JP7022580B2 - Railroad vehicle structure - Google Patents

Railroad vehicle structure Download PDF

Info

Publication number
JP7022580B2
JP7022580B2 JP2017246790A JP2017246790A JP7022580B2 JP 7022580 B2 JP7022580 B2 JP 7022580B2 JP 2017246790 A JP2017246790 A JP 2017246790A JP 2017246790 A JP2017246790 A JP 2017246790A JP 7022580 B2 JP7022580 B2 JP 7022580B2
Authority
JP
Japan
Prior art keywords
inertia
moment
section
pillar
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017246790A
Other languages
Japanese (ja)
Other versions
JP2019111928A (en
Inventor
裕二 遠矢
一義 生島
晋一郎 畑
Original Assignee
川崎車両株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎車両株式会社 filed Critical 川崎車両株式会社
Priority to JP2017246790A priority Critical patent/JP7022580B2/en
Publication of JP2019111928A publication Critical patent/JP2019111928A/en
Application granted granted Critical
Publication of JP7022580B2 publication Critical patent/JP7022580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

本発明は、台枠の車両長手方向端部に位置する端梁から屋根構体に向けて延びる柱部材を備えた鉄道車両の構体に関する。 The present invention relates to a structure of a railroad vehicle provided with a pillar member extending from an end beam located at the end of the underframe in the longitudinal direction of the vehicle toward the roof structure.

鉄道車両では、衝突時の大きな荷重に耐えるために、車体の妻面に衝突柱及び隅柱が設けられる場合がある(例えば、特許文献1参照)。それら柱には、大きな荷重に耐えることが要求されるため、柱の断面や板厚を大きくする等して耐荷重の要求を達成していた。 In a railroad vehicle, a collision pillar and a corner pillar may be provided on the end surface of the vehicle body in order to withstand a large load at the time of a collision (see, for example, Patent Document 1). Since these columns are required to withstand a large load, the requirements for load capacity have been achieved by increasing the cross section and plate thickness of the columns.

特許第6074168号公報Japanese Patent No. 6074168

しかし、近年は車両軽量化の要求が高まっている。そのため、衝突柱や隅柱の断面や板厚を過剰に増加させることなく当該柱の衝撃吸収能力を最大限発揮できるように、当該柱の変形や破断の挙動を十分に考慮した設計が望まれる。 However, in recent years, there has been an increasing demand for weight reduction of vehicles. Therefore, a design that fully considers the deformation and breaking behavior of the column is desired so that the impact absorption capacity of the column can be maximized without excessively increasing the cross section and plate thickness of the collision column or corner column. ..

柱の下端(又は上端)は台枠(又は屋根構体)に溶接で接合されており、障害物が柱に衝突する際には、柱の下端(又は上端)の接合部に大きな剪断力が生じ、柱が台枠(又は屋根構体)から剥がれてしまう。その場合には、柱が十分に曲げ変形されないため、柱自体の衝撃吸収能力を十分に発揮できない。他方、柱が台枠(又は屋根構体)から剥がれないように柱を台枠(又は屋根構体)に過度に強固に接合すると、柱自体が剪断方向に破断してしまう。その場合も、柱が十分に曲げ変形されないため、柱自体の衝撃吸収能力を十分に発揮できない。 The lower end (or upper end) of the column is joined to the underframe (or roof structure) by welding, and when an obstacle collides with the column, a large shearing force is generated at the joint of the lower end (or upper end) of the column. , The pillars come off from the underframe (or roof structure). In that case, since the column is not sufficiently bent and deformed, the impact absorption capacity of the column itself cannot be fully exhibited. On the other hand, if the columns are excessively firmly joined to the underframe (or roof structure) so that the columns do not come off from the underframe (or roof structure), the columns themselves break in the shearing direction. Even in that case, since the column is not sufficiently bent and deformed, the impact absorption capacity of the column itself cannot be fully exhibited.

そこで本発明は、台枠の車両長手方向端部に位置する端梁から屋根構体に向けて延びる柱部材を備えた鉄道車両構体において、障害物が柱部材に衝突した際に柱部材が十分に曲げ変形できる構成を提供することを目的とする。 Therefore, according to the present invention, in a railroad vehicle structure provided with a pillar member extending from an end beam located at the end of the underframe in the longitudinal direction of the vehicle toward the roof structure, the pillar member is sufficiently provided when an obstacle collides with the pillar member. It is an object of the present invention to provide a structure capable of bending and deforming.

本発明の一態様に係る鉄道車両の構体は、台枠の車両長手方向端部に位置する端梁から屋根構体に向けて延びる柱部材を備えた鉄道車両の構体であって、前記柱部材は、前記端梁又は前記屋根構体と接合される接合部と、前記接合部から前記柱部材の鉛直方向中心位置までの間であって、その車内側の面に位置し、所定以上の荷重が付加されると、前記接合部が破断する前に曲げ変形を開始するとともに、その曲げ変形の起点となるヒンジ部と、を備える。 The structure of a railroad vehicle according to one aspect of the present invention is a structure of a railroad vehicle including a pillar member extending from an end beam located at an end portion of the underframe in the longitudinal direction of the vehicle toward the roof structure, and the pillar member is , It is located between the joint portion joined to the end beam or the roof structure and the vertical center position of the pillar member from the joint portion, and is located on the inner surface of the vehicle, and a load of a predetermined value or more is applied. Then, the bending deformation is started before the joint portion is broken, and the hinge portion serving as the starting point of the bending deformation is provided.

本発明の他態様に係る鉄道車両の構体は、台枠の車両長手方向端部に位置する端梁から屋根構体に向けて延びる柱部材を備えた鉄道車両の構体であって、前記柱部材は、鉛直方向端部に位置し、第1断面係数Zaを有する根元部と、鉛直方向中心に位置し、第2断面係数Zbを有する中心部と、前記中心部と前記根元部の間に位置し、第3断面係数Zcを有するヒンジ部と、を備え、前記第1断面係数Zaは、前記中心部と前記根元部の間の前記柱部材の各水平断面の断面係数の中で最大値を示し、前記第3断面係数Zcは、前記第1断面係数Zaより小さい。ここで、前記第1断面係数Zaは、前記根元部の水平断面における中心軸に関する断面係数、前記第2断面係数Zbは、前記中心部の水平断面における中心軸に関する断面係数、前記第3断面係数Zcは、前記ヒンジ部の水平断面における中心軸に関する断面係数、である。 The structure of the railroad vehicle according to another aspect of the present invention is a structure of a railroad vehicle provided with a pillar member extending from an end beam located at an end portion in the longitudinal direction of the underframe toward the roof structure, and the pillar member is the structure of the railroad vehicle. , Located at the end in the vertical direction and having the first moment of inertia Za, and the center located in the center in the vertical direction and having the second moment of inertia Zb, and located between the center and the root. , A hinge portion having a third moment of inertia Zc, and the first moment of inertia Za indicates the maximum value among the moments of inertia of each horizontal section of the column member between the central portion and the root portion. , The third moment of inertia Zc is smaller than the first moment of inertia Za. Here, the first section modulus Za is a section coefficient with respect to the central axis in the horizontal cross section of the root portion, and the second section coefficient Zb is a section coefficient with respect to the central axis in the horizontal section of the center portion, the third section coefficient. Zc is a section modulus with respect to the central axis in the horizontal section of the hinge portion.

前記した各構成によれば、障害物が柱部材に衝突した際に、柱部材がヒンジ部を基点として屈曲変形して柱部材に曲げ変形が生じるので、柱部材の接合部に掛かる剪断力が低減され、柱部材が端梁又は屋根構体から剥がれることを防止できる。また、柱部材の接合部に掛かる剪断力が抑えられるため、柱部材を台枠(又は屋根構体)に過度に強固に接合する必要もなく、柱自体が剪断方向に破断することも防止できる。よって、障害物の衝突時に柱部材が十分に曲げ変形され、柱部材自体の衝撃吸収能力を十分に発揮することができる。 According to each of the above configurations, when an obstacle collides with the column member, the column member bends and deforms with the hinge portion as a base point, and the column member bends and deforms. Therefore, the shearing force applied to the joint portion of the column member is increased. It is reduced and it is possible to prevent the column member from peeling off from the end beam or the roof structure. Further, since the shearing force applied to the joint portion of the column member is suppressed, it is not necessary to excessively firmly join the column member to the underframe (or roof structure), and the column itself can be prevented from breaking in the shearing direction. Therefore, the column member is sufficiently bent and deformed when an obstacle collides, and the impact absorption capacity of the column member itself can be sufficiently exhibited.

本発明によれば、台枠の車両長手方向端部に位置する端梁から屋根構体に向けて延びる柱部材を備えた鉄道車両構体において、障害物が柱部材に衝突した際に柱部材が十分に曲げ変形できる構成を提供できる。 According to the present invention, in a railroad vehicle structure provided with a pillar member extending from an end beam located at the end of the underframe in the longitudinal direction of the vehicle toward the roof structure, the pillar member is sufficient when an obstacle collides with the pillar member. It is possible to provide a configuration that can be bent and deformed.

実施形態に係る鉄道車両の先頭車の構体の前部を前方から見た斜視図である。It is a perspective view which looked at the front part of the structure of the leading car of the railroad vehicle which concerns on embodiment from the front. 図1に示す衝突柱を側方から見た鉛直断面図である。It is a vertical sectional view of the collision column shown in FIG. 1 as seen from the side. 図1に示す隅柱等を車内側から見た斜視図である。It is a perspective view which looked at the corner pillar and the like shown in FIG. 1 from the inside of a car. 車両の柱部材の模式図である。It is a schematic diagram of the pillar member of a vehicle. (A)~(E)は図1に示す衝突柱に障害物が衝突したときの挙動を示すシミュレーション結果である。(A) to (E) are simulation results showing the behavior when an obstacle collides with the collision pillar shown in FIG.

以下、図面を参照して実施形態を説明する。 Hereinafter, embodiments will be described with reference to the drawings.

図1は、実施形態に係る鉄道車両1の先頭車2の構体3の前部を前方から見た斜視図である。鉄道車両1は、複数の車両が互いに連結されてなるが、図1はそのうち先頭車2の構体3を示している。図1に示すように、構体3は、台枠4と、台枠4の上方に配置された屋根構体5と、台枠4の車両長手方向端部から屋根構体5に延びる一対の衝突柱6(柱部材)及び一対の隅柱7(柱部材)とを備える。台枠4は、構体3の車幅方向両側において車両長手方向に延びる一対の側梁4aと、一対の側梁4aの車両長手方向端部同士を接続するように車幅方向に延びる端梁4bとを有する。 FIG. 1 is a perspective view of the front portion of the structure 3 of the leading car 2 of the railway vehicle 1 according to the embodiment as viewed from the front. The railroad car 1 is formed by connecting a plurality of cars to each other, and FIG. 1 shows the structure 3 of the leading car 2 among them. As shown in FIG. 1, the structure 3 includes an underframe 4, a roof structure 5 arranged above the underframe 4, and a pair of collision columns 6 extending from the vehicle longitudinal end of the underframe 4 to the roof structure 5. (Pillar member) and a pair of corner pillars 7 (pillar members) are provided. The underframe 4 has a pair of side beams 4a extending in the vehicle longitudinal direction on both sides of the structure 3 in the vehicle width direction and end beams 4b extending in the vehicle width direction so as to connect the ends of the pair of side beams 4a in the vehicle longitudinal direction. And have.

一対の隅柱7は、端梁4bの車幅方向の各端部から上方に突出している。一対の衝突柱6は、車幅方向において一対の隅柱7の間において左右対称に配置されている。衝突柱6及び隅柱7は、下端が台枠4の端梁4bに溶接で接合され、上端が屋根構体5に溶接で接合されている。衝突柱6は、台枠4と屋根構体5とを接続する複数の柱部材のうちで最も車両長手方向外側に配置されている。図1の例では、衝突柱6は、隅柱7よりも車両長手方向外側(前側)に配置されるが、隅柱6と同じ車両長手方向位置に配置されてもよい。 The pair of corner columns 7 project upward from each end of the end beam 4b in the vehicle width direction. The pair of collision columns 6 are arranged symmetrically between the pair of corner columns 7 in the vehicle width direction. The lower ends of the collision columns 6 and the corner columns 7 are welded to the end beams 4b of the underframe 4, and the upper ends are welded to the roof structure 5. The collision pillar 6 is arranged on the outermost side in the longitudinal direction of the vehicle among the plurality of pillar members connecting the underframe 4 and the roof structure 5. In the example of FIG. 1, the collision pillar 6 is arranged outside (front side) in the vehicle longitudinal direction with respect to the corner pillar 7, but may be arranged at the same vehicle longitudinal direction position as the corner pillar 6.

図2は、図1に示す衝突柱を側方から見た鉛直断面図である。図1及び2に示すように、衝突柱6は、中空の筒部材である。本実施形態では、矩形状の水平断面を有する筒部材である。衝突柱6は、屋根構体5と溶接により接合される接合部10(上端部)と、端梁4bと溶接により接合される接合部11(下端部)とを有する。衝突柱6のうち接合部10と接合部11とからの鉛直方向距離が等しい位置(即ち、衝突柱6の鉛直方向中心に位置する中心部12)から衝突柱6の接合部11までの間における車内側の面には、くびれ状に屈曲したヒンジ部13が設けられている。ヒンジ部13は、所定以上の荷重が付加されると、接合部10,11が破断する前に曲げ変形(塑性変形)を開始し、その曲げ変形の起点となるものである。 FIG. 2 is a vertical cross-sectional view of the collision column shown in FIG. 1 as viewed from the side. As shown in FIGS. 1 and 2, the collision column 6 is a hollow tubular member. In the present embodiment, it is a tubular member having a rectangular horizontal cross section. The collision column 6 has a joint portion 10 (upper end portion) joined to the roof structure 5 by welding, and a joint portion 11 (lower end portion) joined to the end beam 4b by welding. From the position of the collision column 6 where the vertical distances from the joint 10 and the joint 11 are equal (that is, the central portion 12 located at the center of the collision column 6 in the vertical direction) to the joint 11 of the collision column 6. A hinge portion 13 bent in a constricted shape is provided on the inner surface of the vehicle. When a load of a predetermined value or more is applied, the hinge portion 13 starts bending deformation (plastic deformation) before the joint portions 10 and 11 break, and becomes the starting point of the bending deformation.

換言すると、衝突柱6は、鉛直方向端部に位置して端梁4bに接合される根元部11(以下、符号11は根元部と称す)、衝突柱6の鉛直方向中心に位置する中心部12と、根元部11と中心部12との間に位置するヒンジ部13と、中心部12とヒンジ部13との間に位置する最小断面部14とを有する。根元部11は、第1断面係数Zaを有し、中心部12は、第2断面係数Zbを有し、ヒンジ部13は、第3断面係数Zcを有し、最小断面部14は、第4断面係数Zdを有する。第1断面係数Zaは、根元部11の水平断面における中心軸に関する断面係数である。第2断面係数Zbは、中心部12の水平断面における中心軸に関する断面係数である。第3断面係数Zcは、ヒンジ部13の水平断面における中心軸に関する断面係数である。第4断面係数Zdは、最小断面部14の水平断面における中心軸に関する断面係数である。 In other words, the collision column 6 has a root portion 11 (hereinafter, reference numeral 11 is referred to as a root portion) located at the vertical end and joined to the end beam 4b, and a central portion located at the center of the collision column 6 in the vertical direction. It has a 12 and a hinge portion 13 located between the root portion 11 and the central portion 12, and a minimum cross-sectional portion 14 located between the central portion 12 and the hinge portion 13. The root portion 11 has the first moment of inertia Za, the central portion 12 has the second moment of inertia Zb, the hinge portion 13 has the third moment of inertia Zc, and the minimum cross-section portion 14 has the fourth moment of inertia. It has the moment of inertia of area Zd. The first moment of inertia Za is a section coefficient with respect to the central axis in the horizontal section of the root portion 11. The second moment of inertia Zb is a moment of inertia with respect to the central axis in the horizontal cross section of the central portion 12. The third moment of inertia Zc is a moment of inertia with respect to the central axis in the horizontal cross section of the hinge portion 13. The fourth moment of inertia Zd is a section coefficient with respect to the central axis in the horizontal section of the minimum section portion 14.

根元部11の第1断面係数Zaは、根元部11と中心部12との間の衝突柱6の各水平断面の断面係数の中で最大値を示す。ヒンジ部13は、衝突柱6の荷重が付加される方向の裏面に形成されている。即ち、ヒンジ部13は、衝突柱6の車両長手方向内側の面に形成されている。ヒンジ部13の第3断面係数Zcは、第1断面係数Zaより小さい。第3断面係数Zcは、下記の数式(1)を満たす。ここで、第1距離L1は、ヒンジ部13から根元部11までの鉛直方向長さ、第2距離L2は、中心部12からヒンジ部13までの鉛直方向長さである。 The first moment of inertia Za of the root portion 11 indicates the maximum value among the cross-sectional coefficients of each horizontal cross section of the collision column 6 between the root portion 11 and the center portion 12. The hinge portion 13 is formed on the back surface in the direction in which the load of the collision column 6 is applied. That is, the hinge portion 13 is formed on the inner surface of the collision pillar 6 in the longitudinal direction of the vehicle. The third moment of inertia Zc of the hinge portion 13 is smaller than the first moment of inertia Za. The third moment of inertia Zc satisfies the following mathematical formula (1). Here, the first distance L1 is the vertical length from the hinge portion 13 to the root portion 11, and the second distance L2 is the vertical length from the central portion 12 to the hinge portion 13.

Figure 0007022580000001
Figure 0007022580000001

最小断面部14は、障害物が衝突すると想定される荷重点と同じ鉛直方向位置に配置される。前記想定される荷重点としては、FRA: 49 CFR Ch.II Part 238.211 Collision Post & 238.213 Corner PostやAPTA: PR-CS-S-034 5.3.1 Collision Post & 5.3.2 Corner PostやASME: RT-2-2014 4 Structural Requirement等で規定される荷重点位置が挙げられる。最小断面部14の第4断面係数Zdは、下記の数式(2)を満たす。ここで、第3距離L3は、ヒンジ部13から最小断面部14までの鉛直方向長さである。 The minimum cross-sectional portion 14 is arranged at the same vertical position as the load point where the obstacle is assumed to collide. The assumed load points are FRA: 49 CFR Ch.II Part 238.211 Collision Post & 238.213 Corner Post and APTA: PR-CS-S-034 5.3.1 Collision Post & 5.3.2 Corner Post and ASME: RT- 2-2014 4 The position of the load point specified in Structural Requirement etc. can be mentioned. The fourth moment of inertia Zd of the minimum cross-section portion 14 satisfies the following mathematical formula (2). Here, the third distance L3 is the vertical length from the hinge portion 13 to the minimum cross-sectional portion 14.

Figure 0007022580000002
Figure 0007022580000002

衝突柱6の水平断面における中心軸に関する断面係数の鉛直方向に沿った減少率ΔZは、ヒンジ部13と最小断面部14との間の領域に比べて最小断面部14において小さくなる。また、衝突柱6の水平断面における中心軸に関する断面係数の鉛直方向に沿った減少率ΔZは、根元部11とヒンジ部13との間の領域に比べてヒンジ部13において小さくなる。本実施形態では、最小断面部14の断面係数Zdが、衝突柱6の各水平断面の断面係数の中で最小値を示す。即ち、ヒンジ部13の第3断面係数Zcは、最小断面部14の第1断面係数Zdよりは大きい。 The reduction rate ΔZ along the vertical direction of the cross-sectional coefficient with respect to the central axis in the horizontal cross-section of the collision column 6 is smaller in the minimum cross-sectional portion 14 than in the region between the hinge portion 13 and the minimum cross-sectional portion 14. Further, the reduction rate ΔZ along the vertical direction of the section coefficient with respect to the central axis in the horizontal cross section of the collision column 6 is smaller in the hinge portion 13 than in the region between the root portion 11 and the hinge portion 13. In the present embodiment, the geometrical moment of inertia Zd of the minimum sectional portion 14 shows the minimum value among the sectional coefficients of each horizontal cross section of the collision column 6. That is, the third moment of inertia Zc of the hinge portion 13 is larger than the first moment of inertia Zd of the minimum cross-section portion 14.

根元部11は、端梁4bから鉛直方向に延びている。衝突柱6の荷重が付加される方向の裏面(車内側の面)において根元部11からヒンジ部13との間には、第1テーパー部15が設けられている。即ち、第1テーパー部15は、衝突柱6のうちヒンジ部13と同側である車内側の面に形成されている。第1テーパー部15は、根元部11からヒンジ部13に向けて衝突柱6の断面係数を減少させるように傾斜している。第1テーパー部15は、根元部11よりも鉛直方向寸法が大きい。 The root portion 11 extends in the vertical direction from the end beam 4b. A first tapered portion 15 is provided between the root portion 11 and the hinge portion 13 on the back surface (inner surface of the vehicle) in the direction in which the load of the collision pillar 6 is applied. That is, the first tapered portion 15 is formed on the inner surface of the vehicle, which is on the same side as the hinge portion 13 of the collision pillar 6. The first tapered portion 15 is inclined from the root portion 11 toward the hinge portion 13 so as to reduce the cross-sectional coefficient of the collision column 6. The first tapered portion 15 has a larger vertical dimension than the root portion 11.

衝突柱6のうち第1テーパー部15が設けられる面とは異なる面には、ヒンジ部13と同じ高さ位置と最小断面部14との間に第2テーパー部16が形成されている。本実施形態では、第2テーパー部16は、衝突柱6の荷重が付加される面、即ち、車両長手方向外側の面に形成されている。第2テーパー部16は、ヒンジ部13と同じ高さ位置から最小断面部14に向けて衝突柱6の断面係数を減少させるように傾斜している。第2テーパー部16は、第1テーパー部15よりも鉛直方向寸法が大きい。第2テーパー部16の鉛直方向に対する傾斜角は、第1テーパー部15の鉛直方向に対する傾斜角よりも小さい。 A second tapered portion 16 is formed between the same height position as the hinge portion 13 and the minimum cross-sectional portion 14 on a surface of the collision column 6 different from the surface on which the first tapered portion 15 is provided. In the present embodiment, the second tapered portion 16 is formed on a surface to which the load of the collision column 6 is applied, that is, a surface on the outer side in the longitudinal direction of the vehicle. The second tapered portion 16 is inclined from the same height position as the hinge portion 13 toward the minimum cross-sectional portion 14 so as to reduce the geometrical moment of inertia of the collision column 6. The second tapered portion 16 has a larger vertical dimension than the first tapered portion 15. The tilt angle of the second tapered portion 16 with respect to the vertical direction is smaller than the tilt angle of the first tapered portion 15 with respect to the vertical direction.

図3は、図1に示す隅柱7等を車内側から見た斜視図である。図1及び3に示すように、隅柱7は、基本的には衝突柱6と同様の特徴を有する。隅柱7は、屋根構体5と溶接により接合される接合部20(上端部)と、端梁4bと溶接により接合される接合部21(下端部)とを有する。隅柱7のうち接合部20と接合部21とからの鉛直方向距離が等しい位置(即ち、隅柱7の鉛直方向中心に位置する中心部22)から隅柱7の接合部21までの間における車内側の面には、ヒンジ部23が設けられている。ヒンジ部23は、所定以上の荷重が付加されると、接合部20,21が破断する前に曲げ変形(塑性変形)を開始し、その曲げ変形の起点となるものである。 FIG. 3 is a perspective view of the corner pillar 7 and the like shown in FIG. 1 as viewed from the inside of the vehicle. As shown in FIGS. 1 and 3, the corner pillar 7 basically has the same characteristics as the collision pillar 6. The corner pillar 7 has a joint portion 20 (upper end portion) joined to the roof structure 5 by welding, and a joint portion 21 (lower end portion) joined to the end beam 4b by welding. From the position of the corner pillar 7 where the vertical distances from the joint portion 20 and the joint portion 21 are equal (that is, the central portion 22 located at the vertical center of the corner pillar 7) to the joint portion 21 of the corner pillar 7. A hinge portion 23 is provided on the inner surface of the vehicle. When a load of a predetermined value or more is applied, the hinge portion 23 starts bending deformation (plastic deformation) before the joint portions 20 and 21 break, and becomes the starting point of the bending deformation.

換言すると、隅柱7は、鉛直方向端部に位置して端梁4bに接合される根元部21(以下、符号21は根元部と称す)、隅柱7の鉛直方向中心に位置する中心部22と、根元部21と中心部22との間に位置するヒンジ部23と、中心部22とヒンジ部23との間に位置する最小断面部24と、衝突柱6の荷重が付加される方向の裏面(車内側の面)において根元部21からヒンジ部23との間に形成された第1テーパー部25と、隅柱7のうち第1テーパー部25が設けられる面とは異なる面においてヒンジ部23と同じ高さ位置と最小断面部24との間に形成された第2テーパー部26とを有する。 In other words, the corner pillar 7 is a root portion 21 (hereinafter, reference numeral 21 is referred to as a root portion) located at the vertical end and joined to the end beam 4b, and a central portion located at the center of the corner pillar 7 in the vertical direction. 22, the hinge portion 23 located between the root portion 21 and the central portion 22, the minimum cross-sectional portion 24 located between the central portion 22 and the hinge portion 23, and the direction in which the load of the collision column 6 is applied. On the back surface (inner surface of the vehicle), the hinge is formed on a surface different from the surface of the corner pillar 7 where the first tapered portion 25 is provided, and the first tapered portion 25 formed between the root portion 21 and the hinge portion 23. It has a second tapered portion 26 formed between the same height position as the portion 23 and the minimum cross-sectional portion 24.

隅柱7の第2テーパー部26は、車幅方向内側の面に形成されている。本実施形態では、隅柱7は、車体側面の形状、即ち、構体3の側外板(図示せず)の形状に沿わせるべく全体的に車幅方向外方に凸となる形状に湾曲しているが、湾曲していなくてもよい。なお、隅柱7の各部位の形状及び断面係数の条件は、衝突柱6と同様であるため、その詳細な説明を省略する。 The second tapered portion 26 of the corner pillar 7 is formed on the inner surface in the vehicle width direction. In the present embodiment, the corner pillar 7 is curved in a shape that is convex outward in the vehicle width direction as a whole so as to follow the shape of the side surface of the vehicle body, that is, the shape of the side outer plate (not shown) of the structure 3. However, it does not have to be curved. Since the conditions of the shape and the moment of inertia of each part of the corner pillar 7 are the same as those of the collision pillar 6, detailed description thereof will be omitted.

図4は、車両の柱部材50の模式図である。以下、衝突柱6及び隅柱7のヒンジ部13,23の設計思想について図4に示す柱部材50を例に説明する。車両の衝突柱や隅柱のような柱部材50は、柱部材50の根元部の剪断や柱部材50の曲げに関する所定の静強度に加え、物体の衝突などを想定して柱部材50が終局強度(最大荷重や変位により定義される)に達するまでに根元部が剥がれないことや所定の吸収エネルギーが要求される。このとき、柱部材50の塑性域の変形挙動を制御するため、積極的に柱部材50の断面を変化させてクビレ(ヒンジ部)を設けることにより、柱部材50に意図的に塑性ヒンジを生じさせる。その塑性ヒンジを生じさせるためのくびれ形状を検討する際の計算例を以下に示す。 FIG. 4 is a schematic view of the pillar member 50 of the vehicle. Hereinafter, the design concept of the hinge portions 13 and 23 of the collision column 6 and the corner column 7 will be described by taking the column member 50 shown in FIG. 4 as an example. In the pillar member 50 such as a collision pillar or a corner pillar of a vehicle, in addition to a predetermined static strength regarding the shearing of the root portion of the pillar member 50 and the bending of the pillar member 50, the pillar member 50 is finally assumed to collide with an object. It is required that the root does not peel off and a predetermined absorbed energy is required before reaching the strength (defined by the maximum load and displacement). At this time, in order to control the deformation behavior of the plastic region of the column member 50, by positively changing the cross section of the column member 50 to provide a constriction (hinge portion), a plastic hinge is intentionally generated in the column member 50. Let me. An example of calculation when examining the constriction shape for producing the plastic hinge is shown below.

一般的に両端支持の柱部材50について、高さXの位置に乗じるモーメントは下記の数式(3)で表される。 Generally, for the column member 50 supporting both ends, the moment to be multiplied by the position of the height X is expressed by the following mathematical formula (3).

Figure 0007022580000003
Figure 0007022580000003

このとき、柱部材50の根元の位置Aに必要な断面係数は下記の数式(4)により求まる。ここで、柱部材50の根元に発生するモーメントをMa、発生する応力をσa、使用する材料の耐力をσyとする。 At this time, the geometrical moment of inertia required for the position A at the base of the column member 50 can be obtained by the following mathematical formula (4). Here, the moment generated at the base of the column member 50 is Ma, the generated stress is σa, and the proof stress of the material to be used is σy.

Figure 0007022580000004
Figure 0007022580000004

柱部材50の荷重位置に近い位置にヒンジ部を形成する場合、ヒンジ部を設ける位置Bの高さを仮にhとすると、高さhの位置に乗じるモーメントMbは、下記の数式(5)で表される。 When the hinge portion is formed at a position close to the load position of the column member 50, assuming that the height of the position B where the hinge portion is provided is h, the moment Mb multiplied by the position of the height h is calculated by the following mathematical formula (5). expressed.

Figure 0007022580000005
Figure 0007022580000005

このとき、柱部材50の位置Bに必要な断面係数は下記の数式(6)により求まる。 At this time, the geometrical moment of inertia required for the position B of the column member 50 can be obtained by the following mathematical formula (6).

Figure 0007022580000006
Figure 0007022580000006

柱部材50の位置Bは位置Aよりも弱い断面である必要があるので、下記の数式7を満たす必要がある。 Since the position B of the column member 50 needs to have a weaker cross section than the position A, it is necessary to satisfy the following formula 7.

Figure 0007022580000007
Figure 0007022580000007

上記数式(4)(6)(7)より、下記の数式(8)が導かれ、この数式(8)の関係を満たすように柱部材50の断面を設計する。 The following mathematical formula (8) is derived from the above mathematical formulas (4), (6) and (7), and the cross section of the column member 50 is designed so as to satisfy the relationship of the mathematical formula (8).

Figure 0007022580000008
Figure 0007022580000008

また、根元の位置Aの塑性断面係数をZpa、位置Bの塑性断面係数をZpbとすると、位置Aの塑性モーメントMpa及び位置Bの塑性モーメントMpbは、それぞれ下記の数式(9)(10)により求めることができる。 Assuming that the plastic moment of inertia at the root position A is Zpa and the plastic moment of inertia at the position B is Zpb, the plastic moment Mpa at the position A and the plastic moment Mpb at the position B are calculated by the following mathematical formulas (9) and (10), respectively. You can ask.

Figure 0007022580000009
Figure 0007022580000009
Figure 0007022580000010
Figure 0007022580000010

数式(1)のモーメントの式によりそれぞれの断面が終局状態を迎える終局荷重(又は崩壊荷重)FpaとFpbが求まる。これにより、位置Aと位置Bの断面形状は、下記の数式(11)により求まる。この数式(11)の関係を満たすように柱部材50の断面を設計する。 The ultimate load (or collapse load) Fpa and Fpb at which each cross section reaches the ultimate state can be obtained from the equation of the moment of the equation (1). As a result, the cross-sectional shapes of the positions A and B can be obtained by the following mathematical formula (11). The cross section of the column member 50 is designed so as to satisfy the relationship of the mathematical formula (11).

Figure 0007022580000011
Figure 0007022580000011

以上が手計算の計算例である。計算例では柱部材50の端部は固定端であるが、実際の柱部材50の端部が完全に固定端とならずに自由端に近くなる場合も考えられる。また、塑性域の挙動は手計算で厳密な解を求めることはできない。そのため必要に応じて有限要素解析(FEA)を用いることで全体の挙動を確認し、柱断面形状を柱全体で最適化する。 The above is a calculation example of manual calculation. In the calculation example, the end portion of the pillar member 50 is a fixed end, but it is conceivable that the end portion of the actual pillar member 50 does not become a completely fixed end but is close to a free end. Moreover, it is not possible to obtain an exact solution for the behavior of the plastic region by hand calculation. Therefore, if necessary, the finite element analysis (FEA) is used to confirm the overall behavior and optimize the column cross-sectional shape for the entire column.

ヒンジ部13の鉛直方向位置は、実際の車両内部の構造や仕様に応じた吸収エネルギー量を満たすような衝突柱6の変形量となるように検討する。衝突柱6の吸収エネルギーは、反力と変位との乗算値であるので、衝突柱6の変位を最大にするためには、ヒンジ部13の鉛直方向位置は、衝突柱6の根元部11の近くに配置される。本実施形態では、ヒンジ部13の鉛直方向位置は、衝突柱6の荷重点(最小断面部14)と衝突柱6の下端との間の中央位置よりも下端寄りに配置されている。 The vertical position of the hinge portion 13 is examined so as to be a deformation amount of the collision column 6 that satisfies the absorbed energy amount according to the actual structure and specifications inside the vehicle. Since the absorbed energy of the collision column 6 is a product of the reaction force and the displacement, in order to maximize the displacement of the collision column 6, the vertical position of the hinge portion 13 is the root portion 11 of the collision column 6. Placed nearby. In the present embodiment, the vertical position of the hinge portion 13 is arranged closer to the lower end than the central position between the load point (minimum cross-sectional portion 14) of the collision pillar 6 and the lower end of the collision pillar 6.

図5(A)~(E)は、図1に示す衝突柱6に障害物Xが衝突したときの挙動を示すシミュレーション結果である。図5(A)~(E)に示すように、障害物Xが衝突柱6の最小断面部14に前方から衝突すると、衝突柱6がヒンジ部13を基点として屈曲変形して衝突柱6に曲げ変形が生じる。これにより、衝突柱6の根元部11に掛かる剪断力が低減され、衝突柱6が端梁4bから剥がれることが防止されている。また、衝突柱6の根元部11に掛かる剪断力が抑えられるため、衝突柱6を端梁4bに過度に強固に接合する必要もなく、衝突柱6自体が剪断方向に破断することも防止されている。 5 (A) to 5 (E) are simulation results showing the behavior when the obstacle X collides with the collision pillar 6 shown in FIG. As shown in FIGS. 5A to 5E, when the obstacle X collides with the minimum cross-sectional portion 14 of the collision pillar 6 from the front, the collision pillar 6 bends and deforms with the hinge portion 13 as the base point to become the collision pillar 6. Bending deformation occurs. As a result, the shearing force applied to the root portion 11 of the collision column 6 is reduced, and the collision column 6 is prevented from peeling off from the end beam 4b. Further, since the shearing force applied to the root portion 11 of the collision column 6 is suppressed, it is not necessary to excessively firmly join the collision column 6 to the end beam 4b, and the collision column 6 itself is prevented from breaking in the shearing direction. ing.

そして、衝突柱6は、荷重点となる最小断面部14の断面係数が最小に設定されているので、最小断面部14において十分に曲げ変形している。これにより、衝突柱6の荷重点部分の形状維持により衝突柱6が剪断方向に破断してしまうことが防止されている。即ち、衝突柱6が全体的に曲げ方向に塑性変形することで、衝突柱6自体の衝撃吸収能力を十分に発揮することができる。以上の原理は、隅柱7についても同様である。 Since the cross-sectional coefficient of the minimum cross-sectional portion 14, which is the load point, is set to the minimum, the collision column 6 is sufficiently bent and deformed at the minimum cross-sectional portion 14. This prevents the collision column 6 from breaking in the shearing direction by maintaining the shape of the load point portion of the collision column 6. That is, the impact column 6 is plastically deformed in the bending direction as a whole, so that the impact absorption capacity of the collision column 6 itself can be fully exhibited. The above principle is the same for the corner pillar 7.

なお、本発明は前述した実施形態に限定されるものではなく、その構成を変更、追加、又は削除することができる。本実施形態では、衝突柱6と隅柱7との両方に同様の特徴形状を適用したが、何れか一方のみに適用してもよい。本実施形態では、先頭車2の前部の衝突柱6及び隅柱7について説明したが、2両目以降の車両の前部(切妻部)に設けた衝突柱及び/又は隅柱に適用してもよい。 The present invention is not limited to the above-described embodiment, and its configuration can be changed, added, or deleted. In the present embodiment, the same characteristic shape is applied to both the collision column 6 and the corner column 7, but it may be applied to only one of them. In the present embodiment, the collision pillar 6 and the corner pillar 7 at the front of the leading vehicle 2 have been described, but the present invention is applied to the collision pillar and / or the corner pillar provided at the front (gable portion) of the second and subsequent vehicles. May be good.

1 鉄道車両
3 構体
4 台枠
4b 端梁
5 屋根構体
6 衝突柱(柱部材)
7 隅柱(柱部材)
11,21 根元部(接合部)
12,22 中心部
13,23 ヒンジ部
14,24 最小断面部
15,25 第1テーパー部
1 Railroad vehicle 3 Structure 4 Underframe 4b End beam 5 Roof structure 6 Collision pillar (pillar member)
7 Corner pillar (pillar member)
11 and 21 Root (joint)
12,22 Central part 13,23 Hinge part 14,24 Minimum cross-section part 15,25 First taper part

Claims (6)

台枠の車両長手方向端部に位置する端梁から屋根構体に向けて延びる柱部材を備えた鉄道車両の構体であって、
前記柱部材は、
前記端梁又は前記屋根構体と接合される接合部と、
前記接合部から前記柱部材の鉛直方向中心位置までの間であって、その車内側の面に位置し、所定以上の荷重が付加されると、前記接合部が破断する前に曲げ変形を開始するとともに、その曲げ変形の起点となるヒンジ部と、を備える、鉄道車両の構体。
It is a structure of a railway vehicle equipped with a pillar member extending from an end beam located at the end of the underframe in the longitudinal direction of the vehicle toward the roof structure.
The pillar member is
With the joint to be joined to the end beam or the roof structure,
It is located on the inner surface of the vehicle between the joint and the vertical center position of the pillar member, and when a predetermined load or more is applied, bending deformation starts before the joint breaks. A railroad vehicle structure provided with a hinge portion that is the starting point of the bending deformation.
台枠の車両長手方向端部に位置する端梁から屋根構体に向けて延びる柱部材を備えた鉄道車両の構体であって、
前記柱部材は、
鉛直方向端部に位置し、第1断面係数Zaを有する根元部と、
鉛直方向中心に位置し、第2断面係数Zbを有する中心部と、
前記中心部と前記根元部の間に位置し、第3断面係数Zcを有するヒンジ部と、を備え、
前記第1断面係数Zaは、前記中心部と前記根元部との間の前記柱部材の各水平断面の断面係数の中で最大値を示し、
前記第3断面係数Zcは、前記第1断面係数Zaより小さい、鉄道車両の構体。
ここで、
前記第1断面係数Zaは、前記根元部の水平断面における中心軸に関する断面係数、
前記第2断面係数Zbは、前記中心部の水平断面における中心軸に関する断面係数、
前記第3断面係数Zcは、前記ヒンジ部の水平断面における中心軸に関する断面係数、
である。
It is a structure of a railway vehicle equipped with a pillar member extending from an end beam located at the end of the underframe in the longitudinal direction of the vehicle toward the roof structure.
The pillar member is
The root, which is located at the end in the vertical direction and has the first moment of inertia Za,
The central part located in the center in the vertical direction and having the second moment of inertia Zb,
A hinge portion located between the central portion and the root portion and having a third moment of inertia Zc is provided.
The first moment of inertia Za indicates the maximum value among the moments of inertia of each horizontal section of the pillar member between the central portion and the root portion.
The third moment of inertia Zc is a structure of a railway vehicle smaller than the first moment of inertia Za.
here,
The first moment of inertia Za is the moment of inertia with respect to the central axis in the horizontal cross section of the root portion.
The second moment of inertia Zb is a section coefficient with respect to the central axis in the horizontal section of the central portion.
The third moment of inertia Zc is a section coefficient with respect to the central axis in the horizontal section of the hinge portion.
Is.
前記第3断面係数Zcは、数式(1)を満たす、請求項2に記載の鉄道車両の構体。
(Zc-Zb)/ L2 <(Za-Zc)/L1 ・・・(1)
ここで、
第1距離L1は、前記ヒンジ部から前記根元部までの鉛直方向長さ、
第2距離L2は、前記中心部から前記ヒンジ部までの鉛直方向長さ、
である。
The structure of a railway vehicle according to claim 2, wherein the third moment of inertia Zc satisfies the mathematical formula (1).
(Zc-Zb) / L2 <(Za-Zc) / L1 ・ ・ ・ (1)
here,
The first distance L1 is the vertical length from the hinge portion to the root portion.
The second distance L2 is the vertical length from the center portion to the hinge portion.
Is.
前記中心部と前記ヒンジ部との間に位置し、数式(2)を満たす第4断面係数Zdを有する最小断面部をさらに備え
記第4断面係数Zdは、前記柱部材の各水平断面の断面係数の中で最小値を示す、請求項3に記載の鉄道車両の構体。
(Zc-Zd)/ L3 <(Za-Zc)/L1 ・・・(2)
ここで、
前記第4断面係数Zdは、最小断面部の水平断面における中心軸に関する断面係数、
第3距離L3は、前記ヒンジ部から前記最小断面部までの鉛直方向長さ、
である。
Further provided with a minimum cross-sectional portion located between the central portion and the hinge portion and having a fourth moment of inertia Zd satisfying formula (2) .
The structure of a railway vehicle according to claim 3, wherein the fourth moment of inertia Zd indicates the minimum value among the moments of inertia of each horizontal section of the pillar member.
(Zc-Zd) / L3 <(Za-Zc) / L1 ・ ・ ・ (2)
here,
The fourth moment of inertia Zd is a section coefficient with respect to the central axis in the horizontal section of the minimum section.
The third distance L3 is the vertical length from the hinge portion to the minimum cross-sectional portion.
Is.
前記最小断面部は、荷重点と同じ鉛直方向位置に配置される、請求項4に記載の鉄道車両の構体。The structure of a railway vehicle according to claim 4, wherein the minimum cross-sectional portion is arranged at the same vertical position as the load point. 前記柱部材の荷重が付加される方向の裏面であって、前記根元部から前記ヒンジ部との間にテーパー部をさらに備える、請求項2乃至5のいずれか1項に記載の鉄道車両の構体。 The railway vehicle according to any one of claims 2 to 5, further comprising a tapered portion between the root portion and the hinge portion, which is the back surface in the direction in which the load of the pillar member is applied. Structure.
JP2017246790A 2017-12-22 2017-12-22 Railroad vehicle structure Active JP7022580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017246790A JP7022580B2 (en) 2017-12-22 2017-12-22 Railroad vehicle structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017246790A JP7022580B2 (en) 2017-12-22 2017-12-22 Railroad vehicle structure

Publications (2)

Publication Number Publication Date
JP2019111928A JP2019111928A (en) 2019-07-11
JP7022580B2 true JP7022580B2 (en) 2022-02-18

Family

ID=67221119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017246790A Active JP7022580B2 (en) 2017-12-22 2017-12-22 Railroad vehicle structure

Country Status (1)

Country Link
JP (1) JP7022580B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7218060B2 (en) * 2019-03-29 2023-02-06 日本車輌製造株式会社 rail car
JP7464414B2 (en) * 2020-03-11 2024-04-09 株式会社総合車両製作所 Railway vehicle body structure and manufacturing method thereof
JP7443220B2 (en) 2020-11-18 2024-03-05 日本車輌製造株式会社 Railway vehicle and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222195A (en) 2015-06-03 2016-12-28 川崎重工業株式会社 Vehicle body of railway vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3216479B2 (en) * 1995-05-16 2001-10-09 トヨタ自動車株式会社 Center pillar reinforcement structure for automobiles
JP3206441B2 (en) * 1996-08-09 2001-09-10 三菱自動車工業株式会社 Car body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222195A (en) 2015-06-03 2016-12-28 川崎重工業株式会社 Vehicle body of railway vehicle

Also Published As

Publication number Publication date
JP2019111928A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
JP7022580B2 (en) Railroad vehicle structure
JP5140149B2 (en) Bumper structure
JP4535084B2 (en) Cross-sectional structure of structural members
JP6301457B2 (en) Vehicle bumper
JP6044624B2 (en) Vehicle frame structure
JP7296692B2 (en) Vehicle structural member
JP6085966B2 (en) Upper body structure of the vehicle
JP2010120404A (en) Floor structure of vehicle
JP5975058B2 (en) Pillar structure and vehicle side structure
JP6958722B2 (en) Floor structure
KR102558628B1 (en) Structural members for vehicles
JP4562677B2 (en) Welded structure closed section frame
JP2007191008A (en) Automobile side sill
WO2015145835A1 (en) Vehicle bumper reinforcement
KR102042642B1 (en) Bumper Reinforcement and Vehicle with it
JP2008247379A (en) Side member
JP6459403B2 (en) Door impact bar mounting structure
WO2018061654A1 (en) Structure for vehicle
JP5440157B2 (en) Vehicle frame structure
JP6256437B2 (en) Vehicle front structure
JP4910731B2 (en) Connecting structure of vehicle frame member
JP5180950B2 (en) Bumper structure
JP2019084847A (en) Vehicle body structure
JP6961524B2 (en) Vehicle front pillar reinforcement structure
JP6679510B2 (en) Pillar components for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20211029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R150 Certificate of patent or registration of utility model

Ref document number: 7022580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150