークプロセッサにおけるバッチ処理 Download PDF

Info

Publication number
JP7031033B2
JP7031033B2 JP2021023284A JP2021023284A JP7031033B2 JP 7031033 B2 JP7031033 B2 JP 7031033B2 JP 2021023284 A JP2021023284 A JP 2021023284A JP 2021023284 A JP2021023284 A JP 2021023284A JP 7031033 B2 JP7031033 B2 JP 7031033B2
Authority
JP
Japan
Prior art keywords
layer
input
weight
inputs
weights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021023284A
Other languages
English (en)
Other versions
JP2021093181A (ja
Inventor
・クリフォード ヤング,レジナルド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Google LLC filed Critical Google LLC
Publication of JP2021093181A publication Critical patent/JP2021093181A/ja
Priority to JP2022025744A priority Critical patent/JP7286829B2/ja
Application granted granted Critical
Publication of JP7031033B2 publication Critical patent/JP7031033B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/80Architectures of general purpose stored program computers comprising an array of processing units with common control, e.g. single instruction multiple data processors
    • G06F15/8046Systolic arrays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons

Description

背景
本明細書は、ハードウェアにおいてニューラルネットワーク推測値を計算することに関する。
ニューラルネットワークは、ニューロンの1つ以上の層を利用して、受け取った入力について出力、たとえば分類を生成する機械学習モデルである。いくつかのニューラルネットワークは、出力層に加えて1つ以上の隠れ層を含む。各隠れ層の出力は、ネットワーク内の次の層、すなわちネットワークの次の隠れ層または出力層、への入力として使用される。ネットワークの各層は、パラメータのそれぞれのセットの現在の値に従って、受け取った入力から出力を生成する。
従来より、いくつかのニューラルネットワークシステムは、連続的に推測値を計算する。すなわち、複数の入力について推測値を計算するとき、ニューラルネットワークシステムは、ニューラルネットワークの各層を介して各入力を処理して、次の入力を処理する前に当該入力について出力を生成することができる。
概要
全体として、本明細書では、ニューラルネットワーク推測値を計算する特定目的ハードウェア回路について説明する。
全体として、本明細書に記載されている主題の1つの革新的な局面は、複数の入力の各々についてそれぞれのニューラルネットワーク出力を生成する動作を含む方法で実施することができ、上記生成することは、複数のニューラルネットワーク層の各々を介して各入力を処理して、上記入力について上記それぞれのニューラルネットワーク出力を生成することを備え、上記ニューラルネットワーク層は、ある順序で配置され、各ニューラルネットワーク層は、それぞれのバッチサイズを有し、上記方法は、上記ニューラルネットワーク層の各々について、上記ニューラルネットワーク層で処理される複数の入力を受け取るステップと、上記複数の入力から入力の1つ以上のバッチを形成するステップとを備え、各バッチは、上記ニューラルネットワーク層の上記それぞれのバッチサイズまでのいくつかの入力を有し、上記方法はさらに、上記ニューラルネットワーク層の各々について、処理のために上記入力の1つ以上のバッチのうちのいくつかを選択するステップを備え、上記1つ以上のバッチのうちのいくつかにおける上記入力の個数は、上記順序内の後続の層のそれぞれの関連付けられたバッチサイズよりも多いか、または当該バッチサイズに等しく、上記方法はさらに、上記ニューラルネットワーク層の各々について、上記入力の1つ以上のバッチのうちのいくつかを処理して、上記それぞれのニューラルネットワーク層出力を生成するステップを備える。
実現例は、以下の特徴のうちの1つ以上を含み得る。上記それぞれのバッチサイズは、少なくとも重み再使用値に基づき、上記重み再使用値は、行列計算ユニットで重み入力を使用して出力値の計算時間の間に上記重み入力を再使用する必要がある回数が、メモリからの上記重み入力のロード時間よりも長いことを表わす。上記重み再使用値は、少なくとも、上記重み入力を格納する上記メモリのクロックレートに基づく。各バッチサイズは、
少なくとも、上記それぞれの層の重み入力が再使用される回数で除算される上記重み再使用値に基づく。上記複数のニューラルネットワーク層は、行列処理ユニットで処理され、上記入力の1つ以上のバッチのうちのいくつかを処理するステップは、上記行列計算ユニットを使用して各入力について累積値を計算するステップを備える。上記重み再使用値は、上記行列計算ユニット内の演算ユニットの数に基づく。各入力は、個別の画像リソースに対応する。上記後続の層での処理のために上記1つ以上の層出力からバッチを形成するステップをさらに備える。各出力について対応する推測値を生成するステップをさらに備える。
本明細書に記載されている主題の特定の実施形態は、以下の利点のうちの1つ以上を達成するように実現することができる。特定目的ハードウェア回路は、複数の独立した入力上で所与の層について重み入力を再使用することによって、複数の層を有するニューラルネットワークについて計算を効率的に実行することができる。特に、重み入力は、重み入力を複数回再使用する計算時間が、メモリから新たな重み入力にアクセスするフェッチ時間よりも大きいような回数再使用され、それによって、回路内のスループットを最大化して回路の失速を回避する。当該回路は、たとえ重み入力が各層において異なる回数再使用されたとしても、計算を効率的に実行することができる。
本明細書の主題の1つ以上の実施形態の詳細が添付の図面および以下の説明に記載されている。主題の他の特徴、局面および利点は、説明、図面および特許請求の範囲から明らかになるであろう。
ニューラルネットワークの所与の層について計算を実行するための例示的な方法のフロー図である。 例示的なニューラルネットワーク処理システムを示す。 行列計算ユニットを含む例示的なアーキテクチャを示す。 シストリックアレイ内のセルの例示的なアーキテクチャを示す。 複数の層についてニューラルネットワーク計算を実行するための例示的な方法のフロー図である。 複数の層と各層のバッチサイズとを有する例示的なニューラルネットワークを示す。
さまざまな図における同様の参照番号および名称は、同様の要素を示す。
詳細な説明
複数の層を有するニューラルネットワークは、推測値の計算に使用することができる。たとえば、入力を前提として、ニューラルネットワークは当該入力について推測値を計算することができる。ニューラルネットワークは、ニューラルネットワークの各層を介して入力を処理することによってこの推測値を計算する。特に、ニューラルネットワークの層は、各々が重みのそれぞれのセットを有する状態で、ある順序で配置され得る。各層は、入力を受け取って、当該層の重みのセットに従って入力を処理して、出力を生成する。当該出力は、次のニューラルネットワーク層において入力として使用することができる。
したがって、受け取った入力から推測値を計算するために、ニューラルネットワークは、当該入力を受け取って、当該順序でニューラルネットワーク層の各々を介してそれを処理して、推測値を生成し、1つのニューラルネットワーク層からの出力は、次のニューラルネットワーク層への入力として提供される。ニューラルネットワーク層へのデータ入力、たとえばニューラルネットワークへの入力または当該順序内の当該層の下方にある層の、ニューラルネットワーク層への出力、は、当該層への起動入力と称することができる。
いくつかの実現例では、ニューラルネットワークの層は、有向グラフ構造で配置される。すなわち、任意の特定の層が複数の入力、複数の出力、またはそれら両方を受け取ることができる。また、ニューラルネットワークの層は、層の出力を前の層への入力として送り返すことができるように配置することもできる。
図1は、特定目的ハードウェア回路を使用してニューラルネットワークの所与の層について計算を実行するための例示的なプロセス100のフロー図である。便宜上、方法100は、方法100を実行する1つ以上の回路を有するシステムに関連して説明する。方法100は、受け取った入力から推測値を計算するためにニューラルネットワークの各層について実行され得る。
当該システムは、所与の層についての重み入力の複数のセットを受け取り(ステップ102)、所与の層についての起動入力の複数のセットを受け取る(ステップ104)。重み入力の複数のセットおよび起動入力の複数のセットは、それぞれ特定目的ハードウェア回路のダイナミックメモリおよび統合バッファから受け取られることができる。いくつかの実現例では、重み入力の複数のセットも起動入力の複数のセットも統合バッファから受け取られてもよい。
当該システムは、特定目的ハードウェア回路の行列乗算ユニットを使用して重み入力および起動入力から累積値を生成する(ステップ106)。いくつかの実現例では、累積値は、重み入力の複数のセットと起動入力の複数のセットとのドット積である。すなわち、重みの1つのセットについて、当該システムは、各重み入力と各起動入力とを掛け合わせ、その積を合計して、累積値を形成することができる。次いで、当該システムは、重みの他のセットと起動入力の他の複数のセットとのドット積を計算することができる。
当該システムは、特定目的ハードウェア回路のベクトル計算ユニットを使用して累積値から層出力を生成することができる(ステップ108)。いくつかの実現例では、ベクトル計算ユニットは、起動関数を累積値に適用する。層の出力は、ニューラルネットワーク内の後続の層への入力として使用できるように統合バッファに格納されてもよく、または推測値を求めることに使用されてもよい。当該システムは、受け取った入力をニューラルネットワークの各層を介して処理して受け取った入力について推測値を生成すると、ニューラルネットワークを処理することを終了する。
図2は、ニューラルネットワーク計算を実行するための例示的な特定目的集積回路200を示す。システム200は、ホストインターフェイス202を含む。ホストインターフェイス202は、ニューラルネットワーク計算のための構成情報を含む命令を受け取ることができる。構成情報は、何個の層を処理すべきであるか、層の各層についての重み入力の対応する複数のセット、起動入力の最初のセット、すなわち推測値を計算するためのニューラルネットワークへの入力、各層の対応する入力および出力サイズ、ニューラルネットワーク計算のためのストライド値、および処理すべき層のタイプ、たとえば畳み込み層または完全に接続された層、のうちの少なくとも1つ以上を含み得る。
ホストインターフェイス202は、シーケンサ206に命令を送ることができ、シーケンサ206は、当該命令を、ニューラルネットワーク計算を実行するように回路を制御する低レベル制御信号に変換する。いくつかの実現例では、当該制御信号は、回路内のデータフロー、たとえば重み入力の複数のセットおよび起動入力の複数のセットがどのように回路内を流れるか、を調整する。シーケンサ206は、統合バッファ208、行列計算ユニット212およびベクトル計算ユニット214に当該制御信号を送ることができる。いくつかの実現例では、シーケンサ206は、ダイレクトメモリアクセスエンジン204お
よびダイナミックメモリ210にも制御信号を送る。いくつかの実現例では、シーケンサ206は、クロック信号を生成するプロセッサである。シーケンサ206は、当該クロック信号のタイミングを使用して、回路200の各コンポーネントに当該制御信号を適切なときに送ることができる。いくつかの他の実現例では、ホストインターフェイス202は、外部プロセッサからクロック信号を渡す。
ホストインターフェイス202は、ダイレクトメモリアクセスエンジン204に重み入力の複数のセットおよび起動入力の最初のセットを送ることができる。ダイレクトメモリアクセスエンジン204は、起動入力の複数のセットを統合バッファ208に格納することができる。いくつかの実現例では、ダイレクトメモリアクセスは、メモリユニットであり得るダイナミックメモリ210に重みの複数のセットを格納する。いくつかの実現例では、ダイナミックメモリは、回路から離れて位置している。
統合バッファ208は、メモリバッファである。統合バッファ208を使用して、ダイレクトメモリアクセスエンジン204からの起動入力のセットおよびベクトル計算ユニット214の出力を格納することができる。ダイレクトメモリアクセスエンジン204は、ベクトル計算ユニット214の出力を統合バッファ208から読み出すこともできる。
ダイナミックメモリ210および統合バッファ208は、行列計算ユニット212に重み入力の複数のセットおよび起動入力の複数のセットをそれぞれ送ることができる。いくつかの実現例では、行列計算ユニット212は、二次元シストリックアレイである。行列計算ユニット212は、一次元シストリックアレイであってもよく、または数学的演算、たとえば乗算および加算を実行することができる他の回路であってもよい。いくつかの実現例では、行列計算ユニット212は、汎用行列プロセッサである。
行列計算ユニット212は、重み入力および起動入力を処理して、ベクトル計算ユニット214に出力のベクトルを提供することができる。いくつかの実現例では、行列計算ユニットは、統合バッファ208に出力のベクトルを送り、統合バッファ208は、ベクトル計算ユニット214に出力のベクトルを送る。ベクトル計算ユニットは、出力のベクトルを処理して、処理された出力のベクトルを統合バッファ208に格納することができる。たとえば、ベクトル計算ユニット214は、非線形関数を行列計算ユニットの出力、たとえば累積値のベクトルに適用して、起動値を生成することができる。いくつかの実現例では、ベクトル計算ユニット214は、正規化値、プール値、またはそれら両方を生成する。処理された出力のベクトルは、たとえばニューラルネットワーク内の後続の層で使用できるように、行列計算ユニット212への起動入力として使用することができる。行列計算ユニット212については、図3および図4を参照して以下でさらに詳細に説明する。
図3は、行列計算ユニットを含む例示的なアーキテクチャ300を示す。行列計算ユニットは、二次元シストリックアレイ306である。アレイ306は、複数のセル304を含む。いくつかの実現例では、シストリックアレイ306の第1の次元320はセルの列に対応し、シストリックアレイ306の第2の次元322はセルの行に対応する。シストリックアレイは、列よりも多くの行を有していてもよく、行よりも多くの列を有していてもよく、または列と行とが同数であってもよい。
示されている例では、値ローダ302がアレイ306の行に起動入力を送り、重みフェッチャインターフェイス308がアレイ306の列に重み入力を送る。しかし、いくつかの他の実現例では、起動入力がアレイ306の列に送信され、重み入力がアレイ306の行に送信される。
値ローダ302は、統合バッファ、たとえば図2の統合バッファ208から起動入力を受け取ることができる。各値ローダは、対応する起動入力をアレイ306の個別の最も左側のセルに送ることができる。最も左側のセルは、アレイ306の最も左側の列に沿ったセルであり得る。たとえば、値ローダ312は、セル314に起動入力を送ることができる。値ローダは、隣接する値ローダにも起動入力を送ることができ、起動入力は、アレイ306の別の最も左側のセルで使用することができる。これにより、アレイ306の別の特定のセルで使用できるように起動入力をシフトすることができる。
重みフェッチャインターフェイス308は、メモリユニット、たとえば図2のダイナミックメモリ210から重み入力を受け取ることができる。重みフェッチャインターフェイス308は、対応する重み入力をアレイ306の個別の最上部のセルに送ることができる。最上部のセルは、アレイ306の最上部の行に沿ったセルであり得る。たとえば、重みフェッチャインターフェイス308は、セル314および316に重み入力を送ることができる。
いくつかの実現例では、ホストインターフェイス、たとえば図2のホストインターフェイス202は、アレイ306全体にわたって1つの次元に沿って、たとえば右側まで起動入力をシフトし、アレイ306全体にわたって別の次元に沿って、たとえば下部まで重み入力をシフトする。たとえば、1つのクロックサイクルで、セル314における起動入力は、セル314の右側のセル316における起動レジスタにシフトすることができる。同様に、セル316における重み入力は、セル314の下方のセル318における重みレジスタにシフトすることができる。
各クロックサイクルで、各セルは、所与の重み入力および所与の起動入力を処理して、累積出力を生成することができる。累積出力は、所与の重み入力と同一の次元に沿って隣接するセルにも渡されることができる。個々のセルについては、図4を参照して以下でさらに説明する。
累積出力は、重み入力と同一の列に沿って、たとえばアレイ306内の列の下部の方に渡されることができる。いくつかの実現例では、アレイ306は、列よりも多くの重み入力を有する層または行よりも多くの起動入力を有する層で算出を実行するときに各列から各累積出力を格納して累積するアキュムレータユニット310を各列の下部に含み得る。いくつかの実現例では、各アキュムレータユニットは、複数の並列累積値を格納する。これについては、図6を参照して以下でさらに説明する。アキュムレータユニット310は、各累積出力を累積して、最終的な累積値を生成することができる。最終的な累積値は、ベクトル計算ユニットに送信されることができる。いくつかの他の実現例では、アキュムレータユニット310は、列よりも少ない重み入力を有する層または行よりも少ない起動入力を有する層を処理するときにいかなる累積も実行することなく累積値をベクトル計算ユニットに渡す。
図4は、シストリックアレイ、たとえば図3のシストリックアレイ306内のセルの例示的なアーキテクチャ400を示す。
セルは、起動入力を格納する起動レジスタ406を含み得る。起動レジスタは、シストリックアレイ内のセルの位置に応じて、左側の隣接するセル、すなわち所与のセルの左側に位置する隣接するセルから、または統合バッファから起動入力を受け取ることができる。セルは、重み入力を格納する重みレジスタ402を含み得る。重み入力は、シストリックアレイ内のセルの位置に応じて、上側の隣接するセルから、または重みフェッチャインターフェイスから送信されることができる。セルは、合計レジスタ404も含み得る。合計レジスタ404は、上側の隣接するセルからの累積値を格納することができる。乗算回
路408は、重みレジスタ402からの重み入力と起動レジスタ406からの起動入力とを掛け合わせることに使用することができる。乗算回路408は、その積を総和回路410に出力することができる。
総和回路は、その積と合計レジスタ404からの累積値とを総計して、新たな累積値を生成することができる。次いで、総和回路410は、下側の隣接するセルに位置する別の合計レジスタに当該新たな累積値を送ることができる。当該新たな累積値は、下側の隣接するセルでの総計のためのオペランドとして使用することができる。
また、セルは、処理のために重み入力および起動入力を隣接するセルにシフトさせることもできる。たとえば、重みレジスタ402は、下側の隣接するセルにおける別の重みレジスタに重み入力を送ることができる。起動レジスタ406は、右側の隣接するセルにおける別の起動レジスタに起動入力を送ることができる。したがって、重み入力も起動入力も、後続のクロックサイクルでアレイ内の他のセルによって再使用することができる。
いくつかの実現例では、セルは制御レジスタも含む。制御レジスタは、セルが隣接するセルに重み入力をシフトすべきであるか起動入力をシフトすべきであるかを判断する制御信号を格納することができる。いくつかの実現例では、重み入力または起動入力のシフトは、1つ以上のクロックサイクルを要する。制御信号は、起動入力を乗算回路408に送信するか重み入力を乗算回路408に送信するかを判断することもでき、または、乗算回路408が起動入力および重み入力上で動作するか否かを判断することもできる。制御信号も、たとえばワイヤを使用して1つ以上の隣接するセルに渡されることができる。
いくつかの実現例では、重みは、重みパスレジスタ412に事前にシフトされる。重みパスレジスタ412は、たとえば上側の隣接するセルから重み入力を受け取って、制御信号に基づいて重み入力を重みレジスタ402に送信することができる。重みレジスタ402は、たとえば起動レジスタ406を介して複数のクロックサイクルで起動入力がセルに送信されるときに重み入力がセル内にとどまって隣接するセルに送信されないように、重み入力を静的に格納することができる。したがって、重み入力は、たとえば乗算回路408を使用して複数の起動入力に適用可能であり、それぞれの累積値は、隣接するセルに送信されることができる。
いくつかの実現例では、1つのニューラルネットワーク入力がニューラルネットワークの各層を介して処理されて、当該ニューラルネットワーク入力についてニューラルネットワーク出力が生成される。しかし、いくつかの実現例では、回路は、ニューラルネットワークの層を介して複数のニューラルネットワーク入力を速やかに処理して、当該入力についてニューラルネットワーク出力を生成し、それによって回路の利用率を上げる。
ニューラルネットワークの特定の層への入力は、起動入力のセットと称することができる。したがって、ニューラルネットワーク入力は、第1の層への起動入力のセットであり得る。第1の層は、第2の層によって処理される出力を生成することができ、当該出力は、第2の層への起動入力のセットと称することができる。
いくつかの実現例では、回路は、ニューラルネットワークの第1の層から最後の層に起動入力を送ることによって起動入力の1つのセットを処理して推測値を生成する代わりに、第1の層において起動入力の複数のセットを処理し、たとえば図3に上記されるように起動入力の各セットについて累積値を生成し、次いで第2の層において起動入力の複数のセットを処理する、などを行うことができる。所与の層における起動入力の複数のセットは、入力の1つ以上のバッチを構成することができる。いくつかの実現例では、所与の層のバッチは、回路が後続の層のバッチを処理する前に処理される。回路は、各入力につい
て累積値を生成することによってバッチを処理することができ、当該累積値は、バッチ内の起動入力の独立したセットであり得る。
いくつかの実現例では、所与のニューラルネットワーク層について計算を実行しながらスループットを最大化するために、回路は、当該所与のニューラルネットワーク層についての重み入力がシストリックアレイにロードされている間に複数の独立した起動入力を処理するようにされることができる。すなわち、重み入力は、複数の起動入力で再使用することができる。特に、回路は、たとえば図2の行列計算ユニット212を使用して、重み入力およびさまざまな起動入力を使用して累積値を計算することによって、重み入力を再使用する。例示として、起動入力は、複数の異なる画像リソースまたは複数の音声サンプルからのものであってもよい。これについては、図6を参照して以下でさらに説明する。
回路は、処理速度と、回路がメモリにアクセスできる速度とを有する。一般に、処理速度はメモリアクセス速度よりも速い。重みを再使用し、それによって回路の処理速度を利用することによって、回路は、その後の計算で使用される重み入力にメモリからアクセスしながら並行してシストリックアレイのセルを利用することができる。
回路は、ニューラルネットワークの各層について、回路の重み再使用値から重みを何回再使用するかを判断することができる。これは、ハードウェアのためにコンパイルを行っている回路上のソフトウェアによって判断されてもよく、またはハードウェアによって判断されてもよい。いくつかの実現例では、重み再使用値とは、異なる起動入力で何度も重み入力を再使用する計算時間が、メモリから新たな重み入力にアクセスするフェッチ時間以上になる前に回路が重み入力を再使用することができる回数である。したがって、重み再使用値は、利用率を最大化してメモリアクセス待機時間を最小化するために回路が重み入力を何回再使用すべきであるかを示すことができる。
重み再使用値は、重み入力を格納しているメモリ、たとえば図2のダイナミックメモリ210のクロックレート、回路内、たとえば図2の行列計算ユニット212内の演算ユニットの数、ならびに、メモリ、たとえば図2の統合バッファ208およびダイナミックメモリ210におけるチャネルの数のうちの1つ以上に基づき得る。重み再使用値を使用して、ニューラルネットワークの各層のそれぞれのバッチサイズを求めることができる。バッチサイズは、有効バッチサイズ、すなわち最も効率的な重み再使用量を生成する態様で層が動作することを可能にするバッチサイズ、と称することができる。バッチサイズは、回路内のシストリックアレイが最大化されるように層で処理される入力の数である。いくつかの実現例では、所与の層のバッチサイズは、当該層において重み入力が再使用される回数で除算される重み再使用値の上限である。重み入力が再使用される回数は、累積算出を実行するときに回路のシストリックアレイのセルに格納される起動入力の数に直接対応し得る。その理由は、新たな起動入力の複数のセットがロードされている間は、重み入力がセル内にとどまっている、すなわち「一時停止される」可能性があるからである。重み入力が所定の位置でフリーズしている状態で新たな起動入力の複数のセットがロードされると、回路は、再び重み入力を再使用して、当該新たな起動入力の複数のセットを用いて畳み込みを算出することができる。一例については、図6を参照して以下でさらに説明する。
図5は、複数の層についてニューラルネットワーク計算を実行するための例示的な方法のフロー図500である。当該方法は、特定目的ハードウェア回路によって、たとえば図2のホスト202を使用して、または1つ以上のプロセッサ、ファームウェア、オフチッププロセスによって、または回路を制御するように構成された何らかの他のソフトウェアプロセスによって実行することができる。
回路は、各ニューラルネットワーク層での処理中に、層による処理のために層入力のセットを受け取ることができる(ステップ502)。層入力のセットは、メモリ、たとえば図2の統合バッファ208からのものであってもよく、または前の層からのものであってもよく、すなわち、入力のセットは、ネットワーク内の前の層から生成された出力であり、当該出力を入力のセットとして使用することは、図2を参照して上記したホスト202によって管理することができる。各入力は、起動入力のセットであり得て、独立したニューラルネットワーク入力から生成することができる。
当該システムは、所与のニューラルネットワーク層について、入力のセットから入力の1つ以上のバッチを形成することができる(ステップ504)。上記のように、各ニューラルネットワーク層は、関連付けられたバッチサイズを有する。当該層における各々の形成されたバッチは、層のバッチサイズを超えないいくつかの入力を含む。各ニューラルネットワーク層のバッチサイズは、ニューラルネットワークの構成として求めることができる。いくつかの実現例では、各ニューラルネットワーク層のバッチサイズは、回路上での実行のためにニューラルネットワークモデルをコンパイルするときに計算される。層で処理が開始する前に所与の層のバッチサイズを計算できるので、バッチ内のいくつかの入力は、所与の層のバッチサイズに基づいて形成することができる。
一例として、ニューラルネットワークが24個の画像を処理する必要があり、ニューラルネットワークの第1の層が8というバッチサイズを有している場合、回路は、各々が8個の画像からなる3個のバッチを形成する、すなわち24個の画像を、各々が8個の入力からなる3個のバッチに分割することができる。各バッチについて、回路は、当該層の重み入力の特定のセットを再使用することによってバッチ内の8個の個別の画像を処理することができる。次いで、回路は、(1)後続の層において1つ以上のバッチを処理するか、または(2)重み入力の特定のセットを使用して当該層において8個の個別の画像リソースの別のバッチを処理するかのいずれかを行うことができる。回路は、ニューラルネットワーク内の他の層のバッチサイズに基づいて(1)に進むか(2)に進むかを判断し、これについては、ステップ506においておよび図6を参照して以下でさらに説明する。
回路は、所与のニューラルネットワーク層について、処理のために入力の1つ以上のバッチのうちのいくつかを選択することができる(ステップ506)。いくつかの実現例では、当該数は、1つ以上のバッチのうちのいくつかにおける入力の個数が、後続の層の対応するバッチサイズ以上であるように選択される。たとえば、現在の層が、各々が5個の入力を有する3個のバッチを処理しなければならず、後続の層が10というバッチサイズを有している場合、回路は、処理のために3個のうちの2個のバッチを選択することができる。2個の選択されたバッチは、後続の層の対応するバッチサイズ、すなわち10に等しい合計10個の入力、すなわち2×5を有する。いくつかの実現例では、残りの第3のバッチは、回路内のシストリックアレイをその後通過する際に処理されるであろう。さらに別の例について、図6を参照して以下でさらに説明する。
回路は、たとえばシストリックアレイを使用して、選択されたいくつかの入力のバッチを処理して、選択されたバッチにおける各入力についてそれぞれの層出力を生成することができる(ステップ508)。回路は、各入力について累積値を計算するときに重み入力を再使用することによって、各々の選択された入力のバッチを処理することができる。上記のように、重み入力は、複数の独立した入力に適用される。なぜなら、新たな起動入力の複数のセットがロードされている間は、重み入力はセル内にとどまっている、すなわち「一時停止される」可能性があるからである。
例示として、バッチは、2個の入力、すなわち起動入力のセットA1および起動入力のセットA2、を有し得る。回路は、重み入力のセットW2をメモリからフェッチする前に
セットA1およびA2の両方に重み入力のセットW1を適用することによってセットW1を再使用することができ、セットW2は、後続の層の重みのセットであり、または層が回路のシストリックアレイによって処理される重みをさらに多く有している場合には、当該層の重みの次のサブセットである。別の例では、処理すべき各々が5個の入力からなる8個のバッチ、すなわち合計40個の入力があり、回路が処理のために4個のバッチを選択した場合、回路は、当該4個のバッチ内の入力、すなわち合計20個の入力を処理して、それぞれの層出力、すなわち合計20個の層出力を生成することができる。これについては、図6を参照して以下でさらに説明する。
選択されたいくつかのバッチを処理した後、回路は、当該層において第2のいくつかのバッチを処理するか、または後続の層において入力の1つ以上のバッチを処理することに進むかのいずれかを行うことができる。これについては、図6を参照して以下でさらに説明する。
この方法は、ニューラルネットワークを処理する回路で実現されるように説明してきたが、この方法は、プロセッサ、たとえば中央処理装置(Central Processing Unit:CP
U)またはグラフィクス処理ユニット(Graphics Processing Unit:GPU)で実現されてもよい。たとえば、プロセッサは、メモリ、たとえばダイナミックランダムアクセスメモリ(DRAM)から重みを検索取得しながら何回か重み値を再使用することができる。
図6は、複数の層と各層のバッチサイズとを有する例示的なニューラルネットワーク600を示す。上記のように、所与の層のバッチサイズは、当該層において重み入力が再使用される回数で除算される重み再使用値の上限である。天井関数は、ある数字を処理し、当該数字以上の最小の整数を返すことができる。重み入力が再使用される回数は、回路のシストリックアレイのセルに格納される起動入力の数に直接対応し得る。たとえば、回路の重み再使用値は1500であってもよい。層1 602は、170×170の入力を処理する。170×170の起動入力の各々は、シストリックアレイのセルに格納することができる。したがって、層1 602のバッチサイズは、CEIL(1500/(170*170))=1である。層2 604のバッチサイズは、CEIL(1500/(28*28))=2である。同一の算出を使用して、層3~5 606~610は8というバッチサイズを有し、層6 612は32というバッチサイズを有する。いくつかの実現例では、バッチサイズは、2の最も近いべき乗に丸められる。
例示として、層1は1個の入力というバッチサイズを有し、層2は2個の入力というバッチサイズを有する。回路は、層1での処理のために、たとえば10個の入力、たとえば合計10個の個別の画像を受け取ることができる。
回路は、層1における10個のうちの2個のバッチ、すなわち合計2個の入力を処理すべきであると判断することができる。いくつかの実現例では、回路は、層2におけるバッチサイズを層1のバッチサイズで除算すること、すなわち2/1=2によってこの数を求める。単一入力の2個のバッチを処理することによって、回路は、層2のバッチサイズ、すなわち2に等しい2個の入力を処理する。回路は、たとえば各画像から1つである累積値の2個のベクトルを計算することによって、2個のバッチを処理して2個の入力から2個の層出力を生成することができる。各々の層出力は、後続の層に入力するための入力であり得る。回路は、層2での処理のために、2個の入力からなるバッチ、たとえば累積値の2個のベクトルを形成することができる。バッチは、統合バッファに格納することができる。
回路は、層2における4個のバッチを処理すべきであると判断することができる。サイズ2の4個のバッチを処理することによって、回路は、層3のバッチサイズ、すなわち8
に等しい8個の入力を処理する。回路は、4個のバッチを処理して、8個の入力から8個の層出力を生成することができる。次いで、回路は、層3での処理のために、8個の入力からなるバッチを形成することができる。
回路は、ニューラルネットワークの全ての層において入力が処理されるまで続けることができる。たとえば、層3~5が8というバッチサイズを有しているので、回路は、層3~5の各々における8個の入力からなる1つのバッチを処理すべきであると判断することができる。同様に、回路は、層5における各々が8個の入力を有する4個のバッチを処理すべきであると判断し、それによって32個の入力からなるバッチを形成することができ、当該32個の入力からなるバッチは、層6において処理することができる。各入力について、層6は、推測値に使用できる1つ以上の層出力を生成することができる。
いくつかの実現例では、回路は、たとえば演算回路を使用して、ニューラルネットワーク内の全ての層にわたるバッチサイズの最小公倍数を算出する。次いで、回路は、後続の層を処理する前に、各層において最小公倍数以上の最小数の入力を処理することができる。言い換えれば、回路は、(1)後続の層においてバッチを処理するか、(2)最小公倍数に基づいて現在の層において別のバッチを処理するかを判断することができる。たとえば、層1~6 602~612のバッチサイズの最小公倍数は32である。層1において1つのバッチを処理した後、回路は、層1が32という最小公倍数未満の1個の出力のみを生成したと判断することができる。したがって、回路は、層1において別のバッチを処理すると判断することができ、この時点で合計2個の出力が生成されている。回路は、層1において32個、すなわち最小公倍数の出力が生成されるまで出力を生成し続けることができる。次いで、回路は、後続の層においてバッチを処理することに進むことができる。いくつかの実現例では、各々の層出力は、統合バッファ、たとえば図2の統合バッファ208に格納される。
例示として、回路は、層1において合計32個の入力になる32個のバッチを処理のために選択することができる。次いで、回路は、層2において合計32個の入力になる16個のバッチを選択し、次いで層3において合計32個の入力になる4個のバッチを処理のために選択し、次いで層4において合計32個の入力になる4個のバッチを処理のために選択し、次いで層5において合計32個の入力になる4個のバッチを処理のために選択し、次いで最後に層6において合計32個の入力になる1個のバッチを処理のために選択することができる。
いくつかの実現例では、特定の層において、回路は、システムパラメータ、たとえばユーザによって提供されるパラメータに基づいて、最小公倍数よりも大きないくつかの入力を処理する。いくつかの実現例では、回路は、後続の層のバッチサイズによって割り切れるいくつかの入力を処理する。いくつかの他の実現例では、回路は、多数の入力を処理するように命令を受け取って、回路は、後続の数で出力を生成することに進む前に、特定の層で生成される出力の数を最大化するように入力のバッチを処理する。回路は、生成される出力の数が後続の層のバッチサイズによって割り切れるように、特定の層で生成される出力の数を制限することができる。
本明細書に記載されている主題および機能動作の実施形態は、デジタル電子回路で実現されてもよく、有形に実施されたコンピュータソフトウェアもしくはファームウェアで実現されてもよく、本明細書に開示されている構造およびそれらの構造的等価物を含むコンピュータハードウェアで実現されてもよく、またはそれらのうちの1つ以上の組み合わせで実現されてもよい。本明細書に記載されている主題の実施形態は、1つ以上のコンピュータプログラムとして実現されてもよく、すなわちデータ処理装置による実行またはデータ処理装置の動作の制御のために有形の非一時的なプログラムキャリアに符号化されたコ
ンピュータプログラム命令の1つ以上のモジュールとして実現されてもよい。代替的にまたは加えて、プログラム命令は、人工的に生成された伝搬信号、たとえば機械によって生成された電気信号、光信号または電磁信号、に符号化されてもよく、当該信号は、情報を符号化して好適な受信機装置に送信してデータ処理装置によって実行するように生成される。コンピュータ記憶媒体は、機械読取可能な記憶装置であってもよく、機械読取可能な記憶基板であってもよく、ランダムもしくはシリアルアクセスメモリデバイスであってもよく、またはそれらのうちの1つ以上の組み合わせであってもよい。
「データ処理装置」という用語は、一例としてプログラム可能なプロセッサ、コンピュータ、または複数のプロセッサもしくはコンピュータを含む、データを処理するための全ての種類の装置、デバイスおよび機械を包含する。当該装置は、特定目的論理回路、たとえばFPGA(フィールドプログラマブルゲートアレイ)またはASIC(特定用途向け集積回路)を含み得る。当該装置は、ハードウェアに加えて、対象のコンピュータプログラムのための実行環境を作成するコード、たとえばプロセッサファームウェア、プロトコルスタック、データベース管理システム、オペレーティングシステム、またはそれらのうちの1つ以上の組み合わせを構成するコード、も含み得る。
(プログラム、ソフトウェア、ソフトウェアアプリケーション、モジュール、ソフトウェアモジュール、スクリプト、またはコードと称してもよく、またはそのようなものとして記載されてもよい)コンピュータプログラムは、コンパイラ型もしくはインタープリタ型言語、または宣言型もしくは手続き型言語を含むいずれかの形態のプログラミング言語で書かれてもよく、スタンドアロンのプログラム、または計算環境での使用に適したモジュール、コンポーネント、サブルーチンもしくは他のユニットを含むいずれかの形態でデプロイすることができる。コンピュータプログラムは、ファイルシステムにおけるファイルに対応し得るが、そうでなくてもよい。プログラムは、他のプログラムもしくはデータ、たとえばマークアップ言語ドキュメントに格納された1つ以上のスクリプト、を保持するファイルの一部に格納されてもよく、対象のプログラムに専用の単一のファイルに格納されてもよく、または複数の協調的ファイル、たとえば1つ以上のモジュール、サブプログラムもしくはコードの一部を格納するファイル、に格納されてもよい。コンピュータプログラムは、1つのコンピュータで実行されるようにデプロイされてもよく、または、一箇所に位置するかもしくは複数の箇所に分散されて通信ネットワークによって相互接続された複数のコンピュータで実行されるようにデプロイされてもよい。
本明細書に記載されているプロセスおよび論理フローは、1つ以上のプログラム可能なコンピュータによって実行されてもよく、当該1つ以上のプログラム可能なコンピュータは、入力データ上で動作して出力を生成することによって機能を実行するように1つ以上のコンピュータプログラムを実行する。また、当該プロセスおよび論理フローは、特定目的論理回路、たとえばFPGA(フィールドプログラマブルゲートアレイ)またはASIC(特定用途向け集積回路)によって実行されてもよく、装置は、特定目的論理回路、たとえばFPGAまたはASICとして実現されてもよい。
コンピュータプログラムの実行に適したコンピュータは、一例として、汎用マイクロプロセッサもしくは特定目的マイクロプロセッサ、またはそれら両方、またはその他の種類の中央処理装置に基づいていてもよい。一般に、中央処理装置は、リードオンリメモリまたはランダムアクセスメモリまたはそれら両方から命令およびデータを受け取る。コンピュータの必須の要素は、命令を実施または実行するための中央処理装置と、命令およびデータを格納するための1つ以上のメモリデバイスとである。一般に、コンピュータは、データを格納するための1つ以上の大容量記憶装置、たとえば磁気ディスク、光磁気ディスクもしくは光ディスクも含み、または、当該1つ以上の大容量記憶装置からデータを受信したり、当該1つ以上の大容量記憶装置にデータを送信したり、もしくは当該1つ以上の
大容量記憶装置との間でデータを送受信したりするように動作可能に結合される。しかし、コンピュータはこのような装置を有していなくてもよい。さらに、コンピュータは、別のデバイス、たとえばいくつか例を挙げると携帯電話、パーソナルデジタルアシスタント(personal digital assistant:PDA)、モバイルオーディオプレーヤもしくはビデオプレーヤ、ゲーム機、グローバルポジショニングシステム(Global Positioning System
:GPS)受信機で実施されてもよく、または携帯型記憶装置、たとえばユニバーサルシリアルバス(universal serial bus:USB)フラッシュドライブで実施されてもよい。
コンピュータプログラム命令およびデータの格納に適したコンピュータ読取可能な媒体は、全ての形態の不揮発性メモリ、媒体およびメモリデバイスを含み、一例として、半導体メモリデバイス、たとえばEPROM、EEPROMおよびフラッシュメモリデバイス;磁気ディスク、たとえば内部ハードディスクまたはリムーバブルディスク;光磁気ディスク;ならびにCD ROMおよびDVD-ROMディスクを含む。プロセッサおよびメモリは、特定目的論理回路によって補完されてもよく、または特定目的論理回路に組み込まれてもよい。
ユーザとの対話を要求するために、本明細書に記載されている主題の実施形態は、ユーザに情報を表示するためのディスプレイデバイス、たとえばCRT(陰極線管)またはLCD(液晶ディスプレイ)モニタと、ユーザが入力をコンピュータに送ることができるキーボードおよびポインティングデバイス、たとえばマウスまたはトラックボールとを有するコンピュータで実現されてもよい。ユーザとの対話を要求するために他の種類のデバイスも使用してもよい。たとえば、ユーザに提供されるフィードバックは、いずれかの形態の感覚フィードバック、たとえば視覚フィードバック、聴覚フィードバックまたは触覚フィードバックであってもよく、ユーザからの入力は、音響入力、音声入力または触覚入力を含むいずれかの形態で受け取られてもよい。また、コンピュータは、ユーザが使用するデバイスにドキュメントを送ったり当該デバイスからドキュメントを受け取ったりすることによってユーザと対話してもよく、たとえばウェブブラウザから受け取った要求に応答してユーザのクライアントデバイスのウェブブラウザにウェブページを送ることによってユーザと対話してもよい。
本明細書に記載されている主題の実施形態は、バックエンドコンポーネント、たとえばデータサーバを含む計算システムで実現されてもよく、またはミドルウェアコンポーネント、たとえばアプリケーションサーバを含む計算システムで実現されてもよく、またはフロントエンドコンポーネント、たとえばユーザが本明細書に記載されている主題の実現例と対話できるグラフィカルユーザインターフェイスもしくはウェブブラウザを有するクライアントコンピュータを含む計算システムで実現されてもよく、または1つ以上のこのようなバックエンドコンポーネント、ミドルウェアコンポーネントもしくはフロントエンドコンポーネントのいずれかの組み合わせを含む計算システムで実現されてもよい。当該システムのコンポーネント同士は、デジタルデータ通信のいずれかの形態または媒体、たとえば通信ネットワークによって相互接続されてもよい。通信ネットワークの例としては、ローカルエリアネットワーク(local area network:LAN)および広域ネットワーク(wide area network:WAN)、たとえばインターネットが挙げられる。
計算システムは、クライアントとサーバとを含んでいてもよい。クライアントおよびサーバは、一般に互いに離れており、通常は通信ネットワークを介して対話する。クライアントとサーバとの関係は、それぞれのコンピュータ上で動作して互いに対してクライアント-サーバ関係を有するコンピュータプログラムによって生じる。
本明細書は、多くの具体的な実現例の詳細を含んでいるが、これらは、発明の範囲またはクレームされ得るものの範囲を限定するものとして解釈されるべきではなく、特定の発
明の特定の実施形態に特有であろう特徴を説明するものとして解釈されるべきである。別々の実施形態の文脈で本明細書に記載されている特定の特徴は、組み合わせて単一の実施形態で実現されてもよい。逆に、単一の実施形態の文脈で記載されているさまざまな特徴は、複数の実施形態で別々に、またはいずれかの好適な部分的組み合わせで実現されてもよい。さらに、特徴は特定の組み合わせで動作するものとして上記され、当初はそのようなものとしてクレームされさえし得るが、クレームされている組み合わせからの1つ以上の特徴は、場合によっては当該組み合わせから削除されてもよく、クレームされている組み合わせは、部分的組み合わせまたは部分的組み合わせの変形例に向けられてもよい。
同様に、動作は特定の順序で図面に示されているが、これは、望ましい結果を達成するために、示されている特定の順序またはシーケンシャルな順序でこのような動作を実行しなければならないものとして理解されるべきではなく、または全ての示されている動作を実行しなければならないものとして理解されるべきではない。特定の状況では、マルチタスクおよび並列処理が有利であるかもしれない。さらに、上記の実施形態におけるさまざまなシステムモジュールおよびコンポーネントの分離は、全ての実施形態でこのような分離が必要であるものとして理解されるべきではなく、記載されているプログラムコンポーネントおよびシステムは一般に単一のソフトウェア製品に実装されるかまたは複数のソフトウェア製品にパッケージングされ得るということが理解されるべきである。
主題の特定の実施形態について説明してきた。他の実施形態も以下の特許請求の範囲の範囲内である。たとえば、特許請求の範囲に記載されている動作は、異なる順序で実行されてもよく、依然として望ましい結果を達成することができる。一例として、添付の図面に示されているプロセスは、望ましい結果を達成するために、示されている特定の順序またはシーケンシャルな順序を必ずしも必要としない。特定の実現例では、マルチタスクおよび並列処理が有利であるかもしれない。

Claims (17)

  1. ハードウェア回路を使用してニューラルネットワーク計算を実行するための方法であって、
    ニューラルネットワークの層で処理される入力の第1のバッチを取得するステップを備え、前記層は、関連付けられたバッチサイズを有し、前記方法はさらに、
    前記層の重みを取得するステップを備え、前記重みは、前記層の前記重みの再使用の量を規定する関連付けられた再使用値を有し、前記方法はさらに、
    前記バッチサイズおよび前記重みの前記再使用値に基づいて、前記重みを使用して、前記層で処理される前記第1のバッチにおいて特定量の入力を選択するステップを備え、前記特定量の入力は、i)前記層の前記バッチサイズを超えないように選択され、または、ii)前記再使用値に基づいて前記重みを再使用することが許可される量を超えないように選択され、前記方法はさらに、
    前記重みを使用して前記特定量の入力を処理して層出力を生成するステップを備える、方法。
  2. 前記ハードウェア回路のメモリにアクセスする閾値フェッチ時間に基づいて前記特定量の入力を選択して、前記層の新たな重みを取得するステップをさらに備える、請求項1に記載の方法。
  3. 前記第1のバッチにおける前記特定量の入力を選択するステップは、
    回数を決定するステップを備え、前記回数は、個別の起動入力で前記回数前記重みを再使用する計算時間が、前記層の新たな重み入力にアクセスするフェッチ時間に少なくとも等しくなる前に、前記ハードウェア回路が前記層の重みを再使用することが許可される回数である、請求項1または2に記載の方法。
  4. 前記特定量の入力を選択するステップは、
    前記重みを再使用する前記計算時間が、前記層の新たな重み入力にアクセスする前記フェッチ時間を超えないように、前記特定量の入力を選択するステップを備える、請求項3に記載の方法。
  5. 前記ハードウェア回路は、計算セルのアレイを備え、前記特定量の入力を処理して前記層出力を生成するステップは、
    前記アレイにおける2つまたはそれ以上のそれぞれの計算セルによって、第1のプロセッサクロックサイクルおよび第2の後続のプロセッサクロックサイクルにわたって前記層の前記重みおよび前記特定量の入力における起動入力を再使用するステップを備える、請求項1から4のいずれか1項に記載の方法。
  6. 前記特定量の入力を処理して前記層出力を生成するステップは、
    前記アレイにロードされた、前記ニューラルネットワークの所与の層の重みを再使用しながら、複数の独立した起動入力を処理するステップを備え、前記所与の層の前記重みは、前記再使用値に基づいて再使用される、請求項5に記載の方法。
  7. 前記ハードウェア回路の処理速度に基づいて前記層の前記重みを再使用するステップをさらに備え、前記層の前記重みを再使用するステップは、前記ハードウェア回路の前記処理速度に基づいて、重みの第1の部分を再使用して前記特定量の入力における入力を処理し、それと並行して、メモリから重みの第2の部分にアクセスするステップを備え、前記重みの第2の部分は、後続の計算に使用される、請求項1から6のいずれか1項に記載の方法。
  8. 前記重み再使用値は、
    前記ハードウェア回路に含まれるいくつかの演算ユニット、または
    前記ニューラルネットワークの1つまたは複数の層で処理される入力の複数のバッチを格納するために使用される前記ハードウェア回路のメモリに含まれるいくつかのチャネル、のうちの少なくとも1つに基づく、請求項7に記載の方法。
  9. ハードウェア回路を使用してニューラルネットワーク計算を実行するためのシステムであって、
    プロセッサと、
    動作を実行させるように前記プロセッサによって実行可能な命令を格納するための非一時的な機械読取可能な記憶装置とを備え、前記動作は、
    ニューラルネットワークの層で処理される入力の第1のバッチを取得するステップを備え、前記層は、関連付けられたバッチサイズを有し、前記動作はさらに、
    前記層の重みを取得するステップを備え、前記重みは、前記層の前記重みの再使用の量を規定する関連付けられた再使用値を有し、前記動作はさらに、
    前記バッチサイズおよび前記重みの前記再使用値に基づいて、前記重みを使用して、前記層で処理される前記第1のバッチにおいて特定量の入力を選択するステップを備え、前記特定量の入力は、i)前記層の前記バッチサイズを超えないように選択され、または、ii)前記再使用値に基づいて前記重みを再使用することが許可される量を超えないように選択され、前記動作はさらに、
    前記重みを使用して前記特定量の入力を処理して層出力を生成するステップを備える、システム。
  10. 前記動作は、
    前記ハードウェア回路のメモリにアクセスする閾値フェッチ時間に基づいて前記特定量の入力を選択して、前記層の新たな重みを取得するステップをさらに備える、請求項9に記載のシステム。
  11. 前記第1のバッチにおける前記特定量の入力を選択するステップは、
    回数を決定するステップを備え、前記回数は、個別の起動入力で前記回数前記重みを再使用する計算時間が、前記層の新たな重み入力にアクセスするフェッチ時間に少なくとも等しくなる前に、前記ハードウェア回路が前記層の重みを再使用することが許可される回数である、請求項9または10に記載のシステム。
  12. 前記特定量の入力を選択するステップは、
    前記重みを再使用する前記計算時間が、前記層の新たな重み入力にアクセスする前記フェッチ時間を超えないように、前記特定量の入力を選択するステップを備える、請求項11に記載のシステム。
  13. 前記ハードウェア回路は、計算セルのアレイを備え、前記特定量の入力を処理して前記層出力を生成するステップは、
    前記アレイにおける2つまたはそれ以上のそれぞれの計算セルによって、第1のプロセッサクロックサイクルおよび第2の後続のプロセッサクロックサイクルにわたって前記層の前記重みおよび前記特定量の入力における起動入力を再使用するステップを備える、請求項9から12のいずれか1項に記載のシステム。
  14. 前記特定量の入力を処理して前記層出力を生成するステップは、
    前記アレイにロードされた、前記ニューラルネットワークの所与の層の重みを再使用しながら、複数の独立した起動入力を処理するステップを備え、前記所与の層の前記重みは、前記再使用値に基づいて再使用される、請求項13に記載のシステム。
  15. 前記ハードウェア回路の処理速度に基づいて前記層の前記重みを再使用するステップをさらに備え、前記層の前記重みを再使用するステップは、前記ハードウェア回路の前記処理速度に基づいて、重みの第1の部分を再使用して前記特定量の入力における入力を処理し、それと並行して、メモリから重みの第2の部分にアクセスするステップを備え、前記重みの第2の部分は、後続の計算に使用される、請求項9から14のいずれか1項に記載のシステム。
  16. 前記重み再使用値は、
    前記ハードウェア回路に含まれるいくつかの演算ユニット、または
    前記ニューラルネットワークの1つまたは複数の層で処理される入力の複数のバッチを格納するために使用される前記ハードウェア回路のメモリに含まれるいくつかのチャネル、のうちの少なくとも1つに基づく、請求項15に記載のシステム。
  17. 請求項1から8のいずれか1項に記載の方法をコンピュータに実行させるプログラム。
JP2021023284A 2015-05-21 2021-02-17 ニューラルネットワークプロセッサにおけるバッチ処理 Active JP7031033B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022025744A JP7286829B2 (ja) 2015-05-21 2022-02-22 ニューラルネットワークプロセッサにおけるバッチ処理

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562165020P 2015-05-21 2015-05-21
US62/165,020 2015-05-21
US14/844,431 2015-09-03
US14/844,431 US10083395B2 (en) 2015-05-21 2015-09-03 Batch processing in a neural network processor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019234606A Division JP6840827B2 (ja) 2015-05-21 2019-12-25 ニューラルネットワークプロセッサにおけるバッチ処理

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022025744A Division JP7286829B2 (ja) 2015-05-21 2022-02-22 ニューラルネットワークプロセッサにおけるバッチ処理

Publications (2)

Publication Number Publication Date
JP2021093181A JP2021093181A (ja) 2021-06-17
JP7031033B2 true JP7031033B2 (ja) 2022-03-07

Family

ID=55967450

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2017550720A Active JP6640243B2 (ja) 2015-05-21 2016-05-03 ニューラルネットワークプロセッサにおけるバッチ処理
JP2019234606A Active JP6840827B2 (ja) 2015-05-21 2019-12-25 ニューラルネットワークプロセッサにおけるバッチ処理
JP2021023284A Active JP7031033B2 (ja) 2015-05-21 2021-02-17 ニューラルネットワークプロセッサにおけるバッチ処理
JP2022025744A Active JP7286829B2 (ja) 2015-05-21 2022-02-22 ニューラルネットワークプロセッサにおけるバッチ処理
JP2023085256A Pending JP2023109933A (ja) 2015-05-21 2023-05-24 ニューラルネットワークプロセッサにおけるバッチ処理

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2017550720A Active JP6640243B2 (ja) 2015-05-21 2016-05-03 ニューラルネットワークプロセッサにおけるバッチ処理
JP2019234606A Active JP6840827B2 (ja) 2015-05-21 2019-12-25 ニューラルネットワークプロセッサにおけるバッチ処理

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022025744A Active JP7286829B2 (ja) 2015-05-21 2022-02-22 ニューラルネットワークプロセッサにおけるバッチ処理
JP2023085256A Pending JP2023109933A (ja) 2015-05-21 2023-05-24 ニューラルネットワークプロセッサにおけるバッチ処理

Country Status (11)

Country Link
US (5) US10083395B2 (ja)
EP (2) EP4235449A3 (ja)
JP (5) JP6640243B2 (ja)
KR (6) KR102362157B1 (ja)
CN (2) CN112465131A (ja)
DE (2) DE202016107476U1 (ja)
DK (1) DK3298547T3 (ja)
GB (2) GB2553053B (ja)
HK (1) HK1245463A1 (ja)
TW (2) TWI591549B (ja)
WO (1) WO2016186823A1 (ja)

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10417555B2 (en) * 2015-05-29 2019-09-17 Samsung Electronics Co., Ltd. Data-optimized neural network traversal
US20170153892A1 (en) * 2015-11-30 2017-06-01 Intel Corporation Instruction And Logic For Programmable Fabric Hierarchy And Cache
US10037490B2 (en) 2016-12-13 2018-07-31 Google Llc Performing average pooling in hardware
US10521488B1 (en) 2016-12-30 2019-12-31 X Development Llc Dynamic partitioning
US10248613B2 (en) * 2017-01-10 2019-04-02 Qualcomm Incorporated Data bus activation in an electronic device
US10824934B2 (en) * 2017-01-12 2020-11-03 Texas Instruments Incorporated Methods and apparatus for matrix processing in a convolutional neural network
US9691019B1 (en) * 2017-03-07 2017-06-27 Google Inc. Depth concatenation using a matrix computation unit
US10896367B2 (en) * 2017-03-07 2021-01-19 Google Llc Depth concatenation using a matrix computation unit
US10909447B2 (en) 2017-03-09 2021-02-02 Google Llc Transposing neural network matrices in hardware
CN107085562B (zh) * 2017-03-23 2020-11-03 中国科学院计算技术研究所 一种基于高效复用数据流的神经网络处理器及设计方法
KR102414583B1 (ko) * 2017-03-23 2022-06-29 삼성전자주식회사 머신 러닝을 수행하는 전자 장치 및 머신 러닝 수행 방법
US10387298B2 (en) * 2017-04-04 2019-08-20 Hailo Technologies Ltd Artificial neural network incorporating emphasis and focus techniques
US10795836B2 (en) * 2017-04-17 2020-10-06 Microsoft Technology Licensing, Llc Data processing performance enhancement for neural networks using a virtualized data iterator
US10019668B1 (en) * 2017-05-19 2018-07-10 Google Llc Scheduling neural network processing
CN109034381B (zh) * 2017-06-09 2022-01-28 宏达国际电子股份有限公司 训练任务优化系统、方法及其非暂态电脑可读媒体
CN107146616B (zh) * 2017-06-13 2020-05-08 Oppo广东移动通信有限公司 设备控制方法及相关产品
CN107729990B (zh) * 2017-07-20 2021-06-08 上海寒武纪信息科技有限公司 支持离散数据表示的用于执行正向运算的装置及方法
US11409692B2 (en) 2017-07-24 2022-08-09 Tesla, Inc. Vector computational unit
US11157287B2 (en) 2017-07-24 2021-10-26 Tesla, Inc. Computational array microprocessor system with variable latency memory access
US11157441B2 (en) 2017-07-24 2021-10-26 Tesla, Inc. Computational array microprocessor system using non-consecutive data formatting
US11893393B2 (en) 2017-07-24 2024-02-06 Tesla, Inc. Computational array microprocessor system with hardware arbiter managing memory requests
US10671349B2 (en) 2017-07-24 2020-06-02 Tesla, Inc. Accelerated mathematical engine
WO2019032870A1 (en) * 2017-08-09 2019-02-14 Google Llc ACCELERATION OF NEURAL NETWORKS IN MATERIAL USING INTERCONNECTED CROSSBARS
US10839286B2 (en) * 2017-09-14 2020-11-17 Xilinx, Inc. System and method for implementing neural networks in integrated circuits
US11437032B2 (en) 2017-09-29 2022-09-06 Shanghai Cambricon Information Technology Co., Ltd Image processing apparatus and method
US11620490B2 (en) * 2017-10-17 2023-04-04 Xilinx, Inc. Multi-layer neural network processing by a neural network accelerator using host communicated merged weights and a package of per-layer instructions
JP6901633B2 (ja) 2017-10-27 2021-07-14 グーグル エルエルシーGoogle LLC カプセルニューラルネットワーク
CN107818367B (zh) * 2017-10-30 2020-12-29 中国科学院计算技术研究所 用于神经网络的处理系统和处理方法
KR102586173B1 (ko) * 2017-10-31 2023-10-10 삼성전자주식회사 프로세서 및 그 제어 방법
CN109997155A (zh) * 2017-11-02 2019-07-09 Tdk株式会社 包含仿神经元件的阵列装置及神经网络系统
WO2019090325A1 (en) * 2017-11-06 2019-05-09 Neuralmagic, Inc. Methods and systems for improved transforms in convolutional neural networks
KR20190051697A (ko) 2017-11-07 2019-05-15 삼성전자주식회사 뉴럴 네트워크의 디컨벌루션 연산을 수행하는 장치 및 방법
KR102424962B1 (ko) 2017-11-15 2022-07-25 삼성전자주식회사 병렬 연산 처리를 수행하는 메모리 장치 및 이를 포함하는 메모리 모듈
US20190156214A1 (en) 2017-11-18 2019-05-23 Neuralmagic Inc. Systems and methods for exchange of data in distributed training of machine learning algorithms
WO2019118363A1 (en) * 2017-12-12 2019-06-20 Amazon Technologies, Inc. On-chip computational network
US10803379B2 (en) 2017-12-12 2020-10-13 Amazon Technologies, Inc. Multi-memory on-chip computational network
CN107844828B (zh) * 2017-12-18 2021-07-30 南京地平线机器人技术有限公司 神经网络中的卷积计算方法和电子设备
EP3729340A4 (en) * 2017-12-18 2021-12-29 Mythic, Inc. Systems and methods for mapping matrix calculations to a matrix multiply accelerator
CN108108811B (zh) * 2017-12-18 2021-07-30 南京地平线机器人技术有限公司 神经网络中的卷积计算方法和电子设备
CN108345934B (zh) * 2018-01-16 2020-11-03 中国科学院计算技术研究所 一种用于神经网络处理器的激活装置及方法
US20190228308A1 (en) * 2018-01-24 2019-07-25 Alibaba Group Holding Limited Deep learning accelerator system and methods thereof
US11561791B2 (en) 2018-02-01 2023-01-24 Tesla, Inc. Vector computational unit receiving data elements in parallel from a last row of a computational array
US10796198B2 (en) 2018-02-08 2020-10-06 Western Digital Technologies, Inc. Adjusting enhancement coefficients for neural network engine
US11164074B2 (en) 2018-02-08 2021-11-02 Western Digital Technologies, Inc. Multi-core systolic processor system for neural network processing
US11423300B1 (en) * 2018-02-09 2022-08-23 Deepmind Technologies Limited Selecting actions by reverting to previous learned action selection policies
EP3640863B1 (en) 2018-02-13 2021-10-27 Shanghai Cambricon Information Technology Co., Ltd Computation device and method
US11704125B2 (en) 2018-02-13 2023-07-18 Cambricon (Xi'an) Semiconductor Co., Ltd. Computing device and method
US11630666B2 (en) 2018-02-13 2023-04-18 Shanghai Cambricon Information Technology Co., Ltd Computing device and method
CN108364061B (zh) * 2018-02-13 2020-05-05 北京旷视科技有限公司 运算装置、运算执行设备及运算执行方法
CN116991225A (zh) 2018-02-14 2023-11-03 上海寒武纪信息科技有限公司 处理器的控制装置、方法及设备
KR102487535B1 (ko) * 2018-02-20 2023-01-12 삼성전자주식회사 시스톨릭 배열(Systolic Array)을 이용하여 딥 러닝(Deep Learning) 연산을 수행하는 방법 및 장치
US11188814B2 (en) * 2018-04-05 2021-11-30 Arm Limited Systolic convolutional neural network
CN108628799B (zh) * 2018-04-17 2021-09-14 上海交通大学 可重构的单指令多数据脉动阵列结构、处理器及电子终端
US11783174B2 (en) * 2018-05-04 2023-10-10 Apple Inc. Splitting of input data for processing in neural network processor
EP3624020A4 (en) 2018-05-18 2021-05-05 Shanghai Cambricon Information Technology Co., Ltd CALCULATION PROCEDURES AND RELATED PRODUCTS
CN108777153B (zh) * 2018-05-25 2021-01-26 华中科技大学 一种多端输入突触器件及其可塑性调制方法
US11216732B2 (en) 2018-05-31 2022-01-04 Neuralmagic Inc. Systems and methods for generation of sparse code for convolutional neural networks
US10832133B2 (en) 2018-05-31 2020-11-10 Neuralmagic Inc. System and method of executing neural networks
US10963787B2 (en) 2018-05-31 2021-03-30 Neuralmagic Inc. Systems and methods for generation of sparse code for convolutional neural networks
US11449363B2 (en) 2018-05-31 2022-09-20 Neuralmagic Inc. Systems and methods for improved neural network execution
US10698392B2 (en) * 2018-06-22 2020-06-30 Applied Materials, Inc. Using graphics processing unit for substrate routing and throughput modeling
EP3798850A4 (en) 2018-06-27 2022-03-23 Shanghai Cambricon Information Technology Co., Ltd ON-CHIP CODE BREAKPOINT DEBUG METHOD, ON-CHIP PROCESSOR AND CHIP BREAKPOINT DEBUG SYSTEM
DE102018115902A1 (de) 2018-07-01 2020-01-02 Oliver Bartels SIMD-Prozessor mit CAM zur Operandenauswahl nach Mustererkennung
US11138497B2 (en) * 2018-07-17 2021-10-05 Macronix International Co., Ltd In-memory computing devices for neural networks
CN109002879B (zh) * 2018-07-23 2021-09-03 山东浪潮科学研究院有限公司 神经网络模型的可视化建模方法和装置
KR102519467B1 (ko) 2018-08-28 2023-04-06 캠브리콘 테크놀로지스 코퍼레이션 리미티드 데이터 전처리 방법, 장치, 컴퓨터 설비 및 저장 매체
CN112732601A (zh) * 2018-08-28 2021-04-30 中科寒武纪科技股份有限公司 数据预处理方法、装置、计算机设备和存储介质
WO2020062392A1 (zh) 2018-09-28 2020-04-02 上海寒武纪信息科技有限公司 信号处理装置、信号处理方法及相关产品
CN112789627B (zh) * 2018-09-30 2023-08-22 华为技术有限公司 一种神经网络处理器、数据处理方法及相关设备
US11636343B2 (en) 2018-10-01 2023-04-25 Neuralmagic Inc. Systems and methods for neural network pruning with accuracy preservation
WO2020073925A1 (zh) * 2018-10-09 2020-04-16 上海寒武纪信息科技有限公司 运算方法、装置、计算机设备和存储介质
WO2020073923A1 (zh) * 2018-10-09 2020-04-16 上海寒武纪信息科技有限公司 运算方法、装置、计算机设备和存储介质
KR20200051278A (ko) 2018-11-05 2020-05-13 삼성전자주식회사 인공 신경망에서의 작업 관리 방법 및 이를 포함하는 시스템
JP7315317B2 (ja) 2018-11-09 2023-07-26 株式会社Preferred Networks プロセッサおよびプロセッサのデータ転送方法
KR102451519B1 (ko) * 2018-11-20 2022-10-07 삼성전자주식회사 룩업 테이블 기반의 비트-시리얼 처리 요소를 포함하는 심층 신경망 가속기
KR20200061164A (ko) * 2018-11-23 2020-06-02 삼성전자주식회사 뉴럴 네트워크 연산 수행을 위한 뉴럴 네트워크 장치, 뉴럴 네트워크 장치의 동작 방법 및 뉴럴 네트워크 장치를 포함하는 애플리케이션 프로세서
KR20200066953A (ko) 2018-12-03 2020-06-11 삼성전자주식회사 Pim을 채용하는 반도체 메모리 장치 및 그 동작 방법
US10990525B2 (en) * 2018-12-12 2021-04-27 Mipsology SAS Caching data in artificial neural network computations
WO2020126692A1 (en) * 2018-12-19 2020-06-25 Ams Ag Implementing a multi-layer neural network using a single physical layer of analog neurons
CN111383638A (zh) 2018-12-28 2020-07-07 上海寒武纪信息科技有限公司 信号处理装置、信号处理方法及相关产品
US11544559B2 (en) 2019-01-08 2023-01-03 Neuralmagic Inc. System and method for executing convolution in a neural network
US10789510B2 (en) * 2019-01-11 2020-09-29 Google Llc Dynamic minibatch sizes
US11461653B2 (en) * 2019-01-23 2022-10-04 StradVision, Inc. Learning method and learning device for CNN using 1xK or Kx1 convolution to be used for hardware optimization, and testing method and testing device using the same
CN109919321A (zh) * 2019-02-01 2019-06-21 京微齐力(北京)科技有限公司 单元具有本地累加功能的人工智能模块及系统芯片
US11783176B2 (en) 2019-03-25 2023-10-10 Western Digital Technologies, Inc. Enhanced storage device memory architecture for machine learning
US10929058B2 (en) 2019-03-25 2021-02-23 Western Digital Technologies, Inc. Enhanced memory device architecture for machine learning
US20200334522A1 (en) 2019-04-18 2020-10-22 Cambricon Technologies Corporation Limited Data processing method and related products
CN111832738B (zh) 2019-04-18 2024-01-09 中科寒武纪科技股份有限公司 一种数据处理方法及相关产品
US11645512B2 (en) * 2019-04-30 2023-05-09 Baidu Usa Llc Memory layouts and conversion to improve neural network inference performance
CN112085184B (zh) 2019-06-12 2024-03-29 上海寒武纪信息科技有限公司 量化参数调整方法、装置及相关产品
US11676029B2 (en) 2019-06-12 2023-06-13 Shanghai Cambricon Information Technology Co., Ltd Neural network quantization parameter determination method and related products
US11195095B2 (en) 2019-08-08 2021-12-07 Neuralmagic Inc. System and method of accelerating execution of a neural network
KR20210030653A (ko) * 2019-09-10 2021-03-18 주식회사 모빌린트 복수 개의 코어를 갖는 연산 장치
US11842169B1 (en) 2019-09-25 2023-12-12 Amazon Technologies, Inc. Systolic multiply delayed accumulate processor architecture
CN112633462A (zh) * 2019-10-08 2021-04-09 黄朝宗 卷积神经网络的存储器优化的区块式推论方法及其系统
CN112783640B (zh) * 2019-11-11 2023-04-04 上海肇观电子科技有限公司 预先分配内存的方法与设备、电路、电子设备及介质
US11861485B2 (en) * 2019-11-22 2024-01-02 Baidu Usa Llc Data format transform method to improve AI engine MAC utilization
TWI727521B (zh) * 2019-11-27 2021-05-11 瑞昱半導體股份有限公司 動態語音辨識方法及其裝置
US11467806B2 (en) 2019-11-27 2022-10-11 Amazon Technologies, Inc. Systolic array including fused multiply accumulate with efficient prenormalization and extended dynamic range
US11816446B2 (en) 2019-11-27 2023-11-14 Amazon Technologies, Inc. Systolic array component combining multiple integer and floating-point data types
US11586932B2 (en) * 2020-03-10 2023-02-21 International Business Machines Corporation Model training with variable batch sizing and gradient checkpoint segments
US11620830B2 (en) * 2020-03-31 2023-04-04 Ford Global Technologies, Llc Context dependent transfer learning adaptation to achieve fast performance in inference and update
EP4148627A4 (en) * 2020-05-29 2023-06-28 Huawei Technologies Co., Ltd. Neural network scheduling method and apparatus
WO2021243489A1 (zh) * 2020-05-30 2021-12-09 华为技术有限公司 一种神经网络的数据处理方法及装置
US11308026B1 (en) * 2020-06-29 2022-04-19 Amazon Technologies, Inc. Multiple busses interleaved in a systolic array
US11308027B1 (en) 2020-06-29 2022-04-19 Amazon Technologies, Inc. Multiple accumulate busses in a systolic array
US11422773B1 (en) 2020-06-29 2022-08-23 Amazon Technologies, Inc. Multiple busses within a systolic array processing element
US11687831B1 (en) 2020-06-30 2023-06-27 Cadence Design Systems, Inc. Method, product, and apparatus for a multidimensional processing array for hardware acceleration of convolutional neural network inference
US11615320B1 (en) 2020-06-30 2023-03-28 Cadence Design Systems, Inc. Method, product, and apparatus for variable precision weight management for neural networks
US11823018B1 (en) * 2020-06-30 2023-11-21 Cadence Design Systems, Inc. Method, product, and apparatus for a machine learning process using weight sharing within a systolic array having reduced memory bandwidth
US11676068B1 (en) 2020-06-30 2023-06-13 Cadence Design Systems, Inc. Method, product, and apparatus for a machine learning process leveraging input sparsity on a pixel by pixel basis
US11651283B1 (en) 2020-06-30 2023-05-16 Cadence Design Systems, Inc. Method, product, and apparatus for a machine learning process using dynamic rearrangement of sparse data and corresponding weights
US20220036163A1 (en) * 2020-07-29 2022-02-03 Apple Inc. Chained neural engine write-back architecture
CN111898698B (zh) * 2020-08-10 2021-07-27 腾讯科技(深圳)有限公司 对象的处理方法及装置、存储介质和电子设备
JP7358312B2 (ja) * 2020-08-25 2023-10-10 株式会社東芝 記憶装置およびニューラルネットワーク装置
KR20220027500A (ko) * 2020-08-27 2022-03-08 에스케이하이닉스 주식회사 가속 장치, 데이터 저장 장치, 데이터 처리 시스템 및 가속 장치의 동작방법
US11556757B1 (en) 2020-12-10 2023-01-17 Neuralmagic Ltd. System and method of executing deep tensor columns in neural networks
KR20220090104A (ko) 2020-12-22 2022-06-29 삼성전자주식회사 컨벌루션 연산을 위한 데이터 전송 방법, 페처 및 컨벌루션 연산 장치
CN115204355A (zh) * 2021-04-14 2022-10-18 蒂普爱可斯有限公司 能够重新使用数据的神经处理单元及其方法
US11880682B2 (en) 2021-06-30 2024-01-23 Amazon Technologies, Inc. Systolic array with efficient input reduction and extended array performance
KR102590993B1 (ko) * 2021-09-03 2023-10-19 한국전자기술연구원 적응형 배치 프로세싱 방법 및 시스템
US11714556B2 (en) * 2021-09-14 2023-08-01 quadric.io, Inc. Systems and methods for accelerating memory transfers and computation efficiency using a computation-informed partitioning of an on-chip data buffer and implementing computation-aware data transfer operations to the on-chip data buffer
US11960982B1 (en) 2021-10-21 2024-04-16 Neuralmagic, Inc. System and method of determining and executing deep tensor columns in neural networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157756A (ja) 2002-11-06 2004-06-03 Canon Inc 階層処理装置
US20140142929A1 (en) 2012-11-20 2014-05-22 Microsoft Corporation Deep neural networks training for speech and pattern recognition
JP6203005B2 (ja) 2013-11-14 2017-09-27 三菱電機株式会社 通信装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014235A (en) 1987-12-15 1991-05-07 Steven G. Morton Convolution memory
US5136717A (en) 1988-11-23 1992-08-04 Flavors Technology Inc. Realtime systolic, multiple-instruction, single-data parallel computer system
US5138695A (en) 1989-10-10 1992-08-11 Hnc, Inc. Systolic array image processing system
US5146543A (en) 1990-05-22 1992-09-08 International Business Machines Corp. Scalable neural array processor
US5337395A (en) 1991-04-08 1994-08-09 International Business Machines Corporation SPIN: a sequential pipeline neurocomputer
JPH04290155A (ja) 1991-03-19 1992-10-14 Fujitsu Ltd 並列データ処理方式
US5903454A (en) 1991-12-23 1999-05-11 Hoffberg; Linda Irene Human-factored interface corporating adaptive pattern recognition based controller apparatus
JPH06203005A (ja) 1992-10-27 1994-07-22 Eastman Kodak Co 高速区分化ニューラルネットワーク及びその構築方法
US5517667A (en) * 1993-06-14 1996-05-14 Motorola, Inc. Neural network that does not require repetitive training
US5583964A (en) * 1994-05-02 1996-12-10 Motorola, Inc. Computer utilizing neural network and method of using same
US5799134A (en) 1995-03-13 1998-08-25 Industrial Technology Research Institute One dimensional systolic array architecture for neural network
KR0152710B1 (ko) * 1995-12-21 1998-10-15 양승택 AT-Bus에 장착하기 위한 병렬 신경망 보드의 제어회로
US5812993A (en) 1996-03-07 1998-09-22 Technion Research And Development Foundation Ltd. Digital hardware architecture for realizing neural network
US6038337A (en) 1996-03-29 2000-03-14 Nec Research Institute, Inc. Method and apparatus for object recognition
JPH11177399A (ja) 1997-12-15 1999-07-02 Mitsubishi Electric Corp クロック遅延回路およびこれを用いた発振回路、位相同期回路、クロック生成回路
GB9902115D0 (en) 1999-02-01 1999-03-24 Axeon Limited Neural networks
US6917703B1 (en) * 2001-02-28 2005-07-12 Nevengineering, Inc. Method and apparatus for image analysis of a gabor-wavelet transformed image using a neural network
US20020143720A1 (en) * 2001-04-03 2002-10-03 Anderson Robert Lee Data structure for improved software implementation of a neural network
US7245767B2 (en) 2003-08-21 2007-07-17 Hewlett-Packard Development Company, L.P. Method and apparatus for object identification, classification or verification
US7634137B2 (en) 2005-10-14 2009-12-15 Microsoft Corporation Unfolded convolution for fast feature extraction
WO2008067676A1 (en) 2006-12-08 2008-06-12 Medhat Moussa Architecture, system and method for artificial neural network implementation
US8184696B1 (en) 2007-09-11 2012-05-22 Xilinx, Inc. Method and apparatus for an adaptive systolic array structure
JP5376920B2 (ja) 2008-12-04 2013-12-25 キヤノン株式会社 コンボリューション演算回路、階層的コンボリューション演算回路及び物体認識装置
KR101108987B1 (ko) * 2009-03-05 2012-01-31 한국전자통신연구원 공간 분할을 이용한 게임 캐릭터의 패턴 학습 장치 및 방법
US8442927B2 (en) 2009-07-30 2013-05-14 Nec Laboratories America, Inc. Dynamically configurable, multi-ported co-processor for convolutional neural networks
TWI525558B (zh) 2011-01-17 2016-03-11 Univ Nat Taipei Technology Resilient high - speed hardware reverse transfer and feedback type neural network system
SG182933A1 (en) * 2011-01-19 2012-08-30 Agency Science Tech & Res A data structure and a method for using the data structure
US8924455B1 (en) 2011-02-25 2014-12-30 Xilinx, Inc. Multiplication of matrices using systolic arrays
US9147155B2 (en) * 2011-08-16 2015-09-29 Qualcomm Incorporated Method and apparatus for neural temporal coding, learning and recognition
US9443190B2 (en) * 2011-11-09 2016-09-13 Qualcomm Incorporated Methods and apparatus for neural pattern sequence completion and neural pattern hierarchical replay by invoking replay of a referenced neural pattern
JP5906061B2 (ja) 2011-11-15 2016-04-20 Kddi株式会社 学習装置、学習方法、プログラム
TW201331855A (zh) 2012-01-19 2013-08-01 Univ Nat Taipei Technology 具自由回饋節點的高速硬體倒傳遞及回饋型類神經網路
US9524730B2 (en) 2012-03-30 2016-12-20 Ohio State Innovation Foundation Monaural speech filter
US9418334B2 (en) * 2012-12-06 2016-08-16 Nuance Communications, Inc. Hybrid pre-training of deep belief networks
US9811775B2 (en) 2012-12-24 2017-11-07 Google Inc. Parallelizing neural networks during training
US9190053B2 (en) 2013-03-25 2015-11-17 The Governing Council Of The Univeristy Of Toronto System and method for applying a convolutional neural network to speech recognition
CN104143327B (zh) * 2013-07-10 2015-12-09 腾讯科技(深圳)有限公司 一种声学模型训练方法和装置
KR20150016089A (ko) * 2013-08-02 2015-02-11 안병익 신경망 컴퓨팅 장치 및 시스템과 그 방법
US10019985B2 (en) * 2013-11-04 2018-07-10 Google Llc Asynchronous optimization for sequence training of neural networks
CN104035751B (zh) 2014-06-20 2016-10-12 深圳市腾讯计算机系统有限公司 基于多图形处理器的数据并行处理方法及装置
EP3064130A1 (en) 2015-03-02 2016-09-07 MindMaze SA Brain activity measurement and feedback system
US20160267111A1 (en) 2015-03-11 2016-09-15 Microsoft Technology Licensing, Llc Two-stage vector reduction using two-dimensional and one-dimensional systolic arrays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157756A (ja) 2002-11-06 2004-06-03 Canon Inc 階層処理装置
US20140142929A1 (en) 2012-11-20 2014-05-22 Microsoft Corporation Deep neural networks training for speech and pattern recognition
JP6203005B2 (ja) 2013-11-14 2017-09-27 三菱電機株式会社 通信装置

Also Published As

Publication number Publication date
KR20200045017A (ko) 2020-04-29
JP6840827B2 (ja) 2021-03-10
TWI622939B (zh) 2018-05-01
KR20220025158A (ko) 2022-03-03
KR102362157B1 (ko) 2022-02-14
GB202118188D0 (en) 2022-01-26
US20170103317A1 (en) 2017-04-13
CN107454965B (zh) 2020-12-01
GB2600031B (en) 2022-08-24
HK1245463A1 (zh) 2018-08-24
GB2553053A (en) 2018-02-21
JP2020064657A (ja) 2020-04-23
DE112016002292T5 (de) 2018-02-15
CN112465131A (zh) 2021-03-09
KR20230016716A (ko) 2023-02-02
KR20230165890A (ko) 2023-12-05
TWI591549B (zh) 2017-07-11
JP2023109933A (ja) 2023-08-08
GB201715438D0 (en) 2017-11-08
EP4235449A2 (en) 2023-08-30
JP2018518730A (ja) 2018-07-12
EP3298547B1 (en) 2023-07-05
EP4235449A3 (en) 2023-09-13
US20160342890A1 (en) 2016-11-24
KR102540114B1 (ko) 2023-06-02
JP6640243B2 (ja) 2020-02-05
KR20230080510A (ko) 2023-06-07
EP3298547A1 (en) 2018-03-28
JP2021093181A (ja) 2021-06-17
US10083395B2 (en) 2018-09-25
KR20170133364A (ko) 2017-12-05
KR102493196B1 (ko) 2023-01-27
US20210224654A1 (en) 2021-07-22
US20190122107A1 (en) 2019-04-25
KR102106144B1 (ko) 2020-04-29
KR102610083B1 (ko) 2023-12-04
US9842293B2 (en) 2017-12-12
WO2016186823A1 (en) 2016-11-24
JP7286829B2 (ja) 2023-06-05
US11216726B2 (en) 2022-01-04
DE202016107476U1 (de) 2017-01-23
DK3298547T3 (da) 2023-10-02
US20220138577A1 (en) 2022-05-05
JP2022071015A (ja) 2022-05-13
CN107454965A (zh) 2017-12-08
TW201723934A (zh) 2017-07-01
TW201701199A (zh) 2017-01-01
US11227216B2 (en) 2022-01-18
GB2553053B (en) 2022-02-09
GB2600031A (en) 2022-04-20

Similar Documents

Publication Publication Date Title
JP7031033B2 (ja) ニューラルネットワークプロセッサにおけるバッチ処理
JP7071577B2 (ja) ニューラルネットワークプロセッサで使用される重みのプリフェッチ
JP7000387B2 (ja) ニューラルネットワークプロセッサにおけるベクトル計算ユニット
US10521488B1 (en) Dynamic partitioning
JP2022037022A (ja) ハードウェアにおけるカーネルストライドの実行

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220222

R150 Certificate of patent or registration of utility model

Ref document number: 7031033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150