JP7029576B1 - Compounds, their manufacturing methods, and composite materials - Google Patents

Compounds, their manufacturing methods, and composite materials Download PDF

Info

Publication number
JP7029576B1
JP7029576B1 JP2021549561A JP2021549561A JP7029576B1 JP 7029576 B1 JP7029576 B1 JP 7029576B1 JP 2021549561 A JP2021549561 A JP 2021549561A JP 2021549561 A JP2021549561 A JP 2021549561A JP 7029576 B1 JP7029576 B1 JP 7029576B1
Authority
JP
Japan
Prior art keywords
compound
mixture
volume
thermal expansion
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021549561A
Other languages
Japanese (ja)
Other versions
JPWO2021261049A1 (en
Inventor
佳弘 米田
芳夫 馬渡
宏二 秋次
敏宏 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Mitsui Mining and Smelting Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Tokyo Institute of Technology NUC filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2021261049A1 publication Critical patent/JPWO2021261049A1/ja
Application granted granted Critical
Publication of JP7029576B1 publication Critical patent/JP7029576B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/372Phosphates of heavy metals of titanium, vanadium, zirconium, niobium, hafnium or tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

負の熱膨張率を示し、且つ絶縁抵抗が高い新たな化合物を提供する。組成式Zr2.00-bMbSYPZO12.00+δ(式中、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Cr、W、Moから選択される少なくとも1種であり、0≦b<2.00、0<Y<0.30、Z≧2.00、δは電荷中性条件を満たすように決まる値)で表される化合物、又は、組成式Zr2.00-bMbSYPZO12.00+δ(式中、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Cr、W、Moから選択される少なくとも1種であり、0≦b<2.00、0.30≦Y≦1.00、Z>2.00、δは電荷中性条件を満たすように決まる値)で表される化合物である。Provided is a new compound having a negative coefficient of thermal expansion and high insulation resistance. Composition formula Zr2.00-bMbSYSPZO12.00 + δ (In the formula, M is at least one selected from Ti, Ce, Sn, Mn, Hf, Ir, Pb, Pd, Cr, W, Mo, and is 0. ≦ b <2.00, 0 <Y <0.30, Z ≧ 2.00, δ are values determined to satisfy the charge neutrality condition), or the composition formula Zr2.00-bMbSYSPZO12. 00 + δ (In the formula, M is at least one selected from Ti, Ce, Sn, Mn, Hf, Ir, Pb, Pd, Cr, W, Mo, and 0 ≦ b <2.00, 0. .30 ≦ Y ≦ 1.00, Z> 2.00, and δ are values determined to satisfy the charge neutrality condition).

Description

本発明は、温度が上昇すると体積が小さくなる負の熱膨張率を示す新規化合物及びその製造方法、並びに、該新規化合物を用いた複合材料に関する。 The present invention relates to a novel compound showing a negative thermal expansion coefficient whose volume decreases as the temperature rises, a method for producing the same, and a composite material using the novel compound.

電子機器や光学機器、燃料電池やセンサなどの精密さが要求される技術分野では、例えば複数の素材を組み合せてデバイスを構成する際、各素材間の熱膨張率差によって、位置ずれ、界面剥離、断線などが生じると、深刻な問題となる場合がある。そのため、熱膨張の制御技術が要求されている。熱膨張制御技術の一つとして、負の熱膨張率を有する材料(「負熱膨張材料」とも称する)を組み合わせて、全体の熱膨張率を制御する技術が注目されている。 In technical fields where precision is required, such as electronic devices, optical devices, fuel cells, and sensors, for example, when a device is constructed by combining multiple materials, the difference in thermal expansion rate between the materials causes misalignment and interface peeling. , If a wire break occurs, it may cause a serious problem. Therefore, a technology for controlling thermal expansion is required. As one of the thermal expansion control techniques, a technique for controlling the overall thermal expansion coefficient by combining a material having a negative thermal expansion coefficient (also referred to as "negative thermal expansion material") is attracting attention.

多くの物質は温度が上昇すると、熱膨張によって体積が増大する。これに対して、温めると逆に体積が小さくなる特性を備えた負熱膨張材料が希に存在する。
但し、負熱膨張材料と言っても、一般的には、ある特定の温度域でのみ負熱膨張を示し、それ以外の温度領域では、正の熱膨張を示す材料がほとんどである。
As the temperature rises, many substances increase in volume due to thermal expansion. On the other hand, there are rarely negative thermal expansion materials having the property that the volume decreases when heated.
However, even if it is called a negative thermal expansion material, in general, most of the materials show negative thermal expansion only in a specific temperature range and show positive thermal expansion in other temperature ranges.

負熱膨張材料としては、例えばβ-ユークリプタイト、タングステン酸ジルコニウム(ZrW)、リン酸タングステン酸ジルコニウム(ZrWO(PO)、ZnCd1-x(CN)、マンガン窒化物、ビスマス・ニッケル・鉄酸化物等が知られている。Examples of the negative thermal expansion material include β-eucriptite, zirconium tungate (ZrW 2 O 8 ), zirconium tungate phosphate (Zr 2 WO 4 (PO 4 ) 2 ), Zn x Cd 1-x (CN). 2. Manganese nitrides, bismuth, nickel, iron oxides, etc. are known.

また、特許文献1には、新たな負熱膨張材料として、Bi1-xSbNiO(ただし、xは0.02≦x≦0.20である)が開示されている。Further, Patent Document 1 discloses Bi 1-x Sb x NiO 3 (where x is 0.02 ≦ x ≦ 0.20) as a new negative thermal expansion material.

特許文献2には、新たな負熱膨張材料として、Zr2-a12+δ(Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Crから選択される少なくとも1種であり、aは0≦a<2であり、xは0.4≦x≦1であり、δは電荷中性条件を満たすように定まる値である。)で表されることを特徴とする化合物が開示されている。In Patent Document 2, as a new negative thermal expansion material, Zr 2-a Ma S x P 2 O 12 + δ (M is from Ti, Ce, Sn, Mn, Hf, Ir, Pb, Pd, Cr). It is at least one selected, a is 0 ≦ a <2, x is 0.4 ≦ x ≦ 1, and δ is a value determined so as to satisfy the charge neutrality condition). The compound characterized by the above is disclosed.

特開2017-48071号公報Japanese Unexamined Patent Publication No. 2017-48071 WO2019/167924 A1WO2019 / 167924 A1

現在、上述のような負熱膨張材料が利用されており、より優れた低熱膨張性が求められている。また、部材の小型化に伴って配線の細線化が進行しているため、より高い絶縁性も求められている。 Currently, the above-mentioned negative thermal expansion materials are used, and more excellent low thermal expansion is required. In addition, as the size of the member is reduced, the wiring is becoming thinner, so that higher insulation is also required.

さらにまた、前記特許文献2に開示された負熱膨張材料は、室温から500℃の範囲で負の熱膨張率を示し、硫黄の含有量(x)が大きいほど、特に100~180℃において負の熱膨張率を示し、低密度化をも実現できる材料であるため、有用な材料として注目されている。
他方、特定の用途では、特に室温から100℃、或いは室温から200℃、或いは室温から300℃の温度領域において負の熱膨張率を示す材料が求められている。例えば、樹脂材料の熱膨張率を制御する場合においては、正熱膨張材料としての樹脂材料に負熱膨張材料を加えて熱膨張率を調整する際、当該樹脂材料の融点若しくはガラス転移温度が低い場合には、室温から100℃、或いは室温から200℃、或いは室温から300℃の温度領域において負の熱膨張率を示す負熱膨張材料が求められる。
Furthermore, the negative thermal expansion material disclosed in Patent Document 2 exhibits a negative thermal expansion rate in the range of room temperature to 500 ° C., and the larger the sulfur content (x), the more negative it is, especially at 100 to 180 ° C. It is attracting attention as a useful material because it is a material that exhibits the thermal expansion coefficient of and can also realize low density.
On the other hand, in a specific application, there is a demand for a material that exhibits a negative thermal expansion rate, particularly in the temperature range of room temperature to 100 ° C., room temperature to 200 ° C., or room temperature to 300 ° C. For example, in the case of controlling the thermal expansion coefficient of a resin material, when the negative thermal expansion material is added to the resin material as a positive thermal expansion material to adjust the thermal expansion coefficient, the melting point or the glass transition temperature of the resin material is low. In some cases, a negative thermal expansion material that exhibits a negative thermal expansion rate in the temperature range of room temperature to 100 ° C., room temperature to 200 ° C., or room temperature to 300 ° C. is required.

そこで本発明は、従来とは異なる組成からなる、負の熱膨張率を示す化合物であって、且つ、絶縁抵抗が高い新たな化合物を提供せんとするものである。
さらに好ましくは、絶縁抵抗が高く、さらには、特に室温から100℃、或いは室温から200℃、或いは室温から300℃の温度領域において、特に優れた負の熱膨張率を示す新たな化合物を提供せんとするものである。
Therefore, the present invention is intended to provide a new compound having a composition different from the conventional one and exhibiting a negative thermal expansion coefficient and having a high insulation resistance.
More preferably, it does not provide new compounds that have high insulation resistance and that exhibit particularly good negative thermal expansion rates, especially in the temperature range from room temperature to 100 ° C, room temperature to 200 ° C, or room temperature to 300 ° C. Is to be.

かかる課題解決のため、本発明は、組成式Zr2.00-b12.00+δ(式中、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Cr、W、Moから選択される少なくとも1種であり、0≦b<2.00、0<Y<0.30、Z≧2.00、δは電荷中性条件を満たすように決まる値)で表される化合物(「本化合物1」と称する)を提案する。In order to solve this problem, the present invention has a composition formula Zr 2.00-b M b SY P ZO 12.00 + δ (in the formula, M is Ti, Ce, Sn, Mn, Hf, Ir, Pb). , Pd, Cr, W, Mo, and 0 ≦ b <2.00, 0 <Y <0.30, Z ≧ 2.00, δ so as to satisfy the charge neutrality condition. We propose a compound (referred to as "the present compound 1") represented by (determined value).

本発明はまた、組成式Zr2.00-b12.00+δ(式中、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Cr、W、Moから選択される少なくとも1種であり、0≦b<2.00、0.30≦Y≦1.00、Z>2.00、δは電荷中性条件を満たすように決まる値)で表される化合物(「本化合物2」と称する)を提案する。The present invention also has a composition formula Zr 2.00-b M b SY P ZO 12.00 + δ (in the formula, M is Ti, Ce, Sn, Mn, Hf, Ir, Pb, Pd, Cr, It is at least one selected from W and Mo, and 0 ≦ b <2.00, 0.30 ≦ Y ≦ 1.00, Z> 2.00, and δ are values determined so as to satisfy the charge neutrality condition). A compound represented by (referred to as "the present compound 2") is proposed.

本発明が提案する本化合物1,2はいずれも、負の熱膨張率を示す。よって、正の熱膨張率を示す材料(「正熱膨張材料」と称する)と混合して混合物である複合材料の熱膨張率の制御を行うことができる。また、本化合物1,2はいずれも、絶縁抵抗性に優れているため、絶縁抵抗性が求められる技術分野において有効に利用することができる。 Both the compounds 1 and 2 proposed by the present invention show a negative thermal expansion rate. Therefore, it is possible to control the thermal expansion coefficient of the composite material which is a mixture by mixing with a material exhibiting a positive thermal expansion coefficient (referred to as "positive thermal expansion material"). Further, since both of the present compounds 1 and 2 are excellent in insulation resistance, they can be effectively used in the technical field where insulation resistance is required.

さらに本発明が提案する本化合物1は、特に室温から100℃の温度領域において、顕著に優れた負の熱膨張率を示す。よって、室温から100℃の温度領域における熱膨張率の制御に好適に用いることができる。例えば正熱膨張材料と混合して得られる複合材料の室温から100℃の温度領域での熱膨張率の制御を実施することができる。 Further, the present compound 1 proposed by the present invention exhibits a remarkably excellent negative thermal expansion rate, especially in the temperature range from room temperature to 100 ° C. Therefore, it can be suitably used for controlling the thermal expansion rate in the temperature range from room temperature to 100 ° C. For example, it is possible to control the coefficient of thermal expansion in the temperature range from room temperature to 100 ° C. of the composite material obtained by mixing with the positive thermal expansion material.

また、本発明が提案する本化合物2は、特に室温から200℃及び室温から300℃の温度領域において、顕著に優れた負の熱膨張率を示す。よって、室温から200℃及び室温から300℃の温度領域における熱膨張率の制御に好適に用いることができる。例えば正熱膨張材料と混合して得られる複合材料の室温から200℃及び室温から300℃の温度領域での熱膨張率の制御を実施することができる。 Further, the present compound 2 proposed by the present invention exhibits a remarkably excellent negative thermal expansion rate, especially in the temperature range of room temperature to 200 ° C. and room temperature to 300 ° C. Therefore, it can be suitably used for controlling the thermal expansion rate in the temperature range of room temperature to 200 ° C. and room temperature to 300 ° C. For example, it is possible to control the thermal expansion rate in the temperature range of room temperature to 200 ° C. and room temperature to 300 ° C. of the composite material obtained by mixing with the positive thermal expansion material.

次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。 Next, the present invention will be described based on examples of embodiments. However, the present invention is not limited to the embodiments described below.

<本化合物1>
以下、本発明の実施形態の一例に係る化合物(「本化合物1」と称する)について詳細に説明する。
<Compound 1>
Hereinafter, the compound according to an example of the embodiment of the present invention (referred to as “the present compound 1”) will be described in detail.

本化合物1は、組成式Zr2.00-b12.00+δ(式中、0≦b<2.00、0<Y<0.30、Z≧2.00、δは電荷中性条件を満たすように決まる値)で表される化合物である。The present compound 1 has a composition formula Zr 2.00-b M b S Y P ZO 12.00 + δ (in the formula, 0 ≦ b <2.00, 0 <Y <0.30, Z ≧ 2.00). , Δ is a compound represented by (a value determined so as to satisfy the charge neutrality condition).

本化合物1の組成式において、bがb=0の場合、Zr2.0012.00+δ(式中、0<Y<0.30、Z≧2.00、δは電荷中性条件を満たすように決まる値)で表される化合物となる。他方、bが0<b<2.00の場合は、Zrサイトの一部がMで置換された化合物となる。In the composition formula of this compound 1, when b is b = 0, Zr 2.00 SY P ZO 12.00 + δ (in the formula, 0 < Y <0.30, Z ≧ 2.00, δ is It is a compound represented by (a value determined so as to satisfy the charge neutrality condition). On the other hand, when b is 0 <b <2.00, the compound is a compound in which a part of the Zr site is replaced with M.

本化合物1の組成式において、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Cr、W、Moから選択される1種又は2種以上の組み合わせであるのが好ましい。
Zr2.0012.00+δ(式中、0<Y<0.30、Z≧2.00)におけるZrサイトの一部がこれらの元素Mで置換された化合物は、ZrサイトがZrのみからなる当該化合物と同様に、負の熱膨張率を示し、かつ、高絶縁抵抗性を実現することができる。
In the composition formula of the present compound 1, M is preferably one or a combination of two or more selected from Ti, Ce, Sn, Mn, Hf, Ir, Pb, Pd, Cr, W and Mo.
The compound in which a part of the Zr site in Zr 2.00 S Y P ZO 12.00 + δ (in the formula, 0 <Y <0.30, Z ≧ 2.00) is replaced with these elements M is a compound. Similar to the compound in which the Zr site is composed of only Zr, it can exhibit a negative thermal expansion rate and realize high insulation resistance.

本化合物1の組成式中、M元素の量(原子比)を示す「b」は、0以上かつ2.00未満であることが好ましく、中でも0以上或いは1.50未満、その中でも0以上或いは1.00以下、その中でも0以上或いは0.80以下であるのがさらに好ましい。 In the composition formula of the present compound 1, "b" indicating the amount (atomic ratio) of the M element is preferably 0 or more and less than 2.00, particularly 0 or more or less than 1.50, and among them, 0 or more or It is more preferably 1.00 or less, and more preferably 0 or more or 0.80 or less.

本化合物1の組成式中、S(硫黄)の量(原子比)を示す「Y」は、0よりも大きくかつ0.30未満であることが好ましく、中でも0.10以上或いは0.30未満、その中でも0.15以上或いは0.30未満、その中でも0.20以上或いは0.30未満であるのがさらに好ましい。 In the composition formula of the present compound 1, "Y" indicating the amount (atomic ratio) of S (sulfur) is preferably larger than 0 and less than 0.30, and more than 0.10 or less than 0.30. Among them, it is more preferably 0.15 or more or less than 0.30, and more preferably 0.20 or more or less than 0.30.

さらに、P(リン)の量(原子比)を示す「Z」は、2.00以上であるのが好ましく、中でも2.40を超えることがさらに好ましい。他方、3.50以下であるのが好ましく、その中でも3.00以下、その中でも2.80以下であるのがさらに好ましい。 Further, "Z" indicating the amount (atomic ratio) of P (phosphorus) is preferably 2.00 or more, and more preferably more than 2.40. On the other hand, it is preferably 3.50 or less, more preferably 3.00 or less, and even more preferably 2.80 or less.

また、本化合物1の組成式中の「δ」は、電荷中性条件を満たすように定まる値であり、通常は-2.50以上1.00以下である。中でも-2.00以上或いは0.50以下、その中でも-1.50以上或いは0.00以下、その中でも-1.50以上或いは-0.50以下、その中でも-1.33を超える或いは-0.80未満である場合がある。尚、「電荷中性条件」は完全に中性でなくてもよく、化合物として許容される範囲での酸素欠損や酸素過剰の組成は許容するものとする。 Further, "δ" in the composition formula of the present compound 1 is a value determined so as to satisfy the charge neutrality condition, and is usually -2.50 or more and 1.00 or less. Among them, -2.00 or more or 0.50 or less, among them, -1.50 or more or 0.00 or less, among them, -1.50 or more or -0.50 or less, among them, -1.33 or more or -0. It may be less than .80. The "charge neutral condition" does not have to be completely neutral, and oxygen deficiency and oxygen excess composition within the allowable range of the compound are allowed.

酸素を除く各元素量、すなわち、Zr、M、S及びPの量は、全量溶解してICP-OESにより測定することができる。また、酸素量の厳密な測定は困難であることから、酸素を除く元素の化学比から電気的中性として推定される組成比を用いるものとする。 The amount of each element excluding oxygen, that is, the amount of Zr, M, S and P can be completely dissolved and measured by ICP-OES. In addition, since it is difficult to accurately measure the amount of oxygen, the composition ratio estimated as electrically neutral from the chemical ratio of the elements other than oxygen is used.

化合物1に存在する結晶相としては、α-ZrSP12相(ICDDカード番号:04-017-0937又は/及びICDDカード番号:00-038-0489)を挙げることができ、この結晶が主相であること、すなわち、化合物1をX線回折法(XRD、Cu線源)で分析して得られるX線回折パターンにおいて、この結晶に由来するピーク強度が最も高いことが好ましい。つまり、一部に他の結晶相が含まれていてもよい。Examples of the crystal phase present in compound 1 include α-Zr 2 SP 2 O 12 phase (ICDD card number: 04-017-0937 or / and ICDD card number: 00-038-0489), and this crystal can be mentioned. Is the main phase, that is, in the X-ray diffraction pattern obtained by analyzing compound 1 by an X-ray diffraction method (XRD, Cu radiation source), it is preferable that the peak intensity derived from this crystal is the highest. That is, other crystal phases may be contained in a part thereof.

<本化合物2>
以下、本発明の実施形態の他例に係る化合物(「本化合物2」と称する)について詳細に説明する。
<Compound 2>
Hereinafter, the compound according to another example of the embodiment of the present invention (referred to as “the present compound 2”) will be described in detail.

本化合物2は、組成式Zr2.00-b12.00+δ(式中、0≦b<2.00、0.30≦Y≦1.00、Z>2.00、δは電荷中性条件を満たすように決まる値)で表される化合物である。The present compound 2 has a composition formula Zr 2.00-b M b S Y P ZO 12.00 + δ (in the formula, 0 ≦ b <2.00, 0.30 ≦ Y ≦ 1.00, Z > 2). 0.00 and δ are compounds represented by (values determined to satisfy the charge neutrality condition).

本化合物2の組成式において、bがb=0の場合、Zr2.0012.00+δ(式中、0.30≦Y≦1.00、Z>2.00、δは電荷中性条件を満たすように決まる値)で表される化合物となる。他方、bが0<b<2.00の場合は、Zrサイトの一部がMで置換された化合物となる。In the composition formula of the present compound 2, when b is b = 0, Zr 2.00 SY P ZO 12.00 + δ (in the formula, 0.30 ≦ Y ≦ 1.00, Z > 2.00, δ is a compound represented by (a value determined so as to satisfy the charge neutrality condition). On the other hand, when b is 0 <b <2.00, the compound is a compound in which a part of the Zr site is replaced with M.

本化合物2の組成式において、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Cr、W、Moから選択される1種又は2種以上の組み合わせであるのが好ましい。
Zr2.0012.00+δ(式中、0.30≦Y≦1.00、Z>2.00)におけるZrサイトの一部がこれらの元素Mで置換された化合物は、ZrサイトがZrのみからなる当該化合物と同様に、負の熱膨張率を示し、かつ、高絶縁抵抗性を実現することができる。
In the composition formula of the present compound 2, M is preferably one or a combination of two or more selected from Ti, Ce, Sn, Mn, Hf, Ir, Pb, Pd, Cr, W and Mo.
A compound in which a part of the Zr site in Zr 2.00 S Y P ZO 12.00 + δ (in the formula, 0.30 ≤ Y ≤ 1.00, Z > 2.00) is replaced with these elements M. Can exhibit a negative thermal expansion coefficient and realize high insulation resistance, similarly to the compound in which the Zr site is composed of only Zr.

本化合物2の組成式中、M元素の量(原子比)を示す「b」は、0以上かつ2.00未満であることが好ましく、中でも0以上或いは1.50未満、その中でも0以上或いは1.00以下、その中でも0以上或いは0.80以下であるのがさらに好ましい。 In the composition formula of the present compound 2, "b" indicating the amount (atomic ratio) of the M element is preferably 0 or more and less than 2.00, particularly 0 or more or less than 1.50, and among them, 0 or more or It is more preferably 1.00 or less, and more preferably 0 or more or 0.80 or less.

本化合物2の組成式中、S(硫黄)の量(原子比)を示す「Y」は、0.30以上かつ1.00以下であることが好ましく、中でも0.30以上或いは0.80以下、その中でも0.30以上或いは0.50以下であるのがさらに好ましい。 In the composition formula of the present compound 2, "Y" indicating the amount (atomic ratio) of S (sulfur) is preferably 0.30 or more and 1.00 or less, and above all, 0.30 or more or 0.80 or less. Among them, it is more preferably 0.30 or more or 0.50 or less.

さらに、P(リン)の量(原子比)を示す「Z」は、2.00より大きい必要がある。他方、3.50以下であるのが好ましく、その中でも3.00以下、その中でも2.80以下であるのがさらに好ましい。 Further, "Z" indicating the amount (atomic ratio) of P (phosphorus) needs to be larger than 2.00. On the other hand, it is preferably 3.50 or less, more preferably 3.00 or less, and even more preferably 2.80 or less.

また、本化合物2の組成式中の「δ」は、電荷中性条件を満たすように定まる値であり、通常は-2.50以上1.00以下である。中でも-2.00以上或いは0.50以下、その中でも-1.50以上或いは0.00以下、その中でも-1.50以上或いは-0.50以下、その中でも-1.33を超える或いは-0.80未満である場合がある。尚、「電荷中性条件」は完全に中性でなくてもよく、化合物として許容される範囲での酸素欠損や酸素過剰の組成は許容するものとする。 Further, "δ" in the composition formula of the present compound 2 is a value determined so as to satisfy the charge neutrality condition, and is usually -2.50 or more and 1.00 or less. Among them, -2.00 or more or 0.50 or less, among them, -1.50 or more or 0.00 or less, among them, -1.50 or more or -0.50 or less, among them, -1.33 or more or -0. It may be less than .80. The "charge neutral condition" does not have to be completely neutral, and oxygen deficiency and oxygen excess composition within the allowable range of the compound are allowed.

酸素を除く各元素量、すなわち、Zr、M、S及びPの量は、全量溶解してICP-OESにより測定することができる。また、また、酸素量の厳密な測定は困難であることから、酸素を除く元素の化学比から電気的中性として推定される組成比を用いるものとする。 The amount of each element excluding oxygen, that is, the amount of Zr, M, S and P can be completely dissolved and measured by ICP-OES. In addition, since it is difficult to accurately measure the amount of oxygen, a composition ratio estimated as electrically neutral from the chemical ratios of elements other than oxygen shall be used.

化合物2に存在する結晶相としては、α-ZrSP12相(ICDDカード番号:04-017-0937又は/及びICDDカード番号:00-038-0489)を挙げることができ、この結晶が主相であること、すなわち、化合物2をX線回折法(XRD、Cu線源)で分析して得られるX線回折パターンにおいて、この結晶に由来するピーク強度が最も高いこと、が好ましい。つまり、一部に他の結晶相が含まれていてもよい。Examples of the crystal phase present in compound 2 include α-Zr 2 SP 2 O 12 phase (ICDD card number: 04-017-0937 or / and ICDD card number: 00-038-0489), and this crystal can be mentioned. Is the main phase, that is, in the X-ray diffraction pattern obtained by analyzing compound 2 by an X-ray diffraction method (XRD, Cu radiation source), it is preferable that the peak intensity derived from this crystal is the highest. That is, other crystal phases may be contained in a part thereof.

<表面処理>
本化合物1,2はいずれも、表面処理をされたものであってもよい。
本化合物1,2はいずれも、所定の表面処理化合物により表面処理されたものであることにより、絶縁性、耐薬品性が向上し、樹脂に対する濡れ性向上に寄与する。
<Surface treatment>
Both of the present compounds 1 and 2 may be surface-treated.
Since all of the compounds 1 and 2 are surface-treated with a predetermined surface-treated compound, the insulating property and the chemical resistance are improved, which contributes to the improvement of the wettability with respect to the resin.

前記表面処理化合物としては、表面処理剤としてのシランカップリング剤、アルミネートカップリング剤、チタネートカップリング剤、ジルコニウムカップリング剤などの他、有機カルボン酸、有機アミンといった有機化合物、さらには、二酸化ケイ素、酸化アルミニウム、酸化亜鉛、酸化チタンなどの無機化合物のいずれも使用可能である。 Examples of the surface treatment compound include silane coupling agents as surface treatment agents, aluminumate coupling agents, titanate coupling agents, zirconium coupling agents, organic compounds such as organic carboxylic acids and organic amines, and dioxide. Any of the inorganic compounds such as silicon, aluminum oxide, zinc oxide and titanium oxide can be used.

特に、表面処理化合物としてシランカップリング剤を表面処理剤として用いることにより、本発明の化合物を構成する成分の絶縁性の向上、成分溶出防止や、樹脂と混合した場合の濡れ性の向上に対して有意な効果を示す。 In particular, by using a silane coupling agent as a surface treatment agent as a surface treatment compound, the insulating property of the components constituting the compound of the present invention is improved, the component elution is prevented, and the wettability when mixed with a resin is improved. Shows a significant effect.

表面処理剤としての前記シランカップリング剤としては、エポキシ系、アミノ系、ビニル系、メタクリル系、アクリル系、メルカプト系、アルキル系等の各種のシランカップリング剤を用いることができる。シランカップリング剤の具体例としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、8-グリシドキシオクチルトリメトキシシラン、8-グリシドキシオクチルメチルジメトキシシラン、8-グリシドキシオクチルメチルジエトキシシラン、3-アミノプロピルトリメトキシシラン、ビニルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン等を挙げることができる。これらのシランカップリング剤は、単独で用いても、2種以上を併用してもよい。 As the silane coupling agent as the surface treatment agent, various silane coupling agents such as epoxy-based, amino-based, vinyl-based, methacrylic-based, acrylic-based, mercapto-based, and alkyl-based agents can be used. Specific examples of the silane coupling agent include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane. , 8-Glysidoxyoctylmethyldimethoxysilane, 8-glycidoxyoctylmethyldimethoxysilane, 8-glycidoxyoctylmethyldiethoxysilane, 3-aminopropyltrimethoxysilane, vinyltrimethoxysilane, 3-triethoxysilyl -N- (1,3-dimethyl-butylidene) propylamine, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, p-styryltrimethoxy Silane, 3-methacryloxypropylmethyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanate Propyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltri Examples thereof include ethoxysilane, octyltriethoxysilane, and decyltrimethoxysilane. These silane coupling agents may be used alone or in combination of two or more.

表面処理剤としての前記カルボン酸としては、カプロン酸(ヘキサン酸)、カプリル酸(オクタン酸)、カプリン酸(デカン酸)、ラウリン酸(ドデカン酸)、ミリスチン酸(テトラデカン酸)、パルミチン酸(ヘキサデカン酸)、ステアリン酸(オクタデカン酸)、オレイン酸、リノール酸、リノレン酸等を挙げることができる。 Examples of the carboxylic acid as a surface treatment agent include caproic acid (hexanoic acid), caproic acid (octanoic acid), caproic acid (decanoic acid), lauric acid (dodecanoic acid), myristic acid (tetradecanoic acid), and palmitic acid (hexadecanoic acid). Acid), stearic acid (octadecanoic acid), oleic acid, linolic acid, linolenic acid and the like can be mentioned.

表面処理剤としての前記アミンとしては、脂肪族アミン等を挙げることができる。特に炭素数6以上18以下、とりわけ炭素数10以上18以下である脂肪族アミンが好適に使用可能である。具体的には、ヘキシルアミン、オクチルアミン、デシルアミン、ラウリルアミン、オレイルアミン、ステアリルアミンなどを挙げることができる。 Examples of the amine as the surface treatment agent include aliphatic amines. In particular, an aliphatic amine having 6 or more and 18 or less carbon atoms, particularly 10 or more and 18 or less carbon atoms can be preferably used. Specific examples thereof include hexylamine, octylamine, decylamine, laurylamine, oleylamine and stearylamine.

<D50>
本化合物1,2はいずれも、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50が0.05μm以上100μm以下であるのが好ましい。
本化合物1,2のD50が0.05μm以上であれば、例えば樹脂など基材への分散性が良好となることから好ましく、100μm以下であれば、成形体の平滑性が良好になることから好ましい。
かかる観点から、本化合物1,2のD50は0.1μm以上であるのがより好ましく、中でも0.5μm以上、その中でも1μm以上であるのがさらに好ましい。一方、50μm以下であるのがより好ましく、中でも40μm以下、その中でも30μm以下であるのがさらに好ましい。
<D50>
In each of the present compounds 1 and 2, it is preferable that the volume cumulative particle size D50 at the cumulative volume of 50% by volume by the laser diffraction / scattering type particle size distribution measurement method is 0.05 μm or more and 100 μm or less.
If the D50 of the compounds 1 and 2 is 0.05 μm or more, the dispersibility in a substrate such as a resin is good, and if it is 100 μm or less, the smoothness of the molded product is good. preferable.
From this point of view, the D50 of the present compounds 1 and 2 is more preferably 0.1 μm or more, particularly preferably 0.5 μm or more, and more preferably 1 μm or more. On the other hand, it is more preferably 50 μm or less, more preferably 40 μm or less, and further preferably 30 μm or less.

<BET比表面積>
本化合物1,2はいずれも、BET比表面積が1m/g以上50m/g以下であるのが好ましい。
本化合物1,2のBET比表面積が1m/g以上であれば、例えば成形体の平滑性が良好になることから好ましく、50m/g以下であれば、例えば樹脂など基材への分散性が良好となることから好ましい。
かかる観点から、本化合物1,2のBET比表面積は2m/g以上であるのがより好ましく、中でも5m/g以上、その中でも10m/g以上、さらにその中でも15m/g以上であるのがさらに好ましい。一方、45m/g以下であるのがより好ましい。
<BET specific surface area>
It is preferable that the BET specific surface area of each of the compounds 1 and 2 is 1 m 2 / g or more and 50 m 2 / g or less.
When the BET specific surface area of the compounds 1 and 2 is 1 m 2 / g or more, it is preferable because the smoothness of the molded product is good, for example, and when it is 50 m 2 / g or less, it is dispersed in a substrate such as a resin. It is preferable because it has good properties.
From this point of view, the BET specific surface area of the compounds 1 and 2 is more preferably 2 m 2 / g or more, particularly 5 m 2 / g or more, particularly 10 m 2 / g or more, and further 15 m 2 / g or more. It is even more preferable to have it. On the other hand, it is more preferably 45 m 2 / g or less.

<体積抵抗率>
本化合物1,2は、体積抵抗率を2000Ω・cm以上とすることができる。
体積抵抗率は、絶縁性が求められる用途の場合は高い方が望ましい。
かかる観点から、本化合物1,2の体積抵抗率は10000Ω・cm以上であるのがより好ましく、中でも100000Ω・cm以上、その中でも1000000Ω・cm以上であるのがさらに好ましい。
<Volume resistivity>
The volume resistivity of the compounds 1 and 2 can be 2000 Ω · cm or more.
The volume resistivity is preferably high in applications where insulation is required.
From this point of view, the volume resistivity of the present compounds 1 and 2 is more preferably 10,000 Ω · cm or more, particularly preferably 100,000 Ω · cm or more, and more preferably 1,000,000 Ω · cm or more.

<負の熱膨張率>
本化合物1,2は、負の熱膨張率を示す。例えば30℃~100℃の温度領域、30℃~200℃の温度領域、30℃~300℃の温度領域などにおいて負の熱膨張率を示す。
<Negative thermal expansion rate>
The compounds 1 and 2 show a negative thermal expansion rate. For example, it shows a negative thermal expansion rate in a temperature range of 30 ° C. to 100 ° C., a temperature range of 30 ° C. to 200 ° C., a temperature range of 30 ° C. to 300 ° C., and the like.

中でも、本化合物1は、特に30℃~100℃の温度領域において、顕著に優れた負の熱膨張率を示す。具体的には、30℃~100℃に加熱した際、100℃体積が30℃体積に対して0.15%~2.0%収縮することができる。中でも0.15%~1.0%、その中でも0.15%~0.70%、さらにその中でも0.15%~0.45%収縮するのがさらに好ましい。
なお、上記各範囲の下限値は0.15%であるが、下限値は0.20%であるのが好ましく、0.25%であることがさらに好ましい。
Among them, the present compound 1 exhibits a remarkably excellent negative thermal expansion rate, especially in the temperature range of 30 ° C to 100 ° C. Specifically, when heated to 30 ° C. to 100 ° C., the volume at 100 ° C. can shrink by 0.15% to 2.0% with respect to the volume at 30 ° C. Of these, 0.15% to 1.0%, of which 0.15% to 0.70%, and even more preferably 0.15% to 0.45%, are more preferable.
The lower limit of each of the above ranges is 0.15%, but the lower limit is preferably 0.20%, more preferably 0.25%.

他方、本化合物2は、特に30℃~200℃の温度領域及び30℃~300℃の温度領域において、顕著に優れた負の熱膨張率を示す。
具体的には、30℃~200℃に加熱した際、200℃体積が30℃体積に対して1.0%~3.0%収縮することができる。中でも1.0%~2.0%、その中でも1.1%~2.0%、さらにその中でも1.1%~1.5%収縮するのがさらに好ましい。なお、当該各範囲の下限値は1.0%であるが、下限値は1.05%であるのが好ましく、1.1%であることがさらに好ましい。
また、30℃~300℃に加熱した際、300℃体積が30℃体積に対して1.0%~3.0%収縮することができる。中でも1.0%~2.0%、その中でも1.1%~2.0%、さらにその中でも1.1%~1.5%収縮するのがさらに好ましい。
なお、上記各範囲の下限値は1.0%であるが、下限値は1.05%であるのが好ましく、1.1%であることがさらに好ましい。
On the other hand, the present compound 2 exhibits a remarkably excellent negative thermal expansion rate particularly in the temperature range of 30 ° C. to 200 ° C. and the temperature range of 30 ° C. to 300 ° C.
Specifically, when heated to 30 ° C. to 200 ° C., the volume at 200 ° C. can shrink by 1.0% to 3.0% with respect to the volume at 30 ° C. Of these, 1.0% to 2.0%, of which 1.1% to 2.0%, and even more preferably 1.1% to 1.5%, are more preferable. The lower limit of each range is 1.0%, but the lower limit is preferably 1.05%, more preferably 1.1%.
Further, when heated to 30 ° C. to 300 ° C., the volume at 300 ° C. can shrink by 1.0% to 3.0% with respect to the volume at 30 ° C. Of these, 1.0% to 2.0%, of which 1.1% to 2.0%, and even more preferably 1.1% to 1.5%, are more preferable.
The lower limit of each of the above ranges is 1.0%, but the lower limit is preferably 1.05%, more preferably 1.1%.

<製造方法>
次に、本化合物1,2の製造方法について説明する。但し、本化合物1,2の製造方法が次に説明する製造方法に限定される訳ではない。
<Manufacturing method>
Next, a method for producing the present compounds 1 and 2 will be described. However, the production methods of the present compounds 1 and 2 are not limited to the production methods described below.

本化合物1,2の製造方法の一例として、少なくとも、Zr原料と、リン原料と、硫酸と、水と、必要に応じて上記組成式のMの原料(「M原料」と称する)とを含む混合物を水熱処理して水熱処理後混合物を得、前記水熱処理後混合物を固液分離および洗浄して洗浄後混合物を得、前記洗浄後混合物を乾燥させて乾燥後混合物を得、前記乾燥後混合物を300~1000℃の温度で焼成することを特徴とする化合物の製造方法を挙げることができる。
以下、この製造方法について順次説明する。
As an example of the method for producing the compounds 1 and 2, at least a Zr raw material, a phosphorus raw material, sulfuric acid, water, and, if necessary, an M raw material having the above composition formula (referred to as “M raw material”) are included. The mixture is hydrothermally treated to obtain a mixture after hydrothermal treatment, the mixture after hydrothermal separation is solid-liquid separated and washed to obtain a mixture after washing, the mixture after washing is dried to obtain a mixture after drying, and the mixture after drying is obtained. Can be mentioned as a method for producing a compound, which comprises firing at a temperature of 300 to 1000 ° C.
Hereinafter, this manufacturing method will be sequentially described.

Zr原料としては、例えばオキシ塩化ジルコニウム乃至その水和物、塩化ジルコニウム乃至その水和物、オキシ酢酸ジルコニウム乃至その水和物、酢酸ジルコニウム乃至その水和物、硫酸ジルコニウム乃至その水和物、オキシ硝酸ジルコニウム乃至その水和物、硝酸ジルコニウム乃至その水和物、炭酸ジルコニウム乃至その水和物、炭酸ジルコニウムアンモニウム乃至その水和物、炭酸ジルコニウムナトリウム乃至その水和物、炭酸ジルコニウムカリウム乃至その水和物、などを用いることができる。但し、これらに限定するものではない。 Examples of the Zr raw material include zirconium oxychloride or its hydrate, zirconium chloride or its hydrate, zirconium oxyacetate or its hydrate, zirconium acetate or its hydrate, zirconium sulfate or its hydrate, oxynitrite. Zirconium or its hydrate, Zirconium nitrate or its hydrate, Zirconium carbonate or its hydrate, Zirconium ammonium carbonate or its hydrate, Zirconium sodium carbonate or its hydrate, Zirconium potassium or its hydrate, Etc. can be used. However, it is not limited to these.

リン原料としては、リン酸(HPO)やリン酸水素二アンモニウム((NHHPO)、リン酸二水素アンモニウム(NHPO)、リン酸アンモニウム(NH(PO)、ピロリン酸、ポリリン酸を用いることができる。但し、これらに限定するものではない。Phosphorus raw materials include phosphoric acid (H 3 PO 4 ), diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), and ammonium phosphate (NH 4 (NH 4). PO 4 ) 3 ), pyrophosphoric acid, polyphosphoric acid can be used. However, it is not limited to these.

M原料としては、元素Mを含む化合物、例えば元素Mの硫酸塩乃至その溶液、塩化物塩乃至その溶液、硝酸塩、酢酸塩、酸化物、ポリ酸乃至その塩などを挙げることができる。例えば、MがTiである場合、硫酸チタン(IV)溶液(Ti(SO))、塩化チタン(IV)溶液(TiCl)を挙げることができ、MがCeである場合は、硫酸セリウム(Ce(SO))、塩化セリウム(CeCl)を挙げることができ、MがSnである場合は、第一塩化スズ、第二塩化スズ、硫酸スズ、酸化スズ(SnO)を挙げることができ、MがMnである場合は、二酸化マンガン(MnO)を挙げることができ、MがWである場合は、三酸化タングステン(WO)、パラタングステン酸アンモニウム((NH10(H1242))を挙げることができ、MがMoである場合は、三酸化モリブデン(MoO)、七モリブデン酸六アンモニウム((NHMo24)、モリブデン酸二アンモニウム((NHMoO)挙げることができる。但し、これらに限定するものではない。なお、上記化合物は無水物として記載しているが、水和物も含まれる。Examples of the M raw material include compounds containing the element M, for example, a sulfate of the element M or a solution thereof, a chloride salt or a solution thereof, a nitrate, an acetate, an oxide, a polyacid or a salt thereof, and the like. For example, when M is Ti, a titanium (IV) sulfate solution (Ti (SO 4 ) 2 ), a titanium (IV) chloride solution (TiCl 4 ) can be mentioned, and when M is Ce, cerium sulfate can be mentioned. (Ce (SO 4 ) 2 ), cerium chloride (CeCl 3 ) can be mentioned, and when M is Sn, first tin chloride, second tin chloride, tin sulfate, tin oxide (SnO 2 ) can be mentioned. If M is Mn, manganese dioxide (MnO 2 ) can be mentioned, and if M is W, tungsten trioxide (WO 3 ), ammonium paratungstate ((NH 4 ) 10 ) can be mentioned. (H 2 W 12 O 42 )), and when M is Mo, molybdenum trioxide (MoO 3 ), hexaammonium heptamolybdate ((NH 4 ) 6 Mo 7 O 24 ), molybdenum acid. Diammonese ((NH 4 ) 2 MoO 4 ) can be mentioned. However, it is not limited to these. Although the above compounds are described as anhydrous, hydrates are also included.

必要に応じてS(硫黄)原料として、例えば硫酸アンモニウム、硫黄粉末などを配合することもできる。 If necessary, ammonium sulfate, sulfur powder, or the like can be blended as the S (sulfur) raw material.

Zr原料と、リン酸と、必要に応じてM原料と、硫酸と、水とを混合し、撹拌して得られた水溶液(混合物)を水熱処理して水熱処理後混合物を得るようにすればよい。
この際、リン原料(P原料)とZr原料は、P/Zrモル比を目的とする化合物と同一とするか、またはリン原料を多めにしてもよい。
The Zr raw material, phosphoric acid, M raw material, sulfuric acid, and water, if necessary, are mixed, and the aqueous solution (mixture) obtained by stirring is hydrothermally treated to obtain a mixture after hydrothermal treatment. good.
At this time, the phosphorus raw material (P raw material) and the Zr raw material may be the same as the compound for which the P / Zr molar ratio is intended, or the phosphorus raw material may be increased.

水熱処理の方法としては、例えば、水溶液(混合物)を密封可能な容器に入れて、100~230℃に加熱して圧力が掛かった状態で3時間~3日間静置するようにして水熱処理すればよい。 As a method of hydrothermal treatment, for example, an aqueous solution (mixture) is placed in a sealable container, heated to 100 to 230 ° C., and allowed to stand for 3 hours to 3 days under pressure. Just do it.

次に、前記水熱処理後混合物を固液分離及び洗浄して洗浄後混合物を得るようにすればよい。すなわち、固液分離後、さらに水を加えて固液分離する方法または通水洗浄などの方法により洗浄すればよい。この際、必要に応じて洗浄を繰り返すのが好ましい。
この洗浄によって、余分なS成分を洗浄することができる。
Next, the mixture after hydrothermal treatment may be solid-liquid separated and washed to obtain a mixture after washing. That is, after the solid-liquid separation, water may be further added to separate the solid-liquid, or the washing may be performed by a method such as water flow washing. At this time, it is preferable to repeat washing as necessary.
By this washing, the excess S component can be washed.

次に、前記洗浄後混合物を乾燥させて乾燥後混合物を得るようにすればよい。
この際、例えば、前記洗浄後混合物を、その品温が60~150℃となるように加熱して乾燥させればよい。但し、乾燥方法は適宜採用すればよい。
なお、例えばアズワン製ETTAS定温乾燥器などのボックス型乾燥機を使用した場合、乾燥装置の設定温度と品温はほぼ同じ温度になることを確認している。
Next, the post-washing mixture may be dried to obtain a post-drying mixture.
At this time, for example, the washed mixture may be heated and dried so that the product temperature is 60 to 150 ° C. However, the drying method may be appropriately adopted.
It has been confirmed that when a box-type dryer such as an AS ONE ETTAS constant temperature dryer is used, the set temperature of the dryer and the product temperature are almost the same.

次に、前記乾燥後混合物を焼成して本化合物を製造すればよい。
この際、前記乾燥後混合物の焼成は、その品温が300~1000℃、中でも400℃以上或いは1000℃以下、その中でも400℃以上或いは800℃以下を1~24時間保持するように焼成すればよい。
なお、例えば光洋サーモシステム製KBF1150℃シリーズの電気炉などのボックス型電気炉を使用した場合、焼成装置の設定温度すなわち炉内温度と品温はほぼ同じ温度になることを確認している。
Next, after drying, the mixture may be calcined to produce the present compound.
At this time, the post-drying mixture may be fired so that the product temperature is maintained at 300 to 1000 ° C., particularly 400 ° C. or higher or 1000 ° C. or lower, and particularly 400 ° C. or higher or 800 ° C. or lower for 1 to 24 hours. good.
For example, when a box-type electric furnace such as the KBF1150 ° C series electric furnace manufactured by Koyo Thermo System is used, it has been confirmed that the set temperature of the firing device, that is, the temperature inside the furnace and the product temperature are almost the same.

また、表面処理を実施する場合には、前記焼成後必要に応じて、解砕または粉砕を実施した後、表面処理を実施してもよい。
当該表面処理は、前述の表面処理化合物を用いて表面処理すればよい。
当該表面処理の具体的方法は、本化合物1,2と表面処理化合物とを乾式混合してもよいし、湿式混合してもよい。
湿式混合は、水、水と水溶性有機溶媒を水への溶解度の範囲内で混ぜた混合溶媒、又は、有機溶媒などを用いて実施することができる。
Further, when the surface treatment is carried out, the surface treatment may be carried out after crushing or crushing as necessary after the firing.
The surface treatment may be performed by using the above-mentioned surface treatment compound.
As a specific method for the surface treatment, the compounds 1 and 2 and the surface treatment compound may be dry-mixed or wet-mixed.
Wet mixing can be carried out using water, a mixed solvent in which water and a water-soluble organic solvent are mixed within the range of solubility in water, an organic solvent, or the like.

但し、本化合物1,2の製造方法は、上記製造方法に限定するものではない。 However, the production methods of the present compounds 1 and 2 are not limited to the above production methods.

<用途>
本化合物1,2は、負熱膨張材料として、正の熱膨張率を有する材料(正熱膨張材料)と混合することで、換言すると、正熱膨張材料中に負熱膨張材料を分散させることで、熱膨張率が制御された複合材料を形成することができる。
<Use>
The present compounds 1 and 2 are mixed with a material having a positive thermal expansion coefficient (positive thermal expansion material) as a negative thermal expansion material, in other words, the negative thermal expansion material is dispersed in the positive thermal expansion material. Therefore, it is possible to form a composite material having a controlled thermal expansion coefficient.

正熱膨張材料としては、例えば樹脂材料、金属材料、セラミックス材料を挙げることができる。 Examples of the positive thermal expansion material include a resin material, a metal material, and a ceramic material.

<語句の説明>
本明細書において「α~β」(α,βは任意の数字)と表現する場合、特にことわらない限り「α以上β以下」の意と共に、「好ましくはαより大きい」或いは「好ましくはβより小さい」の意も包含する。
また、「α以上」(αは任意の数字)或いは「β以下」(βは任意の数字)と表現した場合、「αより大きいことが好ましい」或いは「β未満であることが好ましい」旨の意図も包含する。
<Explanation of words>
When expressed as "α to β" (α and β are arbitrary numbers) in the present specification, they mean "α or more and β or less" and are "preferably larger than α" or "preferably β". It also includes the meaning of "smaller".
Further, when expressed as "α or more" (α is an arbitrary number) or "β or less" (β is an arbitrary number), it means that "greater than α is preferable" or "less than β is preferable". Including intention.

本発明は、以下の実施例により更に説明する。但し、以下の実施例はいかなる方法でも本発明を限定することを意図するものではない。 The present invention will be further described with reference to the following examples. However, the following examples are not intended to limit the present invention in any way.

<実施例1>
ZrClO・8HOとリン酸(HPO)とを、それぞれ0.8mol/Lになるように蒸留水に溶解させた後混合し、続いて、これらの水溶液各20mlと6mlの98%HSOとを混合し、90分間スターラーを用いて攪拌した。
次に、攪拌した後の水溶液(混合物)を、テフロン(登録商標)製の密閉容器に注ぎ、耐圧ステンレス製外筒にセットした。そして、この外筒にセットした容器を熱風循環オーブンに入れて加熱し、130℃で12時間、その状態を保持して水熱処理を行った。
水熱処理を行った後、固液分離、上澄み液の除去、さらに水を加えて固液分離を繰り返す洗浄を行った後、蒸発皿に流し込み、固形分を雰囲気温度として110℃を設定した熱風乾燥機で加熱して乾燥させた。
乾燥した粉末を電気炉に入れて、500℃(品温)を4時間保持するように焼成して化合物(サンプル)を得た。
<Example 1>
ZrCl 2 O ・ 8H 2 O and phosphoric acid (H 3 PO 4 ) were dissolved in distilled water to 0.8 mol / L and then mixed, and then 20 ml and 6 ml of each of these aqueous solutions were mixed. 98% H 2 SO 4 was mixed and stirred with a stirrer for 90 minutes.
Next, the stirred aqueous solution (mixture) was poured into a closed container made of Teflon (registered trademark) and set in a pressure-resistant stainless steel outer cylinder. Then, the container set in this outer cylinder was placed in a hot air circulation oven and heated, and the state was maintained at 130 ° C. for 12 hours for hydroheat treatment.
After performing hydrothermal treatment, solid-liquid separation, removal of supernatant liquid, and further washing by adding water and repeating solid-liquid separation are performed, then poured into an evaporating dish and dried with hot air at an ambient temperature of 110 ° C. It was heated by a machine and dried.
The dried powder was placed in an electric furnace and calcined at 500 ° C. (product temperature) for 4 hours to obtain a compound (sample).

<実施例2>
ZrClO・8HOとリン酸(HPO)とを、それぞれ0.8mol/Lになるように蒸留水に溶解させた後混合し、続いて、これらの水溶液各20mlと4.5mlの98%HSOとを混合し、90分間スターラーを用いて攪拌した。
次に、攪拌した後の水溶液(混合物)を、テフロン(登録商標)製の密閉容器に注ぎ、耐圧ステンレス製外筒にセットした。そして、この外筒にセットした容器を熱風循環オーブンに入れて加熱し、130℃で12時間、その状態を保持して水熱処理を行った。
水熱処理を行った後、固液分離、上澄み液の除去、さらに水を加えて固液分離を繰り返す洗浄を行った後、蒸発皿に流し込み、固形分を110℃の熱風乾燥機で加熱して乾燥させた。
乾燥した粉末を電気炉に入れて、500℃(品温)を4時間保持するように焼成して化合物(サンプル)を得た。
<Example 2>
ZrCl 2 O ・ 8H 2 O and phosphoric acid (H 3 PO 4 ) were dissolved in distilled water to 0.8 mol / L and then mixed, and then 20 ml and 4. 5 ml of 98% H 2 SO 4 was mixed and stirred with a stirrer for 90 minutes.
Next, the stirred aqueous solution (mixture) was poured into a closed container made of Teflon (registered trademark) and set in a pressure-resistant stainless steel outer cylinder. Then, the container set in this outer cylinder was placed in a hot air circulation oven and heated, and the state was maintained at 130 ° C. for 12 hours for hydroheat treatment.
After performing hydrothermal treatment, solid-liquid separation, removal of supernatant liquid, and further washing by adding water and repeating solid-liquid separation are performed, then poured into an evaporating dish and the solid content is heated with a hot air dryer at 110 ° C. It was dried.
The dried powder was placed in an electric furnace and calcined at 500 ° C. (product temperature) for 4 hours to obtain a compound (sample).

<参考例1>
ZrClO・8HOとNHPOとを、それぞれ0.8mol/Lになるように蒸留水に溶解させ、続いて、これらの水溶液各20mlと6mlの98%HSOとを混合し、90分間スターラーを用いて攪拌した。
その後、攪拌した後の水溶液(混合物)を、テフロン(登録商標)製の密閉容器に注ぎ、耐圧ステンレス製外筒にセットした。そして、この外筒にセットした容器を熱風循環オーブンに入れて加熱し、180℃で2日間、その状態を保持して水熱処理を行った。
水熱処理後、取り出したテフロン(登録商標)容器内には白い沈殿物が生成されていた。この沈殿物を含んだ溶液を蒸発皿に流し込み、約100℃のヒータ上で加熱して余分な水分を蒸発させた。蒸発皿ごと300℃の電気炉で12時間更に乾燥させた。その後、300℃(品温)で乾燥したサンプルを、さらに電気炉を用いて500℃(品温)で4時間焼成して化合物(サンプル)を得た。
<Reference example 1>
ZrCl 2 O ・ 8H 2 O and NH 4 H 2 PO 4 were dissolved in distilled water to 0.8 mol / L, respectively, followed by 20 ml and 6 ml of these aqueous solutions, respectively, 98% H 2 SO 4 Was mixed and stirred using a stirrer for 90 minutes.
Then, the stirred aqueous solution (mixture) was poured into a closed container made of Teflon (registered trademark) and set in a pressure-resistant stainless steel outer cylinder. Then, the container set in this outer cylinder was placed in a hot air circulation oven and heated, and the state was maintained at 180 ° C. for 2 days for hydroheat treatment.
After the hydrothermal treatment, a white precipitate was formed in the Teflon (registered trademark) container taken out. The solution containing this precipitate was poured into an evaporating dish and heated on a heater at about 100 ° C. to evaporate excess water. The evaporating dish was further dried in an electric furnace at 300 ° C. for 12 hours. Then, the sample dried at 300 ° C. (product temperature) was further calcined at 500 ° C. (product temperature) for 4 hours using an electric furnace to obtain a compound (sample).

<参考例2>
焼成温度を700℃(品温)とした以外、参考例1と同様に化合物(サンプル)を得た。
<Reference example 2>
A compound (sample) was obtained in the same manner as in Reference Example 1 except that the firing temperature was set to 700 ° C. (product temperature).

<実施例3>
ZrClO・8HOを0.8mol/Lに調製した水溶液20mlと、リン酸二水素アンモニウム(NHPO)を1.1mol/Lに調製した水溶液20mlとを混合し、続いて、この水溶液に6mlの98%HSOとを混合し、90分間スターラーを用いて攪拌した。
次に、攪拌した後の水溶液(混合物)を、テフロン(登録商標)製の密閉容器に注ぎ、耐圧ステンレス製外筒にセットした。そして、この外筒にセットした容器を熱風循環オーブンに入れて加熱し、130℃で12時間、その状態を保持して水熱処理を行った。
水熱処理を行った後、固液分離、上澄み液の除去、さらに水を加えて固液分離を繰り返す洗浄を行った後、蒸発皿に流し込み、固形分を110℃の熱風乾燥機で加熱して乾燥させた。
乾燥した粉末を電気炉に入れて、500℃(品温)を4時間保持するように焼成して化合物(サンプル)を得た。
<Example 3>
20 ml of an aqueous solution prepared with ZrCl 2O8H2O at 0.8 mol / L and 20 ml of an aqueous solution prepared with ammonium dihydrogen phosphate (NH 4H 2 PO 4 ) at 1.1 mol / L were mixed, followed by Then, 6 ml of 98% H 2 SO was mixed with this aqueous solution, and the mixture was stirred with a stirrer for 90 minutes.
Next, the stirred aqueous solution (mixture) was poured into a closed container made of Teflon (registered trademark) and set in a pressure-resistant stainless steel outer cylinder. Then, the container set in this outer cylinder was placed in a hot air circulation oven and heated, and the state was maintained at 130 ° C. for 12 hours for hydroheat treatment.
After performing hydrothermal treatment, solid-liquid separation, removal of supernatant liquid, and further washing by adding water and repeating solid-liquid separation are performed, then poured into an evaporating dish and the solid content is heated with a hot air dryer at 110 ° C. It was dried.
The dried powder was placed in an electric furnace and calcined at 500 ° C. (product temperature) for 4 hours to obtain a compound (sample).

<実施例4>
ZrClO・8HOを0.8mol/Lに調製した水溶液20mlと、リン酸二水素アンモニウム(NHPO)を0.9mol/Lに調製した水溶液20mlとを混合し、続いて、この水溶液に6mlの98%HSOを混合し、90分間スターラーを用いて攪拌した。
次に、攪拌した後の水溶液(混合物)を、テフロン(登録商標)製の密閉容器に注ぎ、耐圧ステンレス製外筒にセットした。そして、この外筒にセットした容器を熱風循環オーブンに入れて加熱し、130℃で12時間、その状態を保持して水熱処理を行った。
水熱処理を行った後、固液分離、上澄み液の除去、さらに水を加えて固液分離を繰り返す洗浄を行った後、蒸発皿に流し込み、固形分を110℃の熱風乾燥機で加熱して乾燥させた。
乾燥した粉末を電気炉に入れて、500℃(品温)を4時間保持するように焼成して化合物(サンプル)を得た。
<Example 4>
20 ml of an aqueous solution prepared with ZrCl 2O8H2O at 0.8 mol / L and 20 ml of an aqueous solution prepared with ammonium dihydrogen phosphate ( NH 4H 2 PO 4 ) at 0.9 mol / L were mixed, followed by Then, 6 ml of 98% H 2 SO 4 was mixed with this aqueous solution, and the mixture was stirred with a stirrer for 90 minutes.
Next, the stirred aqueous solution (mixture) was poured into a closed container made of Teflon (registered trademark) and set in a pressure-resistant stainless steel outer cylinder. Then, the container set in this outer cylinder was placed in a hot air circulation oven and heated, and the state was maintained at 130 ° C. for 12 hours for hydroheat treatment.
After performing hydrothermal treatment, solid-liquid separation, removal of supernatant liquid, and further washing by adding water and repeating solid-liquid separation are performed, then poured into an evaporating dish and the solid content is heated with a hot air dryer at 110 ° C. It was dried.
The dried powder was placed in an electric furnace and calcined at 500 ° C. (product temperature) for 4 hours to obtain a compound (sample).

<実施例5>
実施例1と同じ手順により得られた化合物(サンプル)5gに対して、表面処理化合物として、シランカップリング剤3-イソシアネートプロピルトリエトキシシラン0.21gを加え、ミキサー(大阪ケミカル製フォースミルFM-1)で2分間混合した後、140℃1時間の条件で熱処理して化合物(サンプル)を得た。
<Example 5>
To 5 g of the compound (sample) obtained by the same procedure as in Example 1, 0.21 g of the silane coupling agent 3-isocyanatepropyltriethoxysilane was added as a surface treatment compound, and a mixer (Osaka Chemical Force Mill FM-) was added. After mixing in 1) for 2 minutes, heat treatment was performed under the conditions of 140 ° C. for 1 hour to obtain a compound (sample).

<実施例6>
実施例3と同じ手順により得られた化合物(サンプル)5gに対して、表面処理化合物として、シランカップリング剤としての3-グリシドキシプロピルトリメトキシシランを0.20g加え、ミキサーで2分間混合した後、140℃1時間の条件で熱処理して化合物(サンプル)を得た。
<Example 6>
To 5 g of the compound (sample) obtained by the same procedure as in Example 3, 0.20 g of 3-glycidoxypropyltrimethoxysilane as a silane coupling agent was added as a surface treatment compound, and the mixture was mixed with a mixer for 2 minutes. Then, heat treatment was performed at 140 ° C. for 1 hour to obtain a compound (sample).

<実施例7>
実施例3と同じ手順より得られた化合物(サンプル)5gに対して、表面処理化合物として、シランカップリング剤としてのヘキシルトリメトキシシランを0.19g加え、ミキサー4で2分間混合した後、140℃1時間の条件で熱処理して化合物(サンプル)を得た。
<Example 7>
To 5 g of the compound (sample) obtained from the same procedure as in Example 3, 0.19 g of hexyltrimethoxysilane as a silane coupling agent was added as a surface treatment compound, mixed with a mixer 4 for 2 minutes, and then 140. A compound (sample) was obtained by heat treatment under the condition of ° C. for 1 hour.

<実施例8>
ZrClO・8HOを0.72mol/Lに調製した水溶液20mlに、30%硫酸チタン溶液1.28gを添加して混合し、そこへリン酸二水素アンモニウム(NHPO)を0.9mol/Lに調製した水溶液20mlを混合し、続いて、この水溶液に6mlの98%HSOを混合し、90分間スターラーを用いて攪拌した。
次に、攪拌した後の水溶液(混合物)を、テフロン(登録商標)製の密閉容器に注ぎ、耐圧ステンレス製外筒にセットした。そして、この外筒にセットした容器を熱風循環オーブンに入れて加熱し、130℃で12時間、その状態を保持して水熱処理を行った。
水熱処理を行った後、固液分離、上澄み液の除去、さらに水を加えて固液分離を繰り返す洗浄を行った後、蒸発皿に流し込み、固形分を110℃の熱風乾燥機で加熱して乾燥させた。
乾燥した粉末を電気炉に入れて、500℃(品温)を4時間保持するように焼成して化合物(サンプル)を得た。
<Example 8>
1.28 g of a 30% titanium sulfate solution was added to 20 ml of an aqueous solution prepared to 0.72 mol / L of ZrCl 2 O / 8H 2 O and mixed, and then ammonium dihydrogen phosphate (NH 4H 2 PO 4 ) was added thereto. 20 ml of an aqueous solution prepared at 0.9 mol / L was mixed, and then 6 ml of 98% H 2 SO 4 was mixed with this aqueous solution, and the mixture was stirred with a stirrer for 90 minutes.
Next, the stirred aqueous solution (mixture) was poured into a closed container made of Teflon (registered trademark) and set in a pressure-resistant stainless steel outer cylinder. Then, the container set in this outer cylinder was placed in a hot air circulation oven and heated, and the state was maintained at 130 ° C. for 12 hours for hydroheat treatment.
After performing hydrothermal treatment, solid-liquid separation, removal of supernatant liquid, and further washing by adding water and repeating solid-liquid separation are performed, then poured into an evaporating dish and the solid content is heated with a hot air dryer at 110 ° C. It was dried.
The dried powder was placed in an electric furnace and calcined at 500 ° C. (product temperature) for 4 hours to obtain a compound (sample).

<実施例9>
ZrClO・8HOを0.64mol/Lに調製した水溶液20mlに、30%硫酸チタン溶液2.56gを添加して混合し、そこへリン酸二水素アンモニウム(NHPO)を0.9mol/Lに調製した水溶液20mlを混合し、続いて、この水溶液に6mlの98%HSOを混合し、90分間スターラーを用いて攪拌した。
次に、攪拌した後の水溶液(混合物)を、テフロン(登録商標)製の密閉容器に注ぎ、耐圧ステンレス製外筒にセットした。そして、この外筒にセットした容器を熱風循環オーブンに入れて加熱し、130℃で12時間、その状態を保持して水熱処理を行った。
水熱処理を行った後、固液分離、上澄み液の除去、さらに水を加えて固液分離を繰り返す洗浄を行った後、蒸発皿に流し込み、固形分を110℃の熱風乾燥機で加熱して乾燥させた。
乾燥した粉末を電気炉に入れて、500℃(品温)を4時間保持するように焼成して化合物(サンプル)を得た。
<Example 9>
Add 2.56 g of a 30% titanium sulfate solution to 20 ml of an aqueous solution prepared at 0.64 mol / L of ZrCl 2 O / 8H 2 O and mix them, and then mix them with ammonium dihydrogen phosphate (NH 4H 2 PO 4 ). 20 ml of an aqueous solution prepared at 0.9 mol / L was mixed, and then 6 ml of 98% H 2 SO 4 was mixed with this aqueous solution, and the mixture was stirred with a stirrer for 90 minutes.
Next, the stirred aqueous solution (mixture) was poured into a closed container made of Teflon (registered trademark) and set in a pressure-resistant stainless steel outer cylinder. Then, the container set in this outer cylinder was placed in a hot air circulation oven and heated, and the state was maintained at 130 ° C. for 12 hours for hydroheat treatment.
After performing hydrothermal treatment, solid-liquid separation, removal of supernatant liquid, and further washing by adding water and repeating solid-liquid separation are performed, then poured into an evaporating dish and the solid content is heated with a hot air dryer at 110 ° C. It was dried.
The dried powder was placed in an electric furnace and calcined at 500 ° C. (product temperature) for 4 hours to obtain a compound (sample).

<実施例10>
ZrClO・8HOを0.72mol/Lに調製した水溶液20mlに、CeCl・7HOを0.61g添加して混合し、そこへリン酸二水素アンモニウム(NHPO)を0.9mol/Lに調製した水溶液20mlを混合し、続いて、この水溶液に6mlの98%HSOを混合し、90分間スターラーを用いて攪拌した。
次に、攪拌した後の水溶液(混合物)を、テフロン(登録商標)製の密閉容器に注ぎ、耐圧ステンレス製外筒にセットした。そして、この外筒にセットした容器を熱風循環オーブンに入れて加熱し、130℃で12時間、その状態を保持して水熱処理を行った。
水熱処理を行った後、固液分離、上澄み液の除去、さらに水を加えて固液分離を繰り返す洗浄を行った後、蒸発皿に流し込み、固形分を110℃の熱風乾燥機で加熱して乾燥させた。
乾燥した粉末を電気炉に入れて、500℃(品温)を4時間保持するように焼成して化合物(サンプル)を得た。
<Example 10>
Add 0.61 g of CeCl 3.7H 2 O to 20 ml of an aqueous solution prepared to 0.72 mol / L of ZrCl 2 O / 8H 2 O and mix them, and then mix them with ammonium dihydrogen phosphate ( NH 4H 2 PO 4 ). ) Was mixed with 20 ml of an aqueous solution prepared at 0.9 mol / L, and then 6 ml of 98% H 2 SO 4 was mixed with this aqueous solution, and the mixture was stirred with a stirrer for 90 minutes.
Next, the stirred aqueous solution (mixture) was poured into a closed container made of Teflon (registered trademark) and set in a pressure-resistant stainless steel outer cylinder. Then, the container set in this outer cylinder was placed in a hot air circulation oven and heated, and the state was maintained at 130 ° C. for 12 hours for hydroheat treatment.
After performing hydrothermal treatment, solid-liquid separation, removal of supernatant liquid, and further washing by adding water and repeating solid-liquid separation are performed, then poured into an evaporating dish and the solid content is heated with a hot air dryer at 110 ° C. It was dried.
The dried powder was placed in an electric furnace and calcined at 500 ° C. (product temperature) for 4 hours to obtain a compound (sample).

<実施例11>
ZrClO・8HOを0.64mol/Lに調製した水溶液20mlに、CeCl・7H2Oを1.22g添加して混合し、そこへリン酸二水素アンモニウム(NHPO)を0.9mol/Lに調製した水溶液20mlを混合し、続いて、この水溶液に6mlの98%HSOを混合し、90分間スターラーを用いて攪拌した。
次に、攪拌した後の水溶液(混合物)を、テフロン(登録商標)製の密閉容器に注ぎ、耐圧ステンレス製外筒にセットした。そして、この外筒にセットした容器を熱風循環オーブンに入れて加熱し、130℃で12時間、その状態を保持して水熱処理を行った。
水熱処理を行った後、固液分離、上澄み液の除去、さらに水を加えて固液分離を繰り返す洗浄を行った後、蒸発皿に流し込み、固形分を110℃の熱風乾燥機で加熱して乾燥させた。
乾燥した粉末を電気炉に入れて、500℃(品温)を4時間保持するように焼成して化合物(サンプル)を得た。
<Example 11>
1.22 g of CeCl 3.7H2O was added to 20 ml of an aqueous solution prepared to prepare ZrCl 2O / 8H2O to 0.64 mol / L and mixed, and ammonium dihydrogen phosphate (NH 4H 2 PO 4 ) was added thereto. 20 ml of an aqueous solution prepared to 0.9 mol / L was mixed, and then 6 ml of 98% H 2 SO 4 was mixed with this aqueous solution, and the mixture was stirred with a stirrer for 90 minutes.
Next, the stirred aqueous solution (mixture) was poured into a closed container made of Teflon (registered trademark) and set in a pressure-resistant stainless steel outer cylinder. Then, the container set in this outer cylinder was placed in a hot air circulation oven and heated, and the state was maintained at 130 ° C. for 12 hours for hydroheat treatment.
After performing hydrothermal treatment, solid-liquid separation, removal of supernatant liquid, and further washing by adding water and repeating solid-liquid separation are performed, then poured into an evaporating dish and the solid content is heated with a hot air dryer at 110 ° C. It was dried.
The dried powder was placed in an electric furnace and calcined at 500 ° C. (product temperature) for 4 hours to obtain a compound (sample).

<実施例12>
リン酸二水素アンモニウム(NHPO)を0.9mol/Lに調製した水溶液20mlにタングステン酸アンモニウムパラ5水和物1.57gを添加し、これを、ZrClO・8HOを0.72mol/Lに調製した水溶液20mlに添加混合し、続いて、この水溶液に6mlの98%HSOを混合し、90分間スターラーを用いて攪拌した。
次に、攪拌した後の水溶液(混合物)を、テフロン(登録商標)製の密閉容器に注ぎ、耐圧ステンレス製外筒にセットした。そして、この外筒にセットした容器を熱風循環オーブンに入れて加熱し、130℃で12時間、その状態を保持して水熱処理を行った。
水熱処理を行った後、固液分離、上澄み液の除去、さらに水を加えて固液分離を繰り返す洗浄を行った後、蒸発皿に流し込み、固形分を110℃の雰囲気の熱風乾燥機で加熱して乾燥させた。
乾燥した粉末を電気炉に入れて、500℃(品温)を4時間保持するように焼成して化合物(サンプル)を得た。
<Example 12>
To 20 ml of an aqueous solution prepared to prepare 0.9 mol / L of ammonium dihydrogen phosphate (NH 4H 2 PO 4 ), 1.57 g of ammonium paratungstate parapentahydrate was added, and this was added to ZrCl 2O ・ 8H 2 O. Was added to and mixed with 20 ml of an aqueous solution prepared at 0.72 mol / L, and then 6 ml of 98% H 2 SO 4 was mixed with this aqueous solution and stirred with a stirrer for 90 minutes.
Next, the stirred aqueous solution (mixture) was poured into a closed container made of Teflon (registered trademark) and set in a pressure-resistant stainless steel outer cylinder. Then, the container set in this outer cylinder was placed in a hot air circulation oven and heated, and the state was maintained at 130 ° C. for 12 hours for hydroheat treatment.
After performing hydrothermal treatment, solid-liquid separation, removal of supernatant liquid, and further washing by adding water and repeating solid-liquid separation are performed, then poured into an evaporating dish and the solid content is heated by a hot air dryer in an atmosphere of 110 ° C. And dried.
The dried powder was placed in an electric furnace and calcined at 500 ° C. (product temperature) for 4 hours to obtain a compound (sample).

<実施例13>
リン酸二水素アンモニウム(NHPO)を0.9mol/Lに調製した水溶液20mlに七モリブデン酸六アンモニウム4水和物0.90gを添加し、これを、ZrClO・8HOを0.72mol/Lに調製した水溶液20mlに添加混合し、続いて、この水溶液に6mlの98%HSOを混合し、90分間スターラーを用いて攪拌した。
次に、攪拌した後の水溶液(混合物)を、テフロン(登録商標)製の密閉容器に注ぎ、耐圧ステンレス製外筒にセットした。そして、この外筒にセットした容器を熱風循環オーブンに入れて加熱し、130℃で12時間、その状態を保持して水熱処理を行った。
水熱処理を行った後、固液分離、上澄み液の除去、さらに水を加えて固液分離を繰り返す洗浄を行った後、蒸発皿に流し込み、固形分を110℃の熱風乾燥機で加熱して乾燥させた。
乾燥した粉末を電気炉に入れて、500℃(品温)を4時間保持するように焼成して化合物(サンプル)を得た。
<Example 13>
To 20 ml of an aqueous solution prepared to prepare 0.9 mol / L of ammonium dihydrogen dihydrogen phosphate (NH 4H 2 PO 4 ), 0.90 g of hexaammonium hexaammonium tetrahydrate tetrahydrate was added, and this was added to ZrCl 2 O ・ 8H 2 . O was added and mixed with 20 ml of an aqueous solution prepared at 0.72 mol / L, and then 6 ml of 98% H 2 SO 4 was mixed with this aqueous solution and stirred with a stirrer for 90 minutes.
Next, the stirred aqueous solution (mixture) was poured into a closed container made of Teflon (registered trademark) and set in a pressure-resistant stainless steel outer cylinder. Then, the container set in this outer cylinder was placed in a hot air circulation oven and heated, and the state was maintained at 130 ° C. for 12 hours for hydroheat treatment.
After performing hydrothermal treatment, solid-liquid separation, removal of supernatant liquid, and further washing by adding water and repeating solid-liquid separation are performed, then poured into an evaporating dish and the solid content is heated with a hot air dryer at 110 ° C. It was dried.
The dried powder was placed in an electric furnace and calcined at 500 ° C. (product temperature) for 4 hours to obtain a compound (sample).

(組成分析)
作製した化合物(サンプル)の組成(原子比)を、ICP-OES(Inductivity Coupled Plasma Optical Emission Spectrometry)を用いて分析した。
(Composition analysis)
The composition (atomic ratio) of the prepared compound (sample) was analyzed using ICP-OES (Inductivity Coupled Plasma Optical Emission Spectrometry).

=ICP-OES=
・使用したICP-OES装置:700シリーズ、ICP-OES(アジレント・テクノロジー株式会社)
= ICP-OES =
-ICP-OES equipment used: 700 series, ICP-OES (Agilent Technologies Co., Ltd.)

(D50)
作製した化合物(サンプル)を、純水中に入れて超音波を照射して(40W、3分間)分散させた後、粒度分布測定装置(マイクロトラック・ベル株式会社製「マイクロトラック(商品名)MT-3300EXII(型番)」)により、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50を測定した。
(D50)
The prepared compound (sample) was placed in pure water and irradiated with ultrasonic waves (40 W, 3 minutes) to disperse it, and then a particle size distribution measuring device (Microtrack (trade name) manufactured by Microtrac Bell Co., Ltd.). MT-3300EXII (model number) ”) was used to measure the volume cumulative particle size D50 at a cumulative volume of 50% by volume by a laser diffraction / scattering type particle size distribution measurement method.

(BET比表面積)
比表面積測定装置(株式会社マウンテック製「Macsorb(HM model-1201)」)を用いて、JIS R 1626:1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2流動法の(3.5)一点法」に準拠して、作製した化合物(サンプル)のBET比表面積(SSA(BET))の測定を行った。その際、キャリアガスであるヘリウムと、吸着質ガスである窒素の混合ガスを使用した。また脱気条件は300℃×10分間とした。
(BET specific surface area)
Using a specific surface area measuring device (Mt. The BET specific surface area (SSA (BET)) of the prepared compound (sample) was measured in accordance with "(3.5) One-point method of the flow method". At that time, a mixed gas of helium as a carrier gas and nitrogen as an adsorbent gas was used. The degassing condition was 300 ° C. for 10 minutes.

(体積抵抗率)
作製した化合物(サンプル)を、三菱ケミカルアナリテック社製粉体抵抗測定システムMCP-PD51型を用いて圧力63MPaで圧縮し、四端子法に従い体積抵抗率を測定した。この装置の測定上限を超えた試料は、別途圧力63MPaで圧縮したペレットを作製し、三菱ケミカルアナリテック社製高抵抗計ハイレスタUX/MCP―HT800を用いて測定した。
(Volume resistivity)
The prepared compound (sample) was compressed at a pressure of 63 MPa using a powder resistance measuring system MCP-PD51 manufactured by Mitsubishi Chemical Analytech Co., Ltd., and the volume resistivity was measured according to the four-terminal method. For the sample exceeding the measurement upper limit of this device, pellets compressed at a pressure of 63 MPa were separately prepared and measured using a high resistance meter Hiresta UX / MCP-HT800 manufactured by Mitsubishi Chemical Analytech.

(熱膨張率)
作製した化合物(サンプル)の格子体積の膨張率を次の方法を用いて測定した。
下記の粉末X線回折装置に多目的試料高温装置ユニットを取り付け、30℃、100℃においてX線回折パターンを測定した。測定は目標温度に到達後10分間静置後に開始した。
得られたX線回折パターンと解析ソフトウェア(PDXL2)を用いて結晶構造を精密化し、各温度における格子定数を算出した。格子定数から格子体積を算出した。
表には、30~100℃の格子体積膨張率、すなわち、30℃時の格子体積(「30℃体積」と称する)を基準として、100℃時の格子体積(「100℃体積」と称する)の変化した割合、すなわち((30℃体積-100℃体積)/30℃体積)×100を体積膨張率(%)として算出して、示した。
同様に、30~200℃の格子体積膨張率及び30~300℃の格子体積膨張率を算出して表に示した。
(Thermal expansion rate)
The expansion rate of the lattice volume of the prepared compound (sample) was measured by the following method.
A multipurpose sample high temperature device unit was attached to the following powder X-ray diffractometer, and the X-ray diffraction pattern was measured at 30 ° C. and 100 ° C. The measurement was started after standing for 10 minutes after reaching the target temperature.
The crystal structure was refined using the obtained X-ray diffraction pattern and analysis software (PDXL2), and the lattice constant at each temperature was calculated. The lattice volume was calculated from the lattice constant.
In the table, the lattice volume expansion rate at 30 to 100 ° C., that is, the lattice volume at 100 ° C. (referred to as “100 ° C. volume”) based on the lattice volume at 30 ° C. (referred to as “30 ° C. volume”). The changed ratio of, that is, ((30 ° C. volume-100 ° C. volume) / 30 ° C. volume) × 100 was calculated and shown as the volume expansion rate (%).
Similarly, the lattice volume expansion rate at 30 to 200 ° C. and the lattice volume expansion rate at 30 to 300 ° C. were calculated and shown in the table.

[高温XRD]
・使用装置:Ultima IV((株)リガク)
・雰囲気:Air
・管電流/管電圧:40kV/40mA
・ターゲット:Cu
・ステップ幅:0.02°
・測定範囲(走査速度):10~80°(4°/min)
・測定温度:30℃、100℃、200℃、300℃
[High temperature XRD]
・ Equipment used: Ultima IV (Rigaku Co., Ltd.)
・ Atmosphere: Air
・ Tube current / tube voltage: 40kV / 40mA
・ Target: Cu
・ Step width: 0.02 °
-Measurement range (scanning speed): 10 to 80 ° (4 ° / min)
-Measurement temperature: 30 ° C, 100 ° C, 200 ° C, 300 ° C

Figure 0007029576000001
Figure 0007029576000001

Figure 0007029576000002
Figure 0007029576000002

上記実施例及びこれまで本発明者が行ってきた試験結果から、組成式Zr2.00-b12.00+δ(式中、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Cr、W,Moから選択される少なくとも1種であり、0≦b<2.00、0<Y<0.30、Z≧2.00、δは電荷中性条件を満たすように決まる値)で表される本化合物1、並びに、組成式Zr2.00-b12.00+δ(式中、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Cr、W、Moから選択される少なくとも1種であり、0≦b<2.00、0.30≦Y≦1.00、Z>2.00、δは電荷中性条件を満たすように決まる値)で表される本化合物2はいずれも、負の熱膨張率を示し、且つ、絶縁抵抗性に優れていることが分かった。From the above examples and the test results conducted by the present inventor so far, the composition formula Zr 2.00-b M b S Y P ZO 12.00 + δ (in the formula, M is Ti, Ce, Sn, It is at least one selected from Mn, Hf, Ir, Pb, Pd, Cr, W, and Mo, and 0 ≦ b <2.00, 0 <Y <0.30, Z ≧ 2.00, and δ are charges. This compound 1 represented by (a value determined so as to satisfy the neutral condition) and the composition formula Zr 2.00-b M b SY P ZO 12.00 + δ (in the formula, M is Ti, Ce). , Sn, Mn, Hf, Ir, Pb, Pd, Cr, W, Mo, and 0 ≦ b <2.00, 0.30 ≦ Y ≦ 1.00, Z> 2. It was found that all of the present compounds 2 represented by (00 and δ are values determined so as to satisfy the charge neutrality condition) show a negative thermal expansion coefficient and are excellent in insulation resistance.

上記実施例1,2,5で得られた化合物は、X線回折において得られた回折パターンにおいて、α-ZrSP12相(ICDDカード番号:00-038-0489)を主相として存在していることが確認された。
上記実施例3、4、6-13及び参考例で得られた化合物は、X線回折において得られた回折パターンにおいて、α-ZrSP12相(ICDDカード番号:04-017-0937)を主相として存在していることが確認された。
The compounds obtained in Examples 1, 2 and 5 have the α-Zr 2 SP 2 O 12 phase (ICDD card number: 00-038-0489) as the main phase in the diffraction pattern obtained by X-ray diffraction. It was confirmed that it existed.
The compounds obtained in Examples 3, 4, 6-13 and Reference Examples have the α-Zr 2 SP 2 O 12 phase (ICDD card number: 04-017-0937) in the diffraction pattern obtained by X-ray diffraction. ) Was confirmed to exist as the main phase.

負の熱膨張率に関しては、本化合物1、2はいずれも、30~100℃、30~200℃、30~300℃の温度領域において負の熱膨張率を示すことが分かった。
中でも、本化合物1は、室温(30℃)から100℃の温度領域において、顕著に優れた負の熱膨張率を示すことが分かった。
例えば実施例1,2、5、9は、参考例1、2に比べて、Sの量(Y)が少なく、且つ、Pの量が多いという特徴を有している。これら実施例1,2、5、9は、30℃から100℃の温度領域において、より優れた負の熱膨張率を示すことが確認された。これは、Sの原子比(Y)が0.30未満であり、且つ、Pの原子比(Z)が2.00以上であることにより、化合物としての構造が安定し、室温(30℃)から100℃の温度領域において、顕著に優れた負の熱膨張率を示すものと推察される。
Regarding the negative thermal expansion coefficient, it was found that all of the compounds 1 and 2 exhibited a negative thermal expansion coefficient in the temperature range of 30 to 100 ° C., 30 to 200 ° C., and 30 to 300 ° C.
Above all, it was found that the present compound 1 exhibited a remarkably excellent negative thermal expansion rate in the temperature range from room temperature (30 ° C.) to 100 ° C.
For example, Examples 1, 2, 5 and 9 are characterized in that the amount of S (Y) is small and the amount of P is large as compared with Reference Examples 1 and 2. It was confirmed that these Examples 1, 5, and 9 showed a better negative thermal expansion rate in the temperature range of 30 ° C to 100 ° C. This is because the atomic ratio (Y) of S is less than 0.30 and the atomic ratio (Z) of P is 2.00 or more, so that the structure as a compound is stable and the room temperature (30 ° C.) It is presumed that the negative thermal expansion rate is remarkably excellent in the temperature range of 100 ° C.

他方、本化合物2は、室温(30℃)から200℃の温度領域及び室温(30℃)から300℃の温度領域において、顕著に優れた負の熱膨張率を示すことが分かった。
例えば実施例3,4、6-8、10-13は、参考例1、2に比べて、Sの量(Y)が少なく、且つ、Pの量が多い一方、実施例1、2に比べると、Sの量(Y)が多く、且つ、Pの量が多いという特徴を有している。そして、これら実施例3,4、6-8、10-13は、30℃から200℃の温度領域及び30℃から300℃の温度領域において、より優れた負の熱膨張率を示すことが確認された。これは、Sの原子比(Y)が0.30以上1.00以下であり、且つ、Pの原子比(Z)が2.00より大きいことにより、室温から200℃の温度領域及び室温から300℃の温度領域において、顕著に優れた負の熱膨張率を示すものと推察される。
On the other hand, it was found that the present compound 2 exhibited a remarkably excellent negative thermal expansion rate in the temperature range of room temperature (30 ° C.) to 200 ° C. and the temperature range of room temperature (30 ° C.) to 300 ° C.
For example, Examples 3, 4, 6-8, and 10-13 have a smaller amount of S (Y) and a larger amount of P than Reference Examples 1 and 2, while compared with Examples 1 and 2. And, it has a feature that the amount of S (Y) is large and the amount of P is large. It was confirmed that Examples 3, 4, 6-8, and 10-13 show a more excellent negative thermal expansion rate in the temperature range of 30 ° C to 200 ° C and the temperature range of 30 ° C to 300 ° C. Was done. This is because the atomic ratio (Y) of S is 0.30 or more and 1.00 or less, and the atomic ratio (Z) of P is larger than 2.00, so that the temperature range from room temperature to 200 ° C. and room temperature are satisfied. It is presumed that it exhibits a remarkably excellent negative thermal expansion rate in the temperature range of 300 ° C.

なお、組成式:Zr2.0012.00+δ(式中、0<Y<0.30、Z≧2.00)及びZr2.0012.00+δ(式中、0.30≦Y≦1.00、Z>2.00)で示される化合物に関しては、前記特許文献2(WO2019/167924 A1)に開示された知見などから、そのZrサイトの一部が、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Cr、W、Moなどの元素で置換された化合物も、前記化合物同様に、負の熱膨張率を示し、かつ、高絶縁抵抗性を実現することができると推察することができる。The composition formula: Zr 2.00 SY P ZO 12.00 + δ (in the formula, 0 < Y <0.30, Z ≧ 2.00) and Zr 2.00 SY P ZO 12.00 . Regarding the compound represented by + δ (in the formula, 0.30 ≦ Y ≦ 1.00, Z> 2.00), the Zr site thereof is based on the findings disclosed in Patent Document 2 (WO2019 / 167924 A1). A compound in which a part of the compound is substituted with an element such as Ti, Ce, Sn, Mn, Hf, Ir, Pb, Pd, Cr, W, Mo also exhibits a negative thermal expansion rate and, like the above compound, also exhibits a negative thermal expansion rate. It can be inferred that high insulation resistance can be realized.

Claims (16)

組成式Zr2.00-b12.00+δ(式中、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Cr、W、Moから選択される少なくとも1種であり、0≦b<2.00、0<Y<0.30、Z≧2.00、δは電荷中性条件を満たすように決まる値)で表される化合物。 Composition formula Zr 2.00-b M b S Y P ZO 12.00 + δ (In the formula, M is selected from Ti, Ce, Sn, Mn, Hf, Ir, Pb, Pd, Cr, W and Mo. A compound represented by 0 ≦ b <2.00, 0 <Y <0.30, Z ≧ 2.00, and δ are values determined so as to satisfy the charge neutrality condition). 組成式Zr2.00-b12.00+δ(式中、Mは、Ti、Ce、Sn、Mn、Hf、Ir、Pb、Pd、Cr、W、Moから選択される少なくとも1種であり、0≦b<2.00、0.30≦Y≦1.00、Z>2.00、δは電荷中性条件を満たすように決まる値)で表される化合物。 Composition formula Zr 2.00-b M b S Y P ZO 12.00 + δ (In the formula, M is selected from Ti, Ce, Sn, Mn, Hf, Ir, Pb, Pd, Cr, W and Mo. 0≤b <2.00, 0.30≤Y≤1.00, Z> 2.00, δ are values determined to satisfy the charge neutrality condition). .. 負の熱膨張率を示すことを特徴とする請求項1記載の化合物。 The compound according to claim 1, wherein the compound exhibits a negative thermal expansion rate. 負の熱膨張率を示すことを特徴とする請求項2記載の化合物。 The compound according to claim 2, wherein the compound exhibits a negative thermal expansion rate. 30℃~100℃に加熱した際、100℃体積は、30℃体積に対して0.15%~2.0%収縮することを特徴とする請求項1又は請求項3に記載の化合物。 The compound according to claim 1 or 3, wherein the 100 ° C. volume shrinks 0.15% to 2.0% with respect to the 30 ° C. volume when heated to 30 ° C. to 100 ° C. 30℃~200℃に加熱した際、200℃体積は、30℃体積に対して1.0%~3.0%収縮することを特徴とする請求項2又は請求項4に記載の化合物。 The compound according to claim 2 or 4, wherein the volume at 200 ° C. shrinks by 1.0% to 3.0% with respect to the volume at 30 ° C. when heated to 30 ° C. to 200 ° C. 30℃~300℃に加熱した際、300℃体積は、30℃体積に対して1.0%~3.0%収縮することを特徴とする請求項1~6の何れか1項に記載の化合物。 The invention according to any one of claims 1 to 6, wherein the volume at 300 ° C. shrinks by 1.0% to 3.0% with respect to the volume at 30 ° C. when heated to 30 ° C. to 300 ° C. Compound. 請求項1~7の何れか1項に記載の化合物からなる粉末を圧縮してなる成形体であって、体積抵抗率が2000Ω・cm以上である成形体A molded body obtained by compressing a powder made of the compound according to any one of claims 1 to 7, and having a volume resistivity of 2000 Ω · cm or more. 請求項1~7の何れか1項に記載の化合物からなる粉末であって、圧力63MPaで圧縮して成形体とした際に体積抵抗率が2000Ω・cm以上となる粉末A powder comprising the compound according to any one of claims 1 to 7, which has a volume resistivity of 2000 Ω · cm or more when compressed at a pressure of 63 MPa to form a molded body . 請求項1~7の何れか1項に記載の化合物からなる粉末であって、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50が0.05μm以上100μm以下である粉末 A powder made of the compound according to any one of claims 1 to 7, wherein the cumulative volume particle size D50 at a cumulative volume of 50% by volume measured by a laser diffraction / scattering particle size distribution measurement method is 0.05 μm or more and 100 μm or less. Powder . 請求項1~7の何れか1項に記載の化合物からなる粉末であって、BET比表面積が1m/g以上50m/g以下である粉末A powder comprising the compound according to any one of claims 1 to 7, having a BET specific surface area of 1 m 2 / g or more and 50 m 2 / g or less. 請求項1~7の何れか1項に記載の化合物からなる粉末であって、表面処理化合物により表面処理された粉末A powder comprising the compound according to any one of claims 1 to 7, which has been surface-treated with a surface-treated compound. 前記表面処理化合物が、シランカップリング剤である、請求項12に記載の粉末The powder according to claim 12 , wherein the surface-treated compound is a silane coupling agent. 請求項1~の何れか1項に記載の化合物または請求項9~12の何れか1項に記載の粉末が、正熱膨張材料と混合、又は/及び正熱膨張材料に分散された複合材料。 A composite in which the compound according to any one of claims 1 to 7 or the powder according to any one of claims 9 to 12 is mixed with or / or dispersed in a positive thermal expansion material. material. 請求項1~の何れか1項に記載の化合物の製造方法であって、
少なくとも、Zr原料と、リン原料と、硫酸と、水と、必要に応じて上記組成式のMの原料とを含む混合物を水熱処理して水熱処理後混合物を得、前記水熱処理後混合物を固液分離および洗浄して洗浄後混合物を得、前記洗浄後混合物を乾燥させて乾燥後混合物を得、前記乾燥後混合物を300~1000℃の温度で焼成することを特徴とする化合物の製造方法。
The method for producing a compound according to any one of claims 1 to 7 .
A mixture containing at least a Zr raw material, a phosphorus raw material, sulfuric acid, water, and, if necessary, a raw material of M having the above composition formula is hydrothermally treated to obtain a mixture after hydrothermal treatment, and the post-hydrothermal mixture is solidified. A method for producing a compound, which comprises liquid separation and washing to obtain a mixture after washing, drying the mixture after washing to obtain a mixture after drying, and firing the mixture after drying at a temperature of 300 to 1000 ° C.
請求項12又は13に記載の粉末の製造方法であって、
少なくとも、Zr原料と、リン原料と、硫酸と、水と、必要に応じて上記組成式のMの原料とを含む混合物を水熱処理して水熱処理後混合物を得、前記水熱処理後混合物を固液分離および洗浄して洗浄後混合物を得、前記洗浄後混合物を乾燥させて乾燥後混合物を得、前記乾燥後混合物を300~1000℃の温度で焼成し、その後、表面処理化合物を用いて表面処理を行うことを特徴とする粉末の製造方法。
The method for producing a powder according to claim 12 or 13 .
A mixture containing at least a Zr raw material, a phosphorus raw material, sulfuric acid, water, and, if necessary, a raw material of M having the above composition formula is hydrothermally treated to obtain a mixture after hydrothermal treatment, and the post-hydrothermal mixture is solidified. Liquid separation and washing are performed to obtain a post-cleaning mixture, the post-cleaning mixture is dried to obtain a post-drying mixture, the post-drying mixture is fired at a temperature of 300 to 1000 ° C., and then the surface is used with a surface treatment compound. A method for producing a powder , which comprises performing a treatment.
JP2021549561A 2020-06-22 2021-04-05 Compounds, their manufacturing methods, and composite materials Active JP7029576B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020106688 2020-06-22
JP2020106688 2020-06-22
PCT/JP2021/014478 WO2021261049A1 (en) 2020-06-22 2021-04-05 Compound, production method therefor, and composite material

Publications (2)

Publication Number Publication Date
JPWO2021261049A1 JPWO2021261049A1 (en) 2021-12-30
JP7029576B1 true JP7029576B1 (en) 2022-03-03

Family

ID=79282346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021549561A Active JP7029576B1 (en) 2020-06-22 2021-04-05 Compounds, their manufacturing methods, and composite materials

Country Status (4)

Country Link
JP (1) JP7029576B1 (en)
KR (1) KR20230027217A (en)
CN (1) CN115667150A (en)
WO (1) WO2021261049A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136116A1 (en) * 2022-01-17 2023-07-20 三井金属鉱業株式会社 Compound, production method thereof, and composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138314A (en) * 1985-12-10 1987-06-22 Mitsui Toatsu Chem Inc Solid acid compound and its production
WO2019167924A1 (en) * 2018-02-27 2019-09-06 国立大学法人東京工業大学 Negative thermal expansion material, composite material, and method for producing negative thermal expansion material
JP2019151839A (en) * 2018-03-05 2019-09-12 日産化学株式会社 Epoxy resin composition
JP2020121895A (en) * 2019-01-29 2020-08-13 日産化学株式会社 ZIRCONIUM β-PHOSPHATE SULFATE PARTICLES AND METHOD FOR PRODUCING THE SAME

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6555473B2 (en) 2015-08-31 2019-08-07 国立大学法人東京工業大学 Negative thermal expansion material and composite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138314A (en) * 1985-12-10 1987-06-22 Mitsui Toatsu Chem Inc Solid acid compound and its production
WO2019167924A1 (en) * 2018-02-27 2019-09-06 国立大学法人東京工業大学 Negative thermal expansion material, composite material, and method for producing negative thermal expansion material
JP2019151839A (en) * 2018-03-05 2019-09-12 日産化学株式会社 Epoxy resin composition
JP2020121895A (en) * 2019-01-29 2020-08-13 日産化学株式会社 ZIRCONIUM β-PHOSPHATE SULFATE PARTICLES AND METHOD FOR PRODUCING THE SAME

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
磯部敏宏 ほか,O-3 負の熱膨張率を有するリン酸硫酸ジルコニウムの合成とそのメカニズム,第28回無機リン化学討論会講演要旨集,日本,日本無機リン化学会,2019年09月13日,pp.42-43
磯部敏宏 ほか: "O-3 負の熱膨張率を有するリン酸硫酸ジルコニウムの合成とそのメカニズム", 第28回無機リン化学討論会講演要旨集, JPN6021023442, 13 September 2019 (2019-09-13), JP, pages 42 - 43, ISSN: 0004651030 *

Also Published As

Publication number Publication date
KR20230027217A (en) 2023-02-27
CN115667150A (en) 2023-01-31
WO2021261049A1 (en) 2021-12-30
JPWO2021261049A1 (en) 2021-12-30
TW202200504A (en) 2022-01-01

Similar Documents

Publication Publication Date Title
Gupta et al. A review on molten salt synthesis of metal oxide nanomaterials: Status, opportunity, and challenge
Cayado et al. Epitaxial YBa2Cu3O7− x nanocomposite thin films from colloidal solutions
JP7017743B2 (en) Methods for manufacturing negative thermal expansion materials, composite materials, and negative thermal expansion materials
WO1996010538A1 (en) Ternary lithium mixed oxides, process for their preparation and their use
Sanad et al. Understanding structural, optical, magnetic and electrical performances of Fe-or Co-substituted spinel LiMn 1.5 Ni 0.5 O 4 cathode materials
Barudžija et al. Structural and magnetic properties of hydrothermally synthesized β-MnO2 and α-KxMnO2 nanorods
Rios et al. Synthesis and characterization of manganese-cobalt solid solutions prepared at low temperature
JP7029576B1 (en) Compounds, their manufacturing methods, and composite materials
Guan et al. Carbon-reduction as an easy route for the synthesis of VO 2 (M1) and further Al, Ti doping
Parkin et al. Self‐propagating high temperature synthesis of hexagonal ferrites MFe12O19 (M= Sr, Ba)
TWI836228B (en) Compound and method for manufacturing the same, and composite material
Sultan et al. New nanoparticulate Gd1− xZrxFe1− yMnyO3 multiferroics: Synthesis, characterization and evaluation of electrical, dielectric and magnetic parameters
JP2020121914A (en) Method for producing lithium titanium phosphate
US3851045A (en) Lanthanide transition metal ternary chalcogenides
Yu et al. Recent advances on low-co and co-free high entropy layered oxide cathodes for lithium-ion batteries
CN114314648A (en) Preparation method of lithium titanate material with electrochemical oscillation phenomenon in charging and discharging stages
Elakkiya et al. Vanadium substituted AlPO4 as environmentally benevolent cool yellow pigment
Nakhal et al. Syntheses and Crystal Structures of New ReO3‐Type‐Derived Transition Metal Oxide Fluorides
JPS62191423A (en) Production of easily sintering lead-containing oxide powder
WO2023136116A1 (en) Compound, production method thereof, and composite material
Annamalai et al. Ice bath assisted BiMn2O5 (mullite) phase synthesis, structural and compositional analysis under different Bi concentration
Donkova et al. Thermal magnetic investigation of the decomposition of NixMn1− xC2O4· 2H2O
JP7410249B2 (en) Negative thermal expansion material, its manufacturing method and composite material
WO2023181781A1 (en) Negative thermal expansion material, method for manufacturing same, and composite material
JP7364418B2 (en) Thermal expansion suppressing filler, method for producing the same, and composite material containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210823

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210823

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220218

R150 Certificate of patent or registration of utility model

Ref document number: 7029576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250