JP7026348B2 - Chemical state analysis method for battery materials - Google Patents

Chemical state analysis method for battery materials Download PDF

Info

Publication number
JP7026348B2
JP7026348B2 JP2018028749A JP2018028749A JP7026348B2 JP 7026348 B2 JP7026348 B2 JP 7026348B2 JP 2018028749 A JP2018028749 A JP 2018028749A JP 2018028749 A JP2018028749 A JP 2018028749A JP 7026348 B2 JP7026348 B2 JP 7026348B2
Authority
JP
Japan
Prior art keywords
battery
chemical state
wavelength
characteristic
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018028749A
Other languages
Japanese (ja)
Other versions
JP2019144123A (en
Inventor
賢治 佐藤
敏 徳田
拓朗 和泉
哲弥 米田
晋 足立
昌宏 柳田
孝志 向井
美佐子 小林
秀明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Shimadzu Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Shimadzu Corp
Priority to JP2018028749A priority Critical patent/JP7026348B2/en
Publication of JP2019144123A publication Critical patent/JP2019144123A/en
Application granted granted Critical
Publication of JP7026348B2 publication Critical patent/JP7026348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、1次電池又は2次電池の使用前、使用中又は使用後における、電池を構成する材料(電池材料)が有する元素のイオンの価数等、電池材料の化学状態を分析する方法に関する。 The present invention is a method for analyzing the chemical state of a battery material, such as the valence of the ion of an element contained in the material (battery material) constituting the battery, before, during, or after the use of the primary battery or the secondary battery. Regarding.

リチウムイオン電池等の2次電池は、携帯情報端末や電気自動車等の電源として広く用いられており、充電容量(1回の充電で携帯情報端末を使用できる時間や電気自動車の走行可能な距離に直結する)や寿命(一般に、実用的な容量での充放電の繰り返しが可能な回数として示される)等を向上させることが求められている。そのために、2次電池用の電極等に用いられる材料の開発が盛んに行われている。 Secondary batteries such as lithium-ion batteries are widely used as a power source for mobile information terminals and electric vehicles, and have a charge capacity (the time during which the mobile information terminal can be used with one charge and the distance that the electric vehicle can travel). It is required to improve the life (generally shown as the number of times that charging and discharging can be repeated with a practical capacity) and the like (directly connected) and life. Therefore, materials used for electrodes for secondary batteries and the like are being actively developed.

非特許文献1には、2次電池を充電した後に放電させながら、2次電池の電極に対してXAFS(X-ray absorption fine structure:X線吸収微細構造)測定を行うことが記載されている。XAFS測定は、試料に放射光を照射し、試料を通過又は反射されたX線のスペクトルを求め、試料に吸収されたX線のピークの位置や形状から試料の電子状態等を求める方法である。非特許文献1では、2次電池が放電してゆくに従って、得られたスペクトルのピークの位置が徐々に高エネルギー側に移動してゆく、という測定結果が得られている。このピーク位置の移動は、2次電池の放電中に、電極の材料に含まれる元素のイオン(非特許文献1に示された例ではCoイオン)の価数が変化することにより生じている。 Non-Patent Document 1 describes that XAFS (X-ray absorption fine structure) measurement is performed on an electrode of a secondary battery while charging the secondary battery and then discharging the battery. .. XAFS measurement is a method of irradiating a sample with synchrotron radiation, obtaining the spectrum of X-rays that have passed or reflected in the sample, and obtaining the electronic state of the sample from the position and shape of the peak of X-rays absorbed by the sample. .. Non-Patent Document 1 has obtained a measurement result that the position of the peak of the obtained spectrum gradually moves to the high energy side as the secondary battery is discharged. This movement of the peak position is caused by a change in the valence of elemental ions (Co ions in the example shown in Non-Patent Document 1) contained in the electrode material during discharge of the secondary battery.

特開2017-223638号公報Japanese Unexamined Patent Publication No. 2017-223638

原田貴弘、他1名、リチウムイオン電池(7)正極活物質の価数および構造評価、The TRC News、株式会社東レリサーチセンター発行、2013年9月、第117号、第31-33頁Takahiro Harada, 1 others, Lithium-ion battery (7) Valuation and structural evaluation of positive electrode active material, The TRC News, published by Toray Research Center, Inc., September 2013, No. 117, pp. 31-33

非特許文献1に記載の測定方法では放射光を使用するため、この測定方法を実施するための測定装置は大型且つ高価になってしまう。 Since the measuring method described in Non-Patent Document 1 uses synchrotron radiation, the measuring device for carrying out this measuring method becomes large and expensive.

また、2次電池の開発等においては、放電中又は充電中の電極の材料に含まれるイオンの価数等の化学状態の変化を知ることが重要であるが、そのためには化学状態を測定して定量化することが求められる。非特許文献1では、2次電池のSOC(State of Charge:充電状態)とピーク位置の関係から価数変化を定量的に評価することが可能であると考えられる、と記載されている。しかし、非特許文献1には、評価方法は具体的には示されておらず、化学状態を高い精度で定量化することができるか不明である。なお、ここでは2次電池を対象として説明したが、1次電池の場合にも同様である。 In the development of secondary batteries, it is important to know the changes in the chemical state such as the valence of ions contained in the electrode material during discharge or charging. For that purpose, the chemical state is measured. Is required to be quantified. Non-Patent Document 1 describes that it is considered possible to quantitatively evaluate the valence change from the relationship between the SOC (State of Charge) of the secondary battery and the peak position. However, the evaluation method is not specifically shown in Non-Patent Document 1, and it is unclear whether the chemical state can be quantified with high accuracy. Although the description has been made for the secondary battery here, the same applies to the case of the primary battery.

本発明が解決しようとする課題は、従来よりも小型且つ安価な装置で実施することができ、且つ、イオンの価数等の電池材料の化学状態を高い精度で定量化することができる、電池材料の化学状態分析方法を提供することである。 The problem to be solved by the present invention can be carried out with a device smaller and cheaper than the conventional one, and the chemical state of the battery material such as the valence of ions can be quantified with high accuracy. It is to provide a method for analyzing the chemical state of a material.

上記課題を解決するために成された本発明に係る化学状態分析方法は、
電池のうち分析対象の電池材料を含む分析対象部が露出するように該電池を解体する電池解体工程と
前記電池材料の特性X線を発生させるための励起線を、前記分析対象部の表面中の所定の照射領域に直接、又は該分析対象部を被覆し該励起線及び該特性X線を通過させる保護層を介して照射する励起線照射工程と
前記励起線の照射により前記照射領域で生成される特性X線を、該照射領域に面して設けられた平板から成る分光結晶に、該照射領域及び該分光結晶の所定の結晶面に平行であって該照射領域と該分光結晶の間に設けられたスリットを通して入射させることにより分光する分光工程と
前記分光結晶で分光された特性X線を、前記スリットに平行な方向に長さを有する線状の検出素子が該スリットに垂直な方向に並ぶように設けられたX線リニアセンサで検出する特性X線検出工程と
前記X線リニアセンサが検出した特性X線の強度に基づいて波長スペクトルを作成し、該波長スペクトルのピークにおける波長であるピーク波長を求め、該ピーク波長と、前記分析対象部中の電池材料の化学状態を表す値とピーク波長の関係を示す標準曲線から、前記化学状態を特定する値を求める化学状態特定工程と
を行うことを特徴とする。
The chemical state analysis method according to the present invention, which was made to solve the above problems, is
A battery dismantling step of disassembling the battery so that the analysis target portion including the battery material to be analyzed is exposed.
An excitation line for generating characteristic X-rays of the battery material is passed directly to a predetermined irradiation region in the surface of the analysis target portion or by covering the analysis target portion and passing the excitation line and the characteristic X-ray. Excitation ray irradiation step to irradiate through the protective layer,
Characteristic X-rays generated in the irradiation region by irradiation of the excitation line are transmitted to a spectroscopic crystal composed of a flat plate provided facing the irradiation region in parallel with the irradiation region and a predetermined crystal plane of the spectroscopic crystal. There is a spectroscopic step of splitting by incident through a slit provided between the irradiation region and the spectroscopic crystal.
Characteristic X-rays dispersed by the spectroscopic crystal are detected by an X-ray linear sensor provided so that linear detection elements having a length in a direction parallel to the slit are arranged in a direction perpendicular to the slit. X-ray detection process and
A wavelength spectrum is created based on the intensity of characteristic X-rays detected by the X-ray linear sensor, a peak wavelength which is a wavelength at the peak of the wavelength spectrum is obtained, and the peak wavelength and the battery material in the analysis target portion are used. A chemical state specifying step for obtaining a value for specifying the chemical state from a standard curve showing the relationship between the value representing the chemical state and the peak wavelength.
It is characterized by doing .

なお、本発明において「波長スペクトル」には、波長と対応する値であるエネルギーや波数で表したエネルギースペクトルや波数スペクトルも含むものとする。同様に、「ピーク波長」には、ピークエネルギーやピーク波数も含むものとする。 In the present invention, the "wavelength spectrum" also includes an energy spectrum and a wavenumber spectrum represented by energy and wavenumber, which are values corresponding to the wavelength. Similarly, the “peak wavelength” shall include peak energy and peak wave number.

本発明において、電池材料とは、電気化学的に価数変化が可能な電極材料を意味する。したがって、セパレータや電解液、支持塩、電槽などは該当しない。 In the present invention, the battery material means an electrode material whose valence can be changed electrochemically. Therefore, separators, electrolytes, supporting salts, electric tanks, etc. are not applicable.

本発明に係る化学状態分析方法では、前記励起線を生成する励起源、前記分光結晶、前記スリット及び前記X線リニアセンサを備えるX線分光分析装置を用いて分析を行う。このX線分光分析装置は、本発明者が発明したものであり、特許文献1に記載されている。このX線分光分析装置では、励起線を照射領域に照射することによって、照射領域内の様々な位置から様々な方向に特性X線が放出されるが、そのうちスリットを通過するものだけが分光結晶に到達する。照射領域をスリットに平行な線状部分に分割して考えると、特定の波長(エネルギー)を有する特性X線は、そのうちの或る1つの線状部分から放出されるもののみが、スリットを通過して回折条件を満たす入射角で入射して回折され、X線リニアセンサの検出素子のうちの特定の1つで検出される。従って、検出素子毎に異なる特定の波長の特性X線が検出されるため、各検出素子の強度から特性X線の波長スペクトルを求めることができる。ここで、互いに波長が異なる特性X線は、互いに異なる線状部分から放出されるもののみがX線リニアセンサで検出されることになるが、1つの線状部分からは該線状部分内での平均を取ることになるため、照射領域内で組成が多少不均一であっても問題なく測定することができる。 In the chemical state analysis method according to the present invention, analysis is performed using an X-ray spectroscopic analyzer including the excitation source for generating the excitation line, the spectroscopic crystal, the slit, and the X-ray linear sensor. This X-ray spectroscopic analyzer was invented by the present inventor and is described in Patent Document 1. In this X-ray spectroscopic analyzer, by irradiating the irradiation area with excitation rays, characteristic X-rays are emitted from various positions in the irradiation area in various directions, but only those that pass through the slit are spectroscopic crystals. To reach. When the irradiation area is divided into linear portions parallel to the slit, only the characteristic X-rays having a specific wavelength (energy) that are emitted from one of the linear portions pass through the slit. Then, it is incident and diffracted at an incident angle that satisfies the diffraction condition, and is detected by a specific one of the detection elements of the X-ray linear sensor. Therefore, since characteristic X-rays having a specific wavelength different from each detection element are detected, the wavelength spectrum of the characteristic X-rays can be obtained from the intensity of each detection element. Here, as for the characteristic X-rays having different wavelengths, only those emitted from the linear portions different from each other are detected by the X-ray linear sensor, but one linear portion is within the linear portion. Therefore, even if the composition is somewhat non-uniform in the irradiation region, it can be measured without any problem.

このように上記X線分光分析装置を用いて得られる波長スペクトルのピークにおける波長(ピーク波長)は、電池材料が含有する元素の種類により異なる値となるとともに、同じ元素であってもイオンの価数等の電池材料の化学状態が異なればわずかに異なる値となる。そこで、ピーク波長と電池材料の化学状態を表す値の関係を示す標準曲線に、測定で得られたピーク波長の値を当てはめることにより、測定対象である試料中の電池材料の化学状態を表す値を求めることができる。 As described above, the wavelength (peak wavelength) at the peak of the wavelength spectrum obtained by using the above-mentioned X-ray spectroscopic analyzer has a different value depending on the type of the element contained in the battery material, and even if it is the same element, the ionic value If the chemical state of the battery material such as the number is different, the value will be slightly different. Therefore, by applying the value of the peak wavelength obtained by the measurement to the standard curve showing the relationship between the peak wavelength and the value representing the chemical state of the battery material, the value representing the chemical state of the battery material in the sample to be measured is applied. Can be asked.

但し、分析対象の電池がそのままの形態で分析対象部の照射領域に励起線を照射しても、励起線が照射領域に照射されるまでの経路や、照射領域で生成された特性X線がスリットに到達するまでの経路に、分析対象部以外の、電池を構成する部材が存在すると、励起線や照射領域で生成された特性X線の強度が弱められ、X線リニアセンサでの検出強度も低下する。そうすると、分析精度が低下したり、分析精度を確保するために検出を長時間行う必要が生じて分析効率が低下するという問題が生じる。そこで本発明に係る化学状態分析方法では、分析対象部が露出するように電池を解体したうえで、分析対象部が露出したまま、又は励起線及び該特性X線を通過させる保護層で分析対象部を被覆した状態で、照射領域に励起線を照射する。これにより、分析対象部以外の、電池を構成する部材により励起線や照射領域で生成された特性X線の強度が弱められることがなく、特性X線の検出強度を高くすることができるため、電池材料の化学状態を高い精度で定量化することができる。 However, even if the battery to be analyzed irradiates the irradiation area of the analysis target part with the excitation line as it is, the path until the excitation line is irradiated to the irradiation area and the characteristic X-rays generated in the irradiation area are still present. If there are members other than the analysis target that make up the battery in the path to reach the slit, the intensity of the characteristic X-rays generated in the excitation line and irradiation region is weakened, and the detection intensity of the X-ray linear sensor is weakened. Also declines. Then, there arises a problem that the analysis accuracy is lowered, or the detection needs to be performed for a long time in order to secure the analysis accuracy, and the analysis efficiency is lowered. Therefore, in the chemical state analysis method according to the present invention, after disassembling the battery so that the analysis target portion is exposed, the analysis target portion is to be analyzed with the analysis target portion exposed or with a protective layer that allows the excitation line and the characteristic X-ray to pass through. The irradiation area is irradiated with the excitation line while the portion is covered. As a result, the intensity of the characteristic X-rays generated in the excitation line or the irradiation region is not weakened by the members constituting the battery other than the analysis target portion, and the detection intensity of the characteristic X-rays can be increased. The chemical state of the battery material can be quantified with high accuracy.

本発明に係る化学状態分析方法において、電池を解体した後、分析対象部を洗浄したうえで分析を行うことが望ましい。このように分析対象部を洗浄することにより、電池の解体後に分析対象部が空気中の水分に触れても、分析対象部が電池中の電解液及び水と反応して変質することを防止することができる。分析対象部を洗浄する洗浄液には、水を含まない有機溶媒で、且つ、支持塩を溶解することが可能な液体であればよい。例えば、非プロトン性の鎖状カーボネート系有機溶媒または非プロトン性の環状カーボネート系有機溶媒を用いることができる。鎖状カーボネート系有機溶媒としては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)等があげられる。鎖状カーボネート系有機溶媒には、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)等があげられる。これらは、これらの1種又は2種以上を用いてもよい。これらの洗浄液のうち、分析対象部と洗浄液が接触した際に副反応が起こりにくく、また分析対象部を洗浄後、容易に洗浄液を除去できるという観点から、電気化学的に耐酸化性と耐還元性に優れ、且つ沸点の低い非プロトン性の鎖状カーボネート系有機溶媒が好ましい。 In the chemical state analysis method according to the present invention, it is desirable to perform analysis after disassembling the battery and cleaning the analysis target portion. By cleaning the analysis target portion in this way, even if the analysis target portion comes into contact with moisture in the air after the battery is disassembled, it is possible to prevent the analysis target portion from reacting with the electrolytic solution and water in the battery and deteriorating. be able to. The cleaning liquid for cleaning the analysis target portion may be any liquid that is an organic solvent that does not contain water and that can dissolve the supporting salt. For example, an aprotic chain carbonate-based organic solvent or an aprotic cyclic carbonate-based organic solvent can be used. Examples of the chain carbonate-based organic solvent include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and the like. Examples of the chain carbonate-based organic solvent include ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC) and the like. These may use one kind or two or more kinds of these. Of these cleaning liquids, side reactions are unlikely to occur when the analysis target part comes into contact with the cleaning liquid, and the cleaning liquid can be easily removed after cleaning the analysis target part, so that oxidation resistance and reduction resistance are electrochemically obtained. An aprotic chain carbonate-based organic solvent having excellent properties and a low boiling point is preferable.

なお、水を含まない有機溶媒とは、実質的に水分量が少なければこの限りではない。具体的には、洗浄液に対しての水分量が500ppm以下であればよい。この水分量はカールフィッシャーで測定可能である。 The organic solvent containing no water is not limited to this as long as the water content is substantially small. Specifically, the water content with respect to the cleaning liquid may be 500 ppm or less. This water content can be measured by Karl Fischer.

洗浄方法には、ジェット洗浄、スプレー洗浄、シャワー洗浄、ディップ洗浄、超音波洗浄などの公知の方法を採用することができるが、分析対象部が破壊されにくいという観点から、スプレー洗浄、シャワー洗浄、ディップ洗浄が好ましい。スプレー洗浄とは、スプレーノズルから洗浄液を噴霧し、分析対象部を洗浄する方法である。シャワー洗浄とは、加圧ポンプや高低差などによって生じる圧力差で、液体を分析対象部に噴射する洗浄方法である。ディップ洗浄とは、分析対象部を洗浄液に浸漬して分析対象部を洗浄する方法である。 Known cleaning methods such as jet cleaning, spray cleaning, shower cleaning, dip cleaning, and ultrasonic cleaning can be adopted as the cleaning method, but from the viewpoint that the analysis target portion is not easily destroyed, spray cleaning, shower cleaning, etc. Dip cleaning is preferred. The spray cleaning is a method of spraying a cleaning liquid from a spray nozzle to clean the analysis target portion. Shower cleaning is a cleaning method in which a liquid is sprayed onto an analysis target portion by a pressure difference caused by a pressure pump or a height difference. The dip cleaning is a method of immersing the analysis target portion in a cleaning liquid to clean the analysis target portion.

あるいは、本発明に係る化学状態分析方法において、電池の解体及びそれ以後の各工程(分析対象部の洗浄を行う場合にはそれを含む)を、乾燥雰囲気下(例えば、室温20℃、露点-70℃程度)、あるいは空気を遮断した環境下において行ってもよい。これにより、分析対象部が電池中の電解液及び水と反応して変質することを防止することができる。この場合、分析対象部の洗浄は行わなくてもよいが、もちろん行ってもよい。 Alternatively, in the chemical state analysis method according to the present invention, the battery is disassembled and each step thereafter (including the case where the analysis target portion is washed) is carried out in a dry atmosphere (for example, room temperature 20 ° C., dew point-. It may be performed in an environment where the temperature is about 70 ° C.) or the air is shut off. This makes it possible to prevent the analysis target portion from reacting with the electrolytic solution and water in the battery and deteriorating. In this case, it is not necessary to wash the analysis target portion, but of course, it may be performed.

本発明に係る化学状態分析方法において、前記標準曲線は、測定対象の電池材料よりも化学的に安定であって、該電池材料が有する元素のうちの1種から成るイオンであって互いに価数が異なるイオンを含有する複数の標準試料の各々から得られる波長スペクトルのピーク波長及び該価数に基づき作成されたものであることが望ましい。この場合、電池材料の化学状態を表す値は、該電池材料が有するイオンの価数である。電池材料そのものは充放電や化学反応等によって価数が変動し得ることから、電池材料よりも化学的に安定な標準試料を用いることにより、標準曲線の精度を良くすることができる。そのような化学的に安定な標準試料として、例えば、電池材料中の価数を求める対象である元素の酸化物、水酸化物、硫化物、塩化物等を標準試料として用いることができる。 In the chemical state analysis method according to the present invention, the standard curve is chemically more stable than the battery material to be measured, is an ion composed of one of the elements possessed by the battery material, and has a mutual valence. It is desirable that the sample is prepared based on the peak wavelength and the valence of the wavelength spectrum obtained from each of the plurality of standard samples containing different ions. In this case, the value representing the chemical state of the battery material is the valence of ions possessed by the battery material. Since the valence of the battery material itself can fluctuate due to charge / discharge, chemical reaction, etc., the accuracy of the standard curve can be improved by using a standard sample that is chemically more stable than the battery material. As such a chemically stable standard sample, for example, an oxide, a hydroxide, a sulfide, a chloride, or the like of an element whose valence is to be obtained in a battery material can be used as a standard sample.

あるいは、本発明に係る電池材料の化学状態分析方法において、前記標準曲線は、測定対象の電池材料が有する複数種の元素と同種の元素から成り、該複数種の元素のうちの1種から成るイオンであって互いに価数が異なるイオンを含有する複数の標準試料の各々から得られる波長スペクトルのピーク波長及び該価数に基づき作成されたものを用いることもできる。この場合も、電池材料の化学状態を表す値は、該電池材料が有するイオンの価数である。このように、測定対象の電池材料と同種の元素から成る標準試料を用いることにより、実際に使用される電池材料に近い組成で標準曲線が作成されるため、標準曲線の精度を良くすることができる。 Alternatively, in the method for analyzing the chemical state of a battery material according to the present invention, the standard curve is composed of the same kind of elements as the plurality of kinds of elements possessed by the battery material to be measured, and is composed of one of the plurality of kinds of elements. It is also possible to use an ion prepared based on the peak wavelength and the valence of the wavelength spectrum obtained from each of a plurality of standard samples containing ions having different valences from each other. Also in this case, the value representing the chemical state of the battery material is the valence of ions possessed by the battery material. In this way, by using a standard sample composed of elements of the same type as the battery material to be measured, a standard curve is created with a composition close to that of the battery material actually used, so that the accuracy of the standard curve can be improved. can.

本発明に係る電池材料の化学状態分析方法において、前記標準曲線は、同種の2次電池において、充電上限電圧まで充電したときの波長スペクトルのピーク波長と、放電終止電圧まで放電したときの波長スペクトルのピーク波長を基準として定めてもよい。この場合、電池材料の価数は求めない。例えば、標準試料である2次電池において充電上限電圧まで充電したときの波長スペクトルのピーク波長を100%、放電終止電圧まで放電したときのピーク波長を0%と規定し、両者の間を直線で結んだものを、試料中の電池材料の化学状態を示す値とピーク波長の関係を示す標準曲線とし、測定対象の試料を測定した際に得られるピーク波長をこの標準曲線に適用することにより、当該試料の化学状態を示す値を得ることができる。 In the method for analyzing the chemical state of a battery material according to the present invention, the standard curve shows the peak wavelength of the wavelength spectrum when charged to the upper limit voltage and the wavelength spectrum when discharged to the end-of-discharge voltage in the same type of secondary battery. The peak wavelength of may be set as a reference. In this case, the valence of the battery material is not obtained. For example, in the secondary battery which is a standard sample, the peak wavelength of the wavelength spectrum when charged to the upper limit voltage is defined as 100%, and the peak wavelength when discharged to the discharge end voltage is defined as 0%, and a straight line is provided between the two. The tied product is used as a standard curve showing the relationship between the value indicating the chemical state of the battery material in the sample and the peak wavelength, and the peak wavelength obtained when the sample to be measured is measured is applied to this standard curve. A value indicating the chemical state of the sample can be obtained.

本発明に係る電池材料の化学状態分析方法によれば、従来よりも小型且つ安価な装置で実施することができ、且つ、イオンの価数等により電池材料の化学状態を高い精度で定量化することができる。 According to the method for analyzing the chemical state of a battery material according to the present invention, it can be carried out with a smaller and cheaper device than before, and the chemical state of the battery material is quantified with high accuracy by the valence of ions and the like. be able to.

本発明に係る化学状態分析方法の一実施形態で用いる化学状態分析装置を示す概略側面図。The schematic side view which shows the chemical state analysis apparatus used in one Embodiment of the chemical state analysis method which concerns on this invention. 測定対象のリチウムイオン電池の一例を示す図(a)、及び測定のためにリチウムイオン電池を解体して試料ホルダに取り付けた状態を示す図(b)。The figure (a) which shows an example of the lithium ion battery to be measured, and the figure (b) which shows the state which disassembled the lithium ion battery for measurement and attached it to a sample holder. 本実施形態の化学状態分析方法で用いる化学状態分析装置におけるスリット、分光結晶、X線リニアセンサ及び試料ホルダの配置を示す斜視図。The perspective view which shows the arrangement of the slit, the spectroscopic crystal, the X-ray linear sensor and the sample holder in the chemical state analyzer used in the chemical state analysis method of this embodiment. 化学的に安定なMn2O3及びMnO2を標準試料として作成した標準曲線及び該標準曲線を用いて試料の電池材料が含有するMnの価数を分析した結果を示し、(a)標準曲線及び充電時の分析結果を示すグラフ、並びに(b)標準曲線及び放電時の分析結果を示すグラフ。The standard curve prepared using chemically stable Mn 2 O 3 and Mn O 2 as a standard sample and the result of analyzing the valence of Mn contained in the battery material of the sample using the standard curve are shown. (A) Standard curve And a graph showing the analysis result at the time of charging, and (b) a graph showing the standard curve and the analysis result at the time of discharging. 分析対象の試料の電池材料と同種の複数種の元素を有するLiMn2O4及びLi2MnO3を標準試料として作成した標準曲線及び該標準曲線を用いて試料の電池材料が含有するMnの価数を分析した結果を示し、(a)標準曲線及び充電時の分析結果を示すグラフ、並びに(b)標準曲線及び放電時の分析結果を示すグラフ。A standard curve prepared using Li Mn 2 O 4 and Li 2 Mn O 3 having multiple elements of the same type as the battery material of the sample to be analyzed as a standard sample, and the value of Mn contained in the battery material of the sample using the standard curve. A graph showing the results of numerical analysis, (a) a graph showing the standard curve and the analysis result at the time of charging, and (b) a graph showing the standard curve and the analysis result at the time of discharging. (a)充電上限電圧まで1回充電した2次電池と、その後に放電終止電圧まで1回放電した2次電池の電池材料を標準試料として作成した標準曲線及び該標準曲線を用いて充電又は放電の途中の2次電池における化学状態を分析した結果を示すグラフ、並びに(b)充電上限電圧までの充電及び放電終止電圧までの放電を1回行った後に、充電上限電圧まで2回目の充電を行った2次電池の電池材料と、その後に放電終止電圧まで2回目の放電を行った2次電池の電池材料を標準試料として作成した標準曲線及び該標準曲線を用いて充電又は放電の途中の2次電池における化学状態を分析した結果を示すグラフ。(a) Charging or discharging using a standard curve created as a standard sample of the battery material of the secondary battery charged once to the charging upper limit voltage and then discharged once to the discharge end voltage, and the standard curve. A graph showing the results of analyzing the chemical state of the secondary battery in the middle of the above, and (b) charging to the upper limit voltage and discharging to the discharge end voltage once, and then charging the second time to the upper limit voltage. A standard curve created using the battery material of the secondary battery performed and the battery material of the secondary battery subjected to the second discharge to the discharge end voltage as a standard sample, and the standard curve used during charging or discharging. The graph which shows the result of having analyzed the chemical state in a secondary battery. リチウムイオン電池に充電上限電圧までの充電及び放電終止電圧までの放電を1回行う間の正極材中のMnの価数の変化と、リチウムイオン電池に充電上限電圧までの充電及び放電終止電圧までの放電を1回行った後に更に充電上限電圧までの充電及び放電終止電圧までの放電を1回行う間の正極材中のMnの価数の変化を測定した結果を示すグラフ。Changes in the valence of Mn in the positive electrode material during one charge of the lithium ion battery to the upper limit of charge and discharge to the end of discharge voltage, and up to the end of charge and discharge of the lithium ion battery to the upper limit of charge The graph which shows the result of having measured the change of the valence of Mn in a positive electrode material during one charge | charge to the charge upper limit voltage and one discharge to a discharge end voltage after one discharge of.

図1~図7を用いて、本発明に係る電池材料の化学状態分析方法の実施形態を説明する。 An embodiment of the method for analyzing the chemical state of a battery material according to the present invention will be described with reference to FIGS. 1 to 7.

(1) 本実施形態の化学状態分析方法で用いる化学状態分析装置の構成
図1は、本実施形態の化学状態分析方法で用いる化学状態分析装置10の概略側面図である。この化学状態分析装置10は、励起源11と、スリット12と、平板から成る分光結晶13と、X線リニアセンサ14と、試料ホルダ15と、データ処理部16と、標準曲線データ記憶部17とを備える。
(1) Configuration of the chemical state analyzer used in the chemical state analysis method of the present embodiment FIG. 1 is a schematic side view of the chemical state analysis device 10 used in the chemical state analysis method of the present embodiment. The chemical state analyzer 10 includes an excitation source 11, a slit 12, a spectroscopic crystal 13 composed of a flat plate, an X-ray linear sensor 14, a sample holder 15, a data processing unit 16, and a standard curve data storage unit 17. To prepare for.

励起源11は、試料ホルダ15に保持される試料Sである電池が有する電池材料中の所定の面に、励起光(励起線)であるX線を照射するX線源である。X線源の代わりに電子線源を用いてもよい。この電池材料中の所定の面に励起光が照射される領域を、以下では「照射領域A」と呼ぶ。本実施形態では照射領域Aに垂直に励起光を照射するが、照射領域Aに対して傾斜した角度で励起光を照射してもよい。 The excitation source 11 is an X-ray source that irradiates a predetermined surface in the battery material of the battery, which is the sample S held in the sample holder 15, with X-rays as excitation light (excitation rays). An electron beam source may be used instead of the X-ray source. The region in which the predetermined surface of the battery material is irradiated with the excitation light is hereinafter referred to as “irradiation region A”. In the present embodiment, the excitation light is irradiated perpendicularly to the irradiation region A, but the excitation light may be irradiated at an angle inclined with respect to the irradiation region A.

スリット12は、照射領域Aと分光結晶13の間に配置される。本実施形態では、分光結晶13には所定の結晶面が、結晶の表面に平行になっているものを用いる。スリット12は、照射領域A及び特性X線の検出に用いる分光結晶13の結晶面(本実施形態では分光結晶13の表面とする)に対して平行に(図1では紙面に垂直に)配置される。 The slit 12 is arranged between the irradiation region A and the spectroscopic crystal 13. In the present embodiment, the spectroscopic crystal 13 has a predetermined crystal plane parallel to the surface of the crystal. The slit 12 is arranged parallel to the crystal plane of the spectroscopic crystal 13 used for detecting the irradiation region A and the characteristic X-ray (referred to as the surface of the spectroscopic crystal 13 in this embodiment) (perpendicular to the paper surface in FIG. 1). To.

X線リニアセンサ14は、スリット12に平行(図1の紙面に垂直)な方向に長さを有する線状の検出素子141が複数、該スリット12に垂直な方向に並ぶように設けられたものである。前述のように、特定の波長(エネルギー)を有する特性X線は、X線リニアセンサ14の検出素子141のうちの特定の1つで検出され、検出素子141毎に異なる特定の波長の特性X線が検出される。従って、個々の検出素子141は、それに入射するX線の強度(光子数)のみを検出すればよく、入射したX線の波長やエネルギーを厳密に検出する機能は不要である。 The X-ray linear sensor 14 is provided with a plurality of linear detection elements 141 having a length in a direction parallel to the slit 12 (perpendicular to the paper surface in FIG. 1) so as to be arranged in a direction perpendicular to the slit 12. Is. As described above, characteristic X-rays having a specific wavelength (energy) are detected by a specific one of the detection elements 141 of the X-ray linear sensor 14, and the characteristic X of a specific wavelength that differs for each detection element 141. The line is detected. Therefore, each detection element 141 only needs to detect the intensity (number of photons) of the X-rays incident on it, and does not need a function of strictly detecting the wavelength and energy of the incident X-rays.

データ処理部16はパーソナルコンピュータ等のハードウエアとソフトウエアにより具現化されており、機能ブロックとして、波長スペクトル作成部161と、ピーク波長決定部162と、化学状態特定部163とを有する。 The data processing unit 16 is embodied by hardware and software such as a personal computer, and has a wavelength spectrum creation unit 161, a peak wavelength determination unit 162, and a chemical state identification unit 163 as functional blocks.

波長スペクトル作成部161は、X線リニアセンサ14の各検出素子141が検出する特性X線の波長と各検出素子141での検出強度から、波長スペクトルを作成する。 The wavelength spectrum creation unit 161 creates a wavelength spectrum from the wavelength of the characteristic X-rays detected by each detection element 141 of the X-ray linear sensor 14 and the detection intensity of each detection element 141.

ピーク波長決定部162は、波長スペクトル作成部161で作成された波長スペクトルからピークを検出し、ピーク波長の値を求めるものである。ピークの検出には通常のデータ処理で用いられている周知の手法を適用することができる。 The peak wavelength determination unit 162 detects a peak from the wavelength spectrum created by the wavelength spectrum creation unit 161 and obtains the value of the peak wavelength. Well-known methods used in ordinary data processing can be applied to the detection of peaks.

化学状態特定部163は、ピーク波長決定部162で求められたピーク波長と、次に述べる標準曲線データ記憶部17に保存されている標準曲線から、試料S中の電池材料の化学状態を特定する。 The chemical state specifying unit 163 identifies the chemical state of the battery material in the sample S from the peak wavelength obtained by the peak wavelength determining unit 162 and the standard curve stored in the standard curve data storage unit 17 described below. ..

標準曲線データ記憶部17は、予め作成された、特性X線の波長スペクトルのピーク波長と化学状態の関係を示す標準曲線のデータを保存するものである。標準曲線は、化学状態分析装置10自体を用いて、あるいは他の特性X線測定装置を用いて、標準試料から放射される特性X線の波長スペクトルのピーク波長と、該標準試料が含有する元素の価数等、該標準試料の化学状態を表す指標となる値の関係を求めることにより作成される。 The standard curve data storage unit 17 stores data of a standard curve created in advance and showing the relationship between the peak wavelength of the wavelength spectrum of the characteristic X-ray and the chemical state. The standard curve is the peak wavelength of the characteristic X-ray wavelength spectrum emitted from the standard sample using the chemical state analyzer 10 itself or using another characteristic X-ray measuring device, and the elements contained in the standard sample. It is created by finding the relationship of values that are indicators of the chemical state of the standard sample, such as the valence of.

例えば、実際の測定の対象となる電池における電池材料よりも化学的に安定であって、該電池材料が有する元素のうちの1種から成るイオンであって互いに価数が異なるイオンを含有する複数の試料を標準試料として用いることができる。具体例として、リチウムイオン電池に用いられる電極の材料の1つであるLiMn2O4を測定対象の電池材料とする場合、LiMn2O4自体はMnが+3.5価という価数を有するのに対して、MnO2はMnが+4価、Mn2O3はMnが+3価という整数の価数を有し、LiMn2O4よりもMnO2及びMn2O3の方が化学的に安定である。そこで、標準試料としてMnO2及びMn2O3を用い、それら2つの標準試料に対してそれぞれ、Mnの特性X線の1つであるKβ1,3線のピーク波長を求める。そして、縦軸と横軸の一方を価数、他方をピーク波長とするグラフにこれら2つの標準試料の測定結果である2点をプロットし、それら2点を結ぶ直線を標準曲線とする。 For example, a plurality of ions that are chemically more stable than the battery material in the battery to be actually measured and are composed of one of the elements of the battery material and contain ions having different valences from each other. Can be used as a standard sample. As a specific example, when LiMn 2 O 4 , which is one of the electrode materials used in lithium-ion batteries, is used as the battery material to be measured, LiMn 2 O 4 itself has a valence of +3.5 valence. On the other hand, MnO 2 has an integer valence of +4 valence for Mn and Mn 2 O 3 has +3 valence for Mn, and MnO 2 and Mn 2 O 3 are chemically more chemically than LiMn 2 O 4 . It is stable. Therefore, Mn O 2 and Mn 2 O 3 are used as standard samples, and the peak wavelengths of Kβ1 and 3 rays, which are one of the characteristic X-rays of Mn, are obtained for each of these two standard samples. Then, two points that are the measurement results of these two standard samples are plotted on a graph in which one of the vertical axis and the horizontal axis is the valence and the other is the peak wavelength, and the straight line connecting these two points is used as the standard curve.

また、実際の測定の対象となる電池における電池材料と同種の複数種の元素から成り、該複数種の元素のうちの1種から成るイオンであって互いに価数が異なるイオンを含有する複数の試料を標準試料として用いてもよい。具体例として、前述のLiMn2O4を測定対象の電池材料とする場合には、Mnが+3.5価であるLiMn2O4自体と、Mnが+4価であるLi2MnO3という2つの標準試料に対してそれぞれ、Mnの特性X線の1つであるKβ1,3線のピーク波長を測定し、縦軸と横軸の一方を価数、他方をピーク波長とするグラフにこれら2つの標準試料の測定結果である2点をプロットし、それら2点を結ぶ直線を標準曲線とする。 In addition, a plurality of ions composed of a plurality of elements of the same type as the battery material in the battery to be actually measured, and one of the plurality of elements having different valences from each other. The sample may be used as a standard sample. As a specific example, when the above-mentioned Li Mn 2 O 4 is used as the battery material to be measured, there are two, Li Mn 2 O 4 itself in which Mn is +3.5 valence and Li 2 Mn O 3 in which Mn is +4 valence. The peak wavelengths of Kβ1 and 3 rays, which are one of the characteristic X-rays of Mn, are measured for each standard sample, and these two are shown in the graph with one of the vertical and horizontal axes as the valence and the other as the peak wavelength. Plot the two points that are the measurement results of the standard sample, and use the straight line connecting these two points as the standard curve.

あるいは、実際の測定の対象となる電池と同種の2次電池について、充電上限電圧まで充電したものと、放電終止電圧まで放電したものをそれぞれ用意し、それら2つの2次電池についてそれぞれ、電池材料から放出される特性X線のピーク波長を測定して標準曲線を作成するためのデータとしてもよい。この場合、縦軸と横軸の一方を0~100%の数値で表される化学状態の指数とし、他方をピーク波長とするグラフに、充電上限電圧まで充電したときのピーク波長を指数100%とする点、及び放電終止電圧まで放電したときのピーク波長を指数0%とする点をプロットし、それら2点を結ぶ直線を標準曲線とする。この標準曲線を使用する際には、電池材料が含有する元素の価数は考慮しない。 Alternatively, for a secondary battery of the same type as the battery to be actually measured, prepare a battery charged to the upper limit voltage and a battery discharged to the discharge end voltage, and use the battery material for each of the two secondary batteries. It may be used as data for creating a standard curve by measuring the peak wavelength of the characteristic X-ray emitted from the battery. In this case, one of the vertical axis and the horizontal axis is the index of the chemical state represented by a numerical value of 0 to 100%, and the other is the peak wavelength. The points to be used and the points where the peak wavelength when discharged to the discharge end voltage is 0% are plotted, and the straight line connecting these two points is used as the standard curve. When using this standard curve, the valences of the elements contained in the battery material are not taken into account.

以上に述べた例では標準試料を2つ用いているが、標準試料を3つ以上用い、得られた3点以上のデータ点を結ぶ直線若しくは曲線、又はそれら3点以上のデータ点との誤差が最小になるように定められる直線若しくは2次以上の関数で表される曲線を標準曲線としてもよい。 In the above example, two standard samples are used, but three or more standard samples are used, and a straight line or curve connecting the obtained three or more data points, or an error with those three or more data points. A straight line determined so that is minimized or a curve represented by a function of quadratic or higher may be used as a standard curve.

(2) 本実施形態の化学状態分析方法
以下に、化学状態分析装置10を動作させることにより実行される、本実施形態の化学状態分析方法を説明する。
(2) Chemical state analysis method of the present embodiment The chemical state analysis method of the present embodiment, which is executed by operating the chemical state analyzer 10, will be described below.

まず、試料ホルダ15に試料Sをセットする。ここでは一例として、図2(a)に示すリチウムイオン電池20が有する正極材21を測定対象の電池材料とする場合について説明する。このリチウムイオン電池20では、放電終止電圧においてLiMn2O4から成る正極材21と、Liから成る負極材22の間にセパレータ23が設けられており、正極材21から見てセパレータ23の反対側には、Alから成る集電体24が設けられている。これら正極材21、負極材22、セパレータ23及び集電体24はラミネート材26で覆われており、ラミネート材26の内側には上記各構成要素の他に電解液25が充填されている。このままの形態で測定すると、正極材21に照射される励起光及び正極材21から放出される特性X線がセパレータ23と集電体24のうちのいずれか一方を通過することとなり、検出される特性X線の強度が低下し、化学状態の分析精度も低下する。そこで本実施形態では、乾燥雰囲気下(室温20℃、露点-70℃程度)において、リチウムイオン電池20を解体し、正極材21を洗浄液(非プロトン性のカーボネート系有機溶媒。例えば、DMC。)で洗浄して電解液25を除去したうえで、励起源11に対向するように該正極材21を[V1]試料ホルダ15にセットする(図2(b))。但し、正極材21から集電体24を剥がすことが難しいため、集電体24を残したまま、正極材21からみて集電体24が励起源11の反対側に配置されるようにする。また、正極材21を保護するために、図2(b)に示すように、正極材21(及び集電体24)の周囲を新たな(リチウムイオン電池20に設けられていたラミネート材26とは異なる)ラミネート材27で被覆してもよい。ラミネート材27は、ナイロンやポリプロピレン等の樹脂が主な構成材料であり、セパレータ23や集電体24よりも励起光や特性X線を弱める作用が十分に低いため、測定に支障を生じない。 First, the sample S is set in the sample holder 15. Here, as an example, a case where the positive electrode material 21 of the lithium ion battery 20 shown in FIG. 2A is used as the battery material to be measured will be described. In this lithium ion battery 20, a separator 23 is provided between the positive electrode material 21 made of LiMn 2 O 4 and the negative electrode material 22 made of Li at the discharge end voltage, and is on the opposite side of the separator 23 when viewed from the positive electrode material 21. Is provided with a current collector 24 made of Al. The positive electrode material 21, the negative electrode material 22, the separator 23, and the current collector 24 are covered with the laminating material 26, and the inside of the laminating material 26 is filled with the electrolytic solution 25 in addition to the above-mentioned components. When measured in this form, the excitation light emitted to the positive electrode material 21 and the characteristic X-rays emitted from the positive electrode material 21 pass through either the separator 23 or the current collector 24 and are detected. The intensity of characteristic X-rays is reduced, and the accuracy of chemical state analysis is also reduced. Therefore, in the present embodiment, the lithium ion battery 20 is disassembled in a dry atmosphere (room temperature 20 ° C., dew point −70 ° C.), and the positive electrode material 21 is cleaned (aprotic carbonate-based organic solvent, for example, DMC). After washing with the above to remove the electrolytic solution 25, the positive electrode material 21 is set in the [V1] sample holder 15 so as to face the excitation source 11 (FIG. 2 (b)). However, since it is difficult to remove the current collector 24 from the positive electrode material 21, the current collector 24 is arranged on the opposite side of the excitation source 11 when viewed from the positive electrode material 21 while leaving the current collector 24. Further, in order to protect the positive electrode material 21, as shown in FIG. 2B, a new laminating material 26 provided in the lithium ion battery 20 is formed around the positive electrode material 21 (and the current collector 24). May be coated with a laminate 27. The laminated material 27 is mainly composed of a resin such as nylon or polypropylene, and has a sufficiently lower effect of weakening excitation light and characteristic X-rays than the separator 23 and the current collector 24, so that the measurement is not hindered.

次に、励起源11から照射領域Aに、励起光であるX線を照射する。これにより、照射領域Aの全体から、電極材料(図2の例では正極材21)を構成する元素によって異なるエネルギーを有する特性X線が、照射領域A内の様々な位置から様々な方向に放出される。これらの特性X線は、照射領域Aをスリット12に平行な線状部分(図1、図3のA1、A2…を参照。ここで図3は、スリット12、分光結晶13、X線リニアセンサ14及び試料ホルダ15の配置を斜視図で示したもの)に分割すると、分光結晶13の表面に特定の1つの入射角(90-θ)°(θ°は特性X線が分光結晶13でブラッグ反射される場合の回折角)で入射する方向に放出されたもののみがスリット12を通過する。そして、この位置が異なる線状部分同士では、スリット12を通過して分光結晶13に入射する特性X線の入射角が異なることとなる。例えば、線状部分A1から放出される特性X線は、1つの入射角(90-θ1)°(回折角θ1°)のみで分光結晶13に入射し、別の線状部分A2から放出される特性X線は、前記入射角(90-θ1)°とは異なる1つの入射角(90-θ2)°(回折角θ2°)のみで分光結晶13に入射する。 Next, the irradiation region A is irradiated with X-rays, which are excitation light, from the excitation source 11. As a result, characteristic X-rays having different energies depending on the elements constituting the electrode material (positive electrode material 21 in the example of FIG. 2) are emitted from various positions in the irradiation region A in various directions from the entire irradiation region A. Will be done. For these characteristic X-rays, the irradiation region A is a linear portion parallel to the slit 12 (see A1, A2 ... In FIGS. 1 and 3. Here, FIG. 3 shows the slit 12, the spectroscopic crystal 13, and the X-ray linear sensor. When the arrangement of 14 and the sample holder 15 is divided into the perspective view), one specific incident angle (90-θ) ° (θ ° is the characteristic X-ray of the spectroscopic crystal 13) on the surface of the spectroscopic crystal 13. Only those emitted in the incident direction at the diffraction angle when reflected) pass through the slit 12. Then, the incident angles of the characteristic X-rays that pass through the slit 12 and are incident on the spectroscopic crystal 13 are different between the linear portions having different positions. For example, characteristic X-rays emitted from the linear portion A1 enter the spectroscopic crystal 13 at only one incident angle (90-θ 1 ) ° (diffraction angle θ 1 °) and are emitted from another linear portion A2. The characteristic X-rays to be generated are incident on the spectroscopic crystal 13 at only one incident angle (90-θ 2 ) ° (diffraction angle θ 2 °) different from the incident angle (90-θ 1 ) °.

照射領域Aの各線状部分から分光結晶13に入射した特性X線は、ブラッグ反射の条件であるλ=(2d/n)sinθ(λは特性X線の波長、dは分光結晶13の結晶面間隔、nは次数)を満たす波長を有するときにのみ、回折角θで回折(反射)される。分光結晶13で回折(反射)された特性X線は、X線リニアセンサ14の検出素子141の1つで検出される。前述のように分光結晶13には照射領域A内の線状部分によって異なる特定の1つの入射角(90-θ)°で分光結晶13に入射することから、線状部分毎に、異なる特定の1つの波長の特性X線のみがX線リニアセンサ14に入射し、且つ、異なる検出素子141で検出される。例えば、線状部分A1から放出される特性X線は、波長λ1=(2d/n)sinθ1を有するもののみがX線リニアセンサ14に入射して1つの検出素子1411で検出され、線状部分A2から放出される特性X線は、λ1とは異なる波長λ2=(2d/n)sinθ2を有するもののみがX線リニアセンサ14に入射して検出素子1411とは異なる検出素子1412で検出される(図1、図3参照)。 The characteristic X-rays incident on the spectroscopic crystal 13 from each linear portion of the irradiation region A are the conditions of Bragg reflection. The interval, n is diffracted (reflected) at the diffraction angle θ only when it has a wavelength satisfying the order). The characteristic X-ray diffracted (reflected) by the spectroscopic crystal 13 is detected by one of the detection elements 141 of the X-ray linear sensor 14. As described above, since the spectroscopic crystal 13 is incident on the spectroscopic crystal 13 at a specific incident angle (90-θ) ° that differs depending on the linear portion in the irradiation region A, it is different for each linear portion. Only characteristic X-rays of one wavelength are incident on the X-ray linear sensor 14 and are detected by different detection elements 141. For example, as for the characteristic X-rays emitted from the linear portion A1, only those having the wavelength λ 1 = (2d / n) sin θ 1 are incident on the X-ray linear sensor 14 and detected by one detection element 1411. As for the characteristic X-rays emitted from the shaped portion A2, only those having a wavelength λ 2 = (2d / n) sin θ 2 different from λ 1 are incident on the X-ray linear sensor 14 and are different from the detection element 1411. Detected at 1412 (see FIGS. 1 and 3).

そこで、波長スペクトル作成部161は、X線リニアセンサ14から、所定の測定時間内に各検出素子141で検出されるX線の強度(光子数)の信号を取得したうえで、検出強度及び検出される波長に基づいて、照射領域Aから放出される特性X線の波長スペクトルを作成する。ここで測定時間は、X線リニアセンサ14に到達する単位時間あたりの特性X線の強度に応じて適宜定めればよいが、上述のようにリチウムイオン電池20を解体してセパレータ23や集電体24を介さずに正極材21に励起光を照射することにより、測定時間を短縮することができる。 Therefore, the wavelength spectrum creation unit 161 acquires a signal of the X-ray intensity (number of photons) detected by each detection element 141 from the X-ray linear sensor 14 within a predetermined measurement time, and then detects the detection intensity and detection. A wavelength spectrum of characteristic X-rays emitted from the irradiation region A is created based on the wavelength to be emitted. Here, the measurement time may be appropriately determined according to the intensity of the characteristic X-rays per unit time of reaching the X-ray linear sensor 14, but as described above, the lithium ion battery 20 is disassembled to disassemble the separator 23 and the current collector. By irradiating the positive electrode material 21 with the excitation light without going through the body 24, the measurement time can be shortened.

次に、ピーク波長決定部162は、波長スペクトル作成部161で作成された波長スペクトルからピークを検出し、ピーク波長を求める。 Next, the peak wavelength determination unit 162 detects a peak from the wavelength spectrum created by the wavelength spectrum creation unit 161 and obtains the peak wavelength.

続いて化学状態特定部163は、測定者が予め入力部(図示せず)から入力した測定対象の電池材料が有する元素に基づき、該元素を対象とする標準曲線を選択する。あるいは、測定者が入力部を用いて標準曲線そのものを選択するようにしてもよい。続いて、化学状態特定部163は、選択された標準曲線から、ピーク波長決定部162で求められたピーク波長に対応する、価数等の化学状態を表す指数を求める。以上の操作により、1回の化学状態分析の動作が終了する。 Subsequently, the chemical state specifying unit 163 selects a standard curve targeting the element based on the element possessed by the battery material to be measured, which is input in advance by the measurer from the input unit (not shown). Alternatively, the measurer may use the input unit to select the standard curve itself. Subsequently, the chemical state specifying unit 163 obtains an index representing a chemical state such as a valence corresponding to the peak wavelength obtained by the peak wavelength determining unit 162 from the selected standard curve. By the above operation, the operation of one chemical state analysis is completed.

(3) 作成した標準曲線、及び試料の分析結果
以下、本実施形態の化学状態分析方法において実際に作成した標準曲線、及び該標準曲線を用いて試料の分析を行った結果を示す。
(3) Prepared standard curve and sample analysis result The following shows the standard curve actually created in the chemical state analysis method of the present embodiment and the result of sample analysis using the standard curve.

(3-1) 安定な標準試料を用いて作成した標準曲線、及び分析結果
図4(a)及び(b)のグラフでは、化学的に安定なMn2O3(Mnが+3価)及びMnO2(同+4価)を標準試料として測定した結果に基づいて作成した、Mnの価数とピークエネルギー(ピーク波長に対応)の関係を示す標準曲線を直線で示している。グラフの横軸はMnの価数、縦軸はピークエネルギーを表している。なお、図4(a)と(b)に示した標準曲線は両者同じものである。図中の2個の白丸印がピークエネルギーの測定値を示し、直線は2個の白丸印の測定点を直線で結ぶことで定めた標準曲線である。測定はMn2O3、MnO2共に5回ずつ行い、それぞれピークエネルギーの平均値を取った。また、標準偏差の値をエラーバーとした。
(3-1) Standard curve prepared using a stable standard sample and analysis results In the graphs of FIGS. 4 (a) and 4 (b), chemically stable Mn 2 O 3 (Mn is +3 valence) and The standard curve showing the relationship between the valence of Mn and the peak energy (corresponding to the peak wavelength) created based on the results of measurement using MnO 2 (+4 valence) as a standard sample is shown by a straight line. The horizontal axis of the graph shows the valence of Mn, and the vertical axis shows the peak energy. The standard curves shown in FIGS. 4 (a) and 4 (b) are the same. The two white circles in the figure indicate the measured value of the peak energy, and the straight line is a standard curve defined by connecting the measurement points of the two white circles with a straight line. The measurement was performed 5 times for both Mn 2 O 3 and Mn O 2 , and the average value of the peak energy was taken for each. The standard deviation value was used as an error bar.

図4(a)には上記標準曲線と併せて、LiMn2O4から成る正極材21を用いたリチウムイオン電池20を対象に、エージングとして充電及び放電を1回行った後に、2回目の充電を行う前のもの(「SOC-0」とする。ここで「SOC」は「充電状態」(States of Charge)の略である。)、同充電を容量50%まで行ったもの(SOC-50)、及び同充電を容量100%まで行ったもの(SOC-100)について、本実施形態の化学状態分析方法により測定したピークエネルギーの値を標準曲線上に黒丸印で示す。また、図4(b)には上記標準曲線と併せて、同じリチウムイオン電池20でエージングとして充電及び放電を1回行ったうえで2回目の充電を100%まで行ったもの(上記「SOC-100」と同じ)、その後、放電を50%まで行ったもの(「DOD-50」とする。ここで「DOD」は「放電深度」(Depth of Discharge)の略である。)、及び放電を100%(容量0%まで)行ったもの(DOD-100)について、本実施形態の化学状態分析方法により測定したピークエネルギーの値を標準曲線上に黒丸印で示す。これらのデータも標準試料と同様に各充電・放電段階において5回ずつ行い、ピークエネルギーの平均値を取り、標準偏差の値をエラーバーとした。これらの黒丸印で示したデータ点における横軸の値が、各充電又は放電状態における正極材21中のMnの価数(化学状態)を示している。 In FIG. 4A, in addition to the above standard curve, a lithium ion battery 20 using a positive electrode material 21 made of LiMn 2 O 4 is charged and discharged once as aging, and then charged a second time. ("SOC-0". Here, "SOC" is an abbreviation for "States of Charge"), and the same charging up to 50% capacity (SOC-50). ) And the one (SOC-100) that has been charged to 100% capacity, the peak energy values measured by the chemical state analysis method of this embodiment are indicated by black circles on the standard curve. Further, in FIG. 4 (b), in addition to the above standard curve, the same lithium ion battery 20 is charged and discharged once as aging, and then charged up to 100% for the second time (the above "SOC-". (Same as 100 "), and then discharged to 50% (referred to as" DOD-50 ". Here," DOD "is an abbreviation for" Depth of Discharge "), and discharge. The peak energy values measured by the chemical state analysis method of this embodiment are indicated by black circles on the standard curve for the 100% (up to 0% capacity) discharge (DOD-100). Similar to the standard sample, these data were also performed 5 times in each charge / discharge stage, the average value of the peak energy was taken, and the standard deviation value was used as the error bar. The values on the horizontal axis at the data points indicated by these black circles indicate the valences (chemical states) of Mn in the positive electrode material 21 in each charged or discharged state.

(3-2) 分析対象の電池材料と同種の複数種の元素を有する標準試料を用いて作成した標準曲線、及び分析結果
図5(a)及び(b)のグラフでは、正極材21の材料と同じLiMn2O4、及び正極材21と同種の複数種の元素(Li、Mn及びO)から成るLi2MnO3を標準試料を測定した結果に基づいて作成した、Mnの価数とピークエネルギー(ピーク波長に対応)の関係を示す標準曲線を直線で示している。図4と同様に、グラフの横軸はMnの価数、縦軸はピークエネルギーを表しており、(a)と(b)に示した標準曲線は両者同じものである。図中の2個の白丸印がピークエネルギーの測定値を示し、直線は2個の白丸印の測定点を直線で結ぶことで定めた標準曲線である。測定はLiMn2O4、Li2MnO3共に5回ずつ行い、それぞれピークエネルギーの平均値を取り、標準偏差の値をエラーバーとした。
(3-2) Standard curve prepared using a standard sample having a plurality of elements of the same type as the battery material to be analyzed, and analysis results In the graphs of FIGS. 5 (a) and 5 (b), the material of the positive electrode material 21 is used. Li Mn 2 O 4 which is the same as Li Mn 2 O 4 and Li 2 Mn O 3 which consists of multiple elements (Li, Mn and O) of the same kind as the positive electrode material 21 were prepared based on the measurement results of the standard sample, and the valence and peak of Mn were prepared. The standard curve showing the relationship of energy (corresponding to the peak wavelength) is shown by a straight line. Similar to FIG. 4, the horizontal axis of the graph represents the valence of Mn, the vertical axis represents the peak energy, and the standard curves shown in (a) and (b) are the same. The two white circles in the figure indicate the measured value of the peak energy, and the straight line is a standard curve defined by connecting the measurement points of the two white circles with a straight line. The measurement was performed 5 times for both Li Mn 2 O 4 and Li 2 MnO 3 , the average value of the peak energy was taken for each, and the standard deviation value was used as the error bar.

図5(a)には上記標準曲線と併せて、図4(a)に示した例と同様に、SOC-0、SOC-50及びSOC-100の充電状態であるリチウムイオン電池20についてそれぞれ、本実施形態の化学状態分析方法により測定したピークエネルギーの値を標準曲線上に黒丸印で示す。また、図5(b)には上記標準曲線と併せて、図4(b)に示した例と同様に、SOC-100の充電状態、並びにDOD-50及びDOD-100の放電状態であるリチウムイオン電池20についてそれぞれ、本実施形態の化学状態分析方法により測定したピークエネルギーの値を標準曲線上に黒丸印で示す。これらのデータも標準試料と同様に各充電・放電段階において5回ずつ測定を行い、ピークエネルギーの平均値を取り、標準偏差の値をエラーバーとした。 FIG. 5A shows the standard curve and the lithium-ion battery 20 in the charged state of SOC-0, SOC-50 and SOC-100, respectively, in the same manner as in the example shown in FIG. 4A. The peak energy values measured by the chemical state analysis method of this embodiment are indicated by black circles on the standard curve. Further, in FIG. 5 (b), together with the above standard curve, the state of charge of SOC-100 and the state of discharge of DOD-50 and DOD-100 are lithium, as in the example shown in FIG. 4 (b). The peak energy values measured by the chemical state analysis method of the present embodiment for each of the ion batteries 20 are indicated by black circles on the standard curve. Similar to the standard sample, these data were measured 5 times at each charge / discharge stage, the average value of the peak energy was taken, and the standard deviation value was used as the error bar.

(3-3) 充電上限電圧まで充電した2次電池と放電終止電圧まで放電した2次電池の電池材料を標準試料として作成した標準曲線、及び分析結果
図6(a)のグラフでは、充電上限電圧まで1回充電した(SOC-100(初回充電))リチウムイオン電池20の正極材21と、充電上限電圧まで1回充電した後に放電終止電圧まで1回放電した(DOD-100(初回放電))リチウムイオン電池20の正極材21を標準試料として作成した標準曲線を直線で示している。この標準曲線では、SOC-100(初回充電)の化学状態を100%、DOD-100(初回放電)の化学状態を0%とし、これらの化学状態の指数を横軸、ピークエネルギーの値を縦軸としてグラフ上にプロット(図6(a)中の白丸印)し、両者を直線で結んだ。図6(a)には併せて、リチウムイオン電池20に対して充電上限電圧までの充電及び放電終止電圧までの放電を1回行った後に、容量50%まで充電を行ったもの(SOC-50)、及び2回目の充電上限電圧までの充電を行った後に容量50%まで放電を行ったもの(DOD-50)について、本実施形態の化学状態分析方法により測定したピークエネルギーの値を標準曲線上に黒丸印で示す。これら黒丸印のデータ点における横軸の値が、各充電又は放電状態における正極材21の化学状態を表す指数である。なお、2つの標準試料、SOC-50及びDOD-50のいずれにおいても5回ずつ測定を行い、ピークエネルギーの平均値を取り、標準偏差の値をエラーバーとした。
(3-3) Standard curve created using the battery materials of the secondary battery charged to the upper limit of charging voltage and the battery material of the secondary battery discharged to the end of discharge voltage as standard samples, and the analysis result In the graph of Fig. 6 (a), the upper limit of charging The positive electrode material 21 of the lithium ion battery 20 charged once to the voltage (SOC-100 (first charge)) and once charged to the upper limit voltage and then discharged once to the discharge end voltage (DOD-100 (first discharge)). ) The standard curve created by using the positive electrode material 21 of the lithium ion battery 20 as a standard sample is shown by a straight line. In this standard curve, the chemical state of SOC-100 (initial charge) is 100%, the chemical state of DOD-100 (initial discharge) is 0%, the index of these chemical states is the horizontal axis, and the peak energy value is vertical. Plots were made on the graph as axes (white circles in FIG. 6 (a)), and the two were connected by a straight line. In addition to FIG. 6A, the lithium ion battery 20 is charged to the charge upper limit voltage and discharged to the discharge end voltage once, and then charged to a capacity of 50% (SOC-50). ), And the peak energy value measured by the chemical state analysis method of this embodiment is a standard curve for the one (DOD-50) that has been charged to the upper limit voltage for the second charge and then discharged to a capacity of 50%. It is indicated by a black circle above. The value on the horizontal axis at the data points marked with black circles is an index representing the chemical state of the positive electrode material 21 in each charged or discharged state. The two standard samples, SOC-50 and DOD-50, were measured 5 times each, the average value of the peak energy was taken, and the standard deviation value was used as the error bar.

図6(b)のグラフでは、充電上限電圧までの充電及び放電終止電圧までの放電を1回行った後に、充電上限電圧まで2回目の充電を行ったリチウムイオン電池20の正極材21と、その後に放電終止電圧まで2回目の放電を行ったリチウムイオン電池20の正極材21を標準試料として、図6(a)と同様の方法で作成した標準曲線を直線で示している。SOC-50及びDOD-50のデータ(図中の黒丸印)は、本実施形態の化学状態分析方法により測定したピークエネルギーの値を標準曲線上にプロットしたものである。これら黒丸印のデータ点における横軸の値が、各充電又は放電状態における正極材21の化学状態を表す指数である。なお、2つの標準試料、SOC-50及びDOD-50のいずれにおいても5回ずつ測定を行い、ピークエネルギーの平均値を取り、標準偏差の値をエラーバーとした。 In the graph of FIG. 6B, the positive electrode material 21 of the lithium ion battery 20 is charged to the upper limit voltage and discharged to the end of discharge once, and then charged to the upper limit voltage for the second time. The standard curve created by the same method as in FIG. 6A is shown by a straight line using the positive electrode material 21 of the lithium ion battery 20 that has been discharged for the second time to the discharge end voltage as a standard sample. The data of SOC-50 and DOD-50 (black circles in the figure) are plots of peak energy values measured by the chemical state analysis method of this embodiment on a standard curve. The value on the horizontal axis at the data points marked with black circles is an index representing the chemical state of the positive electrode material 21 in each charged or discharged state. The two standard samples, SOC-50 and DOD-50, were measured 5 times each, the average value of the peak energy was taken, and the standard deviation value was used as the error bar.

(3-4) 充放電の履歴が異なる2次電池の電極材料の化学状態を測定した結果
図7に、活性化処理としてリチウムイオン電池20に充電上限電圧までの充電及び放電終止電圧までの放電を1回行った後に、2回目の充電上限電圧までの充電及び放電終止電圧までの放電を行い、図4(a)及び(b)に示した標準曲線を用いて、この2回目の充電及び放電の間の正極材21中のMnの価数の変化を測定した結果を示す。測定は5回ずつ行い、ピークエネルギーの値は5回の平均値とし、標準偏差の値をエラーバーとした。図7に示すように、正極材21の化学状態(Mnの価数)は、充電開始時及び放電終止時では1回目の充放電と2回目の充放電の間に相違は無いものの、充電中、充電上限電圧のとき、及び放電中では1回目と2回目の間に相違があることが明らかになった。
(3-4) Results of measuring the chemical state of the electrode material of the secondary battery with different charge / discharge history. After performing this once, charge up to the second charge upper limit voltage and discharge up to the discharge end voltage, and use the standard curves shown in FIGS. 4 (a) and 4 (b) to perform this second charge and discharge. The result of measuring the change of the valence of Mn in the positive electrode material 21 during discharge is shown. The measurement was performed 5 times each, the peak energy value was the average value of 5 times, and the standard deviation value was used as the error bar. As shown in FIG. 7, the chemical state (valence of Mn) of the positive electrode material 21 is not different between the first charge and discharge and the second charge and discharge at the start of charging and the end of discharge, but during charging. , It became clear that there is a difference between the first and second times at the charge upper limit voltage and during discharge.

なお、ここまでに示した標準試料及び分析対象の試料におけるデータのエラーバーは、測定時間を長くすることや測定回数を増加させることにより、小さくすることができる。 The data error bars in the standard sample and the sample to be analyzed shown so far can be reduced by lengthening the measurement time or increasing the number of measurements.

本発明は上記実施形態には限定されず、本発明の主旨の範囲内で種々の変更が可能である。例えば、測定対象の電池はリチウムイオン電池には限定されず、種々の1次電池及び2次電池を測定対象とすることができる。また、測定対象は正極材に限らず、価数が変化するものであれば負極材に含まれている物質を対象にしてもよい。 The present invention is not limited to the above embodiment, and various modifications can be made within the scope of the gist of the present invention. For example, the battery to be measured is not limited to the lithium ion battery, and various primary batteries and secondary batteries can be measured. Further, the measurement target is not limited to the positive electrode material, and any substance contained in the negative electrode material may be targeted as long as the valence changes.

さらに、上記実施形態では乾燥雰囲気下(室温20℃、露点-70℃程度)においてリチウムイオン電池20を解体して正極材21を洗浄したが、正極材21の洗浄を行えば、乾燥雰囲気下以外の状態で電池の解体以降の各工程を行ってもよい。あるいは、乾燥雰囲気下で電池の解体以降の各工程を行えば、正極材21の洗浄を省略してもよい。また、乾燥雰囲気の代わりに、空気を遮断した環境下で電池の解体以降の各工程を行ってもよい。 Further, in the above embodiment, the lithium ion battery 20 is disassembled and the positive electrode material 21 is washed under a dry atmosphere (room temperature 20 ° C., dew point −70 ° C.), but if the positive electrode material 21 is washed, it is not under a dry atmosphere. In this state, each step after disassembling the battery may be performed. Alternatively, if each step after disassembling the battery is performed in a dry atmosphere, cleaning of the positive electrode material 21 may be omitted. Further, instead of the dry atmosphere, each step after dismantling the battery may be performed in an environment where the air is shut off.

10…化学状態分析装置
11…励起源
12…スリット
13…分光結晶
14…X線リニアセンサ
141、1411、1412…検出素子
15…試料ホルダ
16…データ処理部
161…波長スペクトル作成部
162…ピーク波長決定部
163…化学状態特定部
17…標準曲線データ記憶部
20…リチウムイオン電池
21…正極材
22…負極材
23…セパレータ
24…集電体
25…電解液
26、27…ラミネート材
A…照射領域
S…試料
10 ... Chemical state analyzer 11 ... Excitation source 12 ... Slit 13 ... Spectral crystal 14 ... X-ray linear sensor 141, 1411, 1412 ... Detection element 15 ... Sample holder 16 ... Data processing unit 161 ... Wavelength spectrum creation unit 162 ... Peak wavelength Determination unit 163 ... Chemical state specification unit 17 ... Standard curve data storage unit 20 ... Lithium ion battery 21 ... Positive electrode material 22 ... Negative electrode material 23 ... Separator 24 ... Current collector 25 ... Electrolyte 26, 27 ... Laminate material A ... Irradiation region S ... Sample

Claims (8)

電池のうち分析対象の電池材料を含む分析対象部が露出するように該電池を解体する電池解体工程と
前記電池材料の特性X線を発生させるための励起線を、前記分析対象部の表面中の所定の照射領域に直接、又は該分析対象部を被覆し該励起線及び該特性X線を通過させる保護層を介して照射する励起線照射工程と
前記励起線の照射により前記照射領域で生成される特性X線を、該照射領域に面して設けられた平板から成る分光結晶に、該照射領域及び該分光結晶の所定の結晶面に平行であって該照射領域と該分光結晶の間に設けられたスリットを通して入射させることにより分光する分光工程と
前記分光結晶で分光された特性X線を、前記スリットに平行な方向に長さを有する線状の検出素子が該スリットに垂直な方向に並ぶように設けられたX線リニアセンサで検出する特性X線検出工程と
前記X線リニアセンサが検出した特性X線の強度に基づいて波長スペクトルを作成し、該波長スペクトルのピークにおける波長であるピーク波長を求め、該ピーク波長と、前記分析対象部中の電池材料の化学状態を表す値とピーク波長の関係を示す標準曲線から、前記化学状態を特定する値を求める化学状態特定工程と
を行うことを特徴とする化学状態分析方法。
A battery dismantling step of disassembling the battery so that the analysis target portion including the battery material to be analyzed is exposed.
An excitation line for generating characteristic X-rays of the battery material is passed directly to a predetermined irradiation region in the surface of the analysis target portion or by covering the analysis target portion and passing the excitation line and the characteristic X-ray. Excitation ray irradiation step to irradiate through the protective layer,
Characteristic X-rays generated in the irradiation region by irradiation of the excitation line are transmitted to a spectroscopic crystal composed of a flat plate provided facing the irradiation region in parallel with the irradiation region and a predetermined crystal plane of the spectroscopic crystal. There is a spectroscopic step of splitting by incident through a slit provided between the irradiation region and the spectroscopic crystal.
Characteristic X-rays dispersed by the spectroscopic crystal are detected by an X-ray linear sensor provided so that linear detection elements having a length in a direction parallel to the slit are arranged in a direction perpendicular to the slit. X-ray detection process and
A wavelength spectrum is created based on the intensity of characteristic X-rays detected by the X-ray linear sensor, a peak wavelength which is a wavelength at the peak of the wavelength spectrum is obtained, and the peak wavelength and the battery material in the analysis target portion are used. A chemical state specifying step for obtaining a value for specifying the chemical state from a standard curve showing the relationship between the value representing the chemical state and the peak wavelength.
A chemical state analysis method characterized by performing .
前記電池解体工程のであって前記励起線照射工程の前に、前記分析対象部を洗浄する洗浄工程を行うことを特徴とする請求項1に記載の化学状態分析方法。 The chemical state analysis method according to claim 1, wherein a cleaning step of cleaning the analysis target portion is performed after the battery dismantling step and before the excitation ray irradiation step . 前記洗浄工程が、非プロトン性の鎖状カーボネート系有機溶媒で洗浄するものであることを特徴とする請求項2に記載の化学状態分析方法。 The chemical state analysis method according to claim 2, wherein the washing step is washing with an aprotic chain carbonate-based organic solvent. 前記洗浄工程が、スプレー洗浄、シャワー洗浄、ディップ洗浄のいずれかの方法で洗浄するものであることを特徴とする請求項2又は3に記載の化学状態分析方法。 The chemical state analysis method according to claim 2 or 3, wherein the cleaning step is cleaning by any of a spray cleaning method, a shower cleaning method, and a dip cleaning method. 前記電池解体工程から前記特性X線検出工程までの各工程を、乾燥雰囲気下、又は空気を遮断した環境下で行うことを特徴とする請求項1~4のいずれかに記載の化学状態分析方法。 The chemical state analysis method according to any one of claims 1 to 4, wherein each step from the battery dismantling step to the characteristic X-ray detection step is performed in a dry atmosphere or an environment in which air is shut off. .. 前記標準曲線が、測定対象の電池材料よりも化学的に安定であって、該電池材料が有する元素のうちの1種から成るイオンであって互いに価数が異なるイオンを含有する複数の標準試料の各々から得られる波長スペクトルのピークの波長及び該価数に基づき作成されたものであることを特徴とする請求項1~5のいずれかに記載の化学状態分析方法。 A plurality of standard samples whose standard curves are chemically more stable than the battery material to be measured and contain ions consisting of one of the elements of the battery material and having different valences from each other. The chemical state analysis method according to any one of claims 1 to 5, which is prepared based on the wavelength of the peak of the wavelength spectrum obtained from each of the above and the valence thereof. 前記標準曲線が、測定対象の電池材料が有する複数種の元素と同種の元素から成り、該複数種の元素のうちの1種から成るイオンであって互いに価数が異なるイオンを含有する複数の標準試料の各々から得られる波長スペクトルのピークの波長及び該価数に基づき作成されたものであることを特徴とする請求項1~5のいずれかに記載の化学状態分析方法。 The standard curve is composed of a plurality of elements of the same type as the plurality of elements of the battery material to be measured, and is composed of one of the plurality of elements and contains a plurality of ions having different valences from each other. The chemical state analysis method according to any one of claims 1 to 5, which is prepared based on the peak wavelength and the valence of the peak of the wavelength spectrum obtained from each of the standard samples. 前記電池が2次電池であって、
前記標準曲線が、前記電池と同種の分析対象の電池材料を含む2次電池において、充電上限電圧まで充電したときの波長スペクトルのピークの波長と、放電終止電圧まで放電したときの波長スペクトルのピークの波長に基づき作成されたものであることを特徴とする請求項1~5のいずれかに記載の化学状態分析方法。
The battery is a secondary battery,
The standard curve shows the peak wavelength of the wavelength spectrum when charged to the upper limit voltage and the peak wavelength spectrum when discharged to the end-of-discharge voltage in a secondary battery containing the same type of battery material as the battery to be analyzed . The chemical state analysis method according to any one of claims 1 to 5, wherein the product is produced based on the wavelength of.
JP2018028749A 2018-02-21 2018-02-21 Chemical state analysis method for battery materials Active JP7026348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018028749A JP7026348B2 (en) 2018-02-21 2018-02-21 Chemical state analysis method for battery materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018028749A JP7026348B2 (en) 2018-02-21 2018-02-21 Chemical state analysis method for battery materials

Publications (2)

Publication Number Publication Date
JP2019144123A JP2019144123A (en) 2019-08-29
JP7026348B2 true JP7026348B2 (en) 2022-02-28

Family

ID=67772188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018028749A Active JP7026348B2 (en) 2018-02-21 2018-02-21 Chemical state analysis method for battery materials

Country Status (1)

Country Link
JP (1) JP7026348B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7380421B2 (en) * 2020-05-27 2023-11-15 株式会社島津製作所 X-ray analysis device and X-ray analysis method
JP2021189088A (en) * 2020-06-02 2021-12-13 株式会社島津製作所 Analyzer and method for analysis
CN117790915A (en) * 2023-12-27 2024-03-29 天科新能源有限责任公司 Positive and negative electrode electrolyte diaphragm lamination control system of sodium ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212228A (en) 2009-02-13 2010-09-24 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2013231708A (en) 2012-04-30 2013-11-14 Samsung Sdi Co Ltd Device for analyzing film on surface of electrode for lithium secondary battery and method of analyzing film on surface of electrode for lithium secondary battery
US20160123906A1 (en) 2014-10-31 2016-05-05 GM Global Technology Operations LLC Method for Determining the Lithiation of Li-Ion Battery Electrodes
JP2017049189A (en) 2015-09-03 2017-03-09 住友金属鉱山株式会社 Evaluation method for cobalt valence
JP2017223638A (en) 2015-12-08 2017-12-21 株式会社島津製作所 X-ray spectroscopic analyzer and element analysis method
JP2019163023A (en) 2018-03-19 2019-09-26 株式会社デンソーテン Parking frame construction device and parking frame construction method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139264B2 (en) * 1994-03-02 2001-02-26 富士電機株式会社 Electrode analysis method
JP6860116B2 (en) * 2018-02-21 2021-04-14 株式会社島津製作所 Chemical state analyzer and method for battery materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212228A (en) 2009-02-13 2010-09-24 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2013231708A (en) 2012-04-30 2013-11-14 Samsung Sdi Co Ltd Device for analyzing film on surface of electrode for lithium secondary battery and method of analyzing film on surface of electrode for lithium secondary battery
US20160123906A1 (en) 2014-10-31 2016-05-05 GM Global Technology Operations LLC Method for Determining the Lithiation of Li-Ion Battery Electrodes
JP2017049189A (en) 2015-09-03 2017-03-09 住友金属鉱山株式会社 Evaluation method for cobalt valence
JP2017223638A (en) 2015-12-08 2017-12-21 株式会社島津製作所 X-ray spectroscopic analyzer and element analysis method
JP2019163023A (en) 2018-03-19 2019-09-26 株式会社デンソーテン Parking frame construction device and parking frame construction method

Also Published As

Publication number Publication date
JP2019144123A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP6860116B2 (en) Chemical state analyzer and method for battery materials
JP7026348B2 (en) Chemical state analysis method for battery materials
CN110945709B (en) Battery life estimation and capacity recovery
JP4784939B2 (en) Electrochemical infrared spectroscopic apparatus and electrochemical infrared spectroscopic measurement method
Ghannoum et al. Optical characterization of commercial lithiated graphite battery electrodes and in situ fiber optic evanescent wave spectroscopy
Rezvani et al. SEI dynamics in metal oxide conversion electrodes of Li-ion batteries
JP5661901B1 (en) Measurement cell and electrode evaluation method using the measurement cell
Teshager et al. In Situ DRIFTS Analysis of Solid‐Electrolyte Interphase Formation on Li‐Rich Li1. 2Ni0. 2Mn0. 6O2 and LiCoO2 Cathodes during Oxidative Electrolyte Decomposition
US9450249B2 (en) Non-aqueous electrolyte secondary battery and method for producing same
CN1577924A (en) Cathode active material and lithium secondary battery using the same
JP6487205B2 (en) Non-aqueous electrolyte secondary battery for X-ray diffraction measurement and X-ray diffraction measurement method
Black et al. Synchrotron radiation based operando characterization of battery materials
Saito et al. State of charge (SOC) dependence of lithium carbonate on LiNi0. 8Co0. 15Al0. 05O2 electrode for lithium-ion batteries
JP2012109176A (en) Battery degradation analysis method
JP2010232080A (en) Lithium ion secondary battery, battery system using the same, vehicle using the same, and battery mounting equipment
JP2013217751A (en) Infrared spectrometry apparatus and infrared spectrometric method using the same
Sawayama et al. Fluorinated alkyl-phosphate-based electrolytes with controlled lithium-ion coordination structure
JP2015138027A (en) Elemental concentration determination method using compton scattering
KR101705703B1 (en) In-situ cell for cell analysis with X-ray transmission
JP6569703B2 (en) Method for analyzing electrode material of lithium ion battery
JP7025250B2 (en) Electrode plate inspection device and electrode plate inspection method
KR20150053341A (en) Extracting method for secondary battery electrolyte
WO2023199833A1 (en) Holder, analysis device comprising same, and battery analysis method
WO2024065811A1 (en) Battery cell, battery and electric device
Saqib et al. A Novel Spectro-electrochemical Cell for In Operando FT-IR Spectroscopy

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220203

R150 Certificate of patent or registration of utility model

Ref document number: 7026348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150