JP7019379B2 - Composite abrasive grains - Google Patents

Composite abrasive grains Download PDF

Info

Publication number
JP7019379B2
JP7019379B2 JP2017213002A JP2017213002A JP7019379B2 JP 7019379 B2 JP7019379 B2 JP 7019379B2 JP 2017213002 A JP2017213002 A JP 2017213002A JP 2017213002 A JP2017213002 A JP 2017213002A JP 7019379 B2 JP7019379 B2 JP 7019379B2
Authority
JP
Japan
Prior art keywords
polishing
composite abrasive
abrasive grains
less
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017213002A
Other languages
Japanese (ja)
Other versions
JP2019087571A (en
Inventor
信 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2017213002A priority Critical patent/JP7019379B2/en
Publication of JP2019087571A publication Critical patent/JP2019087571A/en
Application granted granted Critical
Publication of JP7019379B2 publication Critical patent/JP7019379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、複合砥粒、及びこれを用いた研磨液組成物、並びに研磨液組成物を用いた半導体基板の製造方法、研磨方法、及び半導体装置の製造方法に関する。 The present invention relates to composite abrasive grains, a polishing liquid composition using the composite abrasive grains, and a method for manufacturing a semiconductor substrate, a polishing method, and a method for manufacturing a semiconductor device using the polishing liquid composition.

ケミカルメカニカルポリッシング(CMP)技術とは、加工しようとする被研磨基板の表面と研磨パッドとを接触させた状態で研磨液をこれらの接触部位に供給しつつ被研磨基板及び研磨パッドを相対的に移動させることにより、被研磨基板の表面凹凸部分を化学的に反応させると共に機械的に除去して平坦化させる技術である。 Chemical mechanical polishing (CMP) technology is a method in which the surface of the substrate to be polished and the polishing pad are in contact with each other, and the polishing liquid is supplied to these contact points while the substrate to be polished and the polishing pad are relatively. By moving the surface uneven portion of the substrate to be polished is chemically reacted and mechanically removed to flatten it.

CMP技術のパフォーマンスは、CMPの工程条件、研磨液の種類、研磨パッドの種類等によって決められる。これらの中でも、特に、研磨液は、CMP工程のパフォーマンスに最も大きな影響を及ぼす因子である。この研磨液に含まれる研磨粒子としては、シリカ(SiO2)やセリア(CeO2)が広く用いられている。 The performance of CMP technology is determined by the process conditions of CMP, the type of polishing liquid, the type of polishing pad, and the like. Among these, the polishing liquid is a factor that has the greatest influence on the performance of the CMP process. Silica (SiO 2 ) and ceria (CeO 2 ) are widely used as the polishing particles contained in this polishing liquid.

例えば、特許文献1には、研磨剤として利用可能な複合酸化物として、特定の還元特性を有するCeO2及びSiO2を含む複合酸化物が提案されている。 For example, Patent Document 1 proposes a composite oxide containing CeO 2 and SiO 2 having specific reducing properties as a composite oxide that can be used as an abrasive.

現在では、半導体素子等の半導体装置の製造工程における、層間絶縁膜の平坦化、シャロートレンチ素子分離構造(以下「素子分離構造」ともいう)の形成、プラグ及び埋め込み金属配線の形成等を行う際には、このCMP技術が必須の技術となっている。近年、半導体素子の多層化、高精細化が飛躍的に進み、半導体素子の歩留まり及びスループット(収量)の更なる向上が要求されるようになってきている。それに伴い、CMP工程に関しても、研磨傷フリーで且つより高速な研磨が望まれるようになってきている。 Currently, in the manufacturing process of semiconductor devices such as semiconductor devices, when flattening the interlayer insulating film, forming a shallow trench element separation structure (hereinafter also referred to as "element separation structure"), forming plugs and embedded metal wiring, etc. This CMP technology has become an indispensable technology. In recent years, the number of layers and high definition of semiconductor devices has dramatically increased, and there is a demand for further improvement in the yield and throughput (yield) of semiconductor devices. Along with this, in the CMP process as well, polishing scratch-free and higher speed polishing has been desired.

特に、汎用的に用いられるメモリ分野では、スループット向上が重要な課題であり、スループット向上に向け、研磨剤の改良も進んでいる。例えば研磨粒子としてセリアを用いた場合、被研磨膜(酸化珪素膜)の研磨速度を向上させるためには、研磨粒子の粒子径を大きくすることが一般的に知られているが、粒子径を大きくすると、研磨傷の増加により品質面で劣るようになり、歩留まりを低下させる結果となる。 In particular, in the field of memory used for general purposes, improvement of throughput is an important issue, and improvement of abrasives is also progressing toward improvement of throughput. For example, when ceria is used as the polishing particles, it is generally known to increase the particle size of the polishing particles in order to improve the polishing speed of the film to be polished (silicon oxide film). If the size is increased, the quality becomes inferior due to the increase in polishing scratches, resulting in a decrease in yield.

特許文献2には、精密研磨に適して研磨性能を有し、研磨速度が速く、単分散性が高い研磨材粒子が開示されており、当該研磨材粒子は、平均アスペクト比が1.00~1.15の範囲内にある球形状粒子であり、粒子径D50が50~1500nmの範囲内である、セリウムを所定量含む研磨材粒子である。 Patent Document 2 discloses abrasive particles having polishing performance suitable for precision polishing, high polishing speed, and high monodispersity, and the abrasive particles have an average aspect ratio of 1.00 to 1.00 or more. Abrasive particles containing a predetermined amount of cerium, which are spherical particles in the range of 1.15 and have a particle diameter D 50 in the range of 50 to 1500 nm.

特許文献3には、研磨後の平坦性向上を目的とし、アスペクト比の平均値が1.5~6.0の酸化セリウム粒子を含む研磨液が開示されており、特許文献4には、短時間の研磨で高い表面平坦性を有する研磨表面を得ることを目的とし、セリウムとジルコニウムを含む複合酸化物粒子を含む研磨液組成物が開示されている。 Patent Document 3 discloses a polishing liquid containing cerium oxide particles having an average aspect ratio of 1.5 to 6.0 for the purpose of improving flatness after polishing, and Patent Document 4 discloses a short polishing solution. A polishing liquid composition containing composite oxide particles containing cerium and zirconium is disclosed for the purpose of obtaining a polished surface having high surface flatness by polishing for a long time.

特許文献5には、台金の表面に超砥粒が結合材により単層固着された、金属膜のCMP研磨パッド用コンディショナであって、超砥粒には、結晶面が{100}面及び{111}面の両方から構成される六八面体をなす超砥粒が40重量%以上含有される、コンディショナが開示されている。 Patent Document 5 describes a conditioner for a CMP polishing pad of a metal film in which superabrasive grains are fixed to the surface of a base metal by a single layer with a binder, and the superabrasive grains have a crystal face of {100}. A conditioner is disclosed in which 40% by weight or more of superabrasive grains forming a disdyakis dodecahedron composed of both {111} planes and {111} planes are contained.

国際公開第2012/165362号International Publication No. 2012/165362 国際公開第2015/019888号International Publication No. 2015/0198888 特開2015-224276号公報Japanese Unexamined Patent Publication No. 2015-224276 特開2008-277735号公報Japanese Unexamined Patent Publication No. 2008-277735 特開2009-136926号公報Japanese Unexamined Patent Publication No. 2009-136926

近年の半導体分野においては高集積化が進んでおり、配線の複雑化や微細化がより一層求められている。そのため、酸化珪素膜等の被研磨対象の研磨をより高速で進行させることへの要求がますます高まっている。 In the semiconductor field in recent years, high integration has progressed, and there is a demand for further complexity and miniaturization of wiring. Therefore, there is an increasing demand for faster polishing of objects to be polished such as silicon oxide films.

本発明の課題は、研磨速度を向上できる複合砥粒、これを用いた研磨液組成物、半導体基板の製造方法、研磨方法及び半導体装置の製造方法を提供することである。 An object of the present invention is to provide a composite abrasive grain capable of improving the polishing speed, a polishing liquid composition using the composite abrasive grain, a method for manufacturing a semiconductor substrate, a polishing method, and a method for manufacturing a semiconductor device.

本発明は、酸化セリウム粒子中のセリウム原子の一部がセリウム原子以外の4価の金属原子により置換された複合砥粒であり、前記複合砥粒中の前記金属原子の含有量は、前記セリウム原子と前記金属原子の合計量に対して、8モル%以上37モル%以下であり、アスペクト比が2.0以上100以下である、複合砥粒に関する。 The present invention is a composite abrasive grain in which a part of the cerium atom in the cerium oxide particles is replaced with a tetravalent metal atom other than the cerium atom, and the content of the metal atom in the composite abrasive grain is the cerium. The present invention relates to composite abrasive grains having an aspect ratio of 2.0 or more and 100 or less and 8 mol% or more and 37 mol% or less with respect to the total amount of atoms and the metal atoms.

本発明は、本発明の複合砥粒、及び水系媒体を含む、研磨液組成物に関する。 The present invention relates to a polishing liquid composition containing the composite abrasive grains of the present invention and an aqueous medium.

本発明は、本発明の研磨液組成物を用いて被研磨基板を研磨する工程を含む、半導体基板の製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor substrate, which comprises a step of polishing the substrate to be polished using the polishing liquid composition of the present invention.

本発明は、本発明の研磨液組成物を用いて被研磨基板を研磨する工程を含む、基板の研磨方法に関する。 The present invention relates to a method for polishing a substrate, which comprises a step of polishing the substrate to be polished using the polishing liquid composition of the present invention.

本発明は、本発明の研磨液組成物を用いて被研磨基板を研磨する工程を含む、半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor device, which comprises a step of polishing a substrate to be polished using the polishing liquid composition of the present invention.

本発明は、セリウムを含む水溶液、セリウム原子以外の4価の金属原子を含む水溶液、及びアルカリ剤を含有する水溶液を混合し、沈殿物を生成する工程と、前記沈殿物を、100℃以上300℃以下で、6時間以上120時間以下、水熱処理を行う工程とを含み、前記複合砥粒中の前記金属原子の含有量が、前記セリウム原子と前記金属原子の合計量に対して、8モル%以上37モル%以下であり、アスペクト比が2.0以上100以下である、複合砥粒の製造方法に関する。 The present invention comprises a step of mixing an aqueous solution containing cerium, an aqueous solution containing a tetravalent metal atom other than a cerium atom, and an aqueous solution containing an alkaline agent to form a precipitate, and the above-mentioned precipitate having a temperature of 100 ° C. or higher and 300 ° C. or higher. The content of the metal atom in the composite abrasive grains is 8 mol with respect to the total amount of the cerium atom and the metal atom, including the step of performing hydrothermal treatment at ° C. or lower for 6 hours or more and 120 hours or less. The present invention relates to a method for producing a composite abrasive grain, which is% or more and 37 mol% or less and has an aspect ratio of 2.0 or more and 100 or less.

本発明によれば、研磨速度を向上できる複合砥粒を提供できる。よって、本発明の複合砥粒を含む研磨液組成物を用いた半導体基板の製造方法、基板の研磨方法、及び半導体装置の製造方法において、生産性を高めることができるという効果を奏し得る。 According to the present invention, it is possible to provide a composite abrasive grain that can improve the polishing speed. Therefore, in the method of manufacturing a semiconductor substrate, the method of polishing a substrate, and the method of manufacturing a semiconductor device using the polishing liquid composition containing the composite abrasive grains of the present invention, it is possible to achieve the effect of increasing productivity.

本発明は、酸化セリウム粒子中のセリウム原子の一部がセリウム原子以外の4価の金属原子(以下、「金属原子A」と略称する場合もある。)により置換された複合砥粒であり、当該複合砥粒のアスペクト比が所定の範囲内の値であると、研磨速度が顕著に向上する、という知見に基づく。 The present invention is a composite abrasive grain in which a part of the cerium atom in the cerium oxide particles is replaced with a tetravalent metal atom other than the cerium atom (hereinafter, may be abbreviated as "metal atom A"). It is based on the finding that the polishing speed is remarkably improved when the aspect ratio of the composite abrasive grains is within a predetermined range.

本発明において、研磨速度が向上するメカニズムの詳細については明らかではないが、以下のように推察される。 In the present invention, the details of the mechanism for improving the polishing rate are not clear, but it is inferred as follows.

例えば、酸化セリウム粒子は、特表2010-505735号公報に記載されているようなビルドアッププロセスにより得ることができ、得られた酸化セリウム粒子は、製造条件に応じた結晶構造を有する。本発明の複合砥粒は、結晶構造中のセリウム原子が、セリウム原子とはイオン半径の異なる4価の金属原子Aにより置換された複合酸化物粒子であり、複合酸化物粒子中の前記金属原子Aの含有量が、前記セリウム原子と前記金属原子の合計量(100モル%)に対して、8モル%以上37モル%以下であり、アスペクト比が2.0以上100以下であることにより、酸化セリウム粒子と比較して、結晶構造が歪み、酸素欠陥(空孔)が増加している。そのため、研磨最中に生じる温度上昇、外力による摩擦等により、結晶構造中の酸素欠陥を起点として、価数の減少が生じ、価数が減った金属元素により、酸化珪素膜等の研磨対象表面へ電子の移動が生じることで、研磨対象表面の脆弱化、ひいては、研磨速度の向上に寄与しているものと推察される。ただし、本発明はこれらのメカニズムに限定して解釈されない。 For example, the cerium oxide particles can be obtained by a build-up process as described in JP-A-2010-505735, and the obtained cerium oxide particles have a crystal structure according to the production conditions. The composite abrasive grain of the present invention is a composite oxide particle in which a cerium atom in the crystal structure is replaced with a tetravalent metal atom A having an ion radius different from that of the cerium atom, and the metal atom in the composite oxide particle is described. The content of A is 8 mol% or more and 37 mol% or less with respect to the total amount (100 mol%) of the cerium atom and the metal atom, and the aspect ratio is 2.0 or more and 100 or less. Compared with cerium oxide particles, the crystal structure is distorted and oxygen defects (pores) are increased. Therefore, due to the temperature rise that occurs during polishing, friction due to external force, etc., the valence decreases due to oxygen defects in the crystal structure, and the metal element with the reduced valence causes the surface to be polished such as a silicon oxide film. It is presumed that the movement of electrons to the surface contributes to the weakening of the surface to be polished and to the improvement of the polishing speed. However, the present invention is not construed as being limited to these mechanisms.

本発明において「アスペクト比」とは、複合砥粒の「長辺」と「短辺」の比率(長辺/短辺)であり、「長辺」とは、電界放出型走査型電子顕微鏡(FE-SEM)観察画像中の複合砥粒(一次粒子)の最大長の平均であり、「短辺」とは、当該「長辺」と直交する方向の最大長の平均である。「アスペクト比」は、具体的には、後述の実施例に記載の方法により得ることができる。本発明の複合砥粒の形状は、研磨速度向上の観点から、ロッド状が好ましい。 In the present invention, the "aspect ratio" is the ratio (long side / short side) of the "long side" and the "short side" of the composite abrasive grain, and the "long side" is an electric field emission type scanning electron microscope ( FE-SEM) The average of the maximum lengths of the composite abrasive grains (primary particles) in the observation image, and the "short side" is the average of the maximum lengths in the direction orthogonal to the "long side". Specifically, the "aspect ratio" can be obtained by the method described in Examples described later. The shape of the composite abrasive grains of the present invention is preferably rod-shaped from the viewpoint of improving the polishing speed.

本発明の複合砥粒のアスペクト比は、研磨速度向上の観点から、2.0以上であり、2.5以上が好ましく、3以上がより好ましく、6以上が更に好ましく、7以上が更により好ましく、そして、同様の観点から、100以下であり、20以下が好ましく、13以下がより好ましい。なお、アスペクト比は、実施例に記載の方法により測定できる。 The aspect ratio of the composite abrasive grains of the present invention is 2.0 or more, preferably 2.5 or more, more preferably 3 or more, further preferably 6 or more, and even more preferably 7 or more, from the viewpoint of improving the polishing speed. And, from the same viewpoint, it is 100 or less, preferably 20 or less, and more preferably 13 or less. The aspect ratio can be measured by the method described in Examples.

本発明の複合砥粒の短辺は、研磨速度向上の観点から、10nm以上が好ましく、15nm以上がより好ましく、20nm以上が更に好ましく、22nm以上が更により好ましく、そして、同様の観点から、50nm未満が好ましく、45nm以下がより好ましく、40nm以下が更に好ましく、38nm以下が更により好ましく、28nm以下が更により好ましい。なお、本発明の複合砥粒の短辺は、実施例に記載の方法により測定できる。 The short side of the composite abrasive grain of the present invention is preferably 10 nm or more, more preferably 15 nm or more, further preferably 20 nm or more, further preferably 22 nm or more, and 50 nm from the same viewpoint from the viewpoint of improving the polishing speed. Less than is preferable, 45 nm or less is more preferable, 40 nm or less is further preferable, 38 nm or less is further preferable, and 28 nm or less is further preferable. The short side of the composite abrasive grains of the present invention can be measured by the method described in Examples.

本発明の複合砥粒の長辺は、研磨速度向上の観点から、60nm以上が好ましく、100nm以上がより好ましく、200nm以上が更に好ましく、そして、同様の観点から、1000nm以下が好ましく、500nm以下がより好ましく、300nm以下が更に好ましい。なお、本発明の複合砥粒の長辺は、実施例に記載の方法により測定できる。 The long side of the composite abrasive grain of the present invention is preferably 60 nm or more, more preferably 100 nm or more, further preferably 200 nm or more, and from the same viewpoint, 1000 nm or less, preferably 500 nm or less, from the viewpoint of improving the polishing speed. More preferably, it is more preferably 300 nm or less. The long side of the composite abrasive grains of the present invention can be measured by the method described in Examples.

本発明の複合砥粒は、酸化セリウム粒子中のセリウム原子の一部が金属原子Aにより置換された複合酸化物粒子である。前記金属原子Aとしては、研磨速度向上の観点から、マンガン、チタン及びジルコニウムから選ばれる少なくとも1種が好ましいが、イオン半径の観点から、チタン及びジルコニウムから選ばれる少なくとも1種がより好ましく、ジルコニウムがより好ましい。 The composite abrasive grain of the present invention is a composite oxide particle in which a part of the cerium atom in the cerium oxide particle is replaced by the metal atom A. As the metal atom A, at least one selected from manganese, titanium and zirconium is preferable from the viewpoint of improving the polishing speed, but at least one selected from titanium and zirconium is more preferable from the viewpoint of ionic radius, and zirconium is more preferable. More preferred.

本発明の複合砥粒中の前記金属原子Aの含有量(モル%)は、研磨速度向上の観点から、Ceと金属原子Aの合計量(100モル%)に対して、8モル%以上であり、10モル%以上が好ましく、13モル%以上がより好ましく、18モル%以上が好ましく、そして、同様の観点から、37モル%以下であり、30モル%以下が好ましく、27モル%以下がより好ましく、22モル%以下が更に好ましい。 The content (mol%) of the metal atom A in the composite abrasive grains of the present invention is 8 mol% or more with respect to the total amount (100 mol%) of Ce and the metal atom A from the viewpoint of improving the polishing speed. Yes, 10 mol% or more is preferable, 13 mol% or more is more preferable, 18 mol% or more is preferable, and from the same viewpoint, 37 mol% or less, 30 mol% or less is preferable, and 27 mol% or less is preferable. More preferably, 22 mol% or less is further preferable.

本発明の複合砥粒は、一実施形態において、ケイ素(Si)を実質的に含まない。ここで、実質的に含まないとは、複合砥粒中のSi含有量は、SiO2換算で、1質量%以下であることを意味する。 In one embodiment, the composite abrasive grains of the present invention are substantially free of silicon (Si). Here, "substantially free" means that the Si content in the composite abrasive grains is 1% by mass or less in terms of SiO 2 .

通常、酸化セリウム粒子をビルドアップ法で合成した場合、{111}面、{100}面、{110}面といった結晶面が表面に露出することが知られている。研磨速度の向上の観点から、被研磨対象と接する複合砥粒の表面には{100}面が含まれていると好ましい。酸化セリウム粒子中のセリウム原子の一部が金属原子Aにより置換された複合酸化物粒子において、複合酸化物粒子表面における{100}面の露出量は、研磨速度を向上の観点から、3%以上が好ましく、3.5%以上がより好ましく、4%以上が更に好ましく、同様の観点から、90%以下が好ましく、50%以下がより好ましく、30%以下が更に好ましく、20%以下が更により好ましく、14%以下が更により好ましい。本発明において{100}面とは、酸化セリウムのX線回折測定で検出される33°付近に現れるピークに対応する{200}面に相当する。 It is generally known that when cerium oxide particles are synthesized by a build-up method, crystal planes such as {111} plane, {100} plane, and {110} plane are exposed on the surface. From the viewpoint of improving the polishing speed, it is preferable that the surface of the composite abrasive grains in contact with the object to be polished contains a {100} surface. In the composite oxide particles in which some of the cerium atoms in the cerium oxide particles are replaced by the metal atom A, the exposure amount of the {100} surface on the surface of the composite oxide particles is 3% or more from the viewpoint of improving the polishing rate. Is preferable, 3.5% or more is more preferable, 4% or more is further preferable, and from the same viewpoint, 90% or less is preferable, 50% or less is more preferable, 30% or less is further preferable, and 20% or less is further more preferable. It is preferable, and even more preferably 14% or less. In the present invention, the {100} plane corresponds to the {200} plane corresponding to the peak appearing near 33 ° detected by the X-ray diffraction measurement of cerium oxide.

本発明において{100}面の露出量は、例えば、FE-SEM観察等による画像解析から算出でき、具体的には、1個又は無作為に選んだ複数個の粒子についてFE-SEM等にて観察し、観察画像中の1個の粒子の表面積に対する正方形部分の面積の割合、又は、複数個の各粒子それぞれの表面積に対する正方形部分の面積の割合の平均値から算出でき、さらに具体的には、実施例に記載の方法により測定できる。本発明において、FE-SEM観察等により得られる画像中の粒子の正方形部分を{100}面とみなすことができる。 In the present invention, the exposure amount of the {100} surface can be calculated by, for example, image analysis by FE-SEM observation or the like, and specifically, one or a plurality of randomly selected particles can be calculated by FE-SEM or the like. It can be calculated from the average value of the ratio of the area of the square portion to the surface area of one particle in the observed image or the ratio of the area of the square portion to the surface area of each of the plurality of particles, and more specifically. , Can be measured by the method described in Examples. In the present invention, the square portion of the particles in the image obtained by FE-SEM observation or the like can be regarded as a {100} plane.

前記{100}面の露出量の制御方法としては、例えばJ.Phys.Chem.B 2005, 109, p24380-24385やCrystal Growth & Design, Vol.9, No.12, p5297-5303, 2009に記載の方法を採用することができる。例えば、高濃度かつ強アルカリ条件下での水熱処理による特定結晶形状の酸化セリウムを生成する方法、又は、予めセリウム原料とアルカリから生成した水酸化物を超臨界条件(例えば、400℃、38MPa)にて結晶化させて酸化セリウムを生成させる方法が挙げられる。結晶成長過程において、デカン酸やドデカン酸等のモノカルボン酸、アジピン酸やピメリン酸等のジカルボン酸、ポリアクリル酸等のカルボン酸系ポリマー、リン酸3ナトリウム等のリン酸化合物から選ばれる少なくとも1種の化合物を適宜添加することで、特定結晶面にこれら化合物が吸着するため、最終的に得られる結晶の形状においては、これら化合物が吸着した面が選択的に保護されて残存し、結晶形状の制御が可能になると考えられる。 Examples of the method for controlling the exposure amount of the {100} surface are described in J.Phys.Chem.B 2005, 109, p24380-24385 and Crystal Growth & Design, Vol.9, No.12, p5297-5303, 2009. Method can be adopted. For example, a method for producing cerium oxide having a specific crystal shape by hydrothermal treatment under high concentration and strong alkaline conditions, or a hydroxide previously produced from a cerium raw material and an alkali under supercritical conditions (for example, 400 ° C., 38 MPa). A method of producing cerium oxide by crystallizing at the above method can be mentioned. At least one selected from monocarboxylic acids such as decanoic acid and dodecanoic acid, dicarboxylic acids such as adipic acid and pimelic acid, carboxylic acid-based polymers such as polyacrylic acid, and phosphoric acid compounds such as trisodium phosphate in the crystal growth process. By appropriately adding the seed compounds, these compounds are adsorbed on the specific crystal surface. Therefore, in the shape of the finally obtained crystal, the surface on which these compounds are adsorbed is selectively protected and remains, and the crystal shape is formed. It is thought that it will be possible to control.

粒子表面における{100}面の露出量が3%以上90%以下の複合砥粒は、一実施形態において、所定の還元特性を有し、前記還元特性により、研磨速度の向上を可能としている。前記還元特性は、昇温還元法(Temperature-Programmed-Reaction。以下、「TPR」ともいう。)により測定される300℃以下の水生成量により評価でき、一態様において、前記水生成量が、複合砥粒の単位表面積あたり、8mmol/m2以上が好ましい。 The composite abrasive grain having an exposure amount of the {100} surface on the particle surface of 3% or more and 90% or less has a predetermined reduction characteristic in one embodiment, and the reduction characteristic makes it possible to improve the polishing rate. The reduction characteristics can be evaluated by the amount of water produced at 300 ° C. or lower measured by the temperature-reducing method (Temperature-Programmed-Reaction; hereinafter, also referred to as “TPR”). 8 mmol / m 2 or more is preferable per unit surface area of the composite abrasive grains.

本発明の複合砥粒は、研磨速度向上の観点から、TPRにより測定される300℃以下の水生成量が、酸化セリウム粒子の単位表面積あたり、8mmol/m2以上が好ましく、10mmol/m2以上がより好ましく、12mmol/m2以上が更に好ましく、そして、同様の観点から、200mmol/m2以下が好ましく、100mmol/m2以下がより好ましく、80mmol/m2以下が更に好ましく、65mmol/m2以下が更に好ましく、50mmol/m2以下が更により好ましく、30mmol/m2以下が更により好ましく、20mmol/m2以下が更により好ましく、15mmol/m2以下が更により好ましい。本発明においてセリア砥粒の水生成量は、実施例に記載の方法により測定できる。 From the viewpoint of improving the polishing speed, the composite abrasive grain of the present invention preferably has a water production amount of 300 ° C. or lower measured by TPR of 8 mmol / m 2 or more per unit surface area of the cerium oxide particles, preferably 10 mmol / m 2 or more. Is more preferable, 12 mmol / m 2 or more is further preferable, and from the same viewpoint, 200 mmol / m 2 or less is preferable, 100 mmol / m 2 or less is more preferable, 80 mmol / m 2 or less is further preferable, and 65 mmol / m 2 is more preferable. The following is even more preferable, 50 mmol / m 2 or less is even more preferable, 30 mmol / m 2 or less is even more preferable, 20 mmol / m 2 or less is even more preferable, and 15 mmol / m 2 or less is even more preferable. In the present invention, the amount of water produced by the ceria abrasive grains can be measured by the method described in Examples.

水生成量は、例えば、J.Phys.Chem.B 2005, 109, p24380-24385に記載の方法で、制御することができる。例えば、高濃度かつ強アルカリ条件下での水熱処理による特定結晶形状の酸化セリウムを製造する方法の結晶成長過程において、水熱処理の時間及び反応温度、並びにアルカリ剤の添加量を変更することにより、還元特性を変化させ、水生成量を制御することができる。 The amount of water produced can be controlled, for example, by the method described in J.Phys.Chem.B 2005, 109, p24380-24385. For example, by changing the time and reaction temperature of the hydrothermal treatment and the amount of the alkaline agent added in the crystal growth process of the method for producing cerium oxide having a specific crystal shape by hydrothermal treatment under high concentration and strong alkaline conditions. The reduction characteristics can be changed and the amount of water produced can be controlled.

本発明の複合砥粒の窒素吸着(BET)法によって算出されるBET比表面積は、研磨速度向上の観点から、10m2/g以上が好ましく、20m2/g以上がより好ましく、30m2/g以上が更に好ましく、そして、同様の観点から、80m2/g以下が好ましく、70m2/g以下がより好ましく、60m2/g以下が更に好ましい。本発明においてBET比表面積は、実施例に記載の方法により測定できる。 The BET specific surface area calculated by the nitrogen adsorption (BET) method of the composite abrasive grains of the present invention is preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more, and more preferably 30 m 2 / g from the viewpoint of improving the polishing speed. The above is more preferable, and from the same viewpoint, 80 m 2 / g or less is preferable, 70 m 2 / g or less is more preferable, and 60 m 2 / g or less is further preferable. In the present invention, the BET specific surface area can be measured by the method described in Examples.

[複合砥粒の製造方法]
次に、本発明の複合砥粒の製造方法の一例について説明する。
本発明の複合砥粒の製造方法の一例では、まず、酸化数が4のセリウムの化合物(以下、セリウム(IV)化合物ともいう。)と酸化数が4のジルコニウムの化合物(以下、ジルコニウム(IV)化合物ともいう。)とを含む溶液と、沈殿剤とを混合することにより、沈殿物を含むスラリーを生成する。次いで、当該沈殿物を含むスラリーをオートクレーブで、所定温度、所定時間水熱処理した後、室温まで冷却し、沈殿物を繰り返し洗浄、乾燥することにより、本発明の複合砥粒が得られる。
[Manufacturing method of composite abrasive grains]
Next, an example of the method for producing the composite abrasive grains of the present invention will be described.
In an example of the method for producing composite abrasive grains of the present invention, first, a cerium compound having an oxidation number of 4 (hereinafter, also referred to as a cerium (IV) compound) and a zirconium compound having an oxidation number of 4 (hereinafter, zirconium (IV) compound). ) A solution containing (also referred to as a compound) and a precipitant are mixed to produce a slurry containing a precipitate. Next, the slurry containing the precipitate is hydroheat-treated at a predetermined temperature for a predetermined time in an autoclave, cooled to room temperature, and the precipitate is repeatedly washed and dried to obtain the composite abrasive grains of the present invention.

セリウム(IV)化合物とジルコニウム(IV)化合物とを含む溶液は、例えば、硝酸セリウム等の水溶性セリウム(IV)化合物と、硝酸ジルコニウム等の水溶性のジルコニウム(IV)化合物とを、各々水などの溶媒に溶解させてから、混合して調製すればよい。 The solution containing the cerium (IV) compound and the zirconium (IV) compound is, for example, a water-soluble cerium (IV) compound such as cerium nitrate and a water-soluble zirconium (IV) compound such as zirconium nitrate in water or the like. After dissolving in the solvent of, it may be mixed and prepared.

上記セリウム(IV)化合物とジルコニウム(IV)化合物とを含む溶液に、沈殿剤(塩基溶液)を添加すれば、セリウム(IV)化合物とジルコニウム(IV)化合物とが加水分解されて、沈殿物が生成される。セリウム(IV)化合物とジルコニウム(IV)化合物とを含む溶液を攪拌しながら沈殿剤を添加することが好ましい。 If a precipitating agent (base solution) is added to the solution containing the cerium (IV) compound and the zirconium (IV) compound, the cerium (IV) compound and the zirconium (IV) compound are hydrolyzed to form a precipitate. Generated. It is preferable to add the precipitating agent while stirring the solution containing the cerium (IV) compound and the zirconium (IV) compound.

沈殿剤としては、例えば、アルカリ剤を含有する水溶液が挙げられ、より具体的には、アンモニア水溶液;水酸化ナトリウム水溶液や水酸化カリウム水溶液等の水酸化アルカリ溶液;ナトリウム、カリウム、又はアンモニアの炭酸塩溶液;重炭酸塩溶液等が挙げられる。沈殿剤は、なかでも水酸化ナトリウム水溶液が好ましく、沈殿剤の規定度は、セリウム(IV)化合物とジルコニウム(IV)化合物とを含む溶液を、容易に強アルカリ条件とすることができるという理由から、約2~10Nであると好ましく、約4~8Nであるとより好ましい。 Examples of the precipitant include an aqueous solution containing an alkaline agent, and more specifically, an aqueous ammonia solution; an alkaline hydroxide solution such as a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution; carbonic acid of sodium, potassium, or ammonia. Salt solution; examples include a bicarbonate solution. The precipitating agent is preferably an aqueous sodium hydroxide solution, and the precipitating agent is specified because a solution containing a cerium (IV) compound and a zirconium (IV) compound can be easily set to strong alkaline conditions. , It is preferably about 2 to 10 N, and more preferably about 4 to 8 N.

セリウム(IV)化合物とジルコニウム(IV)化合物とを含む溶液と沈殿剤との混合時間は、10分以上であると好ましく、20分以上であるとより好ましい。セリウム(IV)化合物とジルコニウム(IV)化合物とを含む溶液と沈殿剤との反応は、室温などの任意の適切な温度で行うことができる。 The mixing time of the solution containing the cerium (IV) compound and the zirconium (IV) compound and the precipitant is preferably 10 minutes or more, and more preferably 20 minutes or more. The reaction of the solution containing the cerium (IV) compound and the zirconium (IV) compound with the precipitant can be carried out at any suitable temperature such as room temperature.

水熱処理は、例えば、オートクレーブ内に行える。水熱処理温度は、酸化セリウムと酸化ジルコニウムとが高度に固溶した状態の複合酸化物粒子を得る観点から、好ましくは100℃以上、より好ましくは170℃以上、そして、好ましくは300℃以下、より好ましくは190℃以下である。水熱処理時間は、同様の観点から、好ましくは6時間以上、より好ましくは23時間以上、そして、好ましくは120時間以下、より好ましくは25時間以下である。 Hydrothermal treatment can be performed, for example, in an autoclave. The hydrothermal treatment temperature is preferably 100 ° C. or higher, more preferably 170 ° C. or higher, and preferably 300 ° C. or lower, from the viewpoint of obtaining composite oxide particles in which cerium oxide and zirconium oxide are highly dissolved. It is preferably 190 ° C. or lower. From the same viewpoint, the hydrothermal treatment time is preferably 6 hours or more, more preferably 23 hours or more, and preferably 120 hours or less, more preferably 25 hours or less.

したがって、本発明の複合砥粒の製造方法の一例は、セリウム化合物及び金属原子Aを含む化合物が水に溶解した溶液と、アルカリ剤を含有する水溶液とを混合し、沈殿物を生成する工程と、前記沈殿物を、100℃以上300℃以下で、6時間以上120時間以下、水熱処理を行う工程とを含み、前記複合砥粒中の前記金属原子の含有量が、前記セリウム原子と前記金属原子の合計量に対して、8モル%以上37モル%以下であり、アスペクト比が2.0以上100以下である、複合砥粒の製造方法である。 Therefore, an example of the method for producing composite abrasive grains of the present invention is a step of mixing a solution in which a cerium compound and a compound containing a metal atom A are dissolved in water and an aqueous solution containing an alkaline agent to form a precipitate. The deposit is subjected to a hydrothermal treatment at 100 ° C. or higher and 300 ° C. or lower for 6 hours or more and 120 hours or less, and the content of the metal atom in the composite abrasive grains is the cerium atom and the metal. It is a method for producing composite abrasive grains, which is 8 mol% or more and 37 mol% or less and has an aspect ratio of 2.0 or more and 100 or less with respect to the total amount of atoms.

[研磨液組成物]
本発明は、本発明の複合砥粒、及び水系媒体を含む、研磨液組成物(以下、「本発明の研磨液組成物」ともいう)に関する。
[Abrasive liquid composition]
The present invention relates to a polishing liquid composition (hereinafter, also referred to as "polishing liquid composition of the present invention") containing the composite abrasive grains of the present invention and an aqueous medium.

本発明の研磨液組成物中の本発明の複合砥粒の含有量は、研磨速度向上の観点から、0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.2質量%以上が更に好ましく、そして、同様の観点から、5質量%以下が好ましく、2.5質量%以下がより好ましく、1質量%以下が更に好ましい。 The content of the composite abrasive grains of the present invention in the polishing liquid composition of the present invention is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and 0.2% by mass from the viewpoint of improving the polishing speed. % Or more is more preferable, and from the same viewpoint, 5% by mass or less is preferable, 2.5% by mass or less is more preferable, and 1% by mass or less is further preferable.

本発明の研磨液組成物に含まれる水系媒体としては、例えば、水、及び水と水に可溶な溶媒との混合物等が挙げられる。水に可溶な溶媒としては、メタノール、エタノール、イソプロパノール等の低級アルコールが挙げられ、研磨工程での安全性の観点から、エタノールが好ましい。水系媒体としては、半導体基板の品質向上の観点から、イオン交換水、蒸留水、超純水等の水からなるとより好ましい。本発明の研磨液組成物における水系媒体の含有量は、本発明の複合砥粒と下記任意成分と水系媒体との合計質量を100質量%とすると、本発明の複合砥粒及び後述する任意成分を除いた残余とすることができる。 Examples of the aqueous medium contained in the polishing liquid composition of the present invention include water and a mixture of water and a solvent soluble in water. Examples of the solvent soluble in water include lower alcohols such as methanol, ethanol and isopropanol, and ethanol is preferable from the viewpoint of safety in the polishing step. The water-based medium is more preferably composed of water such as ion-exchanged water, distilled water, and ultrapure water from the viewpoint of improving the quality of the semiconductor substrate. As for the content of the aqueous medium in the polishing liquid composition of the present invention, assuming that the total mass of the composite abrasive grains of the present invention, the following optional components and the aqueous medium is 100% by mass, the composite abrasive grains of the present invention and the optional components described later are used. Can be the remainder excluding.

本発明の研磨液組成物には、任意成分として、pH調整剤、研磨助剤、酸、酸化剤、複素環芳香族化合物、脂肪族アミン化合物、脂環式アミン化合物、糖類化合物、ノニオン性界面活性剤、増粘剤、分散剤、防錆剤等が含まれていてもよいが、研磨速度向上の観点から、アニオン性基を有する化合物が含まれないことが好ましい。アニオン性基としては、カルボン酸基、スルホン酸基、硫酸エステル基、リン酸エステル基、ホスホン酸基等が挙げられる。 The polishing liquid composition of the present invention has, as optional components, a pH adjuster, a polishing aid, an acid, an oxidizing agent, a heterocyclic aromatic compound, an aliphatic amine compound, an alicyclic amine compound, a saccharide compound, and a nonionic interface. An activator, a thickener, a dispersant, a rust preventive, and the like may be contained, but from the viewpoint of improving the polishing rate, it is preferable that the compound having an anionic group is not contained. Examples of the anionic group include a carboxylic acid group, a sulfonic acid group, a sulfate ester group, a phosphoric acid ester group, a phosphonic acid group and the like.

pH調整剤としては、例えば、酸性化合物及びアルカリ化合物が挙げられる。酸性化合物としては、例えば、塩酸、硝酸、硫酸等の無機酸;酢酸、シュウ酸、クエン酸、及びリンゴ酸等の有機酸;等が挙げられる。なかでも、汎用性の観点から、塩酸、硝酸及び酢酸から選ばれる少なくとも1種が好ましく、塩酸及び酢酸から選ばれる少なくとも1種がより好ましい。アルカリ化合物としては、例えば、アンモニア、及び水酸化カリウム等の無機アルカリ化合物;アルキルアミン、及びアルカノールアミン等の有機アルカリ化合物;等が挙げられる。なかでも、半導体基板の品質向上の観点から、アンモニア及びアルキルアミンから選ばれる少なくとも1種が好ましく、アンモニアがより好ましい。 Examples of the pH adjuster include acidic compounds and alkaline compounds. Examples of the acidic compound include inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid; organic acids such as acetic acid, oxalic acid, citric acid and malic acid; and the like. Among them, at least one selected from hydrochloric acid, nitric acid and acetic acid is preferable, and at least one selected from hydrochloric acid and acetic acid is more preferable from the viewpoint of versatility. Examples of the alkaline compound include inorganic alkaline compounds such as ammonia and potassium hydroxide; organic alkaline compounds such as alkylamine and alkanolamine; and the like. Among them, at least one selected from ammonia and alkylamine is preferable, and ammonia is more preferable, from the viewpoint of improving the quality of the semiconductor substrate.

ノニオン性界面活性剤としては、例えば、ポリアクリルアミド等のノニオン性ポリマー、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル等が挙げられる。 Examples of the nonionic surfactant include nonionic polymers such as polyacrylamide, polyoxyalkylene alkyl ether, polyoxyethylene distyrene phenyl ether and the like.

本発明の研磨液組成物は、本発明の複合砥粒、水系媒体、並びに任意成分を公知の方法で配合する工程を含む製造方法によって製造できる。例えば、本発明の研磨液組成物は、少なくとも本発明の複合砥粒及び水系媒体を配合してなるものとすることができる。本発明において「配合する」とは、本発明の複合砥粒、水系媒体、並びに必要に応じて上述した任意成分を同時に又は順に混合することを含む。混合する順序は特に限定されない。前記配合は、例えば、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の混合器を用いて行うことができる。本発明の研磨液組成物の製造方法における各成分の配合量は、上述した本発明の研磨液組成物中の各成分の含有量と同じとすることができる。 The polishing liquid composition of the present invention can be produced by a production method including a step of blending the composite abrasive grains of the present invention, an aqueous medium, and an arbitrary component by a known method. For example, the polishing liquid composition of the present invention may be made by blending at least the composite abrasive grains of the present invention and an aqueous medium. In the present invention, "blending" includes mixing the composite abrasive grains of the present invention, an aqueous medium, and optionally the above-mentioned optional components at the same time or in order. The order of mixing is not particularly limited. The formulation can be performed using, for example, a mixer such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill. The blending amount of each component in the method for producing the polishing liquid composition of the present invention can be the same as the content of each component in the polishing liquid composition of the present invention described above.

本発明の研磨液組成物の実施形態は、全ての成分が予め混合された状態で市場に供給される、いわゆる1液型であってもよいし、使用時に混合される、いわゆる2液型であってもよい。 The embodiment of the polishing liquid composition of the present invention may be a so-called one-component type in which all the components are premixed and supplied to the market, or a so-called two-component type in which all the components are mixed at the time of use. There may be.

本発明の研磨液組成物のpHは、研磨速度向上の観点から、3.5以上が好ましく、4以上がより好ましく、4.5以上が更に好ましく、そして、10以下が好ましく、9以下がより好ましく、8以下が更に好ましい。本発明において、研磨液組成物のpHは、25℃における値であって、pHメーターを用いて測定した値である。本発明の研磨液組成物のpHは、具体的には、実施例に記載の方法で測定できる。 From the viewpoint of improving the polishing speed, the pH of the polishing liquid composition of the present invention is preferably 3.5 or more, more preferably 4 or more, further preferably 4.5 or more, preferably 10 or less, and more preferably 9 or less. It is preferable, and 8 or less is more preferable. In the present invention, the pH of the polishing liquid composition is a value at 25 ° C., which is a value measured using a pH meter. Specifically, the pH of the polishing liquid composition of the present invention can be measured by the method described in Examples.

本発明の「研磨液組成物中の各成分の含有量」とは、研磨液組成物を研磨に使用する時点での前記各成分の含有量をいう。本発明の研磨液組成物は、その安定性が損なわれない範囲で濃縮された状態で保存および供給されてもよい。この場合、製造・輸送コストを低くできる点で好ましい。そしてこの濃縮液は、必要に応じて前述の水系媒体で適宜希釈して研磨工程で使用することができる。希釈割合としては5~100倍が好ましい。 The "content of each component in the polishing liquid composition" of the present invention means the content of each component at the time when the polishing liquid composition is used for polishing. The polishing liquid composition of the present invention may be stored and supplied in a concentrated state as long as its stability is not impaired. In this case, it is preferable in that the manufacturing / transportation cost can be reduced. Then, this concentrated liquid can be appropriately diluted with the above-mentioned aqueous medium and used in the polishing step, if necessary. The dilution ratio is preferably 5 to 100 times.

本発明の研磨液組成物の研磨対象としては、例えば、酸化珪素膜が挙げられる。したがって、本本発明の研磨液組成物は、被研磨対象としての酸化珪素膜を含む被研磨基板の研磨に好適に使用でき、例えば、半導体基板の素子分離構造を形成する工程で行われる酸化珪素膜の研磨に好適に使用できる。 Examples of the polishing target of the polishing liquid composition of the present invention include a silicon oxide film. Therefore, the polishing liquid composition of the present invention can be suitably used for polishing a substrate to be polished containing a silicon oxide film to be polished, for example, a silicon oxide film performed in a step of forming an element separation structure of a semiconductor substrate. Can be suitably used for polishing.

[研磨液キット]
本発明は、研磨液組成物を製造するためのキットであって、本発明の複合砥粒を含む分散液が容器に収納された容器入り複合砥粒分散液を含む、研磨液キットに関する。本発明の研磨液キットによれば、研磨速度を向上可能な研磨液組成物が得られうる研磨液キットを提供できる。
[Abrasive liquid kit]
The present invention relates to a kit for producing a polishing liquid composition, which comprises a composite abrasive grain dispersion liquid in a container in which a dispersion liquid containing the composite abrasive grains of the present invention is stored in a container. According to the polishing liquid kit of the present invention, it is possible to provide a polishing liquid kit capable of obtaining a polishing liquid composition capable of improving the polishing speed.

本発明の研磨液キットの一実施形態としては、例えば、本発明の複合砥粒が水系媒体に分散された砥粒スラリー(第1液)と、添加剤及び水系媒体を含む溶液(第2液)とを、相互に混合されていない状態で含み、これらが使用時に混合され、必要に応じて水系媒体で希釈される、研磨液キット(2液型研磨液組成物)が挙げられる。添加剤としては、例えば、研磨助剤、酸、酸化剤、複素環芳香族化合物、脂肪族アミン化合物、脂環式アミン化合物、糖類化合物等が挙げられる。前記第1液及び前記第2液にはそれぞれ、必要に応じて、pH調整剤、増粘剤、分散剤、防錆剤、塩基性物質、研磨速度向上剤等が含まれていてもよい。前記第1液と前記第2液との混合は、研磨対象の表面への供給前に行われてもよいし、別々に供給されて被研磨基板の表面上で混合されてもよい。 As one embodiment of the polishing liquid kit of the present invention, for example, an abrasive grain slurry (first liquid) in which the composite abrasive grains of the present invention are dispersed in an aqueous medium, and a solution containing an additive and an aqueous medium (second liquid). ) In a state where they are not mixed with each other, and these are mixed at the time of use and diluted with an aqueous medium if necessary, and examples thereof include a polishing liquid kit (two-component polishing liquid composition). Examples of the additive include a polishing aid, an acid, an oxidizing agent, a heterocyclic aromatic compound, an aliphatic amine compound, an alicyclic amine compound, a saccharide compound and the like. The first liquid and the second liquid may each contain a pH adjuster, a thickener, a dispersant, a rust preventive, a basic substance, a polishing rate improver and the like, if necessary. The first liquid and the second liquid may be mixed before being supplied to the surface to be polished, or may be separately supplied and mixed on the surface of the substrate to be polished.

[半導体基板の製造方法]
本発明は、本発明の研磨液組成物を用いて被研磨基板を研磨する工程(以下、「本発明の研磨液組成物を用いた研磨工程」ともいう)を含む、半導体基板の製造方法(以下、「本発明の半導体基板の製造方法」ともいう。)に関する。本発明の半導体基板の製造方法によれば、本発明の研磨液組成物を用いることで、研磨工程における研磨速度を向上できるため、半導体基板を効率よく製造できるという効果が奏されうる。
[Manufacturing method of semiconductor substrate]
The present invention is a method for manufacturing a semiconductor substrate, which comprises a step of polishing a substrate to be polished using the polishing liquid composition of the present invention (hereinafter, also referred to as a “polishing step using the polishing liquid composition of the present invention”). Hereinafter, it is also referred to as “a method for manufacturing a semiconductor substrate of the present invention”). According to the method for manufacturing a semiconductor substrate of the present invention, by using the polishing liquid composition of the present invention, the polishing speed in the polishing step can be improved, so that the effect that the semiconductor substrate can be efficiently manufactured can be achieved.

本発明の半導体基板の製造方法の具体例としては、まず、シリコン基板を酸化炉内で酸素に晒すことよりその表面に二酸化シリコン層を成長させ、次いで、当該二酸化シリコン層上に窒化珪素(Si34)膜又はポリシリコン膜等の研磨ストッパ膜を、例えばCVD法(化学気相成長法)にて形成する。次に、シリコン基板と前記シリコン基板の一方の主面側に配置された研磨ストッパ膜とを含む基板、例えば、シリコン基板の二酸化シリコン層上に研磨ストッパ膜が形成された基板に、フォトリソグラフィー技術を用いてトレンチを形成する。次いで、例えば、シランガスと酸素ガスを用いたCVD法により、トレンチ埋め込み用の被研磨膜である酸化珪素(SiO2)膜を形成し、研磨ストッパ膜が被研磨膜(酸化珪素膜)で覆われた被研磨基板を得る。酸化珪素膜の形成により、前記トレンチは酸化珪素膜の酸化珪素で満たされ、研磨ストッパ膜の前記シリコン基板側の面の反対面は酸化珪素膜によって被覆される。このようにして形成された酸化珪素膜のシリコン基板側の面の反対面は、下層の凸凹に対応して形成された段差を有する。次いで、CMP法により、酸化珪素膜を、少なくとも研磨ストッパ膜のシリコン基板側の面の反対面が露出するまで研磨し、より好ましくは、酸化珪素膜の表面と研磨ストッパ膜の表面とが面一になるまで酸化珪素膜を研磨する。本発明の研磨液組成物は、このCMP法による研磨を行う工程に用いることができる。 As a specific example of the method for manufacturing a semiconductor substrate of the present invention, first, a silicon nitride layer is grown on the surface of a silicon substrate by exposing it to oxygen in an oxidation furnace, and then silicon nitride (Si) is placed on the silicon dioxide layer. 3 N 4 ) A polishing stopper film such as a film or a polysilicon film is formed by, for example, a CVD method (chemical vapor deposition method). Next, a photolithography technique is applied to a substrate including a silicon substrate and a polishing stopper film arranged on one main surface side of the silicon substrate, for example, a substrate in which a polishing stopper film is formed on a silicon dioxide layer of a silicon substrate. Is used to form a trench. Next, for example, a silicon oxide (SiO 2 ) film, which is a film to be polished for trench embedding, is formed by a CVD method using silane gas and oxygen gas, and the polishing stopper film is covered with the film to be polished (silicon oxide film). Obtain a substrate to be polished. By forming the silicon oxide film, the trench is filled with silicon oxide of the silicon oxide film, and the opposite surface of the polishing stopper film on the silicon substrate side is covered with the silicon oxide film. The opposite surface of the surface of the silicon oxide film thus formed on the silicon substrate side has a step formed corresponding to the unevenness of the lower layer. Next, the silicon oxide film is polished by the CMP method until at least the opposite surface of the surface of the polishing stopper film on the silicon substrate side is exposed, and more preferably, the surface of the silicon oxide film and the surface of the polishing stopper film are flush with each other. Polish the silicon oxide film until it becomes. The polishing liquid composition of the present invention can be used in the step of performing polishing by this CMP method.

CMP法による研磨では、被研磨基板の表面と研磨パッドとを接触させた状態で、本発明の研磨液組成物をこれらの接触部位に供給しつつ被研磨基板及び研磨パッドを相対的に移動させることにより、被研磨基板の表面の凹凸部分を平坦化させる。本発明の半導体基板の製造方法において、シリコン基板の二酸化シリコン層と研磨ストッパ膜との間に他の絶縁膜が形成されていてもよいし、被研磨膜(例えば、酸化珪素膜)と研磨ストッパ膜(例えば、窒化珪素膜)との間に他の絶縁膜が形成されていてもよい。 In polishing by the CMP method, the surface of the substrate to be polished and the polishing pad are in contact with each other, and the polishing liquid composition of the present invention is supplied to these contact portions while the substrate to be polished and the polishing pad are relatively moved. This flattens the uneven portion of the surface of the substrate to be polished. In the method for manufacturing a semiconductor substrate of the present invention, another insulating film may be formed between the silicon dioxide layer of the silicon substrate and the polishing stopper film, or the film to be polished (for example, a silicon oxide film) and the polishing stopper. Another insulating film may be formed between the film (for example, a silicon nitride film).

本発明の研磨液組成物を用いた研磨工程において、研磨パッドの回転数は、例えば、30~200r/分、被研磨基板の回転数は、例えば、30~200r/分、研磨パッドを備えた研磨装置に設定される研磨荷重は、例えば、20~500g重/cm2、研磨液組成物の供給速度は、例えば、10~500mL/分以下に設定できる。研磨液組成物が2液型研磨液組成物の場合、第1液及び第2液のそれぞれの供給速度(又は供給量)を調整することで、被研磨膜及び研磨ストッパ膜のそれぞれの研磨速度や、被研磨膜と研磨ストッパ膜との研磨速度比(研磨選択性)を調整できる。 In the polishing step using the polishing liquid composition of the present invention, the polishing pad was provided with a polishing pad having a polishing pad rotation speed of, for example, 30 to 200 r / min, and a polishing substrate rotation speed of, for example, 30 to 200 r / min. The polishing load set in the polishing apparatus can be set to, for example, 20 to 500 g weight / cm 2 , and the supply rate of the polishing liquid composition can be set to, for example, 10 to 500 mL / min or less. When the polishing liquid composition is a two-component polishing liquid composition, the polishing speed of each of the film to be polished and the polishing stopper film can be adjusted by adjusting the supply speed (or supply amount) of each of the first liquid and the second liquid. In addition, the polishing speed ratio (polishing selectivity) between the film to be polished and the polishing stopper film can be adjusted.

本発明の研磨液組成物を用いた研磨工程において、被研磨膜(例えば、酸化珪素膜)の研磨速度は、生産性向上の観点から、好ましくは1000Å/分以上、より好ましくは3000Å/分以上、更に好ましくは5000Å/分以上である。 In the polishing step using the polishing liquid composition of the present invention, the polishing rate of the film to be polished (for example, silicon oxide film) is preferably 1000 Å / min or more, more preferably 3000 Å / min or more from the viewpoint of improving productivity. More preferably, it is 5000 Å / min or more.

本発明の研磨液組成物を用いた研磨工程において、研磨ストッパ膜(例えば、窒化珪素膜)の研磨速度は、研磨選択性向上及び研磨時間の短縮化の観点から、好ましくは500Å/分以下、より好ましくは300Å/分以下、更に好ましくは150Å/分以下である。 In the polishing step using the polishing liquid composition of the present invention, the polishing speed of the polishing stopper film (for example, silicon nitride film) is preferably 500 Å / min or less from the viewpoint of improving polishing selectivity and shortening the polishing time. It is more preferably 300 Å / min or less, still more preferably 150 Å / min or less.

本発明の研磨液組成物を用いた研磨工程において、研磨速度比(被研磨膜の研磨速度/研磨ストッパ膜の研磨速度)は、研磨時間の短縮化の観点から、5以上が好ましく、10以上がより好ましく、20以上が更に好ましく、40以上が更により好ましい。本開示において研磨選択性は、研磨ストッパ膜の研磨速度に対する被研磨膜の研磨速度の比(被研磨膜の研磨速度/研磨ストッパ膜の研磨速度)で評価することができ、研磨選択性が高いとは、研磨速度比が大きいことを意味する。 In the polishing process using the polishing liquid composition of the present invention, the polishing rate ratio (polishing rate of the film to be polished / polishing rate of the polishing stopper film) is preferably 5 or more, preferably 10 or more, from the viewpoint of shortening the polishing time. Is more preferable, 20 or more is further preferable, and 40 or more is even more preferable. In the present disclosure, the polishing selectivity can be evaluated by the ratio of the polishing rate of the film to be polished to the polishing rate of the polishing stopper film (polishing rate of the film to be polished / polishing rate of the polishing stopper film), and the polishing selectivity is high. Means that the polishing rate ratio is large.

[研磨方法]
本発明は、本発明の研磨液組成物を用いた研磨工程を含む、基板の研磨方法(以下、本発明の研磨方法ともいう)に関し、好ましくは半導体基板を製造するための基板の研磨方法に関する。本発明の研磨方法を使用することにより、研磨工程における研磨速度を向上できるため、半導体基板を効率よく製造できるという効果が奏されうる。具体的な研磨の方法及び条件は、上述した本発明の半導体基板の製造方法と同じようにすることができる。
[Polishing method]
The present invention relates to a substrate polishing method (hereinafter, also referred to as the polishing method of the present invention) including a polishing step using the polishing liquid composition of the present invention, and preferably to a substrate polishing method for manufacturing a semiconductor substrate. .. By using the polishing method of the present invention, the polishing speed in the polishing process can be improved, so that the effect that the semiconductor substrate can be efficiently manufactured can be achieved. The specific polishing method and conditions can be the same as the above-described method for manufacturing the semiconductor substrate of the present invention.

[半導体装置の製造方法]
本発明は、一態様において、本発明の研磨液組成物を用いた研磨工程を含む、半導体装置の製造方法に関する。本発明の半導体装置の製造方法によれば、半導体基板を効率よく得て、半導体装置の生産性を向上できるという効果が奏されうる。研磨工程の具体的な研磨方法及び条件は、上述した本発明の半導体基板の製造方法と同じようにすることができる。
[Manufacturing method of semiconductor devices]
The present invention relates to, in one aspect, a method for manufacturing a semiconductor device, which comprises a polishing step using the polishing liquid composition of the present invention. According to the method for manufacturing a semiconductor device of the present invention, the effect of efficiently obtaining a semiconductor substrate and improving the productivity of the semiconductor device can be achieved. The specific polishing method and conditions of the polishing step can be the same as the above-mentioned method for manufacturing the semiconductor substrate of the present invention.

本発明の半導体装置の製造方法は、一態様において、酸化珪素膜の凹凸段差面を、本発明の研磨液組成物を用いて研磨する工程を含む。前記半導体装置は、記録素子が三次元的に配列された半導体記憶装置であり、水平方向に隣り合う記録素子の間及び前記記録素子を覆うように前記酸化珪素膜を形成する工程を含み、前記工程で形成された前記酸化珪素膜の前記凹凸段差面は、前記酸化珪素膜により被覆される面の凹凸に対応した凹凸段差を有する。酸化珪素膜の前記凸部の幅は、例えば、0.5μm以上5000μm以下であり、好ましくは10μm以上3500μm以下であり、凹部の幅は、例えば、0.5μm以上10000μm以下であり、好ましくは10μm以上6000μm以下である。 In one aspect, the method for manufacturing a semiconductor device of the present invention includes a step of polishing an uneven stepped surface of a silicon oxide film using the polishing liquid composition of the present invention. The semiconductor device is a semiconductor storage device in which recording elements are three-dimensionally arranged, and includes a step of forming the silicon oxide film between horizontally adjacent recording elements and so as to cover the recording elements. The uneven step surface of the silicon oxide film formed in the step has an uneven step corresponding to the unevenness of the surface covered by the silicon oxide film. The width of the convex portion of the silicon oxide film is, for example, 0.5 μm or more and 5000 μm or less, preferably 10 μm or more and 3500 μm or less, and the width of the concave portion is, for example, 0.5 μm or more and 10000 μm or less, preferably 10 μm. It is 6000 μm or less.

以下、実施例により本開示をさらに詳細に説明するが、これらは例示的なものであって、本開示はこれら実施例に制限されるものではない。 Hereinafter, the present disclosure will be described in more detail by way of examples, but these are exemplary and the present disclosure is not limited to these examples.

1.各パラメータの測定
[砥粒のアスペクト比、長辺及び短辺]
砥粒のアスペクト比は、以下の方法で測定した。砥粒濃度が0.01質量%となるように砥粒をイオン交換水に分散させた分散スラリーを、グリッド上に滴下して風乾し、無作為に選んだ100個の粒子について、電界放出型走査型電子顕微鏡(FE-SEM)にて観察した。得られた画像中の粒子の最大長を「長辺」とし、当該「長辺」と直交する方向の最大長を「短辺」として測定し、比(長辺/短辺)を算出し、各々、100個についての平均値を、アスペクト比、長辺、短辺として表1に示した。
1. 1. Measurement of each parameter [Aspect ratio of abrasive grains, long side and short side]
The aspect ratio of the abrasive grains was measured by the following method. A dispersed slurry in which abrasive grains were dispersed in ion-exchanged water so that the abrasive grain concentration was 0.01% by mass was dropped onto a grid and air-dried. It was observed with a scanning electron microscope (FE-SEM). The maximum length of the particles in the obtained image is defined as the "long side", the maximum length in the direction orthogonal to the "long side" is measured as the "short side", and the ratio (long side / short side) is calculated. The average values for each of 100 pieces are shown in Table 1 as the aspect ratio, the long side, and the short side.

[{100}面の露出量]
砥粒の{100}面の露出量は、以下の方法で測定した。砥粒濃度が0.01質量%となるように砥粒をイオン交換水に分散させた分散スラリーを、グリッド上に滴下して風乾し、無作為に選んだ100個の粒子について、電界放出型走査型電子顕微鏡(FE-SEM)にて観察した。得られた画像中の粒子表面の正方形部分を{100}面として、FE-SEM観察画像中の100個の各粒子それぞれの表面積に対する正方形部分の面積の割合を算出し、その平均値を{100}面の露出量として算出し、表1に示した。
なお、FE-SEM観察画像中の粒子の形状は、一方向のみから観察される形状であるが、ここでは、粒子の形状は対称形状と仮定、すなわち、FE-SEMにより一方向のみから観察される粒子の形状(表面形状)と該一方向とは反対方向から観察される粒子の形状(裏面形状)とが同一であると仮定して、上記露出量の算出を行った。
[Exposure amount of {100} surface]
The exposure amount of the {100} surface of the abrasive grains was measured by the following method. A dispersed slurry in which abrasive grains were dispersed in ion-exchanged water so that the abrasive grain concentration was 0.01% by mass was dropped onto a grid and air-dried. It was observed with a scanning electron microscope (FE-SEM). With the square portion of the particle surface in the obtained image as the {100} plane, the ratio of the area of the square portion to the surface area of each of the 100 particles in the FE-SEM observation image was calculated, and the average value was {100}. } Calculated as the amount of surface exposure and shown in Table 1.
The shape of the particles in the FE-SEM observation image is a shape observed from only one direction, but here, the shape of the particles is assumed to be a symmetrical shape, that is, the shape is observed from only one direction by the FE-SEM. The above exposure amount was calculated on the assumption that the shape of the particles (front surface shape) and the shape of the particles observed from the opposite direction to the one direction (back surface shape) are the same.

[砥粒の水生成量]
昇温還元法(TPR)により測定される300℃以下の砥粒の水生成量は、以下のようにして算出する。
<測定試料の調製>
砥粒をイオン交換水に分散させた砥粒水分散液を、120℃で3時間熱風乾燥し、必要に応じてメノウ乳鉢で解砕して、粉末状の複合砥粒試料を得る。得られた試料を80℃で3時間乾燥し、直後に0.1g秤量し、試料管(反応室)に入れる。
次いで、純アルゴンガスを50cc/分の流量で、反応室へ供給する。純アルゴンガスを供給した状態で、反応室に入れた0.1gの試料を一定の昇温速度で25℃から300℃まで50分かけて昇温し、300℃で60分間保ち、100℃まで自然冷却し、そして100℃で10分間保持する。
<昇温還元法(TPR)による水生成量の測定>
昇温還元装置(日本ベル社製「BELCAT-B」)を用いて以下の条件でTPRによる水生成量を測定する。
反応室へ5体積%の水素ガスと95体積%のアルゴンガスとの混合ガスを30cc/分の流量で供給しながら、昇温速度を5℃/分に設定して、試料を100℃から950℃まで昇温する。そして、この昇温の間、ガス分析装置「BELMass」により、300℃までの温度範囲において、4価のセリウムから3価のセリウムの還元に伴い生成する、単位重量あたりの水生成量A(mmol/g)を検出する。ここで、水生成量Aの検出は、測定温度に対する水生成量A(mmol/g)の関係を取った時に、5mmol/g以上の連続した一連のピークを有するものを水生成量(mmol/g)として検出し、ベースラインに由来する水生成量A(mmol/g)は、0mmol/gとして扱うこととする。測定原理上、同一温度において、複数の水生成量A(mmol/g)が観測される場合があり、この場合は、同一温度における複数の水生成量A(mmol/g)の平均値を、測定温度に対する水生成量A(mmol/g)とする。
そして、検出した水生成量A(mmol/g)を、下記BET法により測定されるBET比表面積B(m2/g)で除すことにより、単位表面積あたりの水生成量A/B(mmol/m2)、すなわち、TPRにより測定される300℃以下の水生成量を求める。
[Amount of water produced by abrasive grains]
The amount of water produced by the abrasive grains at 300 ° C. or lower as measured by the temperature rise reduction method (TPR) is calculated as follows.
<Preparation of measurement sample>
The abrasive grain water dispersion in which the abrasive grains are dispersed in ion-exchanged water is dried with hot air at 120 ° C. for 3 hours, and if necessary, crushed in an agate mortar to obtain a powdery composite abrasive grain sample. The obtained sample is dried at 80 ° C. for 3 hours, immediately after that, 0.1 g is weighed and placed in a sample tube (reaction chamber).
Then, pure argon gas is supplied to the reaction chamber at a flow rate of 50 cc / min. With pure argon gas supplied, 0.1 g of the sample placed in the reaction chamber was heated from 25 ° C to 300 ° C over 50 minutes at a constant heating rate, kept at 300 ° C for 60 minutes, and up to 100 ° C. Allow to cool naturally and hold at 100 ° C. for 10 minutes.
<Measurement of water production by temperature reduction method (TPR)>
The amount of water produced by TPR is measured under the following conditions using a temperature raising reduction device (“BELCAT-B” manufactured by Nippon Bell Co., Ltd.).
While supplying a mixed gas of 5% by volume hydrogen gas and 95% by volume argon gas to the reaction chamber at a flow rate of 30 cc / min, the temperature rise rate was set to 5 ° C./min, and the sample was sampled from 100 ° C. to 950. The temperature rises to ° C. Then, during this temperature rise, the amount of water produced per unit weight A (mmol) generated by the reduction of tetravalent cerium to trivalent cerium in the temperature range up to 300 ° C. by the gas analyzer "BELMass". / G) is detected. Here, in the detection of the amount of water produced A, the amount of water produced (mmol / g) having a continuous series of peaks of 5 mmol / g or more when the relationship of the amount of water produced A (mmol / g) with respect to the measured temperature is taken. Detected as g), the amount of water produced A (mmol / g) derived from the baseline shall be treated as 0 mmol / g. Due to the measurement principle, a plurality of water production amounts A (mmol / g) may be observed at the same temperature. In this case, the average value of the plurality of water production amounts A (mmol / g) at the same temperature is used. The amount of water produced with respect to the measured temperature is A (mmol / g).
Then, by dividing the detected water production amount A (mmol / g) by the BET specific surface area B (m 2 / g) measured by the following BET method, the water production amount A / B (mmol) per unit surface area is obtained. / M 2 )), that is, the amount of water produced at 300 ° C. or lower as measured by TPR is determined.

[砥粒のBET比表面積]
砥粒をイオン交換水に分散させた砥粒分散液を、120℃で3時間熱風乾燥し、必要に応じてメノウ乳鉢で解砕して、粉末状の酸化セリウム粒子試料を得る。得られた試料を、BET比表面積の測定直前に120℃で15分間乾燥し、マイクロメリティック自動比表面積測定装置「フローソーブIII2305」、(島津製作所製)を用いてBET法によりBET比表面積(m2/g)を測定する。
[BET specific surface area of abrasive grains]
The abrasive grain dispersion liquid in which the abrasive grains are dispersed in ion-exchanged water is dried with hot air at 120 ° C. for 3 hours, and if necessary, crushed in an agate mortar to obtain a powdery cerium oxide particle sample. Immediately before measuring the BET specific surface area, the obtained sample was dried at 120 ° C. for 15 minutes, and the BET specific surface area (m) was measured by the BET method using a micromeric automatic specific surface area measuring device "Flowsorb III2305" (manufactured by Shimadzu Corporation). 2 / g) is measured.

[研磨液組成物のpH]
研磨液組成物の25℃におけるpH値は、pHメータ(東亜電波工業社製、「HM-30G」)を用いて測定した値であり、pHメータの電極を研磨液組成物へ浸漬して1分後の数値である。
[PH of polishing liquid composition]
The pH value of the polishing liquid composition at 25 ° C. is a value measured using a pH meter (“HM-30G” manufactured by Toa Denpa Kogyo Co., Ltd.), and the electrode of the pH meter is immersed in the polishing liquid composition. It is a numerical value after minutes.

2.複合砥粒の製造方法又はその詳細
[実施例2の複合砥粒の製造方法]
硝酸セリウム(III)6水和物1.560g(3.6mmol)、及びオキシ硝酸ジルコニウム2水和物0.213g(0.4mmol)をイオン交換水:5mLにそれぞれ溶解した。次に水酸化ナトリウム17.0g(0.425mol)をイオン交換水:70mLに溶解した(約6mol/L)。この水酸化ナトリウム水溶液中に、先の硝酸セリウムとオキシ硝酸ジルコニウムとを含む水溶液を撹拌しながら添加し、撹拌を30分以上続行して沈殿を生成させた。その後、沈殿を含むスラリーを100mLのテフロン製容器に移し、このテフロン容器をステンレス製反応容器(三愛科学製オートクレーブ)中に入れて密封し、ステンレス容器ごと送風乾燥機に入れて180℃で24時間水熱処理を実施した。水熱処理終了後、室温まで冷却し、沈殿物をイオン交換水にて十分に洗浄したのち100℃の送風乾燥機にて乾燥し、粉体(実施例1のZr含有セリア砥粒)を得た。
得られた実施例1のZr含有セリア砥粒の乾燥粉体をX線回折により分析した結果、33°付近のジルコニア単体のピークは観察されず、セリアの理論ピークよりも高角度側にシフトしたピークが観察された。また、X線光電子分光(XPS)を用いて、CeとZrの組成比を調査した結果、CeとZrの組成比が90:10(mol比)であった。
2. 2. Manufacturing Method of Composite Abrasive Grains or Details thereof [Manufacturing Method of Composite Abrasive Grains of Example 2]
1.560 g (3.6 mmol) of cerium nitrate (III) hexahydrate and 0.213 g (0.4 mmol) of zirconium oxynitrate dihydrate were dissolved in ion-exchanged water: 5 mL, respectively. Next, 17.0 g (0.425 mol) of sodium hydroxide was dissolved in 70 mL of ion-exchanged water (about 6 mol / L). The above aqueous solution containing cerium nitrate and zirconium oxynitrite was added to the aqueous sodium hydroxide solution with stirring, and the stirring was continued for 30 minutes or more to form a precipitate. After that, the slurry containing the precipitate is transferred to a 100 mL Teflon container, the Teflon container is placed in a stainless steel reaction container (autoclave manufactured by San-Ai Kagaku), sealed, and the stainless steel container is placed in a blower dryer at 180 ° C. for 24 hours. Hydrothermal treatment was performed. After the completion of the hydrothermal treatment, the precipitate was cooled to room temperature, the precipitate was thoroughly washed with ion-exchanged water, and then dried in a blower dryer at 100 ° C. to obtain a powder (Zr-containing ceria abrasive grains of Example 1). ..
As a result of analyzing the obtained dry powder of the Zr-containing ceria abrasive grains of Example 1 by X-ray diffraction, the peak of zirconia alone near 33 ° was not observed, and the peak was shifted to a higher angle side than the theoretical peak of ceria. A peak was observed. Moreover, as a result of investigating the composition ratio of Ce and Zr using X-ray photoelectron spectroscopy (XPS), the composition ratio of Ce and Zr was 90:10 (mol ratio).

[実施例1の複合砥粒の製造方法]
Ce:Zrの比が75:25(mol比)となるように、硝酸セリウム(III)6水和物とオキシ硝酸ジルコニウム2水和物の使用量を変えたこと以外は、[実施例2の複合砥粒の製造方法]と同様に、実施例1のZr含有セリア砥粒を得た。
[Manufacturing method of composite abrasive grains of Example 1]
Except for changing the amounts of cerium nitrate (III) hexahydrate and zirconium oxynitrate dihydrate used so that the Ce: Zr ratio is 75:25 (mol ratio), [Example 2] Method for producing composite abrasive grains], Zr-containing cerium abrasive grains of Example 1 were obtained.

[実施例3の複合砥粒の製造方法]
Ce:Zrの比が85:15(mol比)となるように、硝酸セリウム(III)6水和物とオキシ硝酸ジルコニウム2水和物の使用量を変えたこと以外は、[実施例2の複合砥粒の製造方法]と同様に、実施例3のZr含有セリア砥粒を得た。
[Manufacturing method of composite abrasive grains of Example 3]
Except for changing the amounts of cerium nitrate (III) hexahydrate and zirconium oxynitrate dihydrate used so that the Ce: Zr ratio is 85:15 (mol ratio), [Example 2] Method for producing composite abrasive grains], Zr-containing ceria abrasive grains of Example 3 were obtained.

[実施例4の複合砥粒の製造方法]
Ce:Zrの比が80:20(mol比)となるように、硝酸セリウム(III)6水和物とオキシ硝酸ジルコニウム2水和物の使用量を変えたこと以外は、[実施例2の複合砥粒の製造方法]と同様に、実施例4のZr含有セリア砥粒を得た。
[Method for manufacturing composite abrasive grains of Example 4]
Except for changing the amounts of cerium nitrate (III) hexahydrate and zirconium oxynitrate dihydrate used so that the Ce: Zr ratio is 80:20 (mol ratio), [Example 2] Method for producing composite abrasive grains], Zr-containing ceria abrasive grains of Example 4 were obtained.

[実施例5の複合砥粒の製造方法]
Ce:Zrの比が70:30(mol比)となるように、硝酸セリウム(III)6水和物とオキシ硝酸ジルコニウム2水和物の使用量を変えたこと以外は、[実施例2の複合砥粒の製造方法]と同様に、実施例5のZr含有セリア砥粒を得た。
[Method for manufacturing composite abrasive grains of Example 5]
Except for changing the amounts of cerium nitrate (III) hexahydrate and zirconium oxynitrate dihydrate used so that the Ce: Zr ratio is 70:30 (mol ratio), [Example 2] Method for producing composite abrasive grains], Zr-containing ceria abrasive grains of Example 5 were obtained.

[比較例1の複合砥粒の製造方法]
Ce:Zrの比が50:50(mol比)となるように、硝酸セリウム(III)6水和物とオキシ硝酸ジルコニウム2水和物の使用量を変えたこと以外は、[実施例2の複合砥粒の製造方法]と同様に、比較例1のZr含有セリア砥粒を得た。
[Manufacturing method of composite abrasive grains of Comparative Example 1]
Except for changing the amounts of cerium nitrate (III) hexahydrate and zirconium oxynitrate dihydrate used so that the Ce: Zr ratio is 50:50 (mol ratio), [Example 2] Method for producing composite abrasive grains], Zr-containing ceria abrasive grains of Comparative Example 1 were obtained.

[比較例2の複合砥粒の製造方法]
Ce:Zrの比が60:40(mol比)となるように、硝酸セリウム(III)6水和物とオキシ硝酸ジルコニウム2水和物の使用量を変えたこと以外は、[実施例2の複合砥粒の製造方法]と同様に、比較例2のZr含有セリア砥粒を得た。
[Manufacturing method of composite abrasive grains of Comparative Example 2]
Except for changing the amounts of cerium nitrate (III) hexahydrate and zirconium oxynitrate dihydrate used so that the Ce: Zr ratio is 60:40 (mol ratio), [Example 2] Method for producing composite abrasive grains], Zr-containing ceria abrasive grains of Comparative Example 2 were obtained.

[比較例3の複合砥粒の製造方法]
Ce:Zrの比が97.6:2.4(mol比)となるように、硝酸セリウム(III)6水和物とオキシ硝酸ジルコニウム2水和物の使用量を変えたこと以外は、[実施例2の複合砥粒の製造方法]と同様に、比較例3のZr含有セリア砥粒を得た。
[Manufacturing method of composite abrasive grains of Comparative Example 3]
Except that the amounts of cerium nitrate (III) hexahydrate and zirconium oxynitrate dihydrate used were changed so that the Ce: Zr ratio was 97.6: 2.4 (mol ratio). Method for producing composite abrasive grains of Example 2], Zr-containing cerium abrasive grains of Comparative Example 3 were obtained.

[比較例4の複合砥粒の製造方法]
分散剤(ポリアクリル酸アンモニウム、重量平均分子量6000)が添加された水中で、ビーズミルにより焼成物A(Ce0.75Zr0.252粒子)が湿式粉砕されることにより得られた、体積中位径が150nmのCe0.75Zr0.252粒子(粉砕Zr含有セリア砥粒)のスラリー(Ce0.75Zr0.252粒子:25重量%)を用意した。焼成物Aは、未焼成Ce0.75Zr0.252粒子(商品名Actalys9320、ローディア社製)が1160℃で6時間、連続式焼成炉で焼成されることにより得られたものである。なお、焼成物Aは、セリウム(IV)化合物とジルコニウム(IV)化合物とを原料として用いて得られたものである。
[Manufacturing method of composite abrasive grains of Comparative Example 4]
The medium volume diameter obtained by wet pulverizing the calcined product A (Ce 0.75 Zr 0.25 O 2 particles) with a bead mill in water to which a dispersant (ammonium polyacrylate, weight average molecular weight 6000) was added. A slurry (Ce 0.75 Zr 0.25 O 2 particles: 25% by weight) of 150 nm Ce 0.75 Zr 0.25 O 2 particles (crushed Zr-containing ceria abrasive grains) was prepared. The fired product A was obtained by firing unfired Ce 0.75 Zr 0.25 O 2 particles (trade name: Actaries9320, manufactured by Rhodia) at 1160 ° C. for 6 hours in a continuous firing furnace. The fired product A was obtained by using a cerium (IV) compound and a zirconium (IV) compound as raw materials.

[比較例5の砥粒の製造方法]
比較例5の砥粒には、市販の炭酸セリウム水和物2kgを純水の蒸気で加湿した100℃のオーブンで8時間処理した後、アルミナ製容器に入れ、830℃、空気中で2時間焼成することにより調整したセリア砥粒を用いた。
[Manufacturing method of abrasive grains of Comparative Example 5]
The abrasive grains of Comparative Example 5 were treated with 2 kg of commercially available cerium carbonate hydrate in an oven at 100 ° C. humidified with steam of pure water for 8 hours, placed in an alumina container, and placed in an alumina container at 830 ° C. for 2 hours in the air. Ceria abrasive grains adjusted by baking were used.

[比較例6の砥粒の製造方法]
Ce:Zrの比が0:100(mol比)となるように、硝酸セリウム(III)6水和物を使用せずに、オキシ硝酸ジルコニウム2水和物のみ使用量を変えたこと以外は、[実施例2の複合砥粒の製造方法]と同様に、比較例6のZr砥粒を得た。
[Manufacturing method of abrasive grains of Comparative Example 6]
Except that the amount of zirconium oxynitrate dihydrate used was changed without using cerium (III) nitrate hexahydrate so that the ratio of Ce: Zr was 0: 100 (mol ratio). Similar to [Method for producing composite abrasive grains of Example 2], Zr abrasive grains of Comparative Example 6 were obtained.

3.研磨液組成物の調製(実施例1~5及び比較例1~6)
実施例1~5及び比較例1~6の砥粒(0.5質量%)と、必要に応じてpH調整剤(少量)と、水系媒体(超純水)(残部)とを混合し、25℃におけるpHが4.5の、実施例1~5及び比較例1~6の研磨液組成物を得た。pH調整剤としては、アンモニア若しくは塩酸を用いた。
3. 3. Preparation of polishing liquid composition (Examples 1 to 5 and Comparative Examples 1 to 6)
Abrasive grains (0.5% by mass) of Examples 1 to 5 and Comparative Examples 1 to 6, a pH adjuster (small amount) and an aqueous medium (ultrapure water) (remaining portion) were mixed, if necessary. Polishing solution compositions of Examples 1 to 5 and Comparative Examples 1 to 6 having a pH of 4.5 at 25 ° C. were obtained. Ammonia or hydrochloric acid was used as the pH adjuster.

4.研磨液組成物(実施例1~5及び比較例1~6)の評価
[試験片の作成]
シリコンウェーハの片面に、TEOS-プラズマCVD法で厚さ2,000nmの酸化珪素膜を形成したものから、40mm×40mmの正方形片を切り出し、酸化珪素膜試験片を得た。
4. Evaluation of Polishing Liquid Compositions (Examples 1 to 5 and Comparative Examples 1 to 6) [Preparation of Test Pieces]
A 40 mm × 40 mm square piece was cut out from a silicon wafer having a silicon oxide film having a thickness of 2,000 nm formed on one side of the silicon wafer by the TEOS-plasma CVD method to obtain a silicon oxide film test piece.

[酸化珪素膜(被研磨膜)の研磨速度の測定]
研磨装置として、定盤径380mmのテクノライズ社製「TR15M-TRK1」を用いた。また、研磨パッドとしては、ニッタ・ハース社製の硬質ウレタンパッド「IC-1000/Suba400」を用いた。前記研磨装置の定盤に、前記研磨パッドを貼り付けた。前記試験片をホルダーにセットし、試験片の酸化珪素膜を形成した面が下になるように(酸化珪素膜が研磨パッドに面するように)ホルダーを研磨パッドに載せた。さらに、試験片にかかる荷重が300g重/cm2となるように、錘をホルダーに載せた。研磨パッドを貼り付けた定盤の中心に、研磨液組成物を50mL/分の速度で滴下しながら、定盤及びホルダーのそれぞれを同じ回転方向に90r/分で1分間回転させて、酸化珪素膜試験片の研磨を行った。研磨後、超純水を用いて洗浄し、乾燥して、酸化珪素膜試験片を後述の光干渉式膜厚測定装置による測定対象とした。
[Measurement of polishing speed of silicon oxide film (film to be polished)]
As a polishing device, "TR15M-TRK1" manufactured by Technorise Co., Ltd. having a surface plate diameter of 380 mm was used. As the polishing pad, a rigid urethane pad "IC-1000 / Suba400" manufactured by Nitta Haas Co., Ltd. was used. The polishing pad was attached to the surface plate of the polishing device. The test piece was set on the holder, and the holder was placed on the polishing pad so that the surface of the test piece on which the silicon oxide film was formed was facing down (so that the silicon oxide film faced the polishing pad). Further, the weight was placed on the holder so that the load applied to the test piece was 300 g weight / cm 2 . While dropping the polishing liquid composition at a rate of 50 mL / min on the center of the surface plate to which the polishing pad is attached, rotate each of the surface plate and the holder in the same rotation direction at 90 r / min for 1 minute to make silicon oxide. The membrane test piece was polished. After polishing, it was washed with ultrapure water and dried, and the silicon oxide film test piece was used as a measurement target by the optical interferometry film thickness measuring device described later.

研磨前及び研磨後において、光干渉式膜厚測定装置(大日本スクリーン社製「ラムダエースVM-1000」)を用いて、酸化珪素膜の膜厚を測定した。酸化珪素膜の研磨速度は下記式により算出し、比較例4の研磨速度を100とした場合の相対値で、下記表1に示した。
酸化珪素膜の研磨速度(Å/分)
=[研磨前の酸化珪素膜厚さ(Å)-研磨後の酸化珪素膜厚さ(Å)]/研磨時間(分)
Before and after polishing, the film thickness of the silicon oxide film was measured using a light interferometry film thickness measuring device (“Lambda Ace VM-1000” manufactured by Dainippon Screen Co., Ltd.). The polishing rate of the silicon oxide film was calculated by the following formula, and is a relative value when the polishing rate of Comparative Example 4 was 100, and is shown in Table 1 below.
Polishing speed of silicon oxide film (Å / min)
= [Silicon oxide film thickness before polishing (Å) -Silicon oxide film thickness after polishing (Å)] / Polishing time (minutes)

Figure 0007019379000001
Figure 0007019379000001

表1に示されるように、複合砥粒中の前記金属原子Aの含有量が、セリウム原子と金属原子Aの合計量(100モル%)に対して、8モル%以上37モル%以下であり、複合砥粒のアスペクト比が2.0以上100以下である、複合砥粒を含む実施例1~5の研磨液組成物を用いた場合、比較例1~6の研磨液組成物を用いる場合と比較して、研磨速度が向上していた。 As shown in Table 1, the content of the metal atom A in the composite abrasive grains is 8 mol% or more and 37 mol% or less with respect to the total amount (100 mol%) of the cerium atom and the metal atom A. When the polishing liquid compositions of Examples 1 to 5 containing the composite abrasive grains having an aspect ratio of the composite abrasive grains of 2.0 or more and 100 or less are used, when the polishing liquid compositions of Comparative Examples 1 to 6 are used. Compared with, the polishing speed was improved.

本発明の複合砥粒は、高密度化又は高集積化用の半導体基板の製造方法において有用である。 The composite abrasive grains of the present invention are useful in a method for manufacturing a semiconductor substrate for high density or high integration.

Claims (10)

酸化セリウム粒子中のセリウム原子の一部がセリウム原子以外の4価の金属原子により置換された複合砥粒であり、
前記複合砥粒中の前記金属原子の含有量は、前記セリウム原子と前記金属原子の合計量に対して、8モル%以上37モル%以下であり、
アスペクト比が以上20以下であり、
昇温還元法(Temperature-Programmed-Reaction)により測定される300℃以下の水生成量が、前記複合砥粒の単位表面積あたり、8mmol/m 2 以上である、
複合砥粒。
It is a composite abrasive grain in which a part of the cerium atom in the cerium oxide particles is replaced with a tetravalent metal atom other than the cerium atom.
The content of the metal atom in the composite abrasive grains is 8 mol% or more and 37 mol% or less with respect to the total amount of the cerium atom and the metal atom.
The aspect ratio is 3 or more and 20 or less ,
The amount of water produced at 300 ° C. or lower as measured by the temperature-reducing method (Temperature-Programmed-Reaction) is 8 mmol / m 2 or more per unit surface area of the composite abrasive grains.
Composite abrasive grains.
前記複合砥粒の短辺が、10nm以上50nm未満である、請求項1に記載の複合砥粒。 The composite abrasive grain according to claim 1, wherein the short side of the composite abrasive grain is 10 nm or more and less than 50 nm. 前記複合砥粒の長辺が、60nm以上1000nm以下である、請求項1又は2に記載の複合砥粒。 The composite abrasive grain according to claim 1 or 2, wherein the long side of the composite abrasive grain is 60 nm or more and 1000 nm or less. 前記金属原子が、マンガン、チタン及びジルコニウムから選ばれる少なくとも1種の原子である、請求項1から3のいずれかの項に記載の複合砥粒。 The composite abrasive grain according to any one of claims 1 to 3, wherein the metal atom is at least one atom selected from manganese, titanium and zirconium. 前記複合砥粒表面における{100}面の露出量が、3%以上90%以下である、請求項1から4のいずれかの項に記載の複合砥粒。 The composite abrasive grain according to any one of claims 1 to 4, wherein the exposure amount of the {100} surface on the composite abrasive grain surface is 3% or more and 90% or less. 請求項1からのいずれかの項に記載の複合砥粒、及び水系媒体を含む、研磨液組成物。 A polishing liquid composition containing the composite abrasive grains according to any one of claims 1 to 5 and an aqueous medium. 請求項に記載の研磨液組成物を用いて被研磨基板を研磨する工程を含む、半導体基板の製造方法。 A method for manufacturing a semiconductor substrate, which comprises a step of polishing the substrate to be polished using the polishing liquid composition according to claim 6 . 請求項に記載の研磨液組成物を用いて被研磨基板を研磨する工程を含む、基板の研磨方法。 A method for polishing a substrate, which comprises a step of polishing the substrate to be polished using the polishing liquid composition according to claim 6 . 請求項に記載の研磨液組成物を用いて被研磨基板を研磨する工程を含む、半導体装置の製造方法。 A method for manufacturing a semiconductor device, which comprises a step of polishing a substrate to be polished using the polishing liquid composition according to claim 6 . セリウムを含む水溶液、セリウム原子以外の4価の金属原子を含む水溶液、及びアルカリ剤を含有する水溶液を混合し沈殿を生成する工程と、
次いで、生成した沈殿を100℃以上300℃以下で、6時間以上120時間以下、水熱処理を行う工程とを含み、
合砥粒中の前記金属原子の含有量は、前記セリウム原子と前記金属原子の合計量に対して、8モル%以上37モル%以下であり、アスペクト比が以上20以下であり、
昇温還元法(Temperature-Programmed-Reaction)により測定される300℃以下の水生成量が、複合砥粒の単位表面積あたり、8mmol/m 2 以上である、複合砥粒の製造方法。
A step of mixing an aqueous solution containing cerium, an aqueous solution containing a tetravalent metal atom other than a cerium atom, and an aqueous solution containing an alkaline agent to form a precipitate.
Next, the step of hydrothermally treating the produced precipitate at 100 ° C. or higher and 300 ° C. or lower for 6 hours or longer and 120 hours or lower is included.
The content of the metal atom in the composite abrasive grain is 8 mol% or more and 37 mol% or less, and the aspect ratio is 3 or more and 20 or less with respect to the total amount of the cerium atom and the metal atom.
A method for producing composite abrasive grains, wherein the amount of water produced at 300 ° C. or lower measured by the temperature-heating reduction method (Temperature-Programmed-Reaction) is 8 mmol / m 2 or more per unit surface area of the composite abrasive grains.
JP2017213002A 2017-11-02 2017-11-02 Composite abrasive grains Active JP7019379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017213002A JP7019379B2 (en) 2017-11-02 2017-11-02 Composite abrasive grains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017213002A JP7019379B2 (en) 2017-11-02 2017-11-02 Composite abrasive grains

Publications (2)

Publication Number Publication Date
JP2019087571A JP2019087571A (en) 2019-06-06
JP7019379B2 true JP7019379B2 (en) 2022-02-15

Family

ID=66763363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017213002A Active JP7019379B2 (en) 2017-11-02 2017-11-02 Composite abrasive grains

Country Status (1)

Country Link
JP (1) JP7019379B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188270A (en) 1998-12-22 2000-07-04 Hitachi Chem Co Ltd Cerium oxide abrasive and method of grinding substrate
JP2001035818A (en) 1999-07-16 2001-02-09 Seimi Chem Co Ltd Abrasive powder for semiconductor
JP2001351883A (en) 2000-06-06 2001-12-21 Toray Ind Inc Abrasive for semiconductor insulation film
JP2004155913A (en) 2002-11-06 2004-06-03 Yushiro Chem Ind Co Ltd Abrasive grain for polishing, manufacturing method therefor, and abrasive
WO2005070832A1 (en) 2004-01-21 2005-08-04 Mitsui Mining & Smelting Co., Ltd. Oxide solid solution powder
JP2007106890A (en) 2005-10-13 2007-04-26 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive material
JP2007197311A (en) 2005-12-28 2007-08-09 Daiichi Kigensokagaku Kogyo Co Ltd Cerium-zirconium composite oxide and method for producing the same
JP2009515807A (en) 2005-11-14 2009-04-16 エルジー・ケム・リミテッド Cerium carbonate powder, cerium oxide powder, method for producing the same, and CMP slurry containing the same
JP2012236741A (en) 2011-05-11 2012-12-06 Toyota Motor Corp Ceria-zirconia composite oxide nanoparticle having bar shape
WO2012165362A1 (en) 2011-06-01 2012-12-06 ロディア・オペラシヨン Complex oxide, method for producing same, and exhaust gas purification catalyst
JP2016510303A (en) 2013-02-05 2016-04-07 ローディア オペレーションズ Precipitation and calcination compositions based on zirconium oxide and cerium oxide
JP2017186196A (en) 2016-04-05 2017-10-12 Jsr株式会社 Rare earth element cerium composite oxide particle and manufacturing method therefor and polishing composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188270A (en) 1998-12-22 2000-07-04 Hitachi Chem Co Ltd Cerium oxide abrasive and method of grinding substrate
JP2001035818A (en) 1999-07-16 2001-02-09 Seimi Chem Co Ltd Abrasive powder for semiconductor
JP2001351883A (en) 2000-06-06 2001-12-21 Toray Ind Inc Abrasive for semiconductor insulation film
JP2004155913A (en) 2002-11-06 2004-06-03 Yushiro Chem Ind Co Ltd Abrasive grain for polishing, manufacturing method therefor, and abrasive
WO2005070832A1 (en) 2004-01-21 2005-08-04 Mitsui Mining & Smelting Co., Ltd. Oxide solid solution powder
JP2007106890A (en) 2005-10-13 2007-04-26 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive material
JP2009515807A (en) 2005-11-14 2009-04-16 エルジー・ケム・リミテッド Cerium carbonate powder, cerium oxide powder, method for producing the same, and CMP slurry containing the same
JP2007197311A (en) 2005-12-28 2007-08-09 Daiichi Kigensokagaku Kogyo Co Ltd Cerium-zirconium composite oxide and method for producing the same
JP2012236741A (en) 2011-05-11 2012-12-06 Toyota Motor Corp Ceria-zirconia composite oxide nanoparticle having bar shape
WO2012165362A1 (en) 2011-06-01 2012-12-06 ロディア・オペラシヨン Complex oxide, method for producing same, and exhaust gas purification catalyst
JP2016510303A (en) 2013-02-05 2016-04-07 ローディア オペレーションズ Precipitation and calcination compositions based on zirconium oxide and cerium oxide
JP2017186196A (en) 2016-04-05 2017-10-12 Jsr株式会社 Rare earth element cerium composite oxide particle and manufacturing method therefor and polishing composition

Also Published As

Publication number Publication date
JP2019087571A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6827318B2 (en) Cerium oxide abrasive grains
TWI588250B (en) Abrasive particles, polishing slurry and method of fabricating abrasive particles
JPWO2005110679A1 (en) Polishing composition
JP2015231029A (en) Polishing liquid composition for polishing silicon oxide film
JP6130316B2 (en) Polishing composition, polishing method, and method for producing polishing composition
JP6268069B2 (en) Polishing composition and polishing method
EP2896672A2 (en) Manufacturing method of polishing agent, polishing method, and manufacturing method of semiconductor integrated circuit device
KR101492234B1 (en) Method of preparing ceria particle, ceria particle thereby and polishing slurry comprising the same
JP7044510B2 (en) Cerium oxide-containing composite abrasive
JP7019379B2 (en) Composite abrasive grains
JP6761339B2 (en) Cerium oxide abrasive grains
US9328261B2 (en) Polishing agent, polishing method, and manufacturing method of semiconductor integrated circuit device
WO2022071120A1 (en) Cerium oxide and polishing agent
KR20190064245A (en) Slurry composition for polishing, method for producing the same and method for polishing semiconductor thin film by using the same
WO2022050242A1 (en) Cerium oxide and polishing agent
KR20150071775A (en) High planarity slurry composition
JP6797665B2 (en) Abrasive liquid composition
US20230025469A1 (en) Cerium-based particle and polishing slurry composition including the same
KR100637403B1 (en) Abrasive particles, slurry for polishing and method of manufacturing the same
KR101483449B1 (en) Method of manufacturing cerium based polishing particle and the cerium based polishing particle thereof
KR101483450B1 (en) Method of manufacturing cerium based polishing particle and the cerium based polishing particle thereof
KR20150042322A (en) Method of manufacturing cerium based polishing particle and the cerium based polishing particle thereof
JP2015074707A (en) Polishing composition, method for producing the polishing composition, and polishing method
KR20070074725A (en) Cerium oxide slurry for polishing of a semiconductor thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220202

R151 Written notification of patent or utility model registration

Ref document number: 7019379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151