JP7025681B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP7025681B2
JP7025681B2 JP2017032413A JP2017032413A JP7025681B2 JP 7025681 B2 JP7025681 B2 JP 7025681B2 JP 2017032413 A JP2017032413 A JP 2017032413A JP 2017032413 A JP2017032413 A JP 2017032413A JP 7025681 B2 JP7025681 B2 JP 7025681B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
aqueous electrolyte
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017032413A
Other languages
Japanese (ja)
Other versions
JP2017162801A (en
Inventor
三香子 加藤
徹太郎 林
好治 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2017162801A publication Critical patent/JP2017162801A/en
Application granted granted Critical
Publication of JP7025681B2 publication Critical patent/JP7025681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水系電解質二次電池用正極電極とこれに用いられる正極活物質、およびこれを利用した二次電池に関する。さらに詳しくは、電子機器や自動車に用いられる非水系電解質二次電池用正極電極とこれに用いられる正極活物質、およびこれを利用した二次電池に関する。 The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery, a positive electrode active material used therein, and a secondary battery using the positive electrode. More specifically, the present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery used in electronic devices and automobiles, a positive electrode active material used therein, and a secondary battery using the positive electrode.

近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く望まれている。また、ハイブリット自動車を始めとする電気自動車用の電池として高出力の二次電池の開発が強く望まれている。このような要求を満たす二次電池として、リチウムイオン二次電池がある。 In recent years, with the spread of portable electronic devices such as mobile phones and notebook personal computers, there is a strong demand for the development of small and lightweight non-aqueous electrolyte secondary batteries having high energy density. Further, it is strongly desired to develop a high output secondary battery as a battery for electric vehicles such as hybrid vehicles. As a secondary battery satisfying such a requirement, there is a lithium ion secondary battery.

リチウムイオン二次電池は、正極活物質を主要構成成分とする正極と、負極活物質を主要構成成分とする負極と、非水系電解液とから構成され、負極および正極活物質は、リチウムを脱離・挿入することの可能な材料が用いられている。 The lithium ion secondary battery is composed of a positive electrode whose main component is a positive electrode active material, a negative electrode whose main component is a negative electrode active material, and a non-aqueous electrolyte solution. A material that can be separated and inserted is used.

このようなリチウムイオン二次電池は、現在研究・開発が盛んに行われており、層状型のリチウム金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。 Such lithium-ion secondary batteries are currently being actively researched and developed, and lithium-ion secondary batteries using a layered lithium metal composite oxide as a positive electrode material can obtain a high voltage of 4V class. Therefore, it is being put into practical use as a battery having a high energy density.

これまで提案されている正極材料としては、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)やコバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)などを挙げることができる。 The positive electrode materials proposed so far include lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ) using nickel, which is cheaper than cobalt, and lithium nickel cobalt manganese. Composite oxides (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) and the like can be mentioned.

上記リチウム複合酸化物を自動車用途として開発するためには、現状よりも高出力が得られる正極材料に改良すること、すなわち正極材料の低抵抗化が重要となる。 In order to develop the above-mentioned lithium composite oxide for automobile applications, it is important to improve the positive electrode material to obtain a higher output than the current state, that is, to reduce the resistance of the positive electrode material.

また、上記リチウム複合酸化物の中には、大気中で取り扱う際、大気中の水分や二酸化炭素と反応して不活性層を形成し、容量低下や抵抗増加を引き起こすものがある。したがって、これらの正極活物質の劣化を防ぐことが重要となる。 Further, some of the above-mentioned lithium composite oxides react with moisture and carbon dioxide in the atmosphere to form an inert layer when handled in the atmosphere, causing a decrease in capacity and an increase in resistance. Therefore, it is important to prevent deterioration of these positive electrode active materials.

非特許文献1には、パルスレーザー堆積法を用いてLiCoO上にLiWOを成膜することで、LiWOが保護膜として働き、LiCoOと電解液との接触を防止し、コバルトの溶出やリン酸塩などの堆積を抑制し抵抗が低下すると報告されている。すなわち本文献では、LiWOによる抵抗低下の効果のみが言及されるにとどまり、正極活物質の大気中での取り扱い時の劣化抑制に関しては何ら言及されていない。 In Non-Patent Document 1, by forming Li 2 WO 4 on LiCoO 2 using a pulse laser deposition method, Li 2 WO 4 acts as a protective film and prevents contact between LiCoO 2 and the electrolytic solution. It has been reported that the elution of cobalt and the deposition of phosphates are suppressed and the resistance is reduced. That is, in this document, only the effect of reducing the resistance by Li 2 WO 4 is mentioned, and no reference is made to the suppression of deterioration of the positive electrode active material during handling in the atmosphere.

非特許文献2には、パルスレーザー堆積法を用いて、LiCoO上に、多方向にリチウム拡散パスを持つTetragonal相のLiWOを成膜することで、正極/電解液界面でのリチウム拡散を向上させ、界面抵抗が低下すると報告されている。すなわち、本文献でも、非特許文献1と同様、リチウム拡散パスを多く保有する物質を被覆することによる抵抗低下の効果のみが言及されるにとどまり、正極活物質の大気中での取り扱い時の劣化抑制に関しては何ら言及されていない。 In Non-Patent Document 2 , lithium at the positive electrode / electrolytic solution interface is formed by forming Li2 WO 4 of the Tetragonal phase having a lithium diffusion path in multiple directions on LiCoO 2 by using a pulsed laser deposition method. It has been reported to improve diffusion and reduce interfacial resistance. That is, in this document as well, as in Non-Patent Document 1, only the effect of reducing resistance by coating a substance having a large number of lithium diffusion paths is mentioned, and deterioration of the positive electrode active material during handling in the atmosphere is mentioned. No mention is made of suppression.

J. Power Sources 285 (2015) 559 - 567J. Power Sources 285 (2015) 559 --567 Int. J. Electrochem. Sci., 10 (2015) 8150 - 8157Int. J. Electrochem. Sci., 10 (2015) 8150 --8157

本発明は、上記問題点に鑑み、電池の正極として用いられた際に、電池の高出力化が可能となり、かつ電池を大気中で取り扱った場合に、電池の性能の劣化が少ない非水系電解質二次電池用正極電極と、該電極に用いられる正極活物質を提供することを目的とする。
また、高出力が得られるとともに、電池の性能の劣化が少ない非水系電解質二次電池を提供することを目的とする。
In view of the above problems, the present invention makes it possible to increase the output of the battery when used as the positive electrode of the battery, and when the battery is handled in the atmosphere, the performance of the battery is less deteriorated. It is an object of the present invention to provide a positive electrode for a secondary battery and a positive electrode active material used for the electrode.
Another object of the present invention is to provide a non-aqueous electrolyte secondary battery which can obtain high output and hardly deteriorate the performance of the battery.

本発明者らは、上記課題を解決するため、非水系電解質二次電池用正極活物質として用いられるリチウム金属複合酸化物の諸特性について検討した結果、リチウム金属複合酸化物の表面にタンタルとリチウムとを含む化合物からなる被覆層を形成することで、正極電極におけるリチウムイオン伝導性、すなわち表面近傍層を含めた正極活物質表面でのリチウムイオンの挿入脱離の容易さ、および固体相と電解液の固液界面でのリチウムイオンの移動の容易さを向上させるとともに、タンタルとリチウムとを含む化合物が、正極活物質に比べて、水分や二酸化炭素による劣化を受けにくいために正極活物質表面の抵抗層の形成が抑制されるとの知見、および、この正極電極を用いた二次電池の電解液/正極界面抵抗を大幅に低減して、二次電池の出力特性を向上させるとともに、二次電池を大気中で取り扱う際の、電池の性能の劣化を抑制することが可能であるとの知見を得て、本発明を完成した。 In order to solve the above problems, the present inventors have investigated various characteristics of the lithium metal composite oxide used as a positive electrode active material for a non-aqueous electrolyte secondary battery, and as a result, tantalum and lithium are on the surface of the lithium metal composite oxide. By forming a coating layer made of a compound containing and, the lithium ion conductivity in the positive electrode, that is, the ease of insertion and desorption of lithium ions on the surface of the positive electrode active material including the layer near the surface, and the solid phase and electrolysis. The surface of the positive electrode active material is improved because the ease of movement of lithium ions at the solid-liquid interface of the liquid is improved and the compound containing tantalum and lithium is less susceptible to deterioration due to moisture and carbon dioxide than the positive electrode active material. It was found that the formation of the resistance layer was suppressed, and the electrolytic solution / positive electrode interfacial resistance of the secondary battery using this positive electrode was significantly reduced to improve the output characteristics of the secondary battery and secondary. The present invention has been completed based on the finding that it is possible to suppress deterioration of battery performance when the next battery is handled in the atmosphere.

第1発明の非水系電解質二次電池は、リチウム金属複合酸化物からなる正極活物質により構成された正極と、リチウムの挿抜が可能な負極と、を、セパレータを介して積層させて電極体とし、該電極体に、電解質としてのリチウム塩を有機溶媒に溶解した非水系電解液を含侵させた非水系電解質二次電池であって、前記電極体を構成する正極電極は、前記正極と、該正極の表面に、タンタルとリチウムとを含む化合物から形成されている被覆層と、を有し、前記化合物がリチウムイオン伝導体であり、前記被覆層の厚さが、1~500nmであり、前記化合物が非晶質状態であることを特徴とする。
発明の水系電解質二次電池は、第1発明において、前記化合物は、タンタル酸リチウムであることを特徴とする。
発明の非水系電解質二次電池は、第発明において、前記タンタル酸リチウムは、LiTaO、LiTa、LiTaO、LiTaOからなる群から選択されるいずれか一の化合物を含むことを特徴とする。
発明の非水系電解質二次電池は、第1発明から第発明のいずれかにおいて、前記化合物が誘電体であることを特徴とする。
発明の非水系電解質二次電池は、第1発明から第発明のいずれかにおいて、前記正極が薄膜であり、前記被覆層が、前記正極に重畳して形成されていることを特徴とする。
発明の非水系電解質二次電池は、第1発明から第発明のいずれかにおいて、前記リチウム金属複合酸化物が粒子状であり、前記被覆層が、前記リチウム金属複合酸化物の粒子の表面に形成されていることを特徴とする。
発明の非水系電解質二次電池は、第発明において、前記被覆層に含まれているタンタル量が、前記リチウム金属複合酸化物に含まれるリチウム以外の金属元素の合計に対して0.05~5.0原子%であることを特徴とする。
In the non-aqueous electrolyte secondary battery of the first invention, a positive electrode composed of a positive electrode active material made of a lithium metal composite oxide and a negative electrode capable of inserting and removing lithium are laminated via a separator to form an electrode body. A non-aqueous electrolyte secondary battery in which the electrode body is impregnated with a non-aqueous electrolyte solution in which a lithium salt as an electrolyte is dissolved in an organic solvent. The surface of the positive electrode has a coating layer formed of a compound containing tantalum and lithium, the compound is a lithium ion conductor, and the thickness of the coating layer is 1 to 500 nm . , The compound is characterized in that it is in an amorphous state .
The non- aqueous electrolyte secondary battery of the second invention is characterized in that, in the first invention, the compound is lithium tantalate.
In the second invention, the non-aqueous electrolyte secondary battery of the third invention is one in which the lithium tantalate is selected from the group consisting of LiTaO 3 , LiTa 3 O 8 , Li 3 TaO 4 , and Li 7 TaO 6 . It is characterized by containing the compound of.
The non-aqueous electrolyte secondary battery of the fourth invention is characterized in that, in any one of the first to third inventions, the compound is a dielectric.
The non-aqueous electrolyte secondary battery of the fifth invention is characterized in that, in any one of the first to fourth inventions, the positive electrode is a thin film and the coating layer is superimposed on the positive electrode. do.
In the non-aqueous electrolyte secondary battery of the sixth invention, in any one of the first to fourth inventions, the lithium metal composite oxide is in the form of particles, and the coating layer is the particles of the lithium metal composite oxide. It is characterized by being formed on the surface.
In the non-aqueous electrolyte secondary battery of the seventh invention, in the sixth invention, the amount of tantalum contained in the coating layer is 0. It is characterized by having an amount of 05 to 5.0 atomic%.

第1発明によれば、非水系電解質二次電池用正極電極が、リチウム金属複合酸化物からなる正極活物質により構成された正極と、該正極の表面に、タンタルとリチウムとを含む化合物から形成されている被覆層を有し、この化合物がリチウムイオン伝導体であることにより、電極におけるリチウムイオン伝導性を向上できる。また、タンタルとリチウムとを含む化合物層は高耐候性を有するため、正極活物質表面の不活性層の形成を抑制できる。よって、この電極を用いることで、高出力化が実現可能であるとともに、大気中で取り扱った場合に、高出力性能が劣化しにくい非水系電解質二次電池用正極電極が提供できる。
また、被覆層の厚さが、1~500nmであることにより、リチウムイオン伝導性があり、かつ耐候性のある被覆層を十分に確保できるので、電池の出力特性を向上させるとともに、この出力特性の大気中での劣化を抑制でき、さらに製造を容易に行うことができる。
加えて、タンタルとリチウムを含む化合物が非晶質状態であることにより、正極電極の正極界面抵抗をさらに低減させることができる。
発明によれば、被覆層を形成する化合物がタンタル酸リチウムであることにより、非水系電解質二次電池に使用する電解質に対して安定であり、タンタルの溶出等による電池への悪影響を低減できる。
発明によれば、タンタル酸リチウムは、LiTaO、LiTa、LiTaO、LiTaOからなる群から選択されるいずれか一の化合物を含むことにより、タンタル酸リチウムを安定的に製造できる。
発明によれば、被覆層を形成する化合物が誘電体であることにより、表面被覆層と正極活物質界面でのリチウム挿入離脱をさらに向上させることができる。よって、この電極を用いることで、さらに高出力化が実現可能である非水系電解質二次電池用正極電極が提供できる。
発明によれば、正極が薄膜であり、被覆層が正極に重畳して形成されていることにより、薄膜正極と電解液との間にリチウムイオンの拡散パスを確保することができ、薄膜正極を用いた電池の出力が高くなるとともに、電池を大気中で取り扱う際の、出力特性の劣化の抑制が可能となる。
発明によれば、リチウム金属複合酸化物が粒子状であり、被覆層が、リチウム金属複合酸化物の粒子の表面に形成されていることにより、正極活物質粒子と電解液との間にリチウムイオンの拡散パスを確保することができ、被覆層と正極活物質粒子との間のリチウム挿入脱離が促進され、正極活物質粒子を用いた電池の高出力化が可能になるとともに、電池を大気中で取り扱う際の、出力特性の劣化の抑制が可能となる。
発明によれば、前記被覆層に含まれているタンタル量が、前記リチウム金属複合酸化物に含まれるリチウム以外の金属元素の合計に対して0.05~5.0原子%であることにより、正極活物質粒子と電解液との間のリチウムイオンの拡散パスがより確実に確保でき、被覆層と正極活物質粒子との間のリチウム挿入脱離が促進され、正極活物質粒子を用いた電池の出力がさらに高くなるとともに、電池を大気中で取り扱う際の、出力特性の劣化の抑制がさらに可能となる。
According to the first invention, the positive electrode for a non-aqueous electrolyte secondary battery is formed of a positive electrode composed of a positive electrode active material made of a lithium metal composite oxide and a compound containing tantalum and lithium on the surface of the positive electrode. By having the coated layer and the compound being a lithium ion conductor, the lithium ion conductivity in the electrode can be improved. Further, since the compound layer containing tantalum and lithium has high weather resistance, the formation of the inert layer on the surface of the positive electrode active material can be suppressed. Therefore, by using this electrode, it is possible to realize high output, and it is possible to provide a positive electrode for a non-aqueous electrolyte secondary battery whose high output performance does not easily deteriorate when handled in the atmosphere.
Further, since the thickness of the coating layer is 1 to 500 nm, a coating layer having lithium ion conductivity and weather resistance can be sufficiently secured, so that the output characteristics of the battery can be improved and the output characteristics can be improved. Deterioration in the atmosphere can be suppressed, and manufacturing can be easily performed.
In addition, since the compound containing tantalum and lithium is in an amorphous state, the positive electrode interfacial resistance of the positive electrode can be further reduced.
According to the second invention, since the compound forming the coating layer is lithium tantalate, it is stable with respect to the electrolyte used in the non-aqueous electrolyte secondary battery, and the adverse effect on the battery due to the elution of tantalum and the like is reduced. can.
According to the third invention, lithium tantalate contains lithium tantalate by containing any one compound selected from the group consisting of LiTaO 3 , LiTa 3O 8 , Li 3 TaO 4 , and Li 7 TaO 6 . Can be manufactured stably.
According to the fourth invention, when the compound forming the coating layer is a dielectric, lithium insertion / removal at the interface between the surface coating layer and the positive electrode active material can be further improved. Therefore, by using this electrode, it is possible to provide a positive electrode for a non-aqueous electrolyte secondary battery capable of further increasing the output.
According to the fifth invention, since the positive electrode is a thin film and the coating layer is formed so as to be superimposed on the positive electrode, it is possible to secure a diffusion path of lithium ions between the thin film positive electrode and the electrolytic solution, and the thin film is formed. The output of the battery using the positive electrode is increased, and it is possible to suppress the deterioration of the output characteristics when the battery is handled in the atmosphere.
According to the sixth invention, the lithium metal composite oxide is in the form of particles, and the coating layer is formed on the surface of the particles of the lithium metal composite oxide, so that between the positive electrode active material particles and the electrolytic solution. It is possible to secure a diffusion path for lithium ions, promote the insertion and desorption of lithium between the coating layer and the positive electrode active material particles, and increase the output of the battery using the positive electrode active material particles. It is possible to suppress deterioration of output characteristics when handling particles in the atmosphere.
According to the seventh invention, the amount of tantalum contained in the coating layer is 0.05 to 5.0 atomic% with respect to the total amount of metal elements other than lithium contained in the lithium metal composite oxide. As a result, the diffusion path of lithium ions between the positive electrode active material particles and the electrolytic solution can be more reliably secured, lithium insertion and desorption between the coating layer and the positive electrode active material particles are promoted, and the positive electrode active material particles are used. The output of the battery will be further increased, and it will be possible to further suppress the deterioration of the output characteristics when the battery is handled in the atmosphere.

本発明の第1実施形態に係る正極薄膜電極の構造を示す断面の概略図である。It is the schematic of the cross section which shows the structure of the positive electrode thin film electrode which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る正極活物質粒子の表面の拡大図である。It is an enlarged view of the surface of the positive electrode active material particle which concerns on 2nd Embodiment of this invention. 本発明の第1実施形態に係る正極電極を使用した電池の概略説明図である。It is a schematic explanatory drawing of the battery which used the positive electrode which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る正極電極のインピーダンススペクトルの測定結果のグラフである。It is a graph of the measurement result of the impedance spectrum of the positive electrode which concerns on 1st Embodiment of this invention. 解析に使用した等価回路の説明図である。It is explanatory drawing of the equivalent circuit used for analysis.

本発明の非水系電解質二次電池用正極電極(以下、単に「正極電極」という)および非水系電解質二次電池(以下、単に「電池」という)は、リチウム金属複合酸化物の表面にタンタルとリチウムとを含む化合物を修飾することを特徴とする正極電極と、該正極電極、セパレータ、負極、電解液から構成されることを特徴とする電池である。 The positive electrode for a non-aqueous electrolyte secondary battery (hereinafter, simply referred to as “positive electrode”) and the non-aqueous electrolyte secondary battery (hereinafter, simply referred to as “battery”) of the present invention have a tantalum on the surface of a lithium metal composite oxide. It is a battery characterized by being composed of a positive electrode electrode characterized by modifying a compound containing lithium, the positive electrode electrode, a separator, a negative electrode, and an electrolytic solution.

前記正極電極に用いられるリチウム金属複合酸化物薄膜の原料となるリチウム金属複合酸化物材料は4V級の高い電圧が得られ、リチウムの拡散方向がa、b面方向に限定された層状型のリチウム複合酸化物であれば良く、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)などの材料が挙げられるが、その中でも合成が比較的容易なLiCoOが好ましく、上記リチウム金属複合酸化物材料の粉末を焼結しターゲットを作製した後、PLD法により、Pt/Cr/SiOやPtなどの導電性基板の上にリチウム金属複合酸化物薄膜を堆積させたものが好ましい。 The lithium metal composite oxide material used as a raw material for the lithium metal composite oxide thin film used for the positive electrode has a high voltage of 4 V class, and the diffusion direction of lithium is limited to the a and b plane directions. Any composite oxide may be used, as long as it is a lithium cobalt composite oxide (LiCoO 2 ), a lithium nickel composite oxide (LiNiO 2 ), or a lithium nickel cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ). ), Etc., among which LiCoO 2 , which is relatively easy to synthesize, is preferable, and after the powder of the lithium metal composite oxide material is sintered to prepare a target, Pt / Cr / SiO is used by the PLD method. A lithium metal composite oxide thin film deposited on a conductive substrate such as 2 or Pt is preferable.

前記正極電極のリチウム金属複合酸化物薄膜の表面に設けられるリチウムイオン伝導酸化物からなる被覆層は、タンタルとリチウムとを含む化合物から形成されている。このタンタルとリチウムとを含む化合物は、リチウムイオンの拡散パスが多方向に存在しリチウムイオン伝導性に優れ、かつ大気中で変質しにくく安定である。このような物質としては、LiTaO、LiTa、LiTaO、LiTaOなどのタンタル酸リチウムが好ましい。 The coating layer made of lithium ion conductive oxide provided on the surface of the lithium metal composite oxide thin film of the positive electrode is formed of a compound containing tantalum and lithium. This compound containing tantalum and lithium has lithium ion diffusion paths in multiple directions, has excellent lithium ion conductivity, and is stable and resistant to deterioration in the atmosphere. As such a substance, lithium tantalate such as LiTaO 3 , LiTa 3 O 8 , Li 3 TaO 4 , Li 7 TaO 6 and the like is preferable.

さらにタンタルとリチウムとを含む化合物が誘電体であることが好ましく、これにより、被覆層と正極活物質粒子との間のリチウム挿入脱離が促進され、電池のさらなる高出力化が可能になる。これは、誘電体と活物質界面、および誘電体と電解液界面でのリチウム挿入脱離が誘電体の持つ分極効果によって、促進されるためと考えられる。 Further, the compound containing tantalum and lithium is preferably a dielectric, which promotes the insertion and desorption of lithium between the coating layer and the positive electrode active material particles, and makes it possible to further increase the output of the battery. It is considered that this is because the lithium insertion / desorption at the interface between the dielectric and the active material and the interface between the dielectric and the electrolytic solution is promoted by the polarization effect of the dielectric.

前記リチウムイオン伝導酸化物からなる被覆膜は、1~500nmの厚さであることが好ましい。被覆層の厚さが、1~500nmであることにより、リチウムイオン伝導性があり、かつ耐候性のある被覆層を十分に確保できるので、電池の出力特性を向上させるとともに、この出力特性の大気中での劣化を抑制でき、さらに製造を容易に行うことができる。すなわち、被覆膜の厚さが1nm未満になると、リチウムイオンの拡散パスが有効に作用しないことがあり、500nmを超えると、拡散パスが長くなり過ぎて、充放電容量や出力特性の向上が十分に得られないことがある。 The coating film made of the lithium ion conductive oxide preferably has a thickness of 1 to 500 nm. Since the thickness of the coating layer is 1 to 500 nm, a coating layer having lithium ion conductivity and weather resistance can be sufficiently secured, so that the output characteristics of the battery can be improved and the output characteristics of the atmosphere can be improved. Deterioration inside can be suppressed, and further manufacturing can be easily performed. That is, if the thickness of the coating film is less than 1 nm, the diffusion path of lithium ions may not work effectively, and if it exceeds 500 nm, the diffusion path becomes too long, and the charge / discharge capacity and output characteristics are improved. It may not be enough.

上記タンタル酸リチウムの状態としては、結晶状態よりもリチウムイオンの拡散に効果的なチャンネル構造を有する非晶質(アモルファス)状態が望ましい。 As the state of lithium tantalate, an amorphous state having a channel structure effective for diffusion of lithium ions is desirable rather than a crystalline state.

本発明に係る正極電極は、例えば、上記タンタルとリチウムとを含む粉末を焼結しターゲットを作製した後、PLD法により、前記リチウム金属複合酸化物薄膜にタンタルとリチウムとを含む化合物を堆積させることで得られる。 In the positive electrode according to the present invention, for example, the powder containing tantalum and lithium is sintered to prepare a target, and then a compound containing tantalum and lithium is deposited on the lithium metal composite oxide thin film by the PLD method. It can be obtained by.

前記リチウム金属複合酸化物薄膜のみを正極電極とした場合、大気中で取り扱うと、大気に含まれる水分および二酸化炭素と反応してリチウム金属複合酸化物最表面のリチウムが脱離して欠乏し、金属が酸化されて不活性化することで、充放電に寄与しなくなり容量低下や電解液/正極界面での抵抗増加を招く。一方、リチウム金属複合酸化物表面に大気中の水分や二酸化炭素との反応が乏しいタンタル酸リチウムなどのタンタルとリチウムとを含む化合物を修飾した正極電極では、タンタルとリチウムとを含む化合物が保護膜として働きリチウム金属複合酸化物が直接大気と触れないため、大気中で取り扱っても劣化が抑制される。また、タンタルとリチウムとを含む化合物を保護膜としているため、リチウムイオン伝導は保たれる。そのため、タンタルとリチウムとを含む化合物は正極表面全体に重畳して薄膜として被覆されることが好ましく、PLD法であれば、リチウムイオン伝導酸化物から成るターゲットをレーザーで蒸発させることで、タンタルとリチウムとを含む化合物の膜厚と結晶状態を制御してリチウム金属複合酸化物薄膜表面全体に修飾させることができ、好ましい。なお、タンタルとリチウムを含む化合物が、部分的に被覆された場合であっても、この被覆された部分のリチウムイオン伝導性の性能劣化が抑制されるため、電池としての性能劣化の抑制は実現できる。 When only the lithium metal composite oxide thin film is used as the positive electrode, when it is handled in the atmosphere, it reacts with water and carbon dioxide contained in the atmosphere and the lithium on the outermost surface of the lithium metal composite oxide is desorbed and deficient, resulting in metal. Is oxidized and inactivated, so that it does not contribute to charging and discharging, resulting in a decrease in capacity and an increase in resistance at the electrolytic solution / positive electrode interface. On the other hand, in the positive electrode electrode in which the surface of the lithium metal composite oxide is modified with a compound containing tantalate and lithium, such as lithium tantalate, which has a poor reaction with atmospheric moisture and carbon dioxide, the compound containing tantalate and lithium is a protective film. Since the lithium metal composite oxide does not come into direct contact with the atmosphere, deterioration is suppressed even when it is handled in the atmosphere. Further, since the protective film is a compound containing tantalum and lithium, lithium ion conduction is maintained. Therefore, it is preferable that the compound containing tantalum and lithium is superimposed on the entire surface of the positive electrode and coated as a thin film. The thickness and crystal state of the compound containing lithium can be controlled to modify the entire surface of the lithium metal composite oxide thin film, which is preferable. Even when the compound containing tantalum and lithium is partially coated, the deterioration of the lithium ion conductivity of the coated portion is suppressed, so that the performance deterioration of the battery can be suppressed. can.

前記リチウム金属複合酸化物薄膜のみを正極として電池を組むと正極表面にリン酸塩などの電解液の分解成分の付着や、電解液との接触が起こり、正極表面からのCoの溶出などの影響によって、電解液/正極界面でのリチウムイオンの拡散が阻害され、電解液/正極界面の抵抗増加を招く。一方、リチウム金属複合酸化物薄膜表面にリチウム拡散性の良いタンタル酸リチウムなどのタンタルとリチウムとを含む化合物を修飾した正極では、正極と電解液との接触を抑えるリチウムイオンの伝導性が良い保護膜として機能するため、電界液/正極界面の抵抗がリチウム金属複合酸化物薄膜のみを正極とした場合と比較して大幅に低減され、電池の出力特性を向上させることができる。そのため、リチウムイオン伝導性酸化物は正極表面全体に被覆されることが好ましい。 When a battery is assembled using only the lithium metal composite oxide thin film as the positive electrode, the decomposition components of the electrolytic solution such as phosphate adhere to the surface of the positive electrode and contact with the electrolytic solution occurs, which affects the elution of Co from the positive electrode surface. This inhibits the diffusion of lithium ions at the electrolytic solution / positive electrode interface, resulting in an increase in resistance at the electrolytic solution / positive electrode interface. On the other hand, in the positive electrode where the surface of the lithium metal composite oxide thin film is modified with a compound containing tantalum and lithium such as lithium tantalate having good lithium diffusivity, protection of lithium ions having good conductivity that suppresses contact between the positive electrode and the electrolytic solution is good. Since it functions as a film, the resistance at the electric field liquid / positive electrode interface is significantly reduced as compared with the case where only the lithium metal composite oxide thin film is used as the positive electrode, and the output characteristics of the battery can be improved. Therefore, it is preferable that the lithium ion conductive oxide is coated on the entire surface of the positive electrode.

上記正極薄膜電極、セパレータ、リチウムの挿抜が可能な負極、電解液から構成される電池を作製することによって、高出力が実現可能な非水系電解質二次電池用正極材料および二次電池を容易に提供することが可能となる。
以下に、電池の各構成を詳細に説明する。
By manufacturing a battery composed of the positive electrode thin film electrode, a separator, a negative electrode capable of inserting and removing lithium, and an electrolytic solution, it is easy to obtain a positive electrode material for a non-aqueous electrolyte secondary battery and a secondary battery capable of achieving high output. It will be possible to provide.
Each configuration of the battery will be described in detail below.

(1)正極
正極を形成する正極薄膜電極について説明する。正極を構成する材料は、正極薄膜と集電体で構成される。
(1) Positive Electrode A positive electrode thin film electrode forming a positive electrode will be described. The material constituting the positive electrode is composed of a positive electrode thin film and a current collector.

正極薄膜の原料として用いられる正極活物質としては、4V級の高い電圧が得られ、リチウムの拡散方向がa、b面方向に限定された層状型のリチウム複合酸化物であれば良く、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)などのリチウム金属複合酸化物材料が用いられる。 The positive electrode active material used as a raw material for the positive electrode thin film may be a layered lithium composite oxide in which a high voltage of 4V class is obtained and the diffusion direction of lithium is limited to the a and b plane directions, and lithium cobalt. Lithium metal composite oxide materials such as composite oxide (LiCoO 2 ), lithium nickel composite oxide (LiNiO 2 ), lithium nickel cobalt cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) Used.

例えば、原料となる上記リチウム金属複合酸化物粉末を焼結しターゲットを作製した後、PLD法やスパッタ蒸着法や分子線エピタキシー法などの物理的成膜法を用いて、予め電池に適したサイズに裁断されたPt/Cr/SiOやPtなどの集電体となる導電性基板の上にリチウム金属複合酸化物薄膜を堆積させて正極薄膜電極を作製する。 For example, after the lithium metal composite oxide powder as a raw material is sintered to prepare a target, a physical film forming method such as a PLD method, a sputter vapor deposition method, or a molecular beam epitaxy method is used to obtain a size suitable for a battery in advance. A lithium metal composite oxide thin film is deposited on a conductive substrate that serves as a current collector such as Pt / Cr / SiO 2 and Pt cut into a positive electrode to produce a positive electrode.

なお、本発明においては、リチウム金属複合酸化物薄膜の上にさらにリチウムイオン伝導酸化物薄膜、好ましくは良好な誘電性をさらに有する薄膜を堆積させる。このときも、前記物理的製膜法を用いることが好ましい。この物理的成膜法において、正極電極で被覆層を形成する、タンタルとリチウムとを含む化合物の原料は、タンタルとリチウムとを含むターゲットであればよいが、タンタル酸リチウムが好ましい。 In the present invention, a lithium ion conductive oxide thin film, preferably a thin film having good dielectric property, is further deposited on the lithium metal composite oxide thin film. Also at this time, it is preferable to use the physical film forming method. In this physical film forming method, the raw material of the compound containing tantalum and lithium that forms the coating layer with the positive electrode may be a target containing tantalum and lithium, but lithium tantalate is preferable.

例えば、上記タンタルとリチウムとを含むターゲットを焼結により作製した後、PLD法により、前記正極薄膜電極の表面にリチウムイオン伝導酸化物薄膜を堆積させて正極を作製することが好ましい。 For example, it is preferable to prepare a target containing the tantalum and lithium by sintering, and then deposit a lithium ion conductive oxide thin film on the surface of the positive electrode thin film electrode by the PLD method to prepare a positive electrode.

図1には、本発明の第1実施形態に係る正極薄膜電極1の構造を示す断面の概略図を示す。正極薄膜電極1は、集電体である基板12上に、薄膜状にリチウム金属複合酸化物である正極活物質13が堆積させられ、さらに重畳してタンタル酸リチウムなどである、良好なリチウムイオン伝導酸化物14が薄膜状に形成される。 FIG. 1 shows a schematic cross-sectional view showing the structure of the positive electrode thin film electrode 1 according to the first embodiment of the present invention. In the positive electrode thin film electrode 1, a positive electrode active material 13 which is a lithium metal composite oxide is deposited in a thin film on a substrate 12 which is a current collector, and a positive electrode active material 13 which is a lithium metal composite oxide is further superimposed to form a good lithium ion such as lithium tantalate. The conductive oxide 14 is formed in the form of a thin film.

図2には、本発明の第2実施形態に係る正極活物質粒子21の表面の拡大図を示す。正極活物質粒子21では、一次粒子であるリチウム金属複合酸化物22上、またはこれらの一次粒子からなる二次粒子上に、薄膜状のリチウムイオン伝導酸化物23からなる被覆層が設けられている。正極活物質粒子は、一次粒子、または一次粒子が凝集した二次粒子、もしくは一次粒子と二次粒子の混合物のいずれでもよい。二次粒子から構成されている場合には、内部まで被覆層が設けられていることが好ましいが、二次粒子の表面全体に薄膜状の被覆層が設けられている場合には、内部まで被覆層が設けられておらずともよい。
前記被覆層に含まれているタンタル量は、前記リチウム金属複合酸化物に含まれるリチウム以外の金属元素の合計に対して0.05~5.0原子%であることが好ましい。これにより正極活物質粒子21に十分な被覆層を設けることができ、電解液との間のリチウムイオンの拡散パスがより確実に確保でき、正極活物質粒子21を用いた電池の出力がさらに高くなる。また、正極活物質粒子21が大気と接触することが十分に抑制されるため、大気中での出力特性の劣化の抑制がさらに可能となる。
正極活物質粒子21により正極を形成する場合は、通常の非水系電解質二次電池の正極と同様に、正極活物質粒子21とカーボン粉などの導電材、バインダー、溶剤を混錬してペースト化し、集電体上のペーストを塗工することにより、正極を得ることができる。
FIG. 2 shows an enlarged view of the surface of the positive electrode active material particles 21 according to the second embodiment of the present invention. In the positive electrode active material particles 21, a coating layer made of a thin-film lithium ion conductive oxide 23 is provided on the lithium metal composite oxide 22 which is the primary particles or on the secondary particles made of these primary particles. .. The positive electrode active material particles may be either primary particles, secondary particles in which primary particles are aggregated, or a mixture of primary particles and secondary particles. When it is composed of secondary particles, it is preferable that the coating layer is provided to the inside, but when the coating layer in the form of a thin film is provided on the entire surface of the secondary particles, it is coated to the inside. The layer may not be provided.
The amount of tantalum contained in the coating layer is preferably 0.05 to 5.0 atomic% with respect to the total amount of metal elements other than lithium contained in the lithium metal composite oxide. As a result, a sufficient coating layer can be provided on the positive electrode active material particles 21, a diffusion path of lithium ions between the positive electrode active material particles 21 can be more reliably secured, and the output of the battery using the positive electrode active material particles 21 is further high. Become. Further, since the positive electrode active material particles 21 are sufficiently suppressed from coming into contact with the atmosphere, it is possible to further suppress the deterioration of the output characteristics in the atmosphere.
When the positive electrode active material particles 21 form a positive electrode, the positive electrode active material particles 21 and a conductive material such as carbon powder, a binder, and a solvent are kneaded into a paste in the same manner as the positive electrode of a normal non-aqueous electrolyte secondary battery. , A positive electrode can be obtained by applying the paste on the current collector.

(2)負極
負極には、上述のようにリチウムの挿抜が可能な材料であればよく、通常の非水系電解質二次電池の負極と同様に、炭素物質の粉状体を集電体上に塗工したものを用いることができ、コインセルの場合は、金属リチウム、もしくはリチウム合金が好ましく用いられる。負極を構成する金属リチウム、もしくはリチウム合金は、コインセルが膨れないように厚みを0.5~2.0mmの範囲とすることが好ましい。コインセルに収まるように直径(5~15mm)程度の面積に負極をくり抜くことが必要で、負極は正極より面積が大きいものが好ましい。
(2) Negative electrode The negative electrode may be made of a material that allows lithium to be inserted and removed as described above, and a powdery carbon substance is placed on the current collector in the same manner as the negative electrode of a normal non-aqueous electrolyte secondary battery. A coated one can be used, and in the case of a coin cell, metallic lithium or a lithium alloy is preferably used. The thickness of the metallic lithium or lithium alloy constituting the negative electrode is preferably in the range of 0.5 to 2.0 mm so that the coin cell does not swell. It is necessary to hollow out the negative electrode to an area of about a diameter (5 to 15 mm) so that it fits in the coin cell, and the negative electrode preferably has a larger area than the positive electrode.

(3)セパレータ
正極と負極との間にはセパレータを挟み込んで配置する。セパレータは、正極と負極間の絶縁、さらには電解液を保持するなどの機能を持つものであり、一般的な非水系電解質二次電池で使用されているものを用いることができる。例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ガラス(SiO)あるいはそれら積層品等の多孔膜など、その必要機能を有するものであればよく、一般的な非水系電解質二次電池で使用されているセパレータで測定妨害元素が含まれなければ、特に限定されるものではない。
(3) Separator A separator is sandwiched between the positive electrode and the negative electrode. The separator has functions such as insulation between the positive electrode and the negative electrode and also holds an electrolytic solution, and a separator used in a general non-aqueous electrolyte secondary battery can be used. For example, polyethylene (PE), polypropylene (PP), glass (SiO 2 ), or a porous film such as a laminated product thereof may be used as long as it has the necessary functions, and is used in a general non-aqueous electrolyte secondary battery. The separator is not particularly limited as long as it does not contain measurement interfering elements.

(4)非水系電解液
非水系電解液は、電解質としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
(4) Non-aqueous electrolyte solution The non-aqueous electrolyte solution is obtained by dissolving a lithium salt as an electrolyte in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate, and moreover, tetrahydrofuran and 2-. One selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethyl sulfone and butane sulton, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, etc. is used alone or in combination of two or more. be able to.

電解質としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、およびそれらの複合塩を用いることができる。さらに、非水系電解液は、ラジカル補足剤、界面活性剤および難燃剤等を含んでいてもよい。 As the electrolyte, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , etc., and a composite salt thereof can be used. Further, the non-aqueous electrolyte solution may contain a radical catching agent, a surfactant, a flame retardant and the like.

(5)電池の構成
上記正極および負極を、セパレータを介して積層させて電極体とし、この電極体に上記非水電解液を含浸させる。正極および負極をそれぞれ外部端子と接続して導通させる。以上の構成のものを金属製の容器に入れて電池を作製する。
(5) Battery Configuration The positive and negative electrodes are laminated via a separator to form an electrode body, and the electrode body is impregnated with the non-aqueous electrolytic solution. The positive electrode and the negative electrode are connected to external terminals to conduct conduction. A battery is manufactured by putting the above-mentioned structure in a metal container.

(比較例1)
本比較例においては、正極活物質としてLiCoO薄膜を用いた。
LiCoO薄膜は、PLD法により作製した。LiCoOの組成となるようにLiCOとCoを混合し、980℃酸素雰囲気で焼成してLiCoO粉末を作製した。その後、LiCoO粉末を1000℃で焼結してペレット作製した。このペレットをターゲットとして、500℃酸素雰囲気下において、Pt基板(基板12)上に8mm×8mmの面積でLiCoO薄膜(正極活物質13)のみを約300nmの厚みに形成して正極薄膜電極1を作製した。
(Comparative Example 1)
In this comparative example, a LiCoO 2 thin film was used as the positive electrode active material.
The LiCoO 2 thin film was prepared by the PLD method. Li 2 CO 3 and Co 3 O 4 were mixed so as to have the composition of LiCoO 2 , and calcined in an oxygen atmosphere at 980 ° C. to prepare LiCoO 2 powder. Then, LiCoO 2 powder was sintered at 1000 ° C. to prepare pellets. Using these pellets as a target, a LiCoO 2 thin film (positive electrode active material 13) is formed on a Pt substrate (substrate 12) in an area of 8 mm × 8 mm to a thickness of about 300 nm under an oxygen atmosphere at 500 ° C., and the positive electrode thin film electrode 1 Was produced.

正極薄膜の評価には以下のように図3に示す電池を作製し、正極界面抵抗を測定することで行った。
正極薄膜電極1(評価用電極)を用いて2032型のコイン型電池10を、露点が-80℃に管理されたAr雰囲気のグローブボックス内で作製した。
負極2には、直径13mmの円盤状に打ち抜かれた厚さ0.5mmの金属リチウムを用い、電解液には、1MのLiPF6を支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(宇部興産株式会社製)を用いた。セパレータ3には薄膜25μmのポリエチレン多孔膜を用いた。また、コイン型電池10は、ガスケット4とウェーブワッシャー5を有し、正極缶6と負極缶7とでコイン状の電池に組み立てられた。
The evaluation of the positive electrode thin film was carried out by preparing the battery shown in FIG. 3 as shown below and measuring the positive electrode interfacial resistance.
A 2032 type coin-shaped battery 10 was produced using the positive electrode thin film electrode 1 (evaluation electrode) in a glove box having an Ar atmosphere with a dew point controlled at −80 ° C.
For the negative electrode 2, metal lithium having a thickness of 0.5 mm punched into a disk shape having a diameter of 13 mm is used, and as the electrolytic solution, ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiPF6 as a supporting electrolyte are used. An equal amount mixed solution (manufactured by Ube Industries, Ltd.) was used. A polyethylene porous membrane having a thin film of 25 μm was used for the separator 3. Further, the coin-type battery 10 has a gasket 4 and a wave washer 5, and the positive electrode can 6 and the negative electrode can 7 are assembled into a coin-shaped battery.

正極界面抵抗はコイン型電池10を充電電位4.0Vまで充電して、周波数応答アナライザおよびポテンショガルバノスタットを使用して、交流インピーダンス測定を行い図4に示すインピーダンススペクトルを得た。得られたインピーダンススペクトルには、高周波領域と中間周波領域とに2つの半円が観測され、低周波領域に直線が観察されていることから、図5に示す等価回路モデルを組んで正極界面抵抗を解析した。ここで、Rsはバルク抵抗、R1は正極被膜抵抗、Rctは電解液/正極界面抵抗(界面のLi+移動抵抗)、Wはワーブルグ成分、CPE1,CPE2は定相要素を示す。 For the positive electrode interface resistance, the coin-type battery 10 was charged to a charging potential of 4.0 V, and AC impedance was measured using a frequency response analyzer and a potentiogalvanostat to obtain the impedance spectrum shown in FIG. In the obtained impedance spectrum, two semicircles are observed in the high frequency region and the intermediate frequency region, and a straight line is observed in the low frequency region. Was analyzed. Here, Rs is a bulk resistance, R1 is a positive electrode coating resistance, Rct is an electrolytic solution / positive electrode interface resistance (Li + transfer resistance at the interface), W is a wobble component, and CPE1 and CPE2 are constant phase elements.

(実施例1)
本実施例においては、正極活物質としてLiCoO薄膜を用い、その表面に、良好な誘電性を有するリチウムイオン伝導酸化物としてLiTaO薄膜を形成した。
(Example 1)
In this example, a LiCoO 2 thin film was used as the positive electrode active material, and a LiTaO 3 thin film was formed on the surface thereof as a lithium ion conductive oxide having good dielectric properties.

比較例1と同様の条件で作製したLiCoO薄膜(正極活物質13)上に、LiTaO薄膜(リチウムイオン伝導酸化物14)を形成し、正極薄膜電極1を作製した。この薄膜の作製には、LiCoOと同様、PLD法を用いた。LiOとTaを混合した後、焼結してペレットにしてターゲットとした。このターゲットを用いて、上記で得られたLiCoO薄膜の上にさらにLiTaO薄膜を25℃、酸素分圧20Paで約300nmの厚さで形成し、正極薄膜を作製し、XRDでLiTaOの状態を確認したところ、非晶質状態であった。また、正極薄膜を600℃で2.5時間熱処理してXRD測定を行ったところ、LiTaOであることが確認された。次に、作製した非晶質状態の正極薄膜を用いて、比較例1と同じコイン型セルを作製し、電池性能を比較した。その結果を表1に示す。 A LiTaO 3 thin film (lithium ion conductive oxide 14) was formed on a LiCoO 2 thin film (positive electrode active material 13) prepared under the same conditions as in Comparative Example 1, to prepare a positive electrode thin film electrode 1. Similar to LiCoO 2 , the PLD method was used to prepare this thin film. After mixing Li 2 O and Ta 2 O 5 , it was sintered to pelletize and used as a target. Using this target, a LiTaO 3 thin film was further formed on the LiCoO 2 thin film obtained above at 25 ° C. and an oxygen partial pressure of 20 Pa to a thickness of about 300 nm to prepare a positive electrode thin film, and LiTaO 3 was formed by XRD. When the state was confirmed, it was in an amorphous state. Further, when the positive electrode thin film was heat-treated at 600 ° C. for 2.5 hours and XRD measurement was performed, it was confirmed that it was LiTaO 3 . Next, the same coin-shaped cell as in Comparative Example 1 was prepared using the prepared amorphous positive electrode thin film, and the battery performance was compared. The results are shown in Table 1.

Figure 0007025681000001
Figure 0007025681000001

表1より、比較例1のLiCoO薄膜と比較して非晶質状態のLiTaOを堆積したLiCoO薄膜は、正極界面抵抗が大幅に低減され、出力特性が向上している様子が分かった。要因としてはリチウムイオン伝導性に優れ、良好な誘電性を有する非晶質状態のタンタル酸リチウムを修飾したことによって、正極のリチウム拡散性が向上し、電界液/正極界面の抵抗がLiCoO薄膜と比較して大幅に低減されたためと考えられる。 From Table 1, it was found that the LiCoO 2 thin film in which the amorphous LiTaO 3 was deposited was significantly reduced in the positive electrode interfacial resistance and the output characteristics were improved as compared with the LiCoO 2 thin film in Comparative Example 1. .. As a factor, by modifying lithium tantalate in an amorphous state with excellent lithium ion conductivity and good dielectric property, the lithium diffusivity of the positive electrode is improved, and the resistance of the electric field liquid / positive electrode interface is the LiCoO 2 thin film. It is probable that it was significantly reduced compared to the above.

(比較例1a)
本比較例においては、正極活物質としてLiCoO薄膜を用い、正極活物質を雰囲気温度80℃、相対湿度60%の高湿度環境に24時間曝した後、コイン型電池10を作製してインピーダンス測定を実施した。
(Comparative Example 1a)
In this comparative example, a LiCoO 2 thin film is used as the positive electrode active material, the positive electrode active material is exposed to a high humidity environment having an ambient temperature of 80 ° C. and a relative humidity of 60% for 24 hours, and then a coin-type battery 10 is manufactured and impedance measurement is performed. Was carried out.

LiCoO薄膜を作製するところまでは比較例1と同様であり、このLiCoO薄膜からなる正極薄膜電極1を雰囲気温度80℃、相対湿度60%の高湿度環境に24時間曝した後、コイン型電池10を作製して電池性能を確認した。その結果を表2に示す。表1に記載の比較例1に対して、正極界面抵抗が大幅に増加した。要因としては、高湿度の条件で大気に曝した結果、LiCoO薄膜の表面が大気中の水分および二酸化炭素と反応して不活性なCoとなり、充放電に寄与しなくなり、界面抵抗増大の要因になったと考えられる。 The process is the same as in Comparative Example 1 up to the point where the LiCoO 2 thin film is produced. The battery 10 was manufactured and the battery performance was confirmed. The results are shown in Table 2. The positive electrode interfacial resistance was significantly increased as compared with Comparative Example 1 shown in Table 1. As a factor, as a result of exposure to the atmosphere under high humidity conditions, the surface of the LiCoO 2 thin film reacts with moisture and carbon dioxide in the atmosphere to become inactive Co 3 O 4 , which does not contribute to charging and discharging, and interfacial resistance. It is thought that this was a factor in the increase.

Figure 0007025681000002
Figure 0007025681000002

(実施例1a)
本実施例においては、正極活物質としてLiCoO薄膜を用い、その表面に、良好な誘電性を有するリチウムイオン伝導性酸化物としてLiTaO薄膜を形成し、正極薄膜電極1を作製するところまでは実施例1と同様である。作製された正極薄膜電極1を、比較例1aと同様、雰囲気温度80℃、相対湿度60%の高湿度環境に24時間曝した後、コイン型電池10を作製してインピーダンス測定を実施した。
(Example 1a)
In this embodiment, a LiCoO 2 thin film is used as the positive electrode active material, a LiTaO 3 thin film is formed on the surface of the LiCoO 2 thin film as a lithium ion conductive oxide having good dielectric property, and the positive electrode thin film electrode 1 is manufactured. It is the same as Example 1. Similar to Comparative Example 1a, the produced positive electrode thin film electrode 1 was exposed to a high humidity environment having an ambient temperature of 80 ° C. and a relative humidity of 60% for 24 hours, and then a coin-type battery 10 was produced and impedance measurement was performed.

表2に実施例1aでの正極界面抵抗を示す。比較例1aの場合と比較すると正極界面抵抗の値が小さく、また実施例1からの増加率についても抑制されている。これは、大気中で非常に安定であるLiTaOをLiCoO表面に被覆したことにより、LiTaOが保護膜として働きLiCoOの大気との直接接触を抑制し、LiCoOの劣化が抑制されたためと考えられる。また、LiTaOは大気中で非常に安定であるため、変質しにくく、大気中に曝してもリチウムイオン伝導性を保つことができ、正極界面抵抗の増加が少ないと考えられる。 Table 2 shows the positive electrode interfacial resistance in Example 1a. Compared with the case of Comparative Example 1a, the value of the positive electrode interfacial resistance is small, and the rate of increase from Example 1 is also suppressed. This is because the surface of LiCoO 2 is coated with LiTaO 3 , which is very stable in the atmosphere, so that LiTaO 3 acts as a protective film and suppresses the direct contact of LiCoO 2 with the atmosphere, thereby suppressing the deterioration of LiCoO 2 . it is conceivable that. Further, since LiTaO 3 is very stable in the atmosphere, it is difficult to deteriorate in quality, lithium ion conductivity can be maintained even when exposed to the atmosphere, and it is considered that the increase in the positive electrode interface resistance is small.

本発明の非水系電解質二次電池用正極材料および二次電池は、高出力が要求される電気自動車やハイブリッド自動車用電池に好適である。また、本正極材料は材料の溶解性などの諸特性に左右されることなく様々なリチウム複合酸化物、リチウムイオン伝導酸化物に適用でき、さらにリチウム複合酸化物の表面にリチウムイオン伝導酸化物を直接堆積させることができるため、非水系電界質二次電池用正極材料の開発にも応用が期待できる。また、様々な分析手法を組み合わせて解析を行うことで、リチウム複合酸化物とリチウムイオン伝導酸化物界面の現象を解明するのにも役立つものと考える。 The positive electrode material for a non-aqueous electrolyte secondary battery and the secondary battery of the present invention are suitable for batteries for electric vehicles and hybrid vehicles that require high output. In addition, this positive electrode material can be applied to various lithium composite oxides and lithium ion conductive oxides without being affected by various properties such as the solubility of the material, and the lithium ion conductive oxide is further applied to the surface of the lithium composite oxide. Since it can be directly deposited, it can be expected to be applied to the development of positive electrode materials for non-aqueous electric field secondary batteries. In addition, it will be useful to elucidate the phenomenon of the interface between lithium composite oxide and lithium ion conduction oxide by performing analysis by combining various analysis methods.

1 正極薄膜電極
2 負極
3 セパレータ
4 ガスケット
5 ウェーブワッシャー
6 正極缶
7 負極缶
10 コイン型電池
12 基板
13 正極活物質
14 リチウムイオン伝導酸化物
21 正極活物質粒子
22 リチウム金属複合酸化物
23 リチウムイオン伝導酸化物
1 Positive electrode thin film electrode 2 Negative electrode 3 Separator 4 Gasket 5 Wave washer 6 Positive electrode can 7 Negative electrode can 10 Coin-type battery 12 Substrate 13 Positive electrode active material 14 Lithium ion conduction oxide 21 Positive electrode active material particles 22 Lithium metal composite oxide 23 Lithium ion conduction Oxide

Claims (7)

リチウム金属複合酸化物からなる正極活物質により構成された正極と、リチウムの挿抜が可能な負極と、を、セパレータを介して積層させて電極体とし、
該電極体に、電解質としてのリチウム塩を有機溶媒に溶解した非水系電解液を含侵させた非水系電解質二次電池であって、
前記電極体を構成する正極電極は、前記正極と、
該正極の表面に、タンタルとリチウムとを含む化合物から形成されている被覆層と、を有し、
前記化合物がリチウムイオン伝導体であり、
前記被覆層の厚さが、1~500nmであり、
前記化合物が非晶質状態である、
ことを特徴とする非水系電解質二次電池。
A positive electrode made of a positive electrode active material made of a lithium metal composite oxide and a negative electrode capable of inserting and removing lithium are laminated via a separator to form an electrode body.
A non-aqueous electrolyte secondary battery in which the electrode body is impregnated with a non-aqueous electrolyte solution in which a lithium salt as an electrolyte is dissolved in an organic solvent.
The positive electrode constituting the electrode body is the positive electrode and the positive electrode.
On the surface of the positive electrode, a coating layer formed of a compound containing tantalum and lithium is provided.
The compound is a lithium ion conductor.
The coating layer has a thickness of 1 to 500 nm and has a thickness of 1 to 500 nm.
The compound is in an amorphous state .
A non-aqueous electrolyte secondary battery characterized by this.
前記化合物は、タンタル酸リチウムである、
ことを特徴とする請求項1に記載の非水系電解質二次電池。
The compound is lithium tantalate,
The non-aqueous electrolyte secondary battery according to claim 1 .
前記タンタル酸リチウムは、
LiTaO、LiTa、LiTaO、LiTaOからなる群から選択されるいずれか一の化合物を含む、
ことを特徴とする請求項に記載の非水系電解質二次電池。
The lithium tantalate is
Includes any one compound selected from the group consisting of LiTaO 3 , LiTa 3O 8 , Li 3 TaO 4 , Li 7 TaO 6 .
The non-aqueous electrolyte secondary battery according to claim 2 .
前記化合物が誘電体である、
ことを特徴とする請求項1から請求項のいずれか1項に記載の非水系電解質二次電池。
The compound is a dielectric,
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3 , wherein the non-aqueous electrolyte secondary battery is characterized by the above.
前記正極が薄膜であり、
前記被覆層が、前記正極に重畳して形成されている、
ことを特徴とする請求項1から請求項のいずれか1項に記載の非水系電解質二次電池。
The positive electrode is a thin film
The coating layer is formed so as to be superimposed on the positive electrode.
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4 , wherein the non-aqueous electrolyte secondary battery is characterized by the above.
前記リチウム金属複合酸化物が粒子状であり、
前記被覆層が、前記リチウム金属複合酸化物の粒子の表面に形成されている、
ことを特徴とする請求項1から請求項のいずれか1項に記載の非水系電解質二次電池。
The lithium metal composite oxide is in the form of particles and
The coating layer is formed on the surface of the particles of the lithium metal composite oxide.
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4 , wherein the non-aqueous electrolyte secondary battery is characterized by the above.
前記被覆層に含まれているタンタル量が、
前記リチウム金属複合酸化物に含まれるリチウム以外の金属元素の合計に対して0.05~5.0原子%である、
ことを特徴とする請求項に記載の非水系電解質二次電池。
The amount of tantalum contained in the coating layer is
It is 0.05 to 5.0 atomic% with respect to the total of metal elements other than lithium contained in the lithium metal composite oxide.
The non-aqueous electrolyte secondary battery according to claim 6 .
JP2017032413A 2016-03-08 2017-02-23 Non-aqueous electrolyte secondary battery Active JP7025681B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016043988 2016-03-08
JP2016043988 2016-03-08

Publications (2)

Publication Number Publication Date
JP2017162801A JP2017162801A (en) 2017-09-14
JP7025681B2 true JP7025681B2 (en) 2022-02-25

Family

ID=59857305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017032413A Active JP7025681B2 (en) 2016-03-08 2017-02-23 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP7025681B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670506B (en) * 2020-12-22 2022-04-19 北京理工大学重庆创新中心 Nickel-cobalt-manganese-tantalum composite quaternary positive electrode material coated by fast ion conductor and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123750A (en) 2001-10-05 2003-04-25 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
WO2006073104A1 (en) 2005-01-06 2006-07-13 Matsushita Electric Industrial Co., Ltd. Positive electrode for lithium ion battery and lithium ion battery using same
WO2007004590A1 (en) 2005-07-01 2007-01-11 National Institute For Materials Science All-solid lithium battery
JP2012142268A (en) 2010-12-17 2012-07-26 Toyota Motor Corp Secondary battery
WO2015150167A1 (en) 2014-03-31 2015-10-08 Bayerische Motoren Werke Aktiengesellschaft Active cathode material for secondary lithium cells and batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123750A (en) 2001-10-05 2003-04-25 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
WO2006073104A1 (en) 2005-01-06 2006-07-13 Matsushita Electric Industrial Co., Ltd. Positive electrode for lithium ion battery and lithium ion battery using same
WO2007004590A1 (en) 2005-07-01 2007-01-11 National Institute For Materials Science All-solid lithium battery
JP2012142268A (en) 2010-12-17 2012-07-26 Toyota Motor Corp Secondary battery
WO2015150167A1 (en) 2014-03-31 2015-10-08 Bayerische Motoren Werke Aktiengesellschaft Active cathode material for secondary lithium cells and batteries

Also Published As

Publication number Publication date
JP2017162801A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP6816756B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, positive electrode active material used for it, and secondary battery using this
JP7077943B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US11411214B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, positive electrode mixture material paste for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US7507503B2 (en) Long life lithium batteries with stabilized electrodes
EP3132487B1 (en) Electrolyte formulations
US9627688B2 (en) Anode for secondary battery and lithium secondary battery including same
JP6323725B2 (en) Positive electrode active material used for lithium ion secondary battery
US9620780B2 (en) Anode for secondary battery and lithium secondary battery including same
EP2365574A2 (en) Nonaqueous electrolytic solution and battery
US9246174B2 (en) Lithium ion battery
JP7024715B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery
JP7251959B2 (en) Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
JP7067037B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, positive electrode active material used for this, and non-aqueous electrolyte secondary battery using this
US20180145314A1 (en) Positive electrode for a lithium electrochemical cell
US10283810B2 (en) Lithium-ion battery
JP6572558B2 (en) Positive electrode for nonaqueous electrolyte secondary battery, positive electrode active material used therefor, and secondary battery using the same
JP6515763B2 (en) Evaluation method of positive electrode material for non-aqueous electrolyte secondary battery.
EP4030516A1 (en) Method for manufacturing secondary battery, and manufacturing equipment therefor
JP7025681B2 (en) Non-aqueous electrolyte secondary battery
JP2023080310A (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5380537B2 (en) Non-aqueous electrolyte secondary battery
JP6634966B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, positive electrode material used therefor, secondary battery using the same, and method of manufacturing positive electrode for non-aqueous electrolyte secondary battery
JP2020123500A (en) Positive electrode active material and non-aqueous electrolyte secondary battery including the same
JP2022130698A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
EP4037031A1 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220125

R150 Certificate of patent or registration of utility model

Ref document number: 7025681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150