JP7028295B1 - Transmission device, receiving side transmission device and transmission method - Google Patents

Transmission device, receiving side transmission device and transmission method Download PDF

Info

Publication number
JP7028295B1
JP7028295B1 JP2020158910A JP2020158910A JP7028295B1 JP 7028295 B1 JP7028295 B1 JP 7028295B1 JP 2020158910 A JP2020158910 A JP 2020158910A JP 2020158910 A JP2020158910 A JP 2020158910A JP 7028295 B1 JP7028295 B1 JP 7028295B1
Authority
JP
Japan
Prior art keywords
frequency component
frequency
electric signal
coefficient
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020158910A
Other languages
Japanese (ja)
Other versions
JP2022052487A (en
Inventor
直樹 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2020158910A priority Critical patent/JP7028295B1/en
Application granted granted Critical
Publication of JP7028295B1 publication Critical patent/JP7028295B1/en
Publication of JP2022052487A publication Critical patent/JP2022052487A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

【課題】ゼロフォーシングを用い、IQ間スキューを補償するとともに、算出手段に多価性を含めない形で、IQ間不平衡を補償できるようにする。【解決手段】本発明に係る伝送装置は、情報信号を含む電気信号を発生させて送信する送信手段と、検波した電気信号から情報信号を復元する受信手段とを備える伝送装置において、送信手段が、送受信で決められる第1の電気信号パターンを発生する第1のトレーニング系列発生部と、第1の電気信号パターンとは異なる第2の電気信号パターンを発生させる第2のトレーニング系列発生部とを有し、受信手段が、所定のタイミングで抽出した第1の電気信号パターンと、第2の電気信号パターンとに基づいて、受信信号の同相成分と直交成分との不均衡を補償する補償部を有することを特徴とする。【選択図】 図1PROBLEM TO BE SOLVED: To compensate for an IQ-to-IQ skew by using zero forcing and to compensate for an IQ-to-IQ imbalance without including multivaluation in the calculation means. A transmission device according to the present invention is a transmission device including a transmission means for generating and transmitting an electric signal including an information signal and a receiving means for restoring an information signal from the detected electric signal. , A first training sequence generator that generates a first electrical signal pattern determined by transmission and reception, and a second training sequence generator that generates a second electrical signal pattern that is different from the first electrical signal pattern. A compensator that compensates for the imbalance between the in-phase component and the orthogonal component of the received signal based on the first electric signal pattern extracted at a predetermined timing and the second electric signal pattern by the receiving means. It is characterized by having. [Selection diagram] Fig. 1

Description

本発明は、伝送装置、受信側伝送装置及び伝送方法に関し、例えば、加入者系光ネットワーク通信で情報を伝送する伝送装置に適用し得るものである。 The present invention relates to a transmission device, a receiving side transmission device, and a transmission method, and can be applied to, for example, a transmission device that transmits information by subscriber optical network communication.

近年、スマートフォン等のモバイル端末の高機能化、高精細映像アプリケーションの発達、IoT(Internet of Things)技術の出現等により通信需要が急速に増大している。今後、第5世代移動通信システム(5G)技術を用いたサービスの商用化が予定されていることから通信需要の増大は続くものと見込まれる。他方、通信サービスを実現するための伝送装置として、基幹系光ネットワークはもちろん加入者系光ネットワークの光伝送装置にも大容量化が要求されている。したがって、従来基幹系光ネットワークに適用されていたコヒーレント光伝送装置を、加入者系光ネットワークに応用する研究が進められている。 In recent years, communication demand has been rapidly increasing due to the sophistication of mobile terminals such as smartphones, the development of high-definition video applications, and the emergence of IoT (Internet of Things) technology. Communication demand is expected to continue increasing as services using 5th generation mobile communication system (5G) technology are planned to be commercialized in the future. On the other hand, as a transmission device for realizing a communication service, not only a backbone optical network but also an optical transmission device of a subscriber optical network is required to have a large capacity. Therefore, research is underway to apply the coherent optical transmission device, which has been conventionally applied to the backbone optical network, to the subscriber optical network.

コヒーレント光伝送は、信号光の振幅と位相との両方を情報の送受信に利用するため、既存の加入者系光ネットワークで用いられてきた強度変調直接検波方式の光伝送に比べて単位時間当りに運ぶ情報量が多く、大容量通信に適した方式である。 Since coherent optical transmission uses both the amplitude and phase of signal light to transmit and receive information, it per unit time compared to the intensity-modulated direct detection method optical transmission used in existing subscriber optical networks. It carries a large amount of information and is suitable for large-capacity communication.

既存の加入者系光ネットワークにはPON(Passive Optical Network)と呼ばれる光伝送系が適用されている。PONでは局と複数の加入者が1対多の通信を行なう。特に加入者から局への通信である上り系では、加入者間で時間分割多元接続をするため、加入者当りでみるとバースト通信が行われる。このバースト通信は基幹系光ネットワークにはなく、加入者系光ネットワークに適用される光伝送の特徴である。以上のことから、バースト通信に対応した大容量のコヒーレント光伝送が求められている。 An optical transmission system called PON (Passive Optical Network) is applied to an existing subscriber optical network. In PON, the station and a plurality of subscribers perform one-to-many communication. In particular, in the uplink system, which is the communication from the subscriber to the station, since the time division multiple access is performed between the subscribers, burst communication is performed per subscriber. This burst communication is a feature of optical transmission applied to subscriber optical networks, not to backbone optical networks. From the above, there is a demand for large-capacity coherent optical transmission compatible with burst communication.

図1にコヒーレント光伝送系の構成を示す。送信手段11は通報情報を含む電気信号を発生する。ここで電気信号とは、電流、電圧といった電気的な量の時間変化のことであり、その変化の仕方が情報を表す。第1の光源12は連続光を発生する。光変調手段13は、送信手段11から出力される電気信号に従って第1の光源12から出力される連続光を変調する。このとき、出力光の振幅および位相の両方若しくはいずれか一方に通報情報が含まれるよう、電気信号は光信号に変換される。その変調光は伝送路30に送出される。第2の光源22は連続光を発生する。光コヒーレント検波手段21は、伝送路30から出力される信号光と第2の光源22から出力される連続光とのビート成分を電気信号として出力する。このとき、入力信号光の振幅および位相に関する情報が電気信号に変換される。受信手段23はその検波された電気信号から通報情報を復元する。 FIG. 1 shows the configuration of a coherent optical transmission system. The transmission means 11 generates an electric signal including notification information. Here, the electric signal is a time change of an electric amount such as a current and a voltage, and the way of the change represents information. The first light source 12 generates continuous light. The optical modulation means 13 modulates the continuous light output from the first light source 12 according to the electric signal output from the transmission means 11. At this time, the electric signal is converted into an optical signal so that the notification information is included in both the amplitude and / or the phase of the output light. The modulated light is transmitted to the transmission line 30. The second light source 22 generates continuous light. The optical coherent detection means 21 outputs the beat component of the signal light output from the transmission line 30 and the continuous light output from the second light source 22 as an electric signal. At this time, information about the amplitude and phase of the input signal light is converted into an electric signal. The receiving means 23 restores the notification information from the detected electric signal.

コヒーレント光伝送方式では、通報を表す電気波形を光波形に変換する。そのとき、被変調光は振幅と位相とが時間変化する。その被変調光は、振幅が時間変化する互いに直交する2系統の光の和に等価的に変換することができる。光変調器は、2系統の電気信号を入力して変調光を出力する。逆に光復調器は、入力光信号から互いに直交する2系統の光を分離、受光することで、2系統の電気信号を出力する。それらの2系統の一方を同相(I;in-phase)成分、他方を直交(Q;quadrature)成分と呼ぶこともある。 In the coherent optical transmission method, an electric waveform representing a report is converted into an optical waveform. At that time, the amplitude and phase of the modulated light change with time. The modulated light can be equivalently converted into the sum of two systems of light whose amplitudes change with time and which are orthogonal to each other. The light modulator inputs two systems of electric signals and outputs the modulated light. On the contrary, the optical demodulator separates and receives two systems of light orthogonal to each other from the input optical signal, and outputs two systems of electric signals. One of these two systems may be referred to as an in-phase (I; in-phase) component, and the other may be referred to as an orthogonal (Q; quadrature) component.

例えば、4位相偏移変調(QPSK;quaternary phase shift keying)や直交振幅偏移変調(QAM;quadrature amplitude modulation)等の、既存の有無線通信でよく用いられている変復調フォーマットでは、1種類の通報は2系統の電気波形で表される。それら2系統は1組の信号を形成し、各時点での2系統間の波形振幅の関係が通報を表す1つの情報となる。 For example, in the modulation / demodulation format often used in existing wireless communication such as 4-phase shift keying (QPSK; quaternary phase shift keying) and quadrature amplitude shift keying (QAM), one type of notification is reported. Is represented by two systems of electrical waveforms. These two systems form a set of signals, and the relationship of the waveform amplitude between the two systems at each time point becomes one piece of information representing the notification.

したがって、コヒーレント光伝送系を通じて通報を送受信する場合、系の途中でI成分とQ成分との間に不平衡(振幅の不平衡、位相の不均衡、スキュー)が生じ、受信側の電気信号の復調前にその不平衡が存在すると、送信側の通報を正しく復元できなくなる。IQ間不平衡は電気的、光学的な2系統間の配線長差、信号伝搬媒質の不均質、等によって発生する。このIQ間不平衡を解消することが、光伝送設計する上で重要な技術的課題の1つである。 Therefore, when transmitting and receiving a report through a coherent optical transmission system, an imbalance (amplitude imbalance, phase imbalance, skew) occurs between the I component and the Q component in the middle of the system, and the electrical signal on the receiving side If the imbalance exists before demodulation, the sender's report cannot be restored correctly. IQ imbalance occurs due to the difference in wiring length between the two electrical and optical systems, the inhomogeneity of the signal propagation medium, and the like. Eliminating this IQ-to-IQ imbalance is one of the important technical issues in optical transmission design.

このようなIQ間不平衡を解消する技術がいくつかの文献で報告されている。特に近年のデジタル信号処理装置の発展により、10Gbaudを超えるような高速な信号に対しても補償が可能であるとともに、アナログ装置で生じる不均質・ばらつきがない同じ処理装置を多数生産することが可能となってきている。 Techniques for resolving such IQ-to-IQ imbalances have been reported in several literatures. In particular, with the recent development of digital signal processing devices, it is possible to compensate for high-speed signals exceeding 10 Gbad, and it is possible to produce a large number of the same processing devices that do not have the inhomogeneity and variation that occur in analog devices. It is becoming.

非特許文献1では、受信側装置で生じた振幅不均衡および位相不平衡とスキューを、適応信号処理を用いて補償している。非特許文献2では、送信側装置で生じた振幅不均衡および位相不平衡を、適応信号処理を用いて補償している。非特許文献3では、送信側装置で生じた振幅および位相不平衡を、ゼロフォーシング等化(または1タップ等化)により補償している。 In Non-Patent Document 1, the amplitude imbalance, phase imbalance and skew generated in the receiving device are compensated by using adaptive signal processing. In Non-Patent Document 2, the amplitude imbalance and the phase imbalance generated in the transmitting side device are compensated by using adaptive signal processing. In Non-Patent Document 3, the amplitude and phase imbalance caused in the transmitting side device are compensated by zero forcing equalization (or one tap equalization).

M.S.Faruk and K.Kikuchi,“Compensation for In-Phase/Quadrature Imbalance in Coherent-Receiver Front End for Optical Quadrature Amplitude Modulation,”IEEE Photon.J.,vol.5, no.2,Apr.2013.M.S.Faruk and K.Kikuchi, “Compensation for In-Phase / Quadrature Imbalance in Coherent-Receiver Front End for Optical Quadrature Amplitude Modulation,” IEEE Photon.J., vol.5, no.2, Apr.2013. Q.Zhang,et al, “Modulation-format-transparent IQ imbalance estimation of dual-polarization optical transmitter based on maximum likelihood independent component analysis,”Opt.Exp.vol.27,no.13,pp.18055-18068,24 Jun.2019.Q.Zhang, et al, “Modulation-format-transparent IQ imbalance estimation of dual-polarization optical transmitter based on maximum likelihood independent component analysis,” Opt.Exp.vol.27, no.13, pp.18055-18068,24 Jun.2019. R.Matsumoto,etal.,“Fast, Low-Complexity Widely-Linear Compensation for IQ Imbalance in Burst-Mode 100-Gb/s/λ Coherent TDM-PON,”OFC 2018,paper M3B.2.R.Matsumoto, et al., “Fast, Low-Complexity Widely-Linear Compensation for IQ Imbalance in Burst-Mode 100-Gb / s / λ Coherent TDM-PON,” OFC 2018, paper M3B.2.

上述した非特許文献1、2では、IQ間不平衡を補償する手段として適応信号処理を用いている。適応信号処理では、処理開始直後から誤差が「0」になり、誤差が「0」であり続けるのではなく、時間とともに誤差が減少し、誤差が「0」またはある一定の小さな値に収束する。その収束に費やす時間を収束時間と呼ぶ。あるいは誤差の大きさが、受信信号が系に要求される誤り率を下回るために必要な大きさに達するまでの時間を収束時間と呼んでもよい。収束時間前までの受信情報は誤りが多く、その誤り率が系に要求される誤り率を超えているとその受信情報は無効である。このような無効時間が存在すると、情報転送効率は小さくなり、特にバースト通信では送受信情報が有限の時間範囲に限定されるので、その影響は深刻になる。 In Non-Patent Documents 1 and 2 described above, adaptive signal processing is used as a means for compensating for IQ-to-IQ imbalance. In adaptive signal processing, the error becomes "0" immediately after the start of processing, and instead of continuing to be "0", the error decreases over time and the error converges to "0" or a certain small value. .. The time spent for the convergence is called the convergence time. Alternatively, the time until the magnitude of the error reaches the magnitude required for the received signal to fall below the error rate required for the system may be referred to as the convergence time. The received information up to the convergence time has many errors, and if the error rate exceeds the error rate required for the system, the received information is invalid. If such an invalid time exists, the information transfer efficiency becomes small, and especially in burst communication, the transmitted / received information is limited to a finite time range, and the influence becomes serious.

非特許文献3では、IQ間不平衡を補償する手段としてゼロフォーシングを用いている。したがって、上記の無効時間の問題はない。その方法は、受信信号を分岐し、その一方から受信信号に含まれる振幅不平衡比および位相不平衡量を推定し、それら推定値の逆の量をもう一方の受信信号に演算することで、IQ間不平衡を補償する。 Non-Patent Document 3 uses zero forcing as a means of compensating for IQ-to-IQ imbalance. Therefore, there is no problem of the above-mentioned invalid time. The method is to branch the received signal, estimate the amplitude unbalance ratio and phase unbalance amount contained in the received signal from one of them, and calculate the opposite amount of those estimated values to the other received signal. Compensate for interbalance.

しかし、推定するパラメータの1つが位相であることが1つの問題を生じる。位相は、逆三角関数を用いて算出される。逆三角関数は多価関数であり、通常は「0乃至2πラジアン」、あるいは「-π乃至πラジアン」に限定して値を算出する。雑音の影響を取り除くため、複数の位相を算出して平均することで推定位相の精度を高める手段をとることが多く、非特許文献3でも、そのような平均化処理をしている。算出される位相を上記のように2πラジアンの範囲に限定すると、平均化処理後の位相が真値からずれることがある。 However, one problem arises that one of the parameters to be estimated is topology. The phase is calculated using the inverse trigonometric function. The inverse trigonometric function is a multivalued function, and the value is usually calculated only for "0 to 2π radians" or "−π to π radians". In order to remove the influence of noise, it is often the case that measures are taken to improve the accuracy of the estimated phase by calculating and averaging a plurality of phases, and Non-Patent Document 3 also performs such averaging processing. If the calculated phase is limited to the range of 2π radians as described above, the phase after the averaging process may deviate from the true value.

例えば、真値が0ラジアンのものを5回算出した結果が値の範囲制限なしで「0、0、0、0.01π、-0.01πラジアン」だとすると、0乃至2πラジアンに制限した場合、算出結果は「0、0、0、0.01π、1.99πラジアン」になる。前者の場合、算出結果を平均化すると「0ラジアン」となり、平均化処理後の位相が真値に等しくなるのに対し、後者の場合、算出結果を平均化すると、平均化処理後の位相が「0.4πラジアン」となり真値と異なる。 For example, if the result of calculating the true value of 0 radians 5 times is "0, 0, 0, 0.01π, -0.01π radians" without limiting the range of values, if it is limited to 0 to 2π radians, The calculation result is "0, 0, 0, 0.01π, 1.99π radians". In the former case, when the calculation results are averaged, the phase becomes "0 radians" and the phase after the averaging process becomes equal to the true value, whereas in the latter case, when the calculation results are averaged, the phase after the averaging process becomes. It becomes "0.4π radian" and is different from the true value.

また、非特許文献3ではIQ間スキューを補償していない。 Further, Non-Patent Document 3 does not compensate for the skew between IQs.

本発明は、ゼロフォーシングを用い、IQ間スキューを補償するとともに、算出手段に多価性を含めない形で、IQ間不平衡を補償できる伝送装置、受信側伝送装置、送信側伝送装置及び伝送方法を提供しようとするものである。 The present invention uses zero forcing to compensate for IQ-to-IQ skew and to compensate for IQ-to-IQ imbalance without including polyvalence in the calculation means. Transmission device, receiver-side transmission device, transmission-side transmission device, and transmission. It seeks to provide a method.

かかる課題を解決するために、第1の本発明は、情報信号を含む電気信号を発生させて送信する送信手段と、検波した電気信号から情報信号を復元する受信手段とを備える伝送装置において、第1の電気信号パターンが、両側スペクトル表記で、負の周波数成分の振幅が0の単側帯波信号であり、第2の電気信号パターンが、正の周波数成分の振幅が0の単側帯波信号であり、送信手段が、送受信で決められる第1の電気信号パターンを発生する第1のトレーニング系列発生部と、第1の電気信号パターンとは異なる第2の電気信号パターンを発生させる第2のトレーニング系列発生部とを有し、受信手段が、抽出した第1の電気信号パターン及び第2の電気信号パターンに基づいて、受信信号の同相成分と直交成分との不均衡を補償するための係数を導出する係数導出部と、係数を用いて、受信信号の同相成分と直交成分との不均衡を補償する補償部とを有し、送信手段が、第1の電気信号パターンと第2の電気信号パターンとを時分割多重して送信し、係数導出部が、抽出した第1の電気信号パターンのスペクトルから所定の周波数の正周波数成分と負周波数成分とを分離する第1の周波数成分分離部と、抽出した第2の電気信号パターンのスペクトルから所定の周波数の正周波数成分と負周波数成分とを分離する第2の周波数成分分離部と、第1の周波数成分分離部からの正周波数成分と、第2の周波数成分分離部からの負周波数成分とを周波数多重して第1の周波数成分を得る第1の周波数多重部と、第1の周波数成分分離部からの負周波数成分と、第2の周波数成分分離部からの正周波数成分とを周波数多重して第2の周波数成分を得る第2の周波数多重部と、第1の周波数成分の値と、第1の周波数成分の複素共役の周波数を反転した値と、第2の周波数成分の値と、第2の周波数成分の複素共役の周波数を反転した値とに基づいて、第1の係数及び第2の係数を導出する係数算出部とを有し、補償部が、受信信号の値に第1の係数を乗算した値と、受信信号の複素共役の値に第2の係数を乗算した値とを加算して、受信信号の同相成分と直交成分との不均衡を補償することを特徴とする。 In order to solve such a problem, the first aspect of the present invention is a transmission device including a transmitting means for generating and transmitting an electric signal including an information signal and a receiving means for restoring an information signal from the detected electric signal. , The first electric signal pattern is a single-sided wave signal in which the amplitude of the negative frequency component is 0 in the two-sided spectrum notation, and the second electric signal pattern is the single-sided wave signal in which the amplitude of the positive frequency component is 0. A second training sequence generator that is a signal and the transmission means generates a first electric signal pattern determined by transmission and reception, and a second electric signal pattern that is different from the first electric signal pattern. The receiving means compensates for the imbalance between the in-phase component and the orthogonal component of the received signal based on the extracted first electric signal pattern and the second electric signal pattern. It has a coefficient derivation unit that derives a coefficient and a compensation unit that compensates for the imbalance between the in-phase component and the orthogonal component of the received signal using the coefficient, and the transmitting means is a first electric signal pattern and a second electric signal pattern. The electric signal pattern is time-divided and multiplexed, and the coefficient derivation unit separates the positive frequency component and the negative frequency component of a predetermined frequency from the extracted spectrum of the first electric signal pattern. A second frequency component separating section that separates a positive frequency component and a negative frequency component of a predetermined frequency from the spectrum of the extracted second electric signal pattern, and a positive frequency component from the first frequency component separating section. A first frequency multiplexing section that obtains a first frequency component by frequency-multiplexing the negative frequency component from the second frequency component separating section, a negative frequency component from the first frequency component separating section, and a first. The second frequency multiplexing section that obtains the second frequency component by frequency multiplexing the positive frequency components from the frequency component separating section of 2, the value of the first frequency component, and the complex conjugate of the first frequency component. A coefficient calculation unit that derives the first coefficient and the second coefficient based on the value obtained by inverting the frequency, the value of the second frequency component, and the value obtained by inverting the frequency of the complex conjugate of the second frequency component. And, the compensator adds the value obtained by multiplying the value of the received signal by the first coefficient and the value obtained by multiplying the value of the complex conjugate of the received signal by the second coefficient, and the in-phase of the received signal. It is characterized by compensating for an imbalance between a component and an orthogonal component .

第2の本発明は両側スペクトル表記で、負の周波数成分の振幅が0の単側帯波信号である第1の電気信号パターンと、正の周波数成分の振幅が0の単側帯波信号である第2の電気信号パターンとを時分割多重で送信する送信側伝送装置から、受信した受信信号を検波して得た電気信号から情報信号を復元する受信手段を備える受信側伝送装置において、受信手段が、抽出した第1の電気信号パターン及び第2の電気信号パターンに基づいて、受信信号の同相成分と直交成分との不均衡を補償するための係数を導出する係数導出部と、係数を用いて、受信信号の同相成分と直交成分との不均衡を補償する補償部とを有し、係数導出部が、抽出した第1の電気信号パターンのスペクトルから所定の周波数の正周波数成分と負周波数成分とを分離する第1の周波数成分分離部と、抽出した第2の電気信号パターンのスペクトルから所定の周波数の正周波数成分と負周波数成分とを分離する第2の周波数成分分離部と、第1の周波数成分分離部からの正周波数成分と、第2の周波数成分分離部からの負周波数成分とを周波数多重して第1の周波数成分を得る第1の周波数多重部と、第1の周波数成分分離部からの負周波数成分と、第2の周波数成分分離部からの正周波数成分とを周波数多重して第2の周波数成分を得る第2の周波数多重部と、第1の周波数成分の値と、第1の周波数成分の複素共役の周波数を反転した値と、第2の周波数成分の値と、第2の周波数成分の複素共役の周波数を反転した値とに基づいて、第1の係数及び第2の係数を導出する係数算出部とを有し、補償部が、受信信号の値に第1の係数を乗算した値と、受信信号の複素共役の値に第2の係数を乗算した値とを加算して、受信信号の同相成分と直交成分との不均衡を補償することを特徴とする。 The second invention is a two- sided spectrum notation, in which a first electric signal pattern is a single-sided band signal having a negative frequency component amplitude of 0 and a single-sided wave signal having a positive frequency component amplitude of 0. A receiving-side transmitting device including a receiving means for recovering an information signal from an electric signal obtained by detecting a received received signal from a transmitting-side transmitting device that transmits a second electric signal pattern in a time-division multiplex. In the coefficient derivation unit, the receiving means derives a coefficient for compensating for the imbalance between the in-phase component and the orthogonal component of the received signal based on the extracted first electric signal pattern and the second electric signal pattern. , A compensator that compensates for the imbalance between the in-phase component and the orthogonal component of the received signal using the coefficient, and the coefficient derivation unit has a positive frequency of a predetermined frequency from the spectrum of the first electric signal pattern extracted. A first frequency component separation unit that separates components and negative frequency components, and a second frequency component separation that separates positive frequency components and negative frequency components of a predetermined frequency from the spectrum of the extracted second electrical signal pattern. A first frequency multiplexing section that obtains a first frequency component by frequency-multiplexing a positive frequency component from a first frequency component separating section and a negative frequency component from a second frequency component separating section. A second frequency multiplexing section that obtains a second frequency component by frequency-multiplexing a negative frequency component from the first frequency component separating section and a positive frequency component from the second frequency component separating section, and a first Based on the value of the frequency component, the inverted value of the complex conjugate frequency of the first frequency component, the value of the second frequency component, and the inverted value of the complex conjugate frequency of the second frequency component. It has a first coefficient and a coefficient calculation unit for deriving a second coefficient, and the compensation unit has a value obtained by multiplying the value of the received signal by the first coefficient and a value obtained by multiplying the value of the complex conjugate of the received signal by the second. It is characterized in that the imbalance between the in-phase component and the orthogonal component of the received signal is compensated by adding the value multiplied by the coefficient .

の本発明は、情報信号を含む電気信号を発生させて送信する送信手段と、検波した前記電気信号から情報信号を復元する受信手段との間で情報を伝送する伝送方法において、第1の電気信号パターンが、両側スペクトル表記で、負の周波数成分の振幅が0の単側帯波信号であり、第2の電気信号パターンが、正の周波数成分の振幅が0の単側帯波信号であり、送信手段が、送受信で決められる第1の電気信号パターンと、第1の電気信号パターンとは異なる第2の電気信号パターンとを発生して、第1の電気信号パターンと第2の電気信号パターンとを時分割多重して送信し、受信手段は、係数導出部が、抽出した第1の電気信号パターン及び第2の電気信号パターンに基づいて、受信信号の同相成分と直交成分との不均衡を補償するための係数を導出し、補償部が、係数を用いて、受信信号の同相成分と直交成分との不均衡を補償し、係数導出部は、第1の周波数成分分離部が、抽出した第1の電気信号パターンのスペクトルから所定の周波数の正周波数成分と負周波数成分とを分離し、第2の周波数成分分離部が、抽出した第2の電気信号パターンのスペクトルから所定の周波数の正周波数成分と負周波数成分とを分離し、第1の周波数多重部が、第1の周波数成分分離部からの正周波数成分と、第2の周波数成分分離部からの負周波数成分とを周波数多重して第1の周波数成分を得て、第2の周波数多重部が、第1の周波数成分分離部からの負周波数成分と、第2の周波数成分分離部からの正周波数成分とを周波数多重して第2の周波数成分を得て、係数算出部が、第1の周波数成分の値と、第1の周波数成分の複素共役の周波数を反転した値と、第2の周波数成分の値と、第2の周波数成分の複素共役の周波数を反転した値とに基づいて、第1の係数及び第2の係数を導出し、補償部が、受信信号の値に第1の係数を乗算した値と、受信信号の複素共役の値に第2の係数を乗算した値とを加算して、受信信号の同相成分と直交成分との不均衡を補償することを特徴とする。 A third aspect of the present invention is a transmission method for transmitting information between a transmitting means for generating and transmitting an electric signal including an information signal and a receiving means for restoring an information signal from the detected electric signal . The electric signal pattern of 1 is a single-sided wave signal in which the amplitude of the negative frequency component is 0 in the two-sided spectrum notation, and the second electric signal pattern is a single-sided wave signal in which the amplitude of the positive frequency component is 0. Yes, the transmitting means generates a first electric signal pattern determined by transmission and reception and a second electric signal pattern different from the first electric signal pattern, and the first electric signal pattern and the second electric signal are generated. The signal pattern is time-divided and multiplexed, and the receiving means transmits the in -phase component and the orthogonal component of the received signal based on the first electric signal pattern and the second electric signal pattern extracted by the coefficient derivation unit. The coefficient for compensating the imbalance is derived, the compensator uses the coefficient to compensate for the imbalance between the in-phase component and the orthogonal component of the received signal, and the coefficient derivation unit is the first frequency component separation unit. , The positive frequency component and the negative frequency component of a predetermined frequency are separated from the spectrum of the extracted first electric signal pattern, and the second frequency component separation unit is predetermined from the spectrum of the extracted second electric signal pattern. The positive frequency component and the negative frequency component of the frequency are separated, and the first frequency multiplexing section separates the positive frequency component from the first frequency component separating section and the negative frequency component from the second frequency component separating section. The frequency is multiplexed to obtain the first frequency component, and the second frequency multiplexing section picks up the negative frequency component from the first frequency component separating section and the positive frequency component from the second frequency component separating section. The second frequency component is obtained by multiplexing, and the coefficient calculation unit determines the value of the first frequency component, the value obtained by inverting the complex conjugate frequency of the first frequency component, and the value of the second frequency component. , The first coefficient and the second coefficient are derived based on the inverted value of the complex conjugate of the second frequency component, and the compensator multiplies the value of the received signal by the first coefficient. And the value obtained by multiplying the value of the complex conjugate of the received signal by the second coefficient are added to compensate for the imbalance between the in-phase component and the orthogonal component of the received signal .

本発明によれば、ゼロフォーシングを用い、IQ間スキューを補償するとともに、算出手段に多価性を含めない形で、IQ間不平衡を補償できる。 According to the present invention, zero forcing can be used to compensate for IQ-to-IQ skew and to compensate for IQ-to-IQ imbalance without including multivaluation in the calculation means.

コヒーレント光伝送系の全体構成を示す全体構成図である。It is an overall configuration diagram which shows the whole configuration of a coherent optical transmission system. 実施形態に係る送信手段の構成を示す構成図である。It is a block diagram which shows the structure of the transmission means which concerns on embodiment. 実施形態に係る受信手段の構成を示す構成図である。It is a block diagram which shows the structure of the receiving means which concerns on embodiment. 実施形態に係る係数算出手段の構成を示す構成図である。It is a block diagram which shows the structure of the coefficient calculation means which concerns on embodiment. 実施形態に係る補償手段の構成を示す構成図である。It is a block diagram which shows the structure of the compensation means which concerns on embodiment. 実施形態において、送信手段が送信する第1のTS及び第2のTSと、受信手段が受信する第3のTS及び第4のTSとを説明する説明図である。In the embodiment, it is explanatory drawing explaining the 1st TS and the 2nd TS transmitted by the transmitting means, and 3rd TS and a 4th TS received by a receiving means.

(A)主たる実施形態
以下では、本発明に係る伝送装置、受信側伝送装置、送信側伝送装置及び伝送方法の実施形態を、図面を参照しながら詳細に説明する。
(A) Main Embodiments In the following, embodiments of a transmission device, a receiving side transmission device, a transmitting side transmission device, and a transmission method according to the present invention will be described in detail with reference to the drawings.

この実施形態では、光伝送システムに本発明を適用する場合を例示する。特に、加入者系光ネットワーク通信で光コヒーレント検波方式を用いた伝送装置を例示する。 In this embodiment, the case where the present invention is applied to an optical transmission system is illustrated. In particular, a transmission device using an optical coherent detection method in subscriber optical network communication will be exemplified.

(A-1)実施形態の構成
この実施形態においても、図1に例示するコヒーレント光伝送系の全体構成を示す全体構成図を用いて説明する。
(A-1) Configuration of Embodiment This embodiment will also be described with reference to an overall configuration diagram showing the overall configuration of the coherent optical transmission system illustrated in FIG. 1.

図1において、光伝送システム100は、送信側伝送装置10と、受信側伝送装置20とを有する。送信側伝送装置10と受信側伝送装置20とは、伝送路30を介して情報を送受信を行なう。 In FIG. 1, the optical transmission system 100 includes a transmission side transmission device 10 and a reception side transmission device 20. The transmission side transmission device 10 and the reception side transmission device 20 transmit and receive information via the transmission line 30.

光伝送システム100は、例えば光コヒーレント検波方式を採用した加入者系光通信ネットワークである場合を例示する。一般に、1台の伝送装置が、図1に例示する送信側伝送装置10と受信側伝送装置20を備えるが、図1では、送信側と受信側の構成を区別している。図1では、送信側伝送装置10と受信側伝送装置20との数が1台としている。すなわち、1台の伝送装置と1台の伝送値との伝送系を例示しているが、1台の伝送装置と複数台の伝送装置との伝送系でもよい。例えば、加入者系光通信ネットワークでは、1つの局側装置と、複数の加入者側装置との間で1対多の通信を行なうようにしてもよい。 The optical transmission system 100 exemplifies, for example, a case where the optical transmission system 100 is a subscriber optical communication network that employs an optical coherent detection method. Generally, one transmission device includes the transmission side transmission device 10 and the reception side transmission device 20 illustrated in FIG. 1, but in FIG. 1, the configuration of the transmission side and the reception side is distinguished. In FIG. 1, the number of the transmission side transmission device 10 and the number of the reception side transmission device 20 is one. That is, although the transmission system of one transmission device and one transmission value is illustrated, a transmission system of one transmission device and a plurality of transmission devices may be used. For example, in a subscriber optical communication network, one-to-many communication may be performed between one station-side device and a plurality of subscriber-side devices.

[送信側伝送装置10]
送信側伝送装置10は、受信側伝送装置20に送信する情報に従って光変調し、その変調光を伝送路30に向けて送出する。
[Transmitting device 10 on the transmitting side]
The transmitting side transmission device 10 photomodulates according to the information transmitted to the receiving side transmission device 20, and transmits the modulated light toward the transmission line 30.

図1に例示するように、送信側伝送装置10は、送信手段11、第1の光源12、光変調手段13を有する。 As illustrated in FIG. 1, the transmitting side transmission device 10 includes a transmitting means 11, a first light source 12, and an optical modulation means 13.

送信手段11は、通報情報を含む電気信号を光変調手段13に与える。ここで、電気信号とは、電流、電圧等の電気的な量の時間変化のことであり、その時間変化の仕方が情報を表す。例えば、加入者系光通信ネットワークにおいて、送信側伝送装置10の送信手段11と、受信側伝送装置20の受信手段23との間で授受される通報情報は、ビット列で表される。 The transmission means 11 gives an electric signal including the notification information to the optical modulation means 13. Here, the electric signal is a time change of an electric amount such as a current and a voltage, and the way of the time change represents information. For example, in the subscriber optical communication network, the notification information exchanged between the transmitting means 11 of the transmitting side transmission device 10 and the receiving means 23 of the receiving side transmission device 20 is represented by a bit string.

また、送信手段11は、振幅不均衡、位相不均衡、スキューといったIQ間不均衡を補償するためのトレーニング系列(TS:Training Sequence)を発生させて受信手段23に送信する。つまり、受信側伝送装置20の受信手段23側で、IQ間不均衡を補償させるため、送信手段11がトレーニング系列を受信手段23に送信する。 Further, the transmitting means 11 generates a training sequence (TS: Training Sequence) for compensating for IQ-to-IQ imbalances such as amplitude imbalance, phase imbalance, and skew, and transmits the training sequence (TS) to the receiving means 23. That is, on the receiving means 23 side of the receiving side transmission device 20, the transmitting means 11 transmits the training sequence to the receiving means 23 in order to compensate for the imbalance between IQs.

第1の光源12は、連続光を発生して、光変調手段13に与える。 The first light source 12 generates continuous light and gives it to the light modulation means 13.

光変調手段13は、送信手段11から出力される電気信号に従って、第1の光源12から出力される連続光を変調する。このとき、光変調手段13から出力される出力光の振幅および位相の両方、若しくは、いずれか一方に、通報情報が含まれるよう、電気信号は光信号に変換される。その変調光は伝送路30に送出される。 The optical modulation means 13 modulates the continuous light output from the first light source 12 according to the electric signal output from the transmission means 11. At this time, the electric signal is converted into an optical signal so that the notification information is included in both the amplitude and / or the phase of the output light output from the optical modulation means 13. The modulated light is transmitted to the transmission line 30.

[送信手段11の構成]
図2は、実施形態に係る送信手段11の構成を示す構成図である。図2において、送信手段11は、情報シンボル系列発生手段111、第1の選択手段112、第1のトレーニング系列(TS)発生手段113、第1のイネーブル信号発生手段114、第2の選択手段115、第2のトレーニング系列(TS)発生手段116、第2のイネーブル信号発生手段117を有する。
[Structure of transmission means 11]
FIG. 2 is a configuration diagram showing the configuration of the transmission means 11 according to the embodiment. In FIG. 2, the transmission means 11 includes an information symbol sequence generation means 111, a first selection means 112, a first training sequence (TS) generation means 113, a first enable signal generation means 114, and a second selection means 115. , A second training sequence (TS) generating means 116, and a second enable signal generating means 117.

情報シンボル系列発生手段111は、通報情報に従って変調される電気信号を発生して第1の選択手段112に出力する。情報シンボル系列発生手段111からの出力を情報シンボル系列とする。 The information symbol sequence generating means 111 generates an electric signal modulated according to the notification information and outputs it to the first selection means 112. The output from the information symbol sequence generating means 111 is defined as an information symbol sequence.

第1のTS発生手段113は、送受で取り決められる特定の電気信号パターンを、トレーニング系列(TS)信号として発生して、第1の選択手段112に出力する。第1のTS発生手段113が出力するトレーニング系列(TS)信号を「第1のTS」とする。 The first TS generating means 113 generates a specific electric signal pattern arranged by transmission / reception as a training sequence (TS) signal and outputs it to the first selection means 112. The training series (TS) signal output by the first TS generating means 113 is referred to as a “first TS”.

第2のTS発生手段116は、送受で取り決められる特定の電気信号パターンを、トレーニング系列(TS)信号として発生して、第2の選択手段115に出力する。第2のTS発生手段116が出力するトレーニング系列(TS)信号を、「第2のTS」とする。ここで、第2のTS及び第1のTSの信号パターンはそれぞれ異なる。なお、第1のTS及び第2のTSの詳細な説明は、後述する。 The second TS generating means 116 generates a specific electric signal pattern arranged by transmission / reception as a training sequence (TS) signal and outputs it to the second selection means 115. The training series (TS) signal output by the second TS generating means 116 is referred to as a “second TS”. Here, the signal patterns of the second TS and the first TS are different from each other. A detailed description of the first TS and the second TS will be described later.

第1のイネーブル信号発生手段114は、第1のTSの送信タイミングを表す2値信号を発生して、第1の選択手段112に出力する。つまり、第1のイネーブル信号発生手段114は、第1の選択手段112が第2の選択手段115に対して第1のTSを出力するタイミングを制御する。第1のイネーブル信号発生手段114が出力する信号を「第1のイネーブル信号」とする。 The first enable signal generation means 114 generates a binary signal indicating the transmission timing of the first TS and outputs the binary signal to the first selection means 112. That is, the first enable signal generation means 114 controls the timing at which the first selection means 112 outputs the first TS to the second selection means 115. The signal output by the first enable signal generating means 114 is referred to as a "first enable signal".

例えば、第1の選択手段112が第1のTSを送信する時間で、第1のイネーブル信号発生手段114はHighを出力し、それ以外の時間で、第1のイネーブル信号発生手段114はLowを出力する。 For example, at the time when the first selection means 112 transmits the first TS, the first enable signal generation means 114 outputs High, and at other times, the first enable signal generation means 114 outputs Low. Output.

第2のイネーブル信号発生手段117は、第2のTSの送信タイミングを表す2値信号を発生して、第2の選択手段115に出力する。つまり、第2のイネーブル信号発生手段117は、第2の選択手段115が第2のTSを送信するタイミングを制御する。第2のイネーブル信号発生手段117が出力する信号を「第2のイネーブル信号」とする。 The second enable signal generation means 117 generates a binary signal indicating the transmission timing of the second TS and outputs the binary signal to the second selection means 115. That is, the second enable signal generation means 117 controls the timing at which the second selection means 115 transmits the second TS. The signal output by the second enable signal generating means 117 is referred to as a “second enable signal”.

例えば、第2の選択手段115が第2のTSを送信する時間で、第2のイネーブル信号発生手段117はHighを出力し、それ以外の時間で、第2のイネーブル信号発生手段117はLowを出力する。 For example, at the time when the second selection means 115 transmits the second TS, the second enable signal generation means 117 outputs High, and at other times, the second enable signal generation means 117 outputs Low. Output.

ここで、第1のイネーブル信号がHighである時間と、第2のイネーブル信号がHighである時間とは、それぞれ異なる。 Here, the time when the first enable signal is High and the time when the second enable signal is High are different from each other.

第1の選択手段112は、情報シンボル系列、第1のTS、および第1のイネーブル信号を入力し、第1のイネーブル信号がHighの時間で第1のTSを、第1のイネーブル信号がLowの時間で、その時間の情報シンボル系列を選択して出力する手段である。 The first selection means 112 inputs the information symbol sequence, the first TS, and the first enable signal, the first enable signal is the first TS at High time, and the first enable signal is Low. It is a means to select and output the information symbol series of the time at the time of.

第2の選択手段115は、第1の選択手段112の出力信号、第2のTS、および第2のイネーブル信号を入力し、第2のイネーブル信号がHighの時間で第2のTSを、第2のイネーブル信号がLowの時間でその時間の第1の選択手段112の出力信号を選択して出力する手段である。 The second selection means 115 inputs the output signal of the first selection means 112, the second TS, and the second enable signal, and the second enable signal sets the second TS at the time when the second enable signal is High. The enable signal of 2 is a means for selecting and outputting the output signal of the first selection means 112 at the time of Low.

なお、実用的な送信手段11には、伝送品質を向上させるため、変換された電気信号をさらに波形整形等する手段が存在するが、本発明の主旨から外れるため、ここでは省略している。 In addition, in the practical transmission means 11, there is a means for further waveform shaping or the like of the converted electric signal in order to improve the transmission quality, but it is omitted here because it deviates from the gist of the present invention.

[受信側伝送装置20]
受信側伝送装置20は、送信側伝送装置10から送出された信号光を、伝送路30を介して受光し、受光した信号光を逆変換(光復調)して情報を取得する。
[Receiving side transmission device 20]
The receiving-side transmission device 20 receives the signal light transmitted from the transmitting-side transmission device 10 via the transmission path 30, and reverse-converts (optically demodulates) the received signal light to acquire information.

図1に示すように、受信側伝送装置20は、光コヒーレント検波手段21、第2の光源22、受信手段23を有する。 As shown in FIG. 1, the receiving side transmission device 20 includes an optical coherent detecting means 21, a second light source 22, and a receiving means 23.

第2の光源22は、連続光を発生して、光コヒーレント検波手段21に与える。 The second light source 22 generates continuous light and gives it to the optical coherent detection means 21.

光コヒーレント検波手段21は、伝送路30から出力される信号光と、第2の光源22から出力される連続光とのビート成分を電気信号として出力する。このとき、入力された信号光の振幅および位相に関する情報が電気信号に変換される。 The optical coherent detection means 21 outputs the beat component of the signal light output from the transmission line 30 and the continuous light output from the second light source 22 as an electric signal. At this time, information about the amplitude and phase of the input signal light is converted into an electric signal.

受信手段23は、光コヒーレント検波手段21から出力された電気信号から通報情報を復元する。この実施形態の受信手段23は、送信手段11から受信した受信信号から第1のTS及び第2のTSを抽出して、その第1のTS及び第2のTSに基づいて、受信信号のIQ間不均衡を補償する。受信手段23の詳細な説明については後述する。 The receiving means 23 restores the notification information from the electric signal output from the optical coherent detecting means 21. The receiving means 23 of this embodiment extracts the first TS and the second TS from the received signal received from the transmitting means 11, and IQ of the received signal based on the first TS and the second TS. Compensate for imbalances. A detailed description of the receiving means 23 will be described later.

[受信手段23]
図3は、実施形態に係る受信手段23の構成を示す構成図である。
[Receiving means 23]
FIG. 3 is a configuration diagram showing the configuration of the receiving means 23 according to the embodiment.

図3において、受信手段23は、第3のイネーブル信号発生手段231、第1のTS抽出手段232、第4のイネーブル信号発生手段233、第2のTS抽出手段234、フーリエ変換手段235、補償手段237、逆フーリエ変換手段238、シンボル逆変換手段239を有する。 In FIG. 3, the receiving means 23 includes a third enable signal generating means 231, a first TS extracting means 232, a fourth enable signal generating means 233, a second TS extracting means 234, a Fourier transform means 235, and a compensating means. It has 237, an inverse Fourier transform means 238, and a symbol inverse transform means 239.

第3のイネーブル信号発生手段231は、送信手段11で発生した第1のTSが光伝送系を介して受信手段23に到着したとき、その到着タイミングを表す2値信号を発生する手段である。第3のイネーブル信号発生手段231が出力する信号を「第3のイネーブル信号」とする。第3のイネーブル信号発生手段231は、第1のTSが到着する時間でHighとし、それ以外の時間でLowとする。 The third enable signal generating means 231 is a means for generating a binary signal indicating the arrival timing when the first TS generated by the transmitting means 11 arrives at the receiving means 23 via the optical transmission system. The signal output by the third enable signal generation means 231 is referred to as a "third enable signal". The third enable signal generation means 231 is set to High at the time when the first TS arrives, and is set to Low at other times.

第4のイネーブル信号発生手段233は、送信手段11で発生した第2のTSが光伝送系を介して受信手段23に到着したとき、その到着タイミングを表す2値信号を発生する手段である。第4のイネーブル信号発生手段233が出力する信号を「第4のイネーブル信号」とする。第4のイネーブル信号発生手段233は、第2のTSが到着する時間でHighとし、それ以外の時間でLowとする。 The fourth enable signal generating means 233 is a means for generating a binary signal indicating the arrival timing when the second TS generated by the transmitting means 11 arrives at the receiving means 23 via the optical transmission system. The signal output by the fourth enable signal generation means 233 is referred to as a "fourth enable signal". The fourth enable signal generation means 233 sets High at the time when the second TS arrives, and Low at other times.

ここで、第1のTS及び第2のTSが受信手段23に到着するタイミングは、例えば、受信手段23が送信手段11との間で送受信のタイミングを示すタイミング信号を抽出して得たタイミングとしてもよいし、また例えば、受信手段23で既知、すなわち受信手段23が送信手段11との間で事前に決められたタイミングとしてもよい。 Here, the timing at which the first TS and the second TS arrive at the receiving means 23 is, for example, the timing obtained by the receiving means 23 extracting a timing signal indicating the transmission / reception timing with the transmitting means 11. Alternatively, for example, the timing may be known by the receiving means 23, that is, the timing when the receiving means 23 is predetermined with the transmitting means 11.

第1のTS抽出手段232は、第3のイネーブル信号および受信信号を入力し、第3のイネーブル信号がHighの時間でのみ受信信号を抽出して、係数算出手段236に出力する。第1のTS抽出手段232が出力する信号を「第3のTS」とする。 The first TS extracting means 232 inputs the third enable signal and the received signal, extracts the received signal only when the third enable signal is High, and outputs the received signal to the coefficient calculating means 236. The signal output by the first TS extraction means 232 is referred to as a "third TS".

第2のTS抽出手段234は、第4のイネーブル信号および受信信号を入力し、第4のイネーブル信号がHighの時間でのみ受信信号を抽出して、係数算出手段236に出力する。第2のTS抽出手段234が出力する信号を「第4のTS」とする。 The second TS extracting means 234 inputs the fourth enable signal and the received signal, extracts the received signal only when the fourth enable signal is High, and outputs the received signal to the coefficient calculating means 236. The signal output by the second TS extraction means 234 is referred to as a "fourth TS".

係数算出手段236は、第3のTSおよび第4のTSを入力し、IQ間不平衡を補償するための計算に用いる数値を算出して、補償手段237に与える。つまり、係数算出手段236は、送信側(すなわち送信手段11)からの受信信号から抽出した第3のTS及び第4のTSに基づいて、IQ間不均衡の補償するために必要となる数値を推定する。なお、係数算出手段236の構成及び処理の詳細な説明は後述する。 The coefficient calculation means 236 inputs the third TS and the fourth TS, calculates a numerical value used for the calculation for compensating the IQ-to-IQ imbalance, and gives it to the compensation means 237. That is, the coefficient calculating means 236 calculates the numerical value required for compensating the IQ imbalance based on the third TS and the fourth TS extracted from the received signal from the transmitting side (that is, the transmitting means 11). presume. A detailed description of the configuration and processing of the coefficient calculation means 236 will be described later.

フーリエ変換手段235は、受信信号を入力し、フーリエ変換して、補償手段237に出力する。 The Fourier transform means 235 inputs a received signal, performs a Fourier transform, and outputs the received signal to the compensating means 237.

補償手段237は、係数算出手段236により算出された出力値(例えば、第1の係数の値、第2の係数の値)およびフーリエ変換手段235の出力信号を入力し、係数算出手段236の出力値に従って受信信号のIQ間不平衡を補償する。 The compensating means 237 inputs an output value calculated by the coefficient calculating means 236 (for example, a value of the first coefficient, a value of the second coefficient) and an output signal of the Fourier transform means 235, and outputs the coefficient calculating means 236. Compensate for the IQ imbalance of the received signal according to the value.

逆フーリエ変換手段238は、補償手段237の出力信号を入力し、逆フーリエ変換して出力する。 The inverse Fourier transform means 238 inputs the output signal of the compensating means 237, performs an inverse Fourier transform, and outputs the signal.

シンボル逆変換手段239は、逆フーリエ変換手段238の出力信号から通報情報を復元する手段である。 The symbol inverse transform means 239 is a means for restoring the notification information from the output signal of the inverse Fourier transform means 238.

[係数算出手段236]
図4は、実施形態に係る係数算出手段236の構成を示す構成図である。
[Coefficient calculation means 236]
FIG. 4 is a configuration diagram showing the configuration of the coefficient calculation means 236 according to the embodiment.

図4において、係数算出手段236は、第1のフーリエ変換手段301、第1の周波数分離手段302、第2のフーリエ変換手段303、第2の周波数分離手段304、第1の周波数多重手段305、第1の複素共役化手段306、第1の周波数反転手段307、第1の乗算手段308、第2の周波数多重手段309、第2の複素共役化手段310、第2の周波数反転手段311、第2の乗算手段312、第1の加算手段313、第1の除算手段314、第2の除算手段315を有する。 In FIG. 4, the coefficient calculation means 236 includes a first Fourier transform means 301, a first frequency separation means 302, a second Fourier transform means 303, a second frequency separation means 304, and a first frequency multiplexing means 305. First complex conjugate means 306, first frequency inversion means 307, first multiplication means 308, second frequency multiplexing means 309, second complex conjugate means 310, second frequency inversion means 311, first. It has two multiplication means 312, a first addition means 313, a first division means 314, and a second division means 315.

第1のフーリエ変換手段301は、第3のTSをフーリエ変換して、第1の周波数分離手段302に出力する。 The first Fourier transform means 301 Fourier transforms the third TS and outputs it to the first frequency separation means 302.

第2のフーリエ変換手段303は、第4のTSをフーリエ変換して、第2の周波数分離手段304に出力する。 The second Fourier transform means 303 Fourier transforms the fourth TS and outputs it to the second frequency separation means 304.

第1の周波数分離手段302は、第1のフーリエ変換手段301からの出力信号に対して、正の周波数成分と、負の周波数成分とに分離して出力する。ここでは、分離して得た正の周波数成分を、第1の周波数分離手段302は第1の周波数多重手段305に出力し、負の周波数成分を、第1の周波数分離手段302は第2の周波数多重手段309に出力する場合を例示する。 The first frequency separating means 302 separates and outputs a positive frequency component and a negative frequency component with respect to the output signal from the first Fourier transform means 301. Here, the positive frequency component obtained by separation is output to the first frequency dividing means 305 by the first frequency separating means 302, and the negative frequency component is output to the first frequency dividing means 302 by the first frequency separating means 302. The case of outputting to the frequency multiplexing means 309 will be illustrated.

第2の周波数分離手段304は、第2のフーリエ変換手段303からの出力信号に対して、正の周波数成分と、負の周波数成分とに分離して出力する。ここでは、分離して得た正の周波数成分を、第2の周波数分離手段304は第2の周波数多重手段309に出力し、負の周波数成分を、第2の周波数分離手段304は第1の周波数多重手段305に出力する場合を例示する。 The second frequency separating means 304 separates and outputs a positive frequency component and a negative frequency component with respect to the output signal from the second Fourier transform means 303. Here, the positive frequency component obtained by separation is output to the second frequency dividing means 309 by the second frequency separating means 304, and the negative frequency component is output to the second frequency dividing means 304 by the second frequency separating means 304. The case of outputting to the frequency multiplexing means 305 will be illustrated.

第1の周波数多重手段305は、第1の周波数分離手段302から出力される正の周波数成分の出力信号と、第2の周波数分離手段304から出力される負の周波数成分の出力信号とを周波数多重する。また、第1の周波数多重手段305は、周波数多重により得た信号を、第1の乗算手段308及び第1の複素共役化手段306に出力する。 The first frequency multiplexing means 305 has a frequency of a positive frequency component output signal output from the first frequency dividing means 302 and a negative frequency component output signal output from the second frequency separating means 304. Multiplex. Further, the first frequency multiplexing means 305 outputs the signal obtained by frequency multiplexing to the first multiplication means 308 and the first complex conjugate means 306.

第2の周波数多重手段309は、第2の周波数分離手段304から出力される正の周波数成分の出力信号と、第1の周波数分離手段302から出力される負の周波数成分の出力信号とを周波数多重する。また、第2の周波数多重手段309は、周波数多重により得た信号を、第2の乗算手段312及び第2の複素共役化手段310、第2の除算手段315に出力する。 The second frequency multiplexing means 309 has a frequency of a positive frequency component output signal output from the second frequency dividing means 304 and a negative frequency component output signal output from the first frequency separating means 302. Multiplex. Further, the second frequency multiplexing means 309 outputs the signal obtained by frequency multiplexing to the second multiplication means 312, the second complex conjugate means 310, and the second division means 315.

第1の複素共役化手段306は、第1の周波数多重手段305からの出力信号の複素共役を、第1の周波数反転手段307に出力する。 The first complex conjugate means 306 outputs the complex conjugate of the output signal from the first frequency multiplexing means 305 to the first frequency inversion means 307.

第1の周波数反転手段307は、第1の複素共役化手段306からの出力信号の周波数を反転させて得た信号を、第1の乗算手段308及び第1の除算手段314に出力する。 The first frequency inversion means 307 outputs a signal obtained by inverting the frequency of the output signal from the first complex conjugate means 306 to the first multiplication means 308 and the first division means 314.

第1の乗算手段308は、第1の周波数多重手段305からの出力信号および第1の周波数反転手段307からの出力信号を入力し、これら信号の信号値を乗算し、その乗算結果を第1の加算手段313に出力する。 The first multiplication means 308 inputs the output signal from the first frequency multiplexing means 305 and the output signal from the first frequency inversion means 307, multiplies the signal values of these signals, and obtains the multiplication result as the first. Is output to the addition means 313.

第2の複素共役化手段310は、第2の周波数多重手段309からの出力信号の複素共役を、第2の周波数反転手段311に出力する。 The second complex conjugate means 310 outputs the complex conjugate of the output signal from the second frequency multiplexing means 309 to the second frequency inversion means 311.

第2の周波数反転手段311は、第2の複素共役化手段310からの出力信号の周波数を反転させて得た信号を、第2の乗算手段312に出力する。 The second frequency inversion means 311 outputs a signal obtained by inverting the frequency of the output signal from the second complex conjugate means 310 to the second multiplication means 312.

第2の乗算手段312は、第2の周波数多重手段309からの出力信号および第2の周波数反転手段311からの出力信号を入力し、これら信号の信号値を乗算し、その乗算結果を第1の加算手段313に出力する。 The second multiplication means 312 inputs the output signal from the second frequency multiplexing means 309 and the output signal from the second frequency inversion means 311, multiplies the signal values of these signals, and obtains the multiplication result as the first. Is output to the addition means 313.

第1の加算手段313は、第1の乗算手段308からの出力信号および第2の乗算手段312からの出力信号を入力し、これらに信号の信号値を加算し、その加算結果を、第1の除算手段314及び第2の除算手段315に出力する。 The first adding means 313 inputs an output signal from the first multiplying means 308 and an output signal from the second multiplying means 312, adds the signal values of the signals to these, and obtains the addition result as the first. Is output to the dividing means 314 and the second dividing means 315.

第1の除算手段314は、第1の周波数反転手段307からの出力信号の信号値を、第1の加算手段313からの出力信号の信号値で除算し、その結果を出力する。 The first dividing means 314 divides the signal value of the output signal from the first frequency inversion means 307 by the signal value of the output signal from the first adding means 313, and outputs the result.

第2の除算手段315は、第2の周波数反転手段311からの出力信号の信号値を、第1の加算手段313からの出力信号の信号値で除算し、その結果を出力する。 The second dividing means 315 divides the signal value of the output signal from the second frequency inversion means 311 by the signal value of the output signal from the first adding means 313, and outputs the result.

ここで、第1の除算手段314が出力する信号を第1の係数とし、第2の除算手段315が出力する信号を第2の係数とする。第1の係数及び第2の係数は、補償手段237に出力される。 Here, the signal output by the first division means 314 is used as the first coefficient, and the signal output by the second division means 315 is used as the second coefficient. The first coefficient and the second coefficient are output to the compensating means 237.

[補償手段237]
図5は、実施形態に係る補償手段237の構成を示す構成図である。
[Compensation means 237]
FIG. 5 is a configuration diagram showing the configuration of the compensation means 237 according to the embodiment.

図5において、補償手段237は、第3の乗算手段401、第3の複素共役化手段402、第3の周波数反転手段403、第4の乗算手段404、第2の加算手段405を有する。 In FIG. 5, the compensating means 237 includes a third multiplication means 401, a third complex conjugate means 402, a third frequency inversion means 403, a fourth multiplication means 404, and a second addition means 405.

第3の乗算手段401は、フーリエ変換手段235からの出力信号の信号値と、第1の除算手段314からの第1の係数とを乗算して、その乗算結果を第2の加算手段405に出力する。 The third multiplication means 401 multiplies the signal value of the output signal from the Fourier transform means 235 with the first coefficient from the first division means 314, and transfers the multiplication result to the second addition means 405. Output.

第3の複素共役化手段402は、フーリエ変換手段235からの出力信号の複素共役を、第3の周波数反転手段403に出力する。 The third complex conjugate means 402 outputs the complex conjugate of the output signal from the Fourier transform means 235 to the third frequency inversion means 403.

第3の周波数反転手段403は、第3の複素共役化手段402からの出力信号の周波数を反転させて得た信号を、第4の乗算手段404に出力する。 The third frequency inversion means 403 outputs a signal obtained by inverting the frequency of the output signal from the third complex conjugate means 402 to the fourth multiplication means 404.

第4の乗算手段404は、第3の周波数反転手段403からの出力信号の信号値と、第2の除算手段315からの第2の係数とを乗算して、その乗算結果を第2の加算手段405に出力する。 The fourth multiplication means 404 multiplies the signal value of the output signal from the third frequency inversion means 403 by the second coefficient from the second division means 315, and the multiplication result is added to the second. Output to means 405.

第2の加算手段405は、第3の乗算手段401の出力信号と、第4の乗算手段404の出力信号とを加算して、逆フーリエ変換手段238に出力する。 The second addition means 405 adds the output signal of the third multiplication means 401 and the output signal of the fourth multiplication means 404, and outputs the result to the inverse Fourier transform means 238.

(A-2)実施形態の動作
次に、実施形態に係る送信側伝送装置10及び受信側伝送装置20における処理を詳細に説明する。
(A-2) Operation of the Embodiment Next, the processing in the transmission side transmission device 10 and the reception side transmission device 20 according to the embodiment will be described in detail.

ここでは、送信側伝送装置10はIQ変調し、受信側伝送装置20でホモダイン検波する伝送系を一例として挙げる。 Here, an example is a transmission system in which the transmission side transmission device 10 is IQ-modulated and the receiving side transmission device 20 performs homodyne detection.

また、以下では、送信側伝送装置10の送信手段11と、受信側伝送装置20の受信手段23との間でTS信号(例えば第1のTS信号及び第2のTS信号)の送受信をすることで、受信側(すなわち受信手段23)でIQ間不均衡を補償する処理を中心に説明する。 Further, in the following, a TS signal (for example, a first TS signal and a second TS signal) is transmitted and received between the transmission means 11 of the transmission side transmission device 10 and the reception means 23 of the reception side transmission device 20. Then, the process of compensating for the imbalance between IQs on the receiving side (that is, the receiving means 23) will be mainly described.

送信側伝送装置10において、送信手段11が送信する電気信号(すなわち、送信手段11が出力する電気信号)のI成分とQ成分をそれぞれ、s、sとする。s、sは同一パワーとする。他方、受信側伝送装置20において、変調された光信号のI成分とQ成分をそれぞれE、Eとする。 In the transmission side transmission device 10, the I component and the Q component of the electric signal transmitted by the transmission means 11 (that is, the electric signal output by the transmission means 11) are s I and s Q , respectively. s I and s Q have the same power. On the other hand, in the receiving side transmission device 20, the I component and the Q component of the modulated optical signal are referred to as EI and EQ, respectively.

IQ間の振幅不平衡を表す量としてg、gを定義する。つまり、IQ間位相不平衡がない場合の入出力関係をE=g、E=gとする。g=gの場合、IQ間の振幅不平衡がないことを表し、g≠gの場合、IQ間の振幅不平衡があることを表す。 G I and g Q are defined as quantities representing the amplitude imbalance between IQs. That is, the input / output relationship when there is no phase imbalance between IQs is EI = g Is I and EQ = g Q s Q. When g I = g Q , it means that there is no amplitude imbalance between IQs, and when g I ≠ g Q , it means that there is an amplitude imbalance between IQs.

IQ間の位相不平衡をφとすると、IQ間で振幅と位相の両方に不平衡がある場合の入出力関係は、式(1)、式(2)で表すことができる。

Figure 0007028295000002
Assuming that the phase imbalance between IQs is φ, the input / output relationship when there is an imbalance in both amplitude and phase between IQs can be expressed by equations (1) and (2).
Figure 0007028295000002

φ=0の場合、IQ間の位相不平衡がない場合を表す。g=1、g=gとしたものが非特許文献2の記載技術に一致する。 When φ = 0, it means that there is no phase imbalance between IQs. The fact that g I = 1 and g Q = g corresponds to the description technique of Non-Patent Document 2.

また、複素電界振幅Eを用いると、変調された光信号のE、Eは、式(3)、式(4)と表すことができる。このとき、g=1+g、g=1-gとしたものが非特許文献3の記載技術に一致する。ここで、iは虚数単位、E(アクセント記号「-」はbarを示す。アクセント記号barの表記については同様とする。)はEの複素共役である。

Figure 0007028295000003
Further, when the complex electric field amplitude E is used, the E I and EQ of the modulated optical signal can be expressed as Eqs. (3) and (4). At this time, g I = 1 + g and g Q = 1-g correspond to the description technique of Non-Patent Document 3. Here, i is an imaginary unit, and E- (the accent symbol "-" indicates bar. The same applies to the notation of the accent symbol bar) is the complex conjugate of E.
Figure 0007028295000003

上述した式(1)、式(2)に、IQ間のスキューの影響を取り入れ、時間変化の表記を用いると、入出力関係は、式(5)、式(6)で表すことができる。

Figure 0007028295000004
By incorporating the influence of skew between IQs into the above-mentioned equations (1) and (2) and using the notation of time change, the input / output relationship can be expressed by equations (5) and (6).
Figure 0007028295000004

ここで、tは時間、τはスキューを表す。τ=0はスキューが生じない場合、τ>0はQ成分がI成分より遅れるスキューの場合、τ<0はI成分がQ成分より遅れるスキューの場合を表す。 Here, t represents time and τ s represents skew. τ s = 0 means that no skew occurs, τ s > 0 means that the Q component lags behind the I component, and τ s <0 means that the I component lags behind the Q component.

受信側伝送装置20は、送信側伝送装置10から光信号を受信する。受信する光信号のI成分とQ成分はそれぞれE、Eである。 The receiving side transmission device 20 receives an optical signal from the transmitting side transmission device 10. The I component and Q component of the received optical signal are EI and EQ, respectively.

光コヒーレント検波手段21は、受信した光信号と、第2の光源22から出力された連続光との重ね合わせから得たビート成分をホモダイン検波出力信号(電気信号)として出力する。ここで、ホモダイン検波出力信号(すなわち、受信手段23に入力される信号)のI成分とQ成分をそれぞれr、rとする。 The optical coherent detection means 21 outputs a beat component obtained by superimposing the received optical signal and the continuous light output from the second light source 22 as a homodyne detection output signal (electric signal). Here, the I component and the Q component of the homodyne detection output signal (that is, the signal input to the receiving means 23) are referred to as r I and r Q , respectively.

IQ間振幅不均衡を表す量をG、Gとし、IQ間位相不平衡をθとし、IQ間スキューを表す量をτとする。この場合、入出力関係は、(7)式、(8)式で表すことができる。

Figure 0007028295000005
Let GI and GQ be the quantities representing the amplitude imbalance between IQs, θ be the phase imbalance between IQs , and τ r be the quantity representing the skew between IQs. In this case, the input / output relationship can be expressed by Eqs. (7) and (8).
Figure 0007028295000005

例えば、非特許文献1の式(2)、式(3)はIQ間位相不均衡の影響を示しており、δX-I,Y-I=0、δX-Q,Y-Q=θとすると、上述した式(7)及び式(8)に一致する。非特許文献1の式(6)はIQ間振幅不均衡の影響を示しており、αX-I,Y-IをG、αX-Q,Y-QをGとすると、上述した式(7)及び式(8)に一致する。非特許文献1の式(9)はスキューの影響を示しており、τX-I,Y-Iを0、τX-Q,Y-Qをτとすると、上述した式(7)及び式(8)に一致する。 For example, the equations (2) and (3) of Non-Patent Document 1 show the influence of the phase imbalance between IQ, and δ XI , YY = 0, δ XQ, YQ = θ. Then, it corresponds to the above-mentioned equations (7) and (8). Equation (6) of Non - Patent Document 1 shows the influence of the amplitude imbalance between IQs . It corresponds to the formula (7) and the formula (8). The equation (9) of Non-Patent Document 1 shows the influence of skew, and if τ XI and Y-I are 0 and τ XQ and YQ are τr, the above-mentioned equation (7) and Consistent with equation (8).

式(5)~式(8)、および複素数と実部、虚部の関係s=s+is、r=r+irから、送信電気信号と受信電気信号の関係は、式(9)、式(10)~式(12)で表すことができる。

Figure 0007028295000006
From equations (5) to (8), and the relationship between complex numbers and real and imaginary parts s = s I + is Q , r = r I + ir Q , the relationship between transmitted electrical signals and received electrical signals is expressed in equation (9). , Can be expressed by equations (10) to (12).
Figure 0007028295000006

受信手段23において、フーリエ変換手段235は、光コヒーレント検波手段21からの出力信号をフーリエ変換する。つまり、フーリエ変換手段235は、式(9)の両辺を両側フーリエ変換する。ここで、周波数をf、sのフーリエ変換対をS、γのフーリエ変換対をRとすると、式(13)で表すことができる。ここで、式(13)におけるA(f)は式(14)で表し、B(f)は、式(15)で表すことができる。

Figure 0007028295000007
In the receiving means 23, the Fourier transform means 235 Fourier transforms the output signal from the optical coherent detection means 21. That is, the Fourier transform means 235 performs a two-sided Fourier transform on both sides of the equation (9). Here, assuming that the Fourier transform pair of frequency is f and s is S and the Fourier transform pair of γ is R, it can be expressed by the equation (13). Here, A (f) in the formula (13) can be represented by the formula (14), and B (f) can be represented by the formula (15).
Figure 0007028295000007

ここで、式(13)~式(15)をS(f)について解くと、式(16)となる。

Figure 0007028295000008
Here, when the equations (13) to (15) are solved for S (f), the equation (16) is obtained.
Figure 0007028295000008

式(14)より、A(f)とB(f)が既知の場合、式(16)の演算を実行した後、逆フーリエ変換手段238が逆フーリエ変換することにより、シンボル逆変換手段239は、受信信号から送信信号を復元することができる。したがって、受信手段23において、A(f)、B(f)を推定することが問題となる。 When A (f) and B (f) are known from the equation (14), the symbol inverse transform means 239 is subjected to the inverse Fourier transform by the inverse Fourier transform means 238 after executing the operation of the equation (16). , The transmitted signal can be restored from the received signal. Therefore, it is a problem to estimate A (f) and B (f) in the receiving means 23.

そこで、以下では、受信手段23において、A(f)とB(f)を推定する方法を説明する。このA(f)とB(f)を推定する処理は、係数算出手段236において実行される。 Therefore, in the following, a method of estimating A (f) and B (f) in the receiving means 23 will be described. The process of estimating A (f) and B (f) is executed by the coefficient calculating means 236.

送信信号の時間波形s(t)を式(17)で表されるものとする。式(17)の両辺を両側フーリエ変換して得た値を、式(13)に代入する。そうすると、受信信号の両側スペクトルR(f)は、式(18)で表すことができる。

Figure 0007028295000009
It is assumed that the time waveform s (t) of the transmission signal is represented by the equation (17). The value obtained by performing a two-sided Fourier transform on both sides of the equation (17) is substituted into the equation (13). Then, the two-sided spectrum R (f) of the received signal can be expressed by the equation (18).
Figure 0007028295000009

ここで、δは、ディラックのδ関数である。よって、受信信号スペクトルを観測すると、正の周波数成分からA(f)が得られ、負の周波数成分からB(-f)が得られる。 Here, δ is Dirac's delta function. Therefore, when the received signal spectrum is observed, A (f 0 ) is obtained from the positive frequency component, and B (−f 0 ) is obtained from the negative frequency component.

また、送信信号の時間波形s(t)を式(19)で表されるものとする。式(19)の両辺を両側フーリエ変換して得た値を、式(13)に代入する。そうすると、受信信号の両側スペクトルR(f)は、式(20)で表すことができる。

Figure 0007028295000010
Further, it is assumed that the time waveform s (t) of the transmission signal is represented by the equation (19). The value obtained by performing a two-sided Fourier transform on both sides of the equation (19) is substituted into the equation (13). Then, the two-sided spectrum R (f) of the received signal can be expressed by the equation (20).
Figure 0007028295000010

この場合も同様に、受信信号スペクトルを観測すると、正の周波数成分からB(f)が得られ、負の周波数成分からA(-f)が得られる。 Similarly, in this case, when the received signal spectrum is observed, B (f 0 ) is obtained from the positive frequency component, and A (−f 0 ) is obtained from the negative frequency component.

周波数fを変化させながら、送信手段11及び受信手段23との間で、式(17)、式(19)で表される信号を、順次送受信することにより、必要な周波数帯域の応答A(f)、B(f)が受信手段23側で得られる。 By sequentially transmitting and receiving the signals represented by the equations (17) and (19) between the transmitting means 11 and the receiving means 23 while changing the frequency f 0 , the response A in the required frequency band ( f) and B (f) are obtained on the receiving means 23 side.

図6は、実施形態において、送信手段11が送信する第1のTS及び第2のTSと、受信手段23が受信する第3のTS及び第4のTSとの関係を説明する説明図である。 FIG. 6 is an explanatory diagram illustrating the relationship between the first TS and the second TS transmitted by the transmitting means 11 and the third TS and the fourth TS received by the receiving means 23 in the embodiment. ..

図6(A)~図6(D)において、横軸は周波数を示し、縦軸は振幅(複素振幅)を示している。図6(A)~図6(D)では、周波数「0」よりも右側が正の周波数成分の振幅を示しており、左側が負の周波数成分の振幅を示している。 In FIGS. 6A to 6D, the horizontal axis represents frequency and the vertical axis represents amplitude (complex amplitude). In FIGS. 6A to 6D, the right side of the frequency “0” shows the amplitude of the positive frequency component, and the left side shows the amplitude of the negative frequency component.

図6(A)は第1のTSを示し、図6(B)は第2のTSを示す。第1のTS及び第2のTSはそれぞれ、両側スペクトルを持つ信号である。 FIG. 6 (A) shows the first TS, and FIG. 6 (B) shows the second TS. The first TS and the second TS are signals having a two-sided spectrum, respectively.

第1のTSは、負の周波数成分の複素振幅が「0」であり、正の周波数成分の複素振幅を有する単側帯波(SSB; single side-band)信号である。他方、第2のTSは、正の周波数成分の複素振幅が「0」であり、負の周波数成分の複素振幅を有する単側帯波(SSB)信号である。 The first TS is a single side-band (SSB) signal in which the complex amplitude of the negative frequency component is “0” and has the complex amplitude of the positive frequency component. On the other hand, the second TS is a single-sided wave (SSB) signal in which the complex amplitude of the positive frequency component is "0" and has the complex amplitude of the negative frequency component.

つまり送信手段11は、両側スペクトル表記で、負の周波数成分の複素振幅が「0」の単側帯波信号を「第1のTS(トレーニングシンボル系列)」とし、正の周波数成分の複素振幅が「0」の単側帯波信号を「第2のTS(トレーニングシンボル系列)」を送信する。 That is, the transmitting means 11 sets the single-sided wave signal in which the complex amplitude of the negative frequency component is "0" as the "first TS (training symbol series)" in the two-sided spectrum notation, and the complex amplitude of the positive frequency component is ". A "second TS (training symbol sequence)" is transmitted as a single-sided wave signal of "0".

これら第1のTS及び第2のTSを時分割多重すると、受信側では、図6(C)及び図6(D)に示すような第3のTS及び第4のTSが、別々の時間から得られる。 When these first TS and second TS are time-division-multiplexed, on the receiving side, the third TS and the fourth TS as shown in FIGS. 6 (C) and 6 (D) are displayed from different times. can get.

単側帯波(SSB)信号は、例えばヒルベルト変換の原理を応用することにより生成することができる。 Single sideband (SSB) signals can be generated, for example, by applying the Hilbert transform principle.

図6(C)、図6(D)に示すA(f´)、A(-f´)(f´>0)を周波数多重することによりA(f)が得られ、図6(C)、図6(D)に示すB(f´)、B(-f´)を周波数多重することによりB(f)が得られる。 A (f) is obtained by frequency-multiplexing A (f') and A (-f') (f'> 0) shown in FIGS. 6 (C) and 6 (D), and FIG. 6 (C) is obtained. , B (f') and B (−f') shown in FIG. 6 (D) are frequency-multiplexed to obtain B (f).

つまり、第1の周波数多重手段305がA(f´)とA(-f´)とを周波数多重してA(f)を算出し、第2の周波数多重手段309がB(f´)とB(-f´)とを周波数多重してB(f)を算出する。 That is, the first frequency multiplexing means 305 frequency-multiplexes A (f') and A (-f') to calculate A (f), and the second frequency multiplexing means 309 is B (f'). B (f) is calculated by frequency-multiplexing B (−f ′).

そして、第1の複素共役化手段306が、A(f)の複素共役A(f)を求め、第1の周波数反転手段307が、A(f)の周波数を反転させてA(-f)を求める。さらに、第1の乗算手段308が、A(f)とA(-f)を乗算する。 Then, the first complex conjugate means 306 obtains the complex conjugate A (f) of A (f), and the first frequency inversion means 307 inverts the frequency of A (f) to A (. -F) is calculated. Further, the first multiplication means 308 multiplies A (f) and A (−f).

他方、第2の複素共役化手段310が、B(f)の複素共役B(f)を求め、第2の周波数反転手段311が、B(f)の周波数を反転させてB(-f)を求める。さらに、第2の乗算手段312が、B(f)とB(-f)を乗算する。 On the other hand, the second complex conjugate means 310 obtains the complex conjugate B (f) of B (f), and the second frequency inversion means 311 inverts the frequency of B (f) to B (. -F) is calculated. Further, the second multiplication means 312 multiplies B (f) and B (−f).

第1の加算手段313は、第1の乗算手段308からの出力信号A(f)・A(-f)と、第2の乗算手段312からの出力信号B(f)・B(-f)とを加算する。 The first adding means 313 has an output signal A (f) · A (−f) from the first multiplying means 308 and an output signal B (f) · B (−) from the second multiplying means 312. f) and are added.

そして、第1の除算手段314は、第1の周波数反転手段307からの出力信号A(-f)を、第1の加算手段313からの出力信号A(f)・A(-f)+B(f)・B(-f)で除算して、第1の係数を算出する。この第1の係数は、式(16)のR(f)の係数となる。 Then, the first dividing means 314 transfers the output signal A − (−f) from the first frequency inversion means 307 to the output signals A (f) · A − ( −f) from the first adding means 313. Divide by + B (f) and B- ( -f) to calculate the first coefficient. This first coefficient is the coefficient of R (f) in the equation (16).

他方、第2の除算手段315は、第2の周波数多重手段309からの出力信号B(f)を、第1の加算手段313からの出力信号A(f)・A(-f)+B(f)・B(-f)で除算して、第2の係数を算出する。この第2の係数は、式(16)のR(f)の係数となる。 On the other hand, in the second dividing means 315, the output signal B (f) from the second frequency multiplexing means 309 is combined with the output signals A (f) and A (−f) + B (from the first adding means 313). f) · B - divide by (-f) to calculate the second coefficient. This second coefficient is the coefficient of R (f) in the equation (16).

第1の係数及び第2の係数は、補償手段237に出力される。補償手段237では、式(16)に従って、係数算出手段236からの第1の係数及び第2の係数を用いて、フーリエ変換手段235により信号r(r、r)のフーリエ変換対RのIQ間不均衡を補償する。 The first coefficient and the second coefficient are output to the compensating means 237. In the compensating means 237, the Fourier transform vs. R of the signal r (r I , r Q ) is performed by the Fourier transform means 235 using the first coefficient and the second coefficient from the coefficient calculation means 236 according to the equation (16). Compensate for IQ-to-IQ imbalances.

つまり、第3の乗算手段401が、受信信号の両側スペクトルR(f)と第1の係数とを乗算する。他方、第3の複素共役化手段402が、受信信号の両側スペクトルR(f)の複素共役R(f)を求め、第3の周波数反転手段403が、複素共役R(f)の周波数を反転してR(-f)を求める。そして、第4の乗算手段404が、R(-f)と第2の係数とを乗算する。 That is, the third multiplication means 401 multiplies the two-sided spectrum R (f) of the received signal by the first coefficient. On the other hand, the third complex conjugate means 402 obtains the complex conjugate R (f) of the two-sided spectrum R (f) of the received signal, and the third frequency inversion means 403 obtains the frequency of the complex conjugate R (f). Is inverted to obtain R (−f). Then, the fourth multiplication means 404 multiplies R (−f) by the second coefficient.

そして、第2の加算手段405が、第3の乗算手段401の出力信号と、第4の乗算手段404からの出力信号とを加算して、式(16)のS(f)を出力する。このように、補償手段237では、第1の係数及び第2の係数を用いて、受信信号から式(16)の計算を実行することにより、IQ間不均衡が補償される。 Then, the second adding means 405 adds the output signal of the third multiplying means 401 and the output signal from the fourth multiplying means 404, and outputs S (f) of the equation (16). As described above, in the compensating means 237, the imbalance between IQs is compensated by executing the calculation of the equation (16) from the received signal using the first coefficient and the second coefficient.

(A-3)実施形態の効果
以上のように、実施形態によれば、以下の効果が得られる。
(A-3) Effect of Embodiment As described above, according to the embodiment, the following effects can be obtained.

従来の適応信号処理を用いた方式では、受信側にフィードバック構造を持つのに対して、この実施形態では、トレーニング系列(TS)信号を送受信して比較することにより、IQ間不均衡を推定する。従って、受信側にフィードバック構造のない補償が実現できる。 Whereas the conventional method using adaptive signal processing has a feedback structure on the receiving side, in this embodiment, the IQ-to-IQ imbalance is estimated by transmitting and receiving training sequence (TS) signals and comparing them. .. Therefore, compensation without a feedback structure on the receiving side can be realized.

そのため、(a)フィードバック処理が発散することによる不安定性が生じない、(b)誤差が収束するまでに費やす無効な情報信号が発生せず、効率のよい情報転送が可能になる。 Therefore, (a) instability due to divergence of the feedback process does not occur, and (b) an invalid information signal spent until the error converges does not occur, and efficient information transfer becomes possible.

また、IQ間不均衡の影響は、受信側で信号スペクトルと、その像信号スペクトルとの混在として観測される。例えば、図6に示すように、SSB信号フォーマットのTSを送受することにより、信号スペクトルの歪みと像信号スペクトルの歪みを独立して推定することが可能になる。さらに、その推定は、従来のIQ間位相不平衡の推定のように多価性が生じないので、平均化処理することで推定精度を高めることが可能になる。 Further, the influence of the IQ-to-IQ imbalance is observed as a mixture of the signal spectrum and the image signal spectrum on the receiving side. For example, as shown in FIG. 6, by transmitting and receiving TS in the SSB signal format, it becomes possible to independently estimate the distortion of the signal spectrum and the distortion of the image signal spectrum. Further, since the estimation does not have multivalued properties unlike the conventional estimation of the phase imbalance between IQs, it is possible to improve the estimation accuracy by performing the averaging process.

(B)他の実施形態
本発明は、以下の変形実施形態にも適用することができる。
(B) Other Embodiments The present invention can also be applied to the following modified embodiments.

(B-1)振幅不平衡、位相不平衡、スキューといったIQ間不平衡に関する量の要因はデバイスの個体差、製造ばらつき、経年変化、装置の周囲環境による影響である。よって、それらの時間変化は、通報情報のシンボルレートに比べれば十分緩やかであり、数秒、数分、あるいは数日といったオーダーである。したがって、送信手段11と受信手段23との間で、TSの送受は頻繁である必要はなく、例えば、装置導入のとき、部品交換のとき、あるいは基幹ネットワークに比べて無通報の時間が存在する加入者系光通信ネットワークでは通報が送受されていない時間に送受すればよい。 (B-1) Quantitative factors related to IQ imbalance such as amplitude imbalance, phase imbalance, and skew are effects of individual device differences, manufacturing variations, secular variation, and the surrounding environment of the device. Therefore, those time changes are sufficiently gradual compared to the symbol rate of the notification information, and are on the order of several seconds, several minutes, or several days. Therefore, it is not necessary for the TS to be sent and received frequently between the transmitting means 11 and the receiving means 23, and for example, there is a non-reporting time when introducing the device, when replacing parts, or as compared with the backbone network. In the subscriber optical communication network, the report may be sent and received at a time when the report is not sent and received.

(B-2)装置導入の際に、本発明により第1の係数および第2の係数が決定された後、TS送受の頻度が疎であることから、受信手段23で第1の係数および第2の係数は通報シンボルに匹敵するレートで算出する必要はない。したがって、係数算出手段236の処理をソフトウェアで実現してもよい。 (B-2) Since the frequency of TS transmission / reception is sparse after the first coefficient and the second coefficient are determined by the present invention at the time of introducing the device, the first coefficient and the second coefficient are obtained by the receiving means 23. The coefficient of 2 does not need to be calculated at a rate comparable to the reporting symbol. Therefore, the processing of the coefficient calculation means 236 may be realized by software.

(B-3)第1の係数および第2の係数の推定精度を高めるため、送信手段11で第1のTS、第2のTSをともに複数発生し、受信手段23で対応する第3のTS、第4のTSを抽出し、それら第3のTS、第4のTSをそれぞれ平均化処理する手段も本発明に含む。 (B-3) In order to improve the estimation accuracy of the first coefficient and the second coefficient, a plurality of first TS and second TS are generated by the transmitting means 11, and the corresponding third TS is generated by the receiving means 23. , A means for extracting the fourth TS and averaging the third TS and the fourth TS, respectively, is also included in the present invention.

100…光伝送システム、10…送信側伝送装置、11…送信手段、12…第1の光源、13…光変調手段、20…受信側伝送装置、21…光コヒーレント検波手段、22…第2の光源、23…受信手段、30…伝送路、
111…情報シンボル系列発生手段、112…第1の選択手段、113…第1のTS発生手段、114…第1のイネーブル信号発生手段、115…第2の選択手段、116…第2のTS発生手段、117…第2のイネーブル信号発生手段、
231…第3のイネーブル信号発生手段、232…第1のTS抽出手段、233…第4のイネーブル信号発生手段、234…第2のTS抽出手段、235…フーリエ変換手段、236…係数算出手段、237…補償手段、238…逆フーリエ変換手段、239…シンボル逆変換手段、
301…第1のフーリエ変換手段、302…第1の周波数分離手段、303…第2のフーリエ変換手段、304…第2の周波数分離手段、305…第1の周波数多重手段、306…第1の複素共役化手段、307…第1の周波数反転手段、308…第1の乗算手段、309…第2の周波数多重手段、310…第2の複素共役化手段、311…第2の周波数反転手段、312…第2の乗算手段、313…第1の加算手段、314…第1の除算手段、315…第2の除算手段、
401…第3の乗算手段、402…第3の複素共役化手段、403…第3の周波数反転手段、404…第4の乗算手段、405…第2の加算手段。
100 ... Optical transmission system, 10 ... Transmitter transmission device, 11 ... Transmission means, 12 ... First light source, 13 ... Optical modulation means, 20 ... Receiver side transmission device, 21 ... Optical coherent detection means, 22 ... Second Light source, 23 ... Receiving means, 30 ... Transmission line,
111 ... Information symbol sequence generation means, 112 ... First selection means, 113 ... First TS generation means, 114 ... First enable signal generation means, 115 ... Second selection means, 116 ... Second TS generation means Means, 117 ... Second enable signal generating means,
231 ... Third enable signal generating means, 232 ... First TS extracting means, 233 ... Fourth enable signal generating means, 234 ... Second TS extracting means, 235 ... Fourier transform means, 236 ... Coefficient calculating means, 237 ... Compensation means, 238 ... Inverse Fourier transform means, 239 ... Inverse symbol transform means,
301 ... 1st Fourier conversion means, 302 ... 1st frequency separation means, 303 ... 2nd Fourier conversion means, 304 ... 2nd frequency separation means, 305 ... 1st frequency multiplexing means, 306 ... 1st Complex conjugate means, 307 ... first frequency inversion means, 308 ... first multiplication means, 309 ... second frequency multiplexing means, 310 ... second complex conjugate means, 311 ... second frequency inversion means, 312 ... second multiplication means, 313 ... first addition means, 314 ... first division means, 315 ... second division means,
401 ... third multiplication means, 402 ... third complex conjugate means, 403 ... third frequency inversion means, 404 ... fourth multiplication means, 405 ... second addition means.

Claims (3)

情報信号を含む電気信号を発生させて送信する送信手段と、検波した前記電気信号から情報信号を復元する受信手段とを備える伝送装置において、
第1の電気信号パターンが、両側スペクトル表記で、負の周波数成分の振幅が0の単側帯波信号であり、第2の電気信号パターンが、正の周波数成分の振幅が0の単側帯波信号であり、
前記送信手段が、
送受信で決められる前記第1の電気信号パターンを発生する第1のトレーニング系列発生部と、
前記第1の電気信号パターンとは異なる前記第2の電気信号パターンを発生させる第2のトレーニング系列発生部と
を有し、
前記受信手段が
抽出した前記第1の電気信号パターン及び前記第2の電気信号パターンに基づいて、受信信号の同相成分と直交成分との不均衡を補償するための係数を導出する係数導出部と、
前記係数を用いて、前記受信信号の同相成分と直交成分との不均衡を補償する補償部
を有し、
前記送信手段が、前記第1の電気信号パターンと前記第2の電気信号パターンとを時分割多重して送信し、
前記係数導出部が、
抽出した前記第1の電気信号パターンのスペクトルから所定の周波数の正周波数成分と負周波数成分とを分離する第1の周波数成分分離部と、
抽出した前記第2の電気信号パターンのスペクトルから所定の周波数の正周波数成分と負周波数成分とを分離する第2の周波数成分分離部と、
前記第1の周波数成分分離部からの前記正周波数成分と、前記第2の周波数成分分離部からの前記負周波数成分とを周波数多重して第1の周波数成分を得る第1の周波数多重部と、
前記第1の周波数成分分離部からの前記負周波数成分と、前記第2の周波数成分分離部からの前記正周波数成分とを周波数多重して第2の周波数成分を得る第2の周波数多重部と、
前記第1の周波数成分の値と、前記第1の周波数成分の複素共役の周波数を反転した値と、前記第2の周波数成分の値と、前記第2の周波数成分の複素共役の周波数を反転した値とに基づいて、第1の係数及び第2の係数を導出する係数算出部と
を有し、
前記補償部が、前記受信信号の値に前記第1の係数を乗算した値と、前記受信信号の複素共役の値に前記第2の係数を乗算した値とを加算して、前記受信信号の同相成分と直交成分との不均衡を補償する
ことを特徴とする伝送装置。
In a transmission device including a transmitting means for generating and transmitting an electric signal including an information signal and a receiving means for restoring an information signal from the detected electric signal.
The first electric signal pattern is a single-sided wave signal in which the amplitude of the negative frequency component is 0 in the two-sided spectrum notation, and the second electric signal pattern is a single-sided wave signal in which the amplitude of the positive frequency component is 0. And
The transmission means
A first training series generator that generates the first electric signal pattern determined by transmission and reception, and
It has a second training sequence generator that generates the second electric signal pattern different from the first electric signal pattern.
The receiving means
A coefficient derivation unit for deriving a coefficient for compensating for an imbalance between the in-phase component and the orthogonal component of the received signal based on the extracted first electric signal pattern and the second electric signal pattern.
With the compensation unit that compensates for the imbalance between the in-phase component and the orthogonal component of the received signal using the coefficient.
Have,
The transmission means time-division-multiplexes the first electric signal pattern and the second electric signal pattern and transmits the second electric signal pattern.
The coefficient derivation unit
A first frequency component separator that separates a positive frequency component and a negative frequency component of a predetermined frequency from the extracted spectrum of the first electric signal pattern,
A second frequency component separator that separates a positive frequency component and a negative frequency component of a predetermined frequency from the extracted spectrum of the second electric signal pattern,
A first frequency multiplexing section that obtains a first frequency component by frequency-multiplexing the positive frequency component from the first frequency component separating section and the negative frequency component from the second frequency component separating section. ,
A second frequency multiplexing section that obtains a second frequency component by frequency-multiplexing the negative frequency component from the first frequency component separating section and the positive frequency component from the second frequency component separating section. ,
The value of the first frequency component, the value obtained by inverting the frequency of the complex conjugate of the first frequency component, the value of the second frequency component, and the frequency of the complex conjugate of the second frequency component are inverted. With the coefficient calculation unit that derives the first coefficient and the second coefficient based on the obtained values.
Have,
The compensator adds the value of the received signal multiplied by the first coefficient and the value of the complex conjugate of the received signal multiplied by the second coefficient to obtain the received signal. Compensate for imbalance between in-phase and orthogonal components
A transmission device characterized by that.
両側スペクトル表記で、負の周波数成分の振幅が0の単側帯波信号である第1の電気信号パターンと、正の周波数成分の振幅が0の単側帯波信号である第2の電気信号パターンとを時分割多重で送信する送信側伝送装置から、受信した受信信号を検波して得た電気信号から情報信号を復元する受信手段を備える受信側伝送装置において、
前記受信手段が
抽出した前記第1の電気信号パターン及び前記第2の電気信号パターンに基づいて、受信信号の同相成分と直交成分との不均衡を補償するための係数を導出する係数導出部と、
前記係数を用いて、前記受信信号の同相成分と直交成分との不均衡を補償する補償部
を有し、
前記係数導出部が、
抽出した前記第1の電気信号パターンのスペクトルから所定の周波数の正周波数成分と負周波数成分とを分離する第1の周波数成分分離部と、
抽出した前記第2の電気信号パターンのスペクトルから所定の周波数の正周波数成分と負周波数成分とを分離する第2の周波数成分分離部と、
前記第1の周波数成分分離部からの前記正周波数成分と、前記第2の周波数成分分離部からの前記負周波数成分とを周波数多重して第1の周波数成分を得る第1の周波数多重部と、
前記第1の周波数成分分離部からの前記負周波数成分と、前記第2の周波数成分分離部からの前記正周波数成分とを周波数多重して第2の周波数成分を得る第2の周波数多重部と、
前記第1の周波数成分の値と、前記第1の周波数成分の複素共役の周波数を反転した値と、前記第2の周波数成分の値と、前記第2の周波数成分の複素共役の周波数を反転した値とに基づいて、第1の係数及び第2の係数を導出する係数算出部と
を有し、
前記補償部が、前記受信信号の値に前記第1の係数を乗算した値と、前記受信信号の複素共役の値に前記第2の係数を乗算した値とを加算して、前記受信信号の同相成分と直交成分との不均衡を補償する
ことを特徴とする受信側伝送装置。
In the two-sided spectrum notation, the first electric signal pattern is a single-sided band signal having a negative frequency component amplitude of 0, and the second electric signal pattern is a single-sided wave signal having a positive frequency component amplitude of 0. In the receiving side transmission device provided with the receiving means for recovering the information signal from the electric signal obtained by detecting the received received signal from the transmitting side transmitting device that transmits the time division multiplex .
The receiving means
A coefficient derivation unit for deriving a coefficient for compensating for an imbalance between the in-phase component and the orthogonal component of the received signal based on the extracted first electric signal pattern and the second electric signal pattern.
With the compensation unit that compensates for the imbalance between the in-phase component and the orthogonal component of the received signal using the coefficient.
Have,
The coefficient derivation unit
A first frequency component separator that separates a positive frequency component and a negative frequency component of a predetermined frequency from the extracted spectrum of the first electric signal pattern,
A second frequency component separator that separates a positive frequency component and a negative frequency component of a predetermined frequency from the extracted spectrum of the second electric signal pattern,
A first frequency multiplexing section that obtains a first frequency component by frequency-multiplexing the positive frequency component from the first frequency component separating section and the negative frequency component from the second frequency component separating section. ,
A second frequency multiplexing section that obtains a second frequency component by frequency-multiplexing the negative frequency component from the first frequency component separating section and the positive frequency component from the second frequency component separating section. ,
The value of the first frequency component, the value obtained by inverting the frequency of the complex conjugate of the first frequency component, the value of the second frequency component, and the frequency of the complex conjugate of the second frequency component are inverted. With the coefficient calculation unit that derives the first coefficient and the second coefficient based on the obtained values.
Have,
The compensator adds the value of the received signal multiplied by the first coefficient and the value of the complex conjugate of the received signal multiplied by the second coefficient to obtain the received signal. Compensate for imbalance between in-phase and orthogonal components
Receiving side transmission device characterized by that.
情報信号を含む電気信号を発生させて送信する送信手段と、検波した前記電気信号から情報信号を復元する受信手段との間で情報を伝送する伝送方法において、
第1の電気信号パターンが、両側スペクトル表記で、負の周波数成分の振幅が0の単側帯波信号であり、第2の電気信号パターンが、正の周波数成分の振幅が0の単側帯波信号であり、
前記送信手段が、送受信で決められる前記第1の電気信号パターンと、前記第1の電気信号パターンとは異なる前記第2の電気信号パターンとを発生して、前記第1の電気信号パターンと前記第2の電気信号パターンとを時分割多重して送信し、
前記受信手段は、
係数導出部が、抽出した前記第1の電気信号パターン及び前記第2の電気信号パターンに基づいて、受信信号の同相成分と直交成分との不均衡を補償するための係数を導出し、
補償部が、前記係数を用いて、前記受信信号の同相成分と直交成分との不均衡を補償し、
前記係数導出部は、
第1の周波数成分分離部が、抽出した前記第1の電気信号パターンのスペクトルから所定の周波数の正周波数成分と負周波数成分とを分離し、
第2の周波数成分分離部が、抽出した前記第2の電気信号パターンのスペクトルから所定の周波数の正周波数成分と負周波数成分とを分離し、
第1の周波数多重部が、前記第1の周波数成分分離部からの前記正周波数成分と、前記第2の周波数成分分離部からの前記負周波数成分とを周波数多重して第1の周波数成分を得て、
第2の周波数多重部が、前記第1の周波数成分分離部からの前記負周波数成分と、前記第2の周波数成分分離部からの前記正周波数成分とを周波数多重して第2の周波数成分を得て、
係数算出部が、前記第1の周波数成分の値と、前記第1の周波数成分の複素共役の周波数を反転した値と、前記第2の周波数成分の値と、前記第2の周波数成分の複素共役の周波数を反転した値とに基づいて、第1の係数及び第2の係数を導出し、
前記補償部が、前記受信信号の値に前記第1の係数を乗算した値と、前記受信信号の複素共役の値に前記第2の係数を乗算した値とを加算して、前記受信信号の同相成分と直交成分との不均衡を補償する
ことを特徴とする伝送方法。
In a transmission method for transmitting information between a transmitting means for generating and transmitting an electric signal including an information signal and a receiving means for restoring an information signal from the detected electric signal.
The first electric signal pattern is a single-sided wave signal in which the amplitude of the negative frequency component is 0 in the two-sided spectrum notation, and the second electric signal pattern is a single-sided wave signal in which the amplitude of the positive frequency component is 0. And
The transmission means generates the first electric signal pattern determined by transmission / reception and the second electric signal pattern different from the first electric signal pattern, and the first electric signal pattern and the said. The second electric signal pattern and the second electric signal pattern are time-division-multiplexed and transmitted,
The receiving means
The coefficient derivation unit derives a coefficient for compensating for the imbalance between the in-phase component and the orthogonal component of the received signal based on the extracted first electric signal pattern and the second electric signal pattern.
The compensator uses the coefficient to compensate for the imbalance between the in-phase component and the orthogonal component of the received signal.
The coefficient derivation unit is
The first frequency component separation unit separates the positive frequency component and the negative frequency component of a predetermined frequency from the extracted spectrum of the first electric signal pattern.
The second frequency component separation unit separates the positive frequency component and the negative frequency component of a predetermined frequency from the extracted spectrum of the second electric signal pattern.
The first frequency multiplexing section frequency-multiplexes the positive frequency component from the first frequency component separating section and the negative frequency component from the second frequency component separating section to obtain the first frequency component. Get,
The second frequency component multiplexing unit frequency-multiplexes the negative frequency component from the first frequency component separation unit and the positive frequency component from the second frequency component separation unit to obtain a second frequency component. Get,
The coefficient calculation unit has the value of the first frequency component, the value obtained by inverting the frequency of the complex conjugate of the first frequency component, the value of the second frequency component, and the complex of the second frequency component. The first coefficient and the second coefficient are derived based on the inverted value of the conjugate frequency, and the first coefficient and the second coefficient are derived.
The compensator adds the value of the received signal multiplied by the first coefficient and the value of the complex conjugate of the received signal multiplied by the second coefficient to obtain the received signal. Compensate for imbalance between in-phase and orthogonal components
A transmission method characterized by that.
JP2020158910A 2020-09-23 2020-09-23 Transmission device, receiving side transmission device and transmission method Active JP7028295B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020158910A JP7028295B1 (en) 2020-09-23 2020-09-23 Transmission device, receiving side transmission device and transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020158910A JP7028295B1 (en) 2020-09-23 2020-09-23 Transmission device, receiving side transmission device and transmission method

Publications (2)

Publication Number Publication Date
JP7028295B1 true JP7028295B1 (en) 2022-03-02
JP2022052487A JP2022052487A (en) 2022-04-04

Family

ID=80948673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020158910A Active JP7028295B1 (en) 2020-09-23 2020-09-23 Transmission device, receiving side transmission device and transmission method

Country Status (1)

Country Link
JP (1) JP7028295B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7523977B2 (en) 2020-07-17 2024-07-29 フクビ化学工業株式会社 Duct structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014146887A1 (en) 2013-03-20 2014-09-25 Xieon Networks S.À.R.L. Optical iq modulator control
US20160323010A1 (en) 2015-04-28 2016-11-03 Nokia Technologies Oy Methods and apparatus for mitigation of radio-frequency impairments in wireless network communication
JP2018170749A (en) 2017-03-30 2018-11-01 富士通株式会社 Imbalance compensation device, transmitter, receiver, and imbalance compensation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014146887A1 (en) 2013-03-20 2014-09-25 Xieon Networks S.À.R.L. Optical iq modulator control
US20160323010A1 (en) 2015-04-28 2016-11-03 Nokia Technologies Oy Methods and apparatus for mitigation of radio-frequency impairments in wireless network communication
JP2018170749A (en) 2017-03-30 2018-11-01 富士通株式会社 Imbalance compensation device, transmitter, receiver, and imbalance compensation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7523977B2 (en) 2020-07-17 2024-07-29 フクビ化学工業株式会社 Duct structure

Also Published As

Publication number Publication date
JP2022052487A (en) 2022-04-04

Similar Documents

Publication Publication Date Title
JP6104948B2 (en) System and method for blind equalization and carrier phase recovery in quadrature amplitude modulation systems
CN105450295B (en) Monitor device, transmitter and the communication system of optical signal to noise ratio
US10171173B2 (en) Optical signal transmission apparatus and optical signal transmission method
US9300407B2 (en) Channel estimation for optical orthogonal frequency division multiplexing systems
US20120224866A1 (en) Method for processing data in an optical network element and optical network element
JP5753604B1 (en) Optical transmission / reception system and optical transmission / reception method
JP7028295B1 (en) Transmission device, receiving side transmission device and transmission method
JP6626206B2 (en) Optical transmitter, optical receiver, optical data transmission system, optical transmission method, and optical reception method
CN108933626B (en) Signal processing method and device
CN108076002B (en) Offset drift compensation device, received signal recovery device, and receiver
US20110103794A1 (en) Subcarrier multiplex system
JP6031565B1 (en) Coherent optical communication system and communication method
JP2016146573A (en) Optical transmission system and transmission channel compensation method
JP2014195149A (en) Light receiving device and light receiving method
JP2013016979A (en) Reception apparatus and method by optical orthogonal frequency division multiplex transmission system
JP6116001B2 (en) Optical transmitter and optical receiver
JP2018113566A (en) Transmitter, receiver, communication system, and communication method
JP7067393B2 (en) Optical transmission device, transmission signal generation method, and transmission signal extraction method
JP4941340B2 (en) Optical communication method and apparatus
JP2015162723A (en) Optical transmitter, optical receiver, optical transmission method, and optical reception method
EP3051761B1 (en) Processing method and network device for orthogonal frequency division multiplexing signal
JP2009278304A (en) Polarization multiplexed optical transmission method and optical transmission equipment
US11581951B1 (en) Apparatuses and methods of far-end transmitter skew monitoring in digital subcarrier multiplexing systems
Nordin et al. Coherent Optical Communication Systems in Digital Signal Processing
JP5969661B1 (en) Optical transmitter and optical transmission / reception system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7028295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150