JP7020633B2 - Composite material and prepreg using it - Google Patents

Composite material and prepreg using it Download PDF

Info

Publication number
JP7020633B2
JP7020633B2 JP2017024507A JP2017024507A JP7020633B2 JP 7020633 B2 JP7020633 B2 JP 7020633B2 JP 2017024507 A JP2017024507 A JP 2017024507A JP 2017024507 A JP2017024507 A JP 2017024507A JP 7020633 B2 JP7020633 B2 JP 7020633B2
Authority
JP
Japan
Prior art keywords
composite material
carbon fiber
carbon fibers
fiber bundle
cnt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017024507A
Other languages
Japanese (ja)
Other versions
JP2018131488A (en
Inventor
麻季 鬼塚
拓治 小向
大貴 石井
潤 猪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017024507A priority Critical patent/JP7020633B2/en
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to EP18751523.4A priority patent/EP3581612A4/en
Priority to US16/485,480 priority patent/US20200002492A1/en
Priority to CN202211195546.8A priority patent/CN115403806B/en
Priority to PCT/JP2018/004429 priority patent/WO2018147377A1/en
Priority to CN201880011053.XA priority patent/CN110268009A/en
Priority to KR1020197023228A priority patent/KR102543289B1/en
Priority to TW107104988A priority patent/TWI765965B/en
Publication of JP2018131488A publication Critical patent/JP2018131488A/en
Application granted granted Critical
Publication of JP7020633B2 publication Critical patent/JP7020633B2/en
Priority to US17/962,615 priority patent/US11898305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/10Processes in which the treating agent is dissolved or dispersed in organic solvents; Processes for the recovery of organic solvents thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Description

本発明は、炭素繊維束を構成している複数の連続した炭素繊維の表面にカーボンナノチューブ(以下、CNTと称する)を付着させた複合素材、およびこれを用いたプリプレグに関する。 The present invention relates to a composite material in which carbon nanotubes (hereinafter referred to as CNTs) are attached to the surfaces of a plurality of continuous carbon fibers constituting a carbon fiber bundle, and a prepreg using the composite material.

強化繊維を母材である樹脂中に分散させた繊維強化成形品は、力学特性や寸法安定性に優れることから、幅広い分野で使用されている。炭素繊維の表面に、複数のCNTが絡み付いてCNTネットワーク薄膜が形成された構造を有するCNT/炭素繊維複合素材が、強化繊維として提案されている(例えば、特許文献1)。 Fiber-reinforced molded products in which reinforcing fibers are dispersed in a resin as a base material are used in a wide range of fields because of their excellent mechanical properties and dimensional stability. A CNT / carbon fiber composite material having a structure in which a plurality of CNTs are entangled on the surface of carbon fibers to form a CNT network thin film has been proposed as a reinforcing fiber (for example, Patent Document 1).

連続した炭素繊維を数千~数万の単位で束ねた炭素繊維束は、低密度、高比強度、高比弾性率といった優れた特性を有している。こうした炭素繊維束に樹脂を含浸させて得られるプリプレグは、性能に対する要求がより厳しい用途(航空・宇宙関連用途など)への適用が期待されている。 A carbon fiber bundle in which continuous carbon fibers are bundled in units of thousands to tens of thousands has excellent properties such as low density, high specific strength, and high specific elastic modulus. The prepreg obtained by impregnating such a carbon fiber bundle with a resin is expected to be applied to applications with stricter performance requirements (aerospace-related applications, etc.).

特開2013-76198号公報Japanese Unexamined Patent Publication No. 2013-76198

特許文献1においては、CNTを含む分散液中に炭素繊維を浸漬して、振動、光照射、熱等のエネルギーを付与することにより、炭素繊維表面にCNTネットワークを形成している。特許文献1の複合素材中に母材を含浸すれば、母材の特徴をいかしつつ、母材と炭素繊維とが強固に接着した繊維強化成形品が得られることが記載されている。 In Patent Document 1, a CNT network is formed on the surface of carbon fibers by immersing the carbon fibers in a dispersion liquid containing CNTs and applying energy such as vibration, light irradiation, and heat. It is described that if the composite material of Patent Document 1 is impregnated with a base material, a fiber-reinforced molded product in which the base material and carbon fibers are firmly adhered to each other can be obtained while taking advantage of the characteristics of the base material.

複数の連続した炭素繊維を含む炭素繊維束において、各炭素繊維の表面にCNTを付着させた場合には、CNT由来の特性も兼ね備えたより優れた強化繊維(複合素材)を得ることができる。例えば、炭素繊維の長手方向の強度がより高められたプリプレグを製造するためには、長手方向の強度がより高い複合素材が求められる。 In a carbon fiber bundle containing a plurality of continuous carbon fibers, when CNT is attached to the surface of each carbon fiber, a better reinforcing fiber (composite material) having CNT-derived characteristics can be obtained. For example, in order to produce a prepreg having higher longitudinal strength of carbon fibers, a composite material having higher longitudinal strength is required.

そこで本発明は、炭素繊維束の特性およびCNT由来の特性に基づいた、より高い強度を発揮できる複合素材、およびこれを用いたプリプレグを提供することを目的とする。 Therefore, an object of the present invention is to provide a composite material capable of exhibiting higher strength based on the characteristics of the carbon fiber bundle and the characteristics derived from CNT, and a prepreg using the composite material.

本発明に係る複合素材は、複数の連続した炭素繊維が配列した炭素繊維束と、前記炭素繊維のそれぞれの表面に付着したカーボンナノチューブと、前記カーボンナノチューブが付着した前記表面の少なくとも一部を覆うサイジング剤とを備える複合素材であって、長手方向を上下にして配置された前記複合素材に、前記長手方向を横切って直径0.55mmの検査針を刺し、前記複合素材と前記検査針とを、300mm/minの速度で前記長手方向に40mm相対的に移動させた際、前記複合素材と前記検査針との間に作用する荷重の最大値が0.5N未満であることを特徴とする。 The composite material according to the present invention covers at least a part of the carbon fiber bundle in which a plurality of continuous carbon fibers are arranged, the carbon nanotubes attached to the respective surfaces of the carbon fibers, and the surface to which the carbon nanotubes are attached. A composite material provided with a sizing agent, which is arranged up and down in the longitudinal direction, is pierced with an inspection needle having a diameter of 0.55 mm across the longitudinal direction, and the composite material and the inspection needle are inserted. When the composite material is relatively moved by 40 mm in the longitudinal direction at a speed of 300 mm / min, the maximum value of the load acting between the composite material and the inspection needle is less than 0.5 N.

本発明に係るプリプレグは、前述の複合素材と、前記複合素材に含浸されたマトリックス樹脂とを含むことを特徴とする。 The prepreg according to the present invention is characterized by containing the above-mentioned composite material and a matrix resin impregnated in the composite material.

本発明の複合素材は、所定の条件で長手方向に受ける荷重が所定値未満に規定されているので、炭素繊維束に含まれている炭素繊維同士の絡まり合いが実質的に存在しない。炭素繊維束中の炭素繊維のそれぞれが強度に寄与することができ、炭素繊維束本来の強度が発揮される。 In the composite material of the present invention, since the load received in the longitudinal direction under predetermined conditions is specified to be less than a predetermined value, there is substantially no entanglement between the carbon fibers contained in the carbon fiber bundle. Each of the carbon fibers in the carbon fiber bundle can contribute to the strength, and the original strength of the carbon fiber bundle is exhibited.

しかも、本発明の複合素材は、炭素繊維束に含まれる炭素繊維のそれぞれの表面にCNTが付着している。それによって、本発明の複合素材は、より高い強度を発揮することができる。本発明の複合素材を用いることによって、より高強度のプリプレグを製造することができる。 Moreover, in the composite material of the present invention, CNTs are attached to the surfaces of the carbon fibers contained in the carbon fiber bundle. Thereby, the composite material of the present invention can exhibit higher strength. By using the composite material of the present invention, a higher strength prepreg can be produced.

本実施形態に係る複合素材の構成を示す部分概略図である。It is a partial schematic diagram which shows the structure of the composite material which concerns on this embodiment. 複合素材における炭素繊維の絡まり合いの評価方法を説明する概略図である。It is a schematic diagram explaining the evaluation method of the entanglement of carbon fibers in a composite material. CNT付着工程を説明する概略図である。It is a schematic diagram explaining the CNT adhesion process. ガイドローラーを説明する側面図である。It is a side view explaining the guide roller. フランジローラーを説明する部分側面図である。It is a partial side view explaining the flange roller. 実施例1の複合素材と検査針との間に作用する荷重を示すグラフである。It is a graph which shows the load acting between the composite material of Example 1 and an inspection needle. 実施例2の複合素材と検査針との間に作用する荷重を示すグラフである。It is a graph which shows the load acting between the composite material of Example 2 and an inspection needle. 比較例の複合素材と検査針との間に作用する荷重を示すグラフである。It is a graph which shows the load acting between the composite material of a comparative example, and an inspection needle.

以下、図面を参照して本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

1.全体構成
図1に示すように、本実施形態の複合素材10は、複数の連続した炭素繊維12aが配列した炭素繊維束12を備えている。炭素繊維12aは、直径が約5~20μmであり、化石燃料由来の有機繊維や、木材や植物繊維由来の有機繊維の焼成によって得られる。
1. 1. Overall Configuration As shown in FIG. 1, the composite material 10 of the present embodiment includes a carbon fiber bundle 12 in which a plurality of continuous carbon fibers 12a are arranged. The carbon fiber 12a has a diameter of about 5 to 20 μm and is obtained by firing an organic fiber derived from fossil fuel or an organic fiber derived from wood or plant fiber.

図面には、説明のために10本のみの炭素繊維12aを示しているが、本実施形態における炭素繊維束12は、1千~10万本の炭素繊維12aを含むことができる。炭素繊維束12を構成している炭素繊維12aは、実質的に互いに絡まり合うことなく直線性を保っている。こうした炭素繊維12aを含む本実施形態の複合素材10は、厚み方向に炭素繊維12aが3~30本並んだ帯状である。 Although the drawings show only 10 carbon fibers 12a for the sake of explanation, the carbon fiber bundle 12 in the present embodiment can include 1,000 to 100,000 carbon fibers 12a. The carbon fibers 12a constituting the carbon fiber bundle 12 maintain linearity without being substantially entangled with each other. The composite material 10 of the present embodiment containing such carbon fibers 12a has a strip shape in which 3 to 30 carbon fibers 12a are lined up in the thickness direction.

各炭素繊維12aの表面には、CNT14aが付着している。CNT14aは、炭素繊維12aの表面のほぼ全体で均等に分散して絡み合うことで、互いに直接接触ないしは直接接続されてネットワーク構造を形成することができる。CNT14a同士の間には、界面活性剤などの分散剤や接着剤等の介在物が存在しないことが好ましい。また、CNT14aは、炭素繊維12aの表面に直接付着している。ここでいう接続とは、物理的な接続(単なる接触)を含む。また、ここでいう付着とは、ファンデルワールス力による結合をいう。さらに「直接接触ないし直接接続」とは、複数のCNTが単に接触している状態を含む他に、複数のCNTが一体的になって接続している状態を含む。 CNT14a is attached to the surface of each carbon fiber 12a. The CNTs 14a can be directly contacted or directly connected to each other to form a network structure by being evenly dispersed and entangled on almost the entire surface of the carbon fibers 12a. It is preferable that there are no dispersants such as surfactants or inclusions such as adhesives between the CNTs 14a. Further, the CNT 14a is directly attached to the surface of the carbon fiber 12a. The connection here includes a physical connection (mere contact). Further, the adhesion referred to here means a bond by van der Waals force. Further, the "direct contact or direct connection" includes a state in which a plurality of CNTs are simply in contact with each other, and also includes a state in which a plurality of CNTs are integrally connected.

CNT14aの長さは、0.1~50μmであるのが好ましい。CNT14aは長さが0.1μm以上であると、CNT14a同士が絡まり合って直接接続される。またCNT14aは長さが50μm以下であると、均等に分散しやすくなる。一方、CNT14aは長さが0.1μm未満であるとCNT14a同士が絡まりにくくなる。またCNT14aは長さが50μm超であると凝集しやすくなる。 The length of the CNT 14a is preferably 0.1 to 50 μm. When the length of the CNTs 14a is 0.1 μm or more, the CNTs 14a are entangled with each other and directly connected to each other. Further, when the length of CNT14a is 50 μm or less, it becomes easy to disperse evenly. On the other hand, if the length of the CNTs 14a is less than 0.1 μm, the CNTs 14a are less likely to be entangled with each other. Further, if the length of CNT14a is more than 50 μm, it tends to aggregate.

CNT14aは、平均直径約30nm以下であるのが好ましい。CNT14aは直径が30nm以下であると、柔軟性に富み、各炭素繊維12aの表面でネットワーク構造を形成することができる。一方、CNT14aは直径が30nm超であると、柔軟性がなくなり、各炭素繊維12a表面でネットワーク構造を形成しにくくなる。なお、CNT14aの直径は透過型電子顕微鏡(TEM:Transmission Electron Microscope)写真を用いて測定した平均直径とする。CNT14aは、平均直径が約20nm以下であるのがより好ましい。 The CNT14a preferably has an average diameter of about 30 nm or less. When the diameter of CNT14a is 30 nm or less, the CNTs 14a are highly flexible, and a network structure can be formed on the surface of each carbon fiber 12a. On the other hand, if the diameter of CNT14a is more than 30 nm, the flexibility is lost and it becomes difficult to form a network structure on the surface of each carbon fiber 12a. The diameter of the CNT 14a is an average diameter measured using a transmission electron microscope (TEM) photograph. It is more preferable that the CNT 14a has an average diameter of about 20 nm or less.

複数のCNT14aは、炭素繊維束12中の炭素繊維12aのそれぞれの表面に、均一に付着していることが好ましい。炭素繊維12a表面におけるCNT14aの付着状態は、走査型電子顕微鏡(SEM:Scanning Electron Microscope)により観察し、得られた画像を目視により評価することができる。 It is preferable that the plurality of CNTs 14a are uniformly adhered to the respective surfaces of the carbon fibers 12a in the carbon fiber bundle 12. The adhered state of CNT 14a on the surface of the carbon fiber 12a can be observed with a scanning electron microscope (SEM), and the obtained image can be visually evaluated.

さらに、複数のCNT14aが付着している炭素繊維12aの表面の少なくとも一部は、サイジング剤と称される樹脂で覆われている。サイジング剤としては、一般的には、ウレタンエマルジョンやエポキシエマルジョンが用いられる。 Further, at least a part of the surface of the carbon fiber 12a to which the plurality of CNTs 14a are attached is covered with a resin called a sizing agent. As the sizing agent, a urethane emulsion or an epoxy emulsion is generally used.

上述したとおり、炭素繊維束12に含まれている炭素繊維12aは、実質的に互いに絡まり合うことなく直線性を保っている。炭素繊維束12中における炭素繊維12aの絡まり合いは、炭素繊維12a同士の直線性により評価できる。 As described above, the carbon fibers 12a contained in the carbon fiber bundle 12 maintain linearity without being substantially entangled with each other. The entanglement of the carbon fibers 12a in the carbon fiber bundle 12 can be evaluated by the linearity between the carbon fibers 12a.

図2を参照して、炭素繊維12a同士の直線性を評価する方法を説明する。評価には、上下に移動可能な横棒部34が起立部32に設けられた支持台30を用いることができる。複合素材10は、所定長さ(例えば、150~300mm程度)に切断して測定用サンプル100を用意する。 A method for evaluating the linearity between the carbon fibers 12a will be described with reference to FIG. 2. For the evaluation, a support base 30 provided with a horizontal bar portion 34 movable up and down on the upright portion 32 can be used. The composite material 10 is cut to a predetermined length (for example, about 150 to 300 mm) to prepare a measurement sample 100.

測定用サンプル100は、長手方向を上下にし、一端に連結部材36を介して横棒部34に取り付ける。測定用サンプル100が弛まないように、適切な重さの錘24を測定用サンプル100の他端に接続する。錘24の重さは、測定用サンプル100の本来の長さが維持されるように選択される。適切な重さの錘24を用いることによって、測定用サンプル100は、支持台30の横棒部34から安定に吊り下げられる。 The measurement sample 100 is attached to the horizontal bar portion 34 via the connecting member 36 at one end with the longitudinal direction up and down. A weight 24 having an appropriate weight is connected to the other end of the measurement sample 100 so that the measurement sample 100 does not loosen. The weight of the weight 24 is selected so that the original length of the measurement sample 100 is maintained. By using a weight 24 having an appropriate weight, the measurement sample 100 is stably suspended from the horizontal bar portion 34 of the support base 30.

支持台30の起立部32には、検査針20(直径0.55mm)が横方向に延びて設けられている。測定用サンプル100の長手方向を横切って検査針20を刺し、横棒部34を上方に移動させることで、測定用サンプル100と検査針20とを相対的に移動させる。移動速度は300mm/minとし、移動距離は40mmとする。 An inspection needle 20 (diameter 0.55 mm) is provided on the upright portion 32 of the support base 30 so as to extend in the lateral direction. The inspection needle 20 is pierced across the longitudinal direction of the measurement sample 100, and the horizontal bar portion 34 is moved upward so that the measurement sample 100 and the inspection needle 20 are relatively moved. The moving speed is 300 mm / min, and the moving distance is 40 mm.

検査針20には、図示しないロードセルが接続されている。測定用サンプル100と検査針20とを相対的に移動させる際、これらの間に作用する荷重がロードセルにより測定される。測定された荷重が小さいほど、炭素繊維束12における炭素繊維12a(図1参照)は直線性が優れている。すなわち、炭素繊維束12に含まれている炭素繊維12a同士は、絡まり合いが少ないことになる。 A load cell (not shown) is connected to the inspection needle 20. When the measuring sample 100 and the inspection needle 20 are relatively moved, the load acting between them is measured by the load cell. The smaller the measured load, the better the linearity of the carbon fibers 12a (see FIG. 1) in the carbon fiber bundle 12. That is, the carbon fibers 12a contained in the carbon fiber bundle 12 are less entangled with each other.

本実施形態の複合素材10は、所定の条件で検査針20と相対的に移動させた際、複合素材10と検査針20との間に作用する荷重の最大値が0.5N未満であるので、複数の連続した炭素繊維12aは、実質的に絡まり合うことなく直線性を保って配列している。 Since the composite material 10 of the present embodiment has a maximum value of the load acting between the composite material 10 and the inspection needle 20 when it is relatively moved with the inspection needle 20 under predetermined conditions, it is less than 0.5N. , The plurality of continuous carbon fibers 12a are arranged in a linear manner without being substantially entangled.

複合素材10と検査針20との間に作用する荷重の平均値は、0.4N未満であることが好ましい。作用する荷重の平均値は、複合素材10と検査針20とを40mm相対的に移動させる間に810点の荷重を測定し、その810点の荷重の平均として算出する。 The average value of the load acting between the composite material 10 and the inspection needle 20 is preferably less than 0.4 N. The average value of the acting load is calculated as the average of the loads at 810 points while the composite material 10 and the inspection needle 20 are relatively moved by 40 mm.

2.製造方法
次に、本実施形態に係る複合素材10の製造方法を説明する。複合素材10は、CNT14aが単離分散したCNT分散液(以下、単に分散液とも称する)中に、複数の炭素繊維12aを含む炭素繊維束12を浸漬して走行させて、炭素繊維12aのそれぞれの表面にCNT14aを付着させることにより製造することができる。以下、各工程について順に説明する。
2. 2. Manufacturing Method Next, a manufacturing method of the composite material 10 according to the present embodiment will be described. The composite material 10 is run by immersing a carbon fiber bundle 12 containing a plurality of carbon fibers 12a in a CNT dispersion liquid (hereinafter, also simply referred to as a dispersion liquid) isolated and dispersed by CNT 14a, and running each of the carbon fibers 12a. It can be manufactured by adhering CNT14a to the surface of the above. Hereinafter, each step will be described in order.

(分散液の調製)
分散液の調製には、以下のようにして製造されたCNT14aを用いることができる。CNT14aは、例えば特開2007-126311号公報に記載されているような熱CVD法を用いてシリコン基板上にアルミニウム、鉄からなる触媒膜を成膜し、CNTの成長のための触媒金属を微粒子化し、加熱雰囲気中で炭化水素ガスを触媒金属に接触させることによって、作製することができる。
(Preparation of dispersion)
CNT14a produced as follows can be used for the preparation of the dispersion liquid. For CNT14a, for example, a catalyst film made of aluminum and iron is formed on a silicon substrate by using a thermal CVD method as described in Japanese Patent Application Laid-Open No. 2007-126311, and fine particles of a catalyst metal for CNT growth are formed. It can be produced by contacting the hydrocarbon gas with the catalyst metal in a heated atmosphere.

不純物を極力含まないCNTであれば、アーク放電法、レーザ蒸発法などその他の方法により作製されたCNTを使用してもよい。製造後のCNTを不活性ガス中で高温アニールすることで、不純物を除去することができる。こうして製造されるCNTは、直径が30nm以下で長さが数100μmから数mmという高いアスペクト比と直線性とを備えている。CNTは、単層および多層のいずれでもよいが、好ましくは多層である。 As long as the CNT contains as little impurities as possible, CNTs produced by other methods such as an arc discharge method and a laser evaporation method may be used. Impurities can be removed by high-temperature annealing the manufactured CNTs in an inert gas. The CNTs thus produced have a high aspect ratio and linearity with a diameter of 30 nm or less and a length of several hundred μm to several mm. The CNT may be either single-walled or multi-walled, but is preferably multi-walled.

上記のように作製されたCNT14aを用いて、CNT14aが単離分散した分散液を調製する。単離分散とは、CNT14aが1本ずつ物理的に分離して絡み合わずに分散媒中に分散している状態をいい、2以上のCNT14aが束状に集合した集合物の割合が10%以下である状態をさす。 Using the CNT14a prepared as described above, a dispersion liquid in which the CNT14a is isolated and dispersed is prepared. Isolation and dispersion refers to a state in which CNTs 14a are physically separated one by one and dispersed in a dispersion medium without being entangled, and the proportion of aggregates in which two or more CNTs 14a are aggregated in a bundle is 10%. Refers to the following states.

分散液は、ホモジナイザーやせん断力、超音波分散機などによりCNT14aの分散の均一化を図る。分散媒としては、水、エタノール、メタノール、イソプロピルアルコールなどのアルコール類;トルエン、アセトン、テトラヒドロフラン(THF)、メチルエチルケトン(MEK)、ヘキサン、ノルマルヘキサン、エチルエーテル、キシレン、酢酸メチル、酢酸エチルなどの有機溶媒を用いることができる。 For the dispersion liquid, a homogenizer, a shearing force, an ultrasonic disperser, or the like is used to make the dispersion of CNT14a uniform. As the dispersion medium, alcohols such as water, ethanol, methanol and isopropyl alcohol; organics such as toluene, acetone, tetrahydrofuran (THF), methyl ethyl ketone (MEK), hexane, normal hexane, ethyl ether, xylene, methyl acetate and ethyl acetate A solvent can be used.

分散液の調製には、分散剤、界面活性剤等の添加剤は必ずしも必要とされないが、炭素繊維12aおよびCNT14aの機能を阻害しない範囲であれば、こうした添加剤を用いてもよい。 Additives such as a dispersant and a surfactant are not always required for the preparation of the dispersion liquid, but such additives may be used as long as they do not impair the functions of the carbon fibers 12a and CNT14a.

(CNTの付着)
上記のようにして調製した分散液中に、炭素繊維束12を浸漬して所定の条件で走行させつつ、分散液に機械的エネルギーを付与することで炭素繊維12a表面にCNT14aを付着させる。
(Adhesion of CNT)
The carbon fiber bundle 12 is immersed in the dispersion liquid prepared as described above and run under predetermined conditions, and mechanical energy is applied to the dispersion liquid to attach CNT 14a to the surface of the carbon fiber 12a.

図3を参照して、炭素繊維12aにCNT14aを付着させる工程を説明する。分散液46が収容されたCNT付着槽40内には、炭素繊維束12を矢印A方向に走行させるためのガイドローラー42が複数配置されている。ガイドローラー42は、図4の側面図に示すように、直径Dが50mm、長さLが100mmの平ローラーである。 The step of adhering the CNT 14a to the carbon fiber 12a will be described with reference to FIG. In the CNT attachment tank 40 in which the dispersion liquid 46 is housed, a plurality of guide rollers 42 for moving the carbon fiber bundle 12 in the direction of arrow A are arranged. As shown in the side view of FIG. 4, the guide roller 42 is a flat roller having a diameter D of 50 mm and a length L of 100 mm.

炭素繊維束12は、厚み方向に炭素繊維12aが3~30本並んだ程度である。ガイドローラー42の長さLが炭素繊維束12の幅wに対して十分に大きい。炭素繊維束12は、より小さい巻付角(90°以下)でガイドローラー42に巻き付けられるのが好ましい。ガイドローラー42は、炭素繊維束12を直線状に走行させるように配置するのが好ましい。 The carbon fiber bundle 12 has about 3 to 30 carbon fibers 12a arranged in the thickness direction. The length L of the guide roller 42 is sufficiently large with respect to the width w of the carbon fiber bundle 12. The carbon fiber bundle 12 is preferably wound around the guide roller 42 with a smaller winding angle (90 ° or less). The guide roller 42 is preferably arranged so that the carbon fiber bundle 12 runs linearly.

炭素繊維束12は、ガイドローラー42に確実に支持されて、収縮せずに分散液46中を走行することができる。炭素繊維束12に含まれている炭素繊維12aは、ガイドローラー42に支持された状態で引張り張力を受けることで、絡まり合いが低減されて直線性が向上する。 The carbon fiber bundle 12 is reliably supported by the guide roller 42 and can run in the dispersion liquid 46 without shrinking. The carbon fibers 12a contained in the carbon fiber bundle 12 receive tensile tension while being supported by the guide roller 42, so that entanglement is reduced and linearity is improved.

図3に示すように、複数のガイドローラー42によって、炭素繊維束12はCNT付着槽40内の一定の深さを、過度な負荷を受けずに走行速度で走行する。走行中、炭素繊維束12は屈曲されることがないので、炭素繊維束12に含まれている炭素繊維12aが絡まり合うおそれは低減される。炭素繊維束12の走行速度は、1~20m/min程度とすることが好ましい。走行速度が遅いほど、炭素繊維束12における炭素繊維12aの直線性を高めることができる。 As shown in FIG. 3, the plurality of guide rollers 42 allow the carbon fiber bundle 12 to travel at a constant depth in the CNT adhesion tank 40 at a traveling speed without receiving an excessive load. Since the carbon fiber bundle 12 is not bent during traveling, the possibility that the carbon fiber 12a contained in the carbon fiber bundle 12 is entangled is reduced. The traveling speed of the carbon fiber bundle 12 is preferably about 1 to 20 m / min. The slower the traveling speed, the higher the linearity of the carbon fibers 12a in the carbon fiber bundle 12.

分散液46に対しては、振動、超音波、搖動などの機械的エネルギーを付与する。これによって、分散液46中では、CNT14aが分散する状態と凝集する状態とが常時発生する可逆的反応状態が作り出される。 Mechanical energy such as vibration, ultrasonic waves, and vibration is applied to the dispersion liquid 46. This creates a reversible reaction state in which the CNT 14a is always dispersed and aggregated in the dispersion liquid 46.

可逆的反応状態にある分散液中に、複数の連続した炭素繊維12aを含む炭素繊維束12が浸漬されると、炭素繊維12a表面においてもCNT14aの分散状態と凝集状態との可逆的反応状態が起こる。CNT14aは、分散状態から凝集状態に移る際、炭素繊維12a表面に付着する。 When the carbon fiber bundle 12 containing a plurality of continuous carbon fibers 12a is immersed in the dispersion liquid in the reversible reaction state, the reversible reaction state between the dispersed state and the aggregated state of CNT 14a is exhibited even on the surface of the carbon fiber 12a. Occur. The CNT 14a adheres to the surface of the carbon fiber 12a when moving from the dispersed state to the aggregated state.

凝集する際は、CNT14aにファンデルワールス力が作用しており、このファンデルワールス力により炭素繊維12a表面にCNT14aが付着する。こうして、炭素繊維束12中の炭素繊維12aそれぞれの表面にCNT14aが付着した炭素繊維束10Aが得られる。 At the time of aggregation, a van der Waals force acts on the CNT 14a, and the van der Waals force causes the CNT 14a to adhere to the surface of the carbon fiber 12a. In this way, the carbon fiber bundle 10A in which the CNT 14a is attached to the surface of each of the carbon fibers 12a in the carbon fiber bundle 12 is obtained.

その後、サイジング処理および乾燥を行って、本実施形態の複合素材10が製造される。サイジング処理は、一般的なサイジング剤を用いて一般的な方法により行うことができる。乾燥は、サイジング処理後の炭素繊維束を、例えばホットプレート上に載置して達成することができる。 Then, sizing treatment and drying are performed to produce the composite material 10 of the present embodiment. The sizing treatment can be performed by a general method using a general sizing agent. Drying can be achieved by placing the sizing-treated carbon fiber bundles, for example, on a hot plate.

(プリプレグの製造)
本実施形態の複合素材10は、マトリックス樹脂を含浸させてプリプレグとすることができる。マトリックス樹脂は、特に限定されないが、エポキシ樹脂等の熱硬化性樹脂、フェノキシ樹脂やナイロン等の熱可塑性樹脂等が挙げられる。
(Manufacturing of prepreg)
The composite material 10 of the present embodiment can be impregnated with a matrix resin to form a prepreg. The matrix resin is not particularly limited, and examples thereof include a thermosetting resin such as an epoxy resin, a thermoplastic resin such as a phenoxy resin and nylon, and the like.

上述したとおり、本実施形態の複合素材10は、炭素繊維束12における炭素繊維12a同士の絡まり合いが実質的に存在しないものであるので、プリプレグにおいても、炭素繊維12a同士が絡まり合うことはない。しかも、炭素繊維束12中における炭素繊維12aそれぞれの表面には、CNT14aが良好に付着している。 As described above, in the composite material 10 of the present embodiment, since the carbon fibers 12a in the carbon fiber bundle 12 are substantially entangled with each other, the carbon fibers 12a are not entangled with each other even in the prepreg. .. Moreover, CNT14a is well adhered to the surface of each of the carbon fibers 12a in the carbon fiber bundle 12.

こうした複合素材10に樹脂を含浸したプリプレグは、炭素繊維12a同士の絡み合いに起因する強度低下のおそれは極めて小さいため、炭素繊維束12の特性が十分に発揮される。これに加えて、各炭素繊維12aの表面にはCNT14aが良好に付着しているので、得られるプリプレグは、CNT由来の特性も十分に発揮することができる。 Since the prepreg in which the composite material 10 is impregnated with the resin is extremely unlikely to lose strength due to the entanglement of the carbon fibers 12a, the characteristics of the carbon fiber bundle 12 are fully exhibited. In addition to this, since CNT14a is well adhered to the surface of each carbon fiber 12a, the obtained prepreg can sufficiently exhibit the characteristics derived from CNT.

3.作用及び効果
本実施形態に係る複合素材10は、直径0.55mmの検査針20を刺して、この検査針20と長手方向に相対的に移動させた際、検査針20との間に作用する荷重の最大値が0.5N未満であるので、炭素繊維束12に含まれている炭素繊維12a同士の直線性が優れている。炭素繊維12aは、実質的に互いに絡まり合うことなく直線性を保っている。直線性を保って配列している炭素繊維12aは、複合素材10の強度の向上に寄与できる。
3. 3. Action and effect The composite material 10 according to the present embodiment acts between the inspection needle 20 and the inspection needle 20 when the inspection needle 20 having a diameter of 0.55 mm is pierced and relatively moved in the longitudinal direction. Since the maximum value of the load is less than 0.5 N, the linearity between the carbon fibers 12a contained in the carbon fiber bundle 12 is excellent. The carbon fibers 12a maintain linearity without being substantially entangled with each other. The carbon fibers 12a arranged while maintaining linearity can contribute to the improvement of the strength of the composite material 10.

しかも、炭素繊維12aのそれぞれの表面にはCNT14aが付着し、CNT14aが付着している表面の少なくとも一部は、樹脂で覆われている。 Moreover, CNT14a is attached to each surface of the carbon fiber 12a, and at least a part of the surface to which the CNT14a is attached is covered with the resin.

本実施形態の複合素材10は、表面にCNTが付着した炭素繊維12aが直線性を保っているので、CNT由来の特性および炭素繊維束の特性に基づいた、より高い強度を発揮することができる。こうした本実施形態の複合素材10を用いることによって、より高強度のプリプレグを製造することができる。 Since the carbon fiber 12a having CNT attached to the surface of the composite material 10 of the present embodiment maintains linearity, it can exhibit higher strength based on the characteristics derived from CNT and the characteristics of the carbon fiber bundle. .. By using the composite material 10 of the present embodiment, a higher-strength prepreg can be produced.

4.実施例
以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。
4. Examples Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples.

上記製造方法に示す手順で、実施例1の複合素材を作製した。CNT14aとしては、熱CVDによりシリコン基板上に直径10~15nm、長さ100μm以上に成長させたMW-CNT(Multi-walled Carbon Nanotubes、多層カーボンナノチューブ)を用いた。 The composite material of Example 1 was produced by the procedure shown in the above manufacturing method. As the CNT14a, MW-CNTs (Multi-walled Carbon Nanotubes) grown on a silicon substrate by thermal CVD to a diameter of 10 to 15 nm and a length of 100 μm or more were used.

CNT14aは、硫酸と硝酸の3:1混酸を用いて洗浄して触媒残渣を除去した後、濾過乾燥した。分散媒としてのMEKにCNT14aを加えて、分散液を調製した。CNT14aは、超音波ホモジナイザーを用いて粉砕して0.5~10μmの長さに切断した。分散液中におけるCNT14aの濃度は、0.01wt%とした。この分散液には、分散剤や接着剤が含有されていない。 The CNT14a was washed with a 3: 1 mixed acid of sulfuric acid and nitric acid to remove the catalyst residue, and then filtered and dried. CNT14a was added to MEK as a dispersion medium to prepare a dispersion. The CNT14a was pulverized using an ultrasonic homogenizer and cut to a length of 0.5 to 10 μm. The concentration of CNT14a in the dispersion was 0.01 wt%. This dispersion does not contain a dispersant or an adhesive.

図3に示したようなCNT付着槽40を用意し、こうして調製された分散液46を収容した。CNT付着槽40には、図4を参照して説明したようなガイドローラー42(直径50mm、長さ100mm)が設けられている。分散液46には、機械的エネルギーとしての振動や超音波、搖動を付与した。 The CNT attachment tank 40 as shown in FIG. 3 was prepared, and the dispersion liquid 46 thus prepared was housed. The CNT attachment tank 40 is provided with a guide roller 42 (diameter 50 mm, length 100 mm) as described with reference to FIG. Vibration, ultrasonic waves, and vibration as mechanical energy were applied to the dispersion liquid 46.

炭素繊維束12としては、T700SC-12000(東レ(株)製)を用いた。この炭素繊維束12には、12000本の炭素繊維12aが含まれている。炭素繊維12aの直径は7μm程度であり、長さは100m程度である。炭素繊維束12を分散液46中に浸漬し、ガイドローラー42を介して3.5m/minの速度で走行させた。 As the carbon fiber bundle 12, T700SC-12000 (manufactured by Toray Industries, Inc.) was used. The carbon fiber bundle 12 contains 12,000 carbon fibers 12a. The diameter of the carbon fiber 12a is about 7 μm, and the length is about 100 m. The carbon fiber bundle 12 was immersed in the dispersion liquid 46 and ran at a speed of 3.5 m / min via the guide roller 42.

その後、サイジング剤としてエポキシ樹脂を用いてサイジング処理を施し、約80℃のホットプレート上で乾燥させた。このようにして、実施例1の複合素材10を作製した。実施例1の複合素材10は、厚み方向に炭素繊維が12本並んだ帯状であった。 Then, it was subjected to a sizing treatment using an epoxy resin as a sizing agent, and dried on a hot plate at about 80 ° C. In this way, the composite material 10 of Example 1 was produced. The composite material 10 of Example 1 had a strip shape in which 12 carbon fibers were lined up in the thickness direction.

炭素繊維束12の走行速度を、5m/minに変更した以外は実施例1と同様にして、実施例2の複合素材10を作製した。実施例2の複合素材10は、厚み方向に炭素繊維が12本並んだ帯状であった。 The composite material 10 of Example 2 was produced in the same manner as in Example 1 except that the traveling speed of the carbon fiber bundle 12 was changed to 5 m / min. The composite material 10 of Example 2 had a strip shape in which 12 carbon fibers were lined up in the thickness direction.

さらに、フランジローラーを備えた従来のCNT付着槽を用い、炭素繊維束の走行速度を3m/minに変更して比較例の複合素材を作製した。フランジローラーの側面の一部を図5に示す。フランジローラー52は、側面の円周に鍔部54を有し、鍔部54の間の領域56で炭素繊維束12を支持する。フランジローラー52は、炭素繊維束12を支持する領域56の幅が12mmである。比較例の複合素材は、厚み方向に炭素繊維が17本並んだ帯状であった。 Further, a conventional CNT attachment tank equipped with a flange roller was used, and the traveling speed of the carbon fiber bundle was changed to 3 m / min to prepare a composite material of a comparative example. A part of the side surface of the flange roller is shown in FIG. The flange roller 52 has a flange portion 54 on the circumference of the side surface, and supports the carbon fiber bundle 12 in the region 56 between the flange portions 54. The flange roller 52 has a width of 12 mm in a region 56 that supports the carbon fiber bundle 12. The composite material of the comparative example had a strip shape in which 17 carbon fibers were lined up in the thickness direction.

実施例1,2および比較例の複合素材は、炭素繊維束に含まれている炭素繊維の表面に複数のCNTが均等に分散して付着していることが、SEM観察により確認された。 It was confirmed by SEM observation that the composite materials of Examples 1 and 2 and Comparative Examples had a plurality of CNTs evenly dispersed and adhered to the surface of the carbon fibers contained in the carbon fiber bundle.

<炭素繊維の絡まり合いの評価>
実施例1,2および比較例の複合素材について、炭素繊維束に含まれている炭素繊維の絡まり合いを評価した。評価は、図2を参照して説明したような方法により、炭素繊維同士の直線性を調べることにより行った。
<Evaluation of carbon fiber entanglement>
The entanglement of carbon fibers contained in the carbon fiber bundles was evaluated for the composite materials of Examples 1 and 2 and Comparative Examples. The evaluation was performed by examining the linearity between the carbon fibers by the method as described with reference to FIG.

実施例1の複合素材を150mmの長さに切断して、測定用サンプル100を準備した。測定用サンプル100は、支持台30の横棒部34に一端を固定し、他端には20gの錘24を接続した。支持台30の起立部32から延びて設けられた検査針20(直径0.55mm)を、測定用サンプル100の長手方向を横切って刺した。 The composite material of Example 1 was cut to a length of 150 mm to prepare a measurement sample 100. One end of the measurement sample 100 was fixed to the horizontal bar portion 34 of the support base 30, and a 20 g weight 24 was connected to the other end. An inspection needle 20 (diameter 0.55 mm) provided extending from the upright portion 32 of the support base 30 was pierced across the longitudinal direction of the measurement sample 100.

測定用サンプル100と検査針20との間に作用する荷重を、図示しないロードセルで測定しつつ、測定用サンプル100を吊り下げた横棒部34を300mm/minの速度で40mm上昇させた。測定された荷重の変化を図6のグラフに示す。図6中、横軸は横棒部34が上昇した移動距離(mm)である。実施例2の複合素材および比較例の複合素材についても、同様の手法により荷重を測定した。その結果を、図7および図8にそれぞれ示す。 While measuring the load acting between the measurement sample 100 and the inspection needle 20 with a load cell (not shown), the horizontal bar portion 34 suspending the measurement sample 100 was raised by 40 mm at a speed of 300 mm / min. The change in the measured load is shown in the graph of FIG. In FIG. 6, the horizontal axis is the moving distance (mm) in which the horizontal bar portion 34 is raised. For the composite material of Example 2 and the composite material of Comparative Example, the load was measured by the same method. The results are shown in FIGS. 7 and 8, respectively.

さらに、実施例1,2および比較例について、測定された荷重の最大値、最小値および平均値を下記表1にまとめる。平均値は、横棒部34を40mm上昇させる間に測定した810点の荷重の平均として求めた。 Further, for Examples 1 and 2 and Comparative Example, the maximum value, the minimum value and the average value of the measured loads are summarized in Table 1 below. The average value was obtained as the average of the loads of 810 points measured while raising the horizontal bar portion 34 by 40 mm.

Figure 0007020633000001
Figure 0007020633000001

実施例1,2の複合素材は、荷重の最大値がそれぞれ0.172Nおよび0.425Nと0.5N未満である。実施例1,2の複合素材は、荷重の平均値がそれぞれ0.0764Nおよび0.287Nと0.4N未満である。これに対して、比較例の複合素材は、荷重の最大値が0.908Nである。比較例の場合、荷重の最小値でも0.531Nと0.5Nを超えており、荷重の平均値は0.689Nにも及んでいる。 The composite materials of Examples 1 and 2 have maximum load values of 0.172N, 0.425N and less than 0.5N, respectively. The composite materials of Examples 1 and 2 have average loads of 0.0764 N, 0.287 N, and less than 0.4 N, respectively. On the other hand, in the composite material of the comparative example, the maximum value of the load is 0.908N. In the case of the comparative example, even the minimum value of the load exceeds 0.531N and 0.5N, and the average value of the load reaches 0.689N.

荷重の大きさは、炭素繊維束に含まれている炭素繊維同士の絡まり合いの程度を表す指標である。荷重が小さいほど炭素繊維同士の直線性が優れているので、炭素繊維同士の絡まり合いが抑制されていることになる。 The magnitude of the load is an index showing the degree of entanglement between the carbon fibers contained in the carbon fiber bundle. The smaller the load, the better the linearity between the carbon fibers, so that the entanglement between the carbon fibers is suppressed.

実施例の複合素材と比較例の複合素材は、ローラーや巻付角などのCNT付着工程が異なる以外は同様の条件で製造したものである。実施例では、平ローラーを備えたCNT付着槽を用い、比較例では、フランジローラーを備えた従来のCNT付着槽を用いた。実施例および比較例の結果から、平ローラーを備えたCNT付着槽を用いることによって、炭素繊維同士の絡まり合いを大幅に抑制できることがわかる。炭素繊維束の移動速度が遅いほど、その効果が高められる。 The composite material of the example and the composite material of the comparative example were manufactured under the same conditions except that the CNT adhesion steps such as the roller and the winding angle were different. In the examples, a CNT attachment tank provided with a flat roller was used, and in the comparative example, a conventional CNT attachment tank provided with a flange roller was used. From the results of Examples and Comparative Examples, it can be seen that the entanglement of carbon fibers can be significantly suppressed by using the CNT attachment tank provided with the flat roller. The slower the moving speed of the carbon fiber bundle, the higher the effect.

実施例の複合素材は、炭素繊維束中の炭素繊維同士の絡まり合いが実質的に存在せず、直線性を保って配列している。しかも、炭素繊維の表面には、複数のCNTが均等に分散して付着している。したがって、実施例の複合素材は、炭素繊維束の特性およびCNT由来の特性に基づいた、より高い強度を発揮できる。実施例の複合素材を用いることによって、より高い強度を有するプリプレグを得ることができる。 In the composite material of the example, the carbon fibers in the carbon fiber bundle are substantially not entangled with each other and are arranged in a linear manner. Moreover, a plurality of CNTs are evenly dispersed and adhered to the surface of the carbon fiber. Therefore, the composite material of the example can exhibit higher strength based on the characteristics of the carbon fiber bundle and the characteristics derived from CNT. By using the composite material of the example, a prepreg having higher strength can be obtained.

比較例の複合素材は、炭素繊維の表面に複数のCNTが均等に分散して付着していても、炭素繊維同士の絡まり合いが生じている。比較例の複合素材は、直線性を保って配列している炭素繊維が、実施例の複合素材の場合より大幅に少ないことが推測される。比較例の複合素材では、炭素繊維束の特性に基づいた、より高い強度は発揮されない。比較例の複合素材を用いても、プリプレグの強度をより高めることは困難である。 In the composite material of the comparative example, even if a plurality of CNTs are evenly dispersed and adhered to the surface of the carbon fibers, the carbon fibers are entangled with each other. It is presumed that the composite material of the comparative example has significantly less carbon fibers arranged in a linear manner than the composite material of the example. The composite material of the comparative example does not exhibit higher strength based on the characteristics of the carbon fiber bundle. Even if the composite material of the comparative example is used, it is difficult to further increase the strength of the prepreg.

5.変形例
本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
5. Modifications The present invention is not limited to the above embodiment, and can be appropriately modified within the scope of the gist of the present invention.

複合素材と検査針との間に作用する荷重を測定する際には、複合素材と検査針とを300mm/minの速度で相対的に移動させればよく、用いる支持台は特に限定されない。複合素材が固定されて検査針が移動可能な支持台、あるいは、複合素材と検査針とを互いに逆方向に移動可能な支持台を用いることができる。 When measuring the load acting between the composite material and the inspection needle, the composite material and the inspection needle may be relatively moved at a speed of 300 mm / min, and the support used is not particularly limited. A support base on which the composite material is fixed and the inspection needle can move, or a support base on which the composite material and the inspection needle can move in opposite directions can be used.

複合素材と検査針との間に作用する荷重は、任意の手法で測定することができ、例えばバネ秤を用いることができる。 The load acting between the composite material and the inspection needle can be measured by any method, for example, a spring scale can be used.

10 複合素材
12 炭素繊維束
12a 炭素繊維
14a カーボンナノチューブ(CNT)

10 Composite material 12 Carbon fiber bundle 12a Carbon fiber 14a Carbon nanotube (CNT)

Claims (4)

複数の連続した炭素繊維が配列した炭素繊維束と、前記炭素繊維のそれぞれの表面に付着したカーボンナノチューブと、前記カーボンナノチューブが付着した前記表面の少なくとも一部を覆うサイジング剤とを備える複合素材であって、
長手方向を上下にして配置された前記複合素材に、前記長手方向を横切って直径0.55mmの検査針を刺し、前記複合素材と前記検査針とを、300mm/minの速度で前記長手方向に40mm相対的に移動させた際、前記複合素材と前記検査針との間に作用する荷重の最大値が0.5N未満であることを特徴とする複合素材。
A composite material comprising a carbon fiber bundle in which a plurality of continuous carbon fibers are arranged, carbon nanotubes attached to each surface of the carbon fibers, and a sizing agent covering at least a part of the surface to which the carbon nanotubes are attached. There,
An inspection needle having a diameter of 0.55 mm is pierced into the composite material arranged up and down in the longitudinal direction, and the composite material and the inspection needle are inserted in the longitudinal direction at a speed of 300 mm / min. A composite material characterized in that the maximum value of the load acting between the composite material and the inspection needle when relatively moved by 40 mm is less than 0.5 N.
前記複合素材は、厚み方向に前記炭素繊維が3~30本並んだ帯状であることを特徴とする請求項1記載の複合素材。 The composite material according to claim 1, wherein the composite material has a strip shape in which 3 to 30 carbon fibers are lined up in the thickness direction. 前記複合素材と前記検査針との間に作用する荷重の平均値が0.4N未満であることを特徴とする請求項1または2記載の複合素材。 The composite material according to claim 1 or 2, wherein the average value of the load acting between the composite material and the inspection needle is less than 0.4 N. 請求項1~3のいずれか1項に記載の複合素材と、前記複合素材に含浸されたマトリックス樹脂とを含むことを特徴とするプリプレグ。
A prepreg comprising the composite material according to any one of claims 1 to 3 and a matrix resin impregnated in the composite material.
JP2017024507A 2017-02-13 2017-02-13 Composite material and prepreg using it Active JP7020633B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2017024507A JP7020633B2 (en) 2017-02-13 2017-02-13 Composite material and prepreg using it
US16/485,480 US20200002492A1 (en) 2017-02-13 2018-02-08 Composite material, and prepreg using same
CN202211195546.8A CN115403806B (en) 2017-02-13 2018-02-08 Composite material and prepreg using same
PCT/JP2018/004429 WO2018147377A1 (en) 2017-02-13 2018-02-08 Composite material, and prepeg using same
EP18751523.4A EP3581612A4 (en) 2017-02-13 2018-02-08 Composite material, and prepreg using same
CN201880011053.XA CN110268009A (en) 2017-02-13 2018-02-08 Composite material and the prepreg for using it
KR1020197023228A KR102543289B1 (en) 2017-02-13 2018-02-08 Composite material and prepreg using the same
TW107104988A TWI765965B (en) 2017-02-13 2018-02-12 Composite materials and prepregs using the same
US17/962,615 US11898305B2 (en) 2017-02-13 2022-10-10 Composite material, and prepreg using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024507A JP7020633B2 (en) 2017-02-13 2017-02-13 Composite material and prepreg using it

Publications (2)

Publication Number Publication Date
JP2018131488A JP2018131488A (en) 2018-08-23
JP7020633B2 true JP7020633B2 (en) 2022-02-16

Family

ID=63107593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024507A Active JP7020633B2 (en) 2017-02-13 2017-02-13 Composite material and prepreg using it

Country Status (7)

Country Link
US (2) US20200002492A1 (en)
EP (1) EP3581612A4 (en)
JP (1) JP7020633B2 (en)
KR (1) KR102543289B1 (en)
CN (2) CN110268009A (en)
TW (1) TWI765965B (en)
WO (1) WO2018147377A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239171A (en) 2002-02-14 2003-08-27 Toray Ind Inc Carbon fiber, method for producing the same and carbon fiber-reinforced resin composition
JP2009535530A (en) 2006-05-02 2009-10-01 ロール インコーポレイテッド Modification of reinforcing fiber tows used in composites using nano-reinforcing materials
WO2012081407A1 (en) 2010-12-13 2012-06-21 東レ株式会社 Carbon fiber prepreg, method for producing same and carbon fiber reinforced composite material
JP2013076198A (en) 2011-09-13 2013-04-25 Nitta Ind Corp Cnt/carbon fiber composite material, fiber-reinforced molded article using the composite material and method for producing composite material
JP2015528068A (en) 2012-06-05 2015-09-24 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc CNS-introduced carbon nanomaterial and process therefor
WO2016063809A1 (en) 2014-10-23 2016-04-28 ニッタ株式会社 Composite material and reinforcing fiber
WO2016159122A1 (en) 2015-03-31 2016-10-06 ニッタ株式会社 Composite material production method and composite material
WO2016159121A1 (en) 2015-03-31 2016-10-06 ニッタ株式会社 Carbon fiber-reinforced molded article

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273092B2 (en) * 2005-03-30 2009-06-03 株式会社Gsiクレオス Prepreg manufacturing method and prepreg manufacturing apparatus
JP5057010B2 (en) 2005-11-01 2012-10-24 ニッタ株式会社 Carbon fiber manufacturing method
US11370192B2 (en) * 2017-02-14 2022-06-28 Nitta Corporation Carbon-fiber-reinforced molded article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239171A (en) 2002-02-14 2003-08-27 Toray Ind Inc Carbon fiber, method for producing the same and carbon fiber-reinforced resin composition
JP2009535530A (en) 2006-05-02 2009-10-01 ロール インコーポレイテッド Modification of reinforcing fiber tows used in composites using nano-reinforcing materials
WO2012081407A1 (en) 2010-12-13 2012-06-21 東レ株式会社 Carbon fiber prepreg, method for producing same and carbon fiber reinforced composite material
JP2013076198A (en) 2011-09-13 2013-04-25 Nitta Ind Corp Cnt/carbon fiber composite material, fiber-reinforced molded article using the composite material and method for producing composite material
JP2015528068A (en) 2012-06-05 2015-09-24 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc CNS-introduced carbon nanomaterial and process therefor
WO2016063809A1 (en) 2014-10-23 2016-04-28 ニッタ株式会社 Composite material and reinforcing fiber
WO2016159122A1 (en) 2015-03-31 2016-10-06 ニッタ株式会社 Composite material production method and composite material
WO2016159121A1 (en) 2015-03-31 2016-10-06 ニッタ株式会社 Carbon fiber-reinforced molded article

Also Published As

Publication number Publication date
WO2018147377A1 (en) 2018-08-16
JP2018131488A (en) 2018-08-23
KR102543289B1 (en) 2023-06-13
KR20190112279A (en) 2019-10-04
US20230045012A1 (en) 2023-02-09
TWI765965B (en) 2022-06-01
CN110268009A (en) 2019-09-20
EP3581612A1 (en) 2019-12-18
US20200002492A1 (en) 2020-01-02
CN115403806A (en) 2022-11-29
EP3581612A4 (en) 2020-12-23
US11898305B2 (en) 2024-02-13
TW201840471A (en) 2018-11-16
CN115403806B (en) 2024-01-02

Similar Documents

Publication Publication Date Title
CN110055749B (en) Method for producing reinforcing fiber
JP6521701B2 (en) Method of manufacturing composite material
KR102588148B1 (en) Methods for manufacturing composite materials, prepregs, carbon fiber reinforced molded bodies and composite materials
WO2018151053A1 (en) Carbon-fiber-reinforced molded article
JP7020633B2 (en) Composite material and prepreg using it
TWI833763B (en) Composite material, prepreg, carbon fiber reinforced molded article and method of manufacturing composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220125

R150 Certificate of patent or registration of utility model

Ref document number: 7020633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150