JP7019144B2 - Method and device for separating the medium from the particle suspension - Google Patents

Method and device for separating the medium from the particle suspension Download PDF

Info

Publication number
JP7019144B2
JP7019144B2 JP2017556470A JP2017556470A JP7019144B2 JP 7019144 B2 JP7019144 B2 JP 7019144B2 JP 2017556470 A JP2017556470 A JP 2017556470A JP 2017556470 A JP2017556470 A JP 2017556470A JP 7019144 B2 JP7019144 B2 JP 7019144B2
Authority
JP
Japan
Prior art keywords
flow path
particles
medium
liquid
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017556470A
Other languages
Japanese (ja)
Other versions
JPWO2017104812A1 (en
Inventor
英克 田澤
武彦 北森
貴史 大貫
大介 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Sankyo Co Ltd
Institute of Microchemical Technology
Original Assignee
Daiichi Sankyo Co Ltd
Institute of Microchemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Sankyo Co Ltd, Institute of Microchemical Technology filed Critical Daiichi Sankyo Co Ltd
Publication of JPWO2017104812A1 publication Critical patent/JPWO2017104812A1/en
Application granted granted Critical
Publication of JP7019144B2 publication Critical patent/JP7019144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D43/00Separating particles from liquids, or liquids from solids, otherwise than by sedimentation or filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、液状の媒体中に粒子が浮遊した粒子浮遊液から媒体を分離する方法及び装置に関する。 The present invention relates to a method and an apparatus for separating a medium from a particle suspension liquid in which particles are suspended in a liquid medium.

従来より、細菌や酵母のような微生物を液体培養して微生物に有用物質を生産、分泌させ、液体培地中に分泌された有用物質を回収することにより有用物質を生産する方法が工業的に広く行われている。このような方法を実施するためには、有用物質の回収時に培養液と微生物細胞とを分離することが必要である。この分離は、従来より、通常、遠心分離又はろ過により行われている。 Conventionally, there has been a wide range of industrial methods for producing useful substances by culturing microorganisms such as bacteria and yeast in a liquid culture, causing the microorganisms to produce and secrete useful substances, and recovering the useful substances secreted in the liquid medium. It is done. In order to carry out such a method, it is necessary to separate the culture medium and the microbial cells at the time of recovery of the useful substance. This separation has traditionally been performed by centrifugation or filtration.

しかしながら、遠心分離やろ過は、バッチ式であり、微生物細胞を含む培養物から連続的に微生物細胞を含まない液体培地を回収することはできない。 However, centrifugation and filtration are batch-type, and it is not possible to continuously recover a liquid medium containing no microbial cells from a culture containing microbial cells.

一方、非特許文献1には、種々のサイズの粒子を含む粒子浮遊液中の粒子を、粒子のサイズに基づいて分離する方法が記載されている。この方法では、狭い流路と広い流路が接続された流路デバイスを用い、狭い流路から広い流路に粒子浮遊液を流通させ、広い流路中では大きな粒子が流路の中央付近を流通し、小さな粒子がその外側の部分を流れる現象を利用して粒子を粒子サイズに基づき分離している。さらに、粒子を、狭い流路の一方の壁面上に並べるために粒子を含まない液を狭い流路の入口付近で合流させている。 On the other hand, Non-Patent Document 1 describes a method for separating particles in a particle suspension liquid containing particles of various sizes based on the size of the particles. In this method, a flow path device in which a narrow flow path and a wide flow path are connected is used to circulate the particle suspension liquid from the narrow flow path to the wide flow path, and in the wide flow path, large particles move around the center of the flow path. The particles are separated based on the particle size by utilizing the phenomenon that small particles flow through the outer part of the particles. Further, in order to arrange the particles on one wall surface of the narrow flow path, a liquid containing no particles is merged near the entrance of the narrow flow path.

しかしながら、非特許文献1記載の方法では、粒子を含まない媒体を分離することは記載も示唆もされておらず、非特許文献1記載の装置によっては、粒子を含まない媒体を分離することはできない。また、粒子の軸集中現象を利用して全血から血漿を分離する方法も知られている(特許文献1、特許文献2)。 However, it is neither described nor suggested that the method described in Non-Patent Document 1 separates a medium containing no particles, and depending on the apparatus described in Non-Patent Document 1, the medium containing no particles may be separated. Can not. Further, a method of separating plasma from whole blood by utilizing the axial concentration phenomenon of particles is also known (Patent Document 1 and Patent Document 2).

特開2010-237050号公報Japanese Unexamined Patent Publication No. 2010-237050 米国特許公報8,889,071 B2U.S. Patent Gazette 8,889,071 B2

Masumi Yamada et al., Anal. Chem. 2004, 76, 5465-5471Masumi Yamada et al., Anal. Chem. 2004, 76, 5465-5471

本発明の目的は、粒子浮遊液から連続的に粒子を含まない媒体を分離することができる、液状の媒体中に粒子が分散された粒子浮遊液から粒子を含まない媒体を分離する方法及び装置を提供することである。 An object of the present invention is a method and an apparatus for separating a particle-free medium from a particle suspension in which particles are dispersed in a liquid medium, which can continuously separate a particle-free medium from the particle suspension. Is to provide.

本願発明者らは、鋭意研究の結果、狭い流路から広い流路に粒子浮遊液を流通させると、広い流路内では、流路の周縁部には粒子が流れない現象を見出し、粒子が流れない流路周縁部から媒体を回収するための流路を分岐させ、この分岐から媒体を回収することによって、実質的に粒子を含まない媒体の分離が可能であることに想到し、かつ、実験的に確認して本発明を完成した。 As a result of diligent research, the inventors of the present application have found that when a particle suspension liquid is circulated from a narrow flow path to a wide flow path, the particles do not flow to the peripheral edge of the flow path in the wide flow path, and the particles are formed. By branching the flow path for collecting the medium from the peripheral portion of the flow path that does not flow and collecting the medium from this branch, it was conceived that the medium containing substantially no particles can be separated. The present invention was completed by experimental confirmation.

すなわち、本発明は、液状の媒体中に粒子が浮遊した粒子浮遊液から媒体を回収する方法であって、
第1の流路と、該第1の流路に接続され、第1の流路よりもサイズが大きい第2の流路と、該第2の流路から分岐し、該第2の流路よりもサイズが小さい第3の流路を具備する流路デバイスを準備する工程と、
前記第1の流路側から前記粒子浮遊液を前記第2の流路側に流通させる工程と、
前記第3の流路から、媒体を回収する工程とを含み、前記第1の流路の下流端は、前記第2の流路の上流端のほぼ中央に接続しており、前記粒子が微生物細胞であり、前記媒体が液体培地であり、該液体培地を補充しながら培養物を循環させる、粒子浮遊液の媒体の回収方法を提供する。
That is, the present invention is a method for recovering a medium from a particle suspension liquid in which particles are suspended in a liquid medium.
The first flow path, the second flow path connected to the first flow path and having a size larger than that of the first flow path, and the second flow path branching from the second flow path. The process of preparing a flow path device with a third flow path that is smaller in size than
A step of circulating the particle suspension liquid from the first flow path side to the second flow path side,
The step of collecting the medium from the third flow path is included, and the downstream end of the first flow path is connected to substantially the center of the upstream end of the second flow path, and the particles are formed. Provided is a method for recovering a medium of a particle suspension liquid , which is a microbial cell and the medium is a liquid medium, and the culture is circulated while supplementing the liquid medium .

また、本発明は、第1の流路と、該第1の流路に接続され、第1の流路よりもサイズが大きい第2の流路と、該第2の流路から分岐し、該第2の流路よりもサイズが小さい第3の流路を具備し、前記第1の流路の下流端は、前記第2の流路の上流端のほぼ中央に接続している、粒子浮遊液から媒体を回収する、上記本発明の方法を行うための媒体回収装置を提供する。 Further, in the present invention, the first flow path, the second flow path connected to the first flow path and having a size larger than that of the first flow path, and the second flow path are branched from the second flow path. A particle having a third flow path that is smaller in size than the second flow path, the downstream end of the first flow path being connected to approximately the center of the upstream end of the second flow path. Provided is a medium recovery device for performing the above-mentioned method of the present invention, which recovers a medium from a suspended liquid.

本発明により、粒子浮遊液を循環させたまま、実質的に粒子を含まない媒体を連続的に回収することが可能な、媒体の分離方法及びそのための装置が初めて提供された。本発明の方法を、例えば、有用物質を生産する微生物の培養物からの培地の回収方法に適用すれば、新鮮な液体培地を補充しながら培養物を循環させ、分泌された有用物質を含む培地を連続的に回収することが可能となるので、有用物質の生産効率を向上させることができる。 INDUSTRIAL APPLICABILITY The present invention provides for the first time a method for separating a medium and an apparatus therefor, which can continuously recover a medium containing substantially no particles while circulating a suspended particle liquid. If the method of the present invention is applied to, for example, a method for recovering a medium from a culture of a microorganism producing a useful substance, the culture is circulated while being supplemented with a fresh liquid medium, and a medium containing the secreted useful substance is applied. Can be continuously recovered, so that the production efficiency of useful substances can be improved.

図1の上図は、本発明の好ましい一実施形態になる分離装置の模式平面図であり、下図は、上図の要部拡大図である。The upper figure of FIG. 1 is a schematic plan view of a separation device according to a preferred embodiment of the present invention, and the lower figure is an enlarged view of a main part of the upper figure. 図2は、本発明の方法に利用可能な軸集中現象を示す顕微鏡写真である。FIG. 2 is a photomicrograph showing an axial concentration phenomenon that can be used in the method of the present invention.

本発明の方法は、液状の媒体中に粒子が分散された粒子浮遊液から媒体を分離して回収する方法である。ここで、「粒子」は、粒径(直径、ただし、球形ではなく、長径と短径が存在する場合には、長径)が通常、0.5μm~50μm程度、好ましくは1μm~10μm程度の粒子である。粒子の例としては、大腸菌等の細菌や酵母のような微生物;哺乳動物のような多細胞生物の細胞等を挙げることができるが、これらに限定されるものではなく、工業的に生産されるラテックス粒子やプラスチック粒子等であってもよい。「液状の媒体」は、上記した粒子を浮遊(懸濁)させている媒体であり、粒子を浮遊できる液体であれば何ら限定されるものではない。細胞の培養物の場合には液体培地等であり、工業的な粒子の場合には、その粒子の製造に利用される溶媒や分散媒等である。媒体は、任意の成分を溶解した溶液であってもよい。「粒子浮遊液」は、上記媒体中に上記粒子が浮遊されている液であり、代表的な例としては、微生物や多細胞生物の細胞の培養物や、工業的に製造された粒子を分散した分散液等を挙げることができる。 The method of the present invention is a method of separating and recovering a medium from a particle suspension liquid in which particles are dispersed in a liquid medium. Here, the "particle" is a particle having a particle size (diameter, but not spherical, and a major axis when a major axis and a minor axis exist), usually about 0.5 μm to 50 μm, preferably about 1 μm to 10 μm. Is. Examples of particles include, but are not limited to, bacteria such as Escherichia coli and microorganisms such as yeast; cells of multicellular organisms such as mammals, but are industrially produced. It may be latex particles, plastic particles, or the like. The "liquid medium" is a medium in which the above-mentioned particles are suspended (suspended), and is not limited to any liquid as long as the particles can be suspended. In the case of a cell culture, it is a liquid medium or the like, and in the case of industrial particles, it is a solvent, a dispersion medium or the like used for producing the particles. The medium may be a solution in which any component is dissolved. The "particle suspension" is a liquid in which the particles are suspended in the medium, and as a typical example, a culture of cells of a microorganism or a multicellular organism, or an industrially produced particle is dispersed. The dispersion liquid and the like can be mentioned.

本発明の方法に用いられる流路デバイスは、第1の流路と、該第1の流路に接続され、第1の流路よりもサイズが大きい第2の流路と、該第2の流路から分岐し、該第2の流路よりもサイズが小さい第3の流路を具備する。ここで、「サイズが大きい」とは、流路の断面積が大きいことを意味する。各流路は、基板内に同じ深さで形成することもできる。この場合には、「サイズが大きい」は、「幅が広い」ことを意味し、「サイズが小さい」は「幅が狭い」ことを意味する。各流路の深さが同じ場合、第1の流路と第2の流路との幅の比率は、第2の流路の周縁部に粒子が含まれない領域が形成されるのであれば特に限定されないが、通常、5:100~30:100程度である。また、第2の流路と第3の流路の幅の比率は、第3の流路から実質的に粒子を含まない媒体を回収できるのであれば特に限定されないが、通常、100:10~100:30程度である。ここで実質的に粒子を含まない媒体とは、目的とする機能に支障がない程度にまで粒子濃度が減少している媒体を意味する。 The flow path device used in the method of the present invention includes a first flow path, a second flow path connected to the first flow path, and a size larger than that of the first flow path, and the second flow path. It branches from the flow path and includes a third flow path that is smaller in size than the second flow path. Here, "large size" means that the cross-sectional area of the flow path is large. Each flow path can also be formed in the substrate at the same depth. In this case, "large size" means "wide" and "small size" means "narrow". When the depth of each flow path is the same, the ratio of the width between the first flow path and the second flow path is such that if a particle-free region is formed in the peripheral portion of the second flow path. Although not particularly limited, it is usually about 5: 100 to 30: 100. Further, the ratio of the widths of the second flow path and the third flow path is not particularly limited as long as the medium containing substantially no particles can be recovered from the third flow path, but is usually 100: 10 to 100: 10. It is about 100:30. Here, the medium containing substantially no particles means a medium in which the particle concentration is reduced to the extent that the target function is not hindered.

前記第1の流路の上流側に、該第1の流路よりもサイズが大きい第4の流路が接続されていることが好ましい。第4の流路は設けなくてもよいが、第4の流路が存在すると、比較的小さな圧力で第4の流路に粒子浮遊液を流した場合でも、サイズが小さい第1の流路では大きな圧力が得られるので好ましい。第4の流路と第1の流路が同じ深さの場合、幅の比率は、特に限定されないが、通常、100:5~100:30程度である。なお、プラスチック、ガラス、紙等の成形等により流路を形成すれば、流路の深さを容易に変えることができるので、流路の深さは同じである必要はなく、この場合には、上記した第1の流路と第2の流路との好ましい幅の比率、上記した第2の流路と第3の流路の幅の好ましい比率、及び上記した第4の流路と第1の流路の好ましい幅の比率は、各流路の好ましい断面積の比率である。 It is preferable that a fourth flow path having a size larger than that of the first flow path is connected to the upstream side of the first flow path. It is not necessary to provide the fourth flow path, but if the fourth flow path is present, the first flow path having a small size is small even when the particle suspension liquid is flowed through the fourth flow path with a relatively small pressure. Is preferable because a large pressure can be obtained. When the fourth flow path and the first flow path have the same depth, the width ratio is not particularly limited, but is usually about 100: 5 to 100:30. If the flow path is formed by molding plastic, glass, paper, etc., the depth of the flow path can be easily changed. Therefore, the depth of the flow path does not have to be the same. In this case, the flow path does not have to be the same. , The preferred width ratio between the first channel and the second channel described above, the preferred width ratio between the second channel and the third channel described above, and the fourth channel and the fourth channel described above. The ratio of the preferable width of the flow path of 1 is the ratio of the preferable cross-sectional area of each flow path.

上記した流路デバイスにおける流路の幅や深さは特に限定されないが、流路デバイスは、マイクロ流路チップの形態にあることが好ましい。マイクロ流路チップは、基板(チップ)内にマイクロ流路(すなわち、通常、幅が5μm~2mm程度、特には10μm~2mm程度、深さが5μm~2mm程度、特には5μm~500μm程度の流路)を形成したものである。マイクロ流路チップは、流路が小さいので流路を流通する液の量は少ないが、液量が少ないが故に混合や分離の効率が良く、液の加熱や冷却も速やかに行うことができるという有利な利点を有している。個々の流路を流れる液体の流量は少ないが、多数のマイクロ流路チップを同時併用すれば、全体としての処理量を大きくすることができる。このため、近年様々な工業的な化学プロセスにおいても盛んに実用化されつつあるものである。本発明においても、流路デバイスをマイクロ流路チップとすることにより、媒体の回収効率を高めることができるので好ましい。 The width and depth of the flow path in the above-mentioned flow path device are not particularly limited, but the flow path device is preferably in the form of a micro flow path chip. The microchannel chip is a flow in the substrate (chip) having a microchannel (that is, usually a width of about 5 μm to 2 mm, particularly about 10 μm to 2 mm, and a depth of about 5 μm to 2 mm, particularly about 5 μm to 500 μm. The road) was formed. Since the microchannel chip has a small flow path, the amount of liquid flowing through the flow path is small, but because the amount of liquid is small, the efficiency of mixing and separation is good, and the liquid can be heated and cooled quickly. It has a favorable advantage. Although the flow rate of the liquid flowing through each flow path is small, the processing amount as a whole can be increased by using a large number of micro flow path chips at the same time. For this reason, it is being actively put into practical use in various industrial chemical processes in recent years. Also in the present invention, it is preferable to use the flow path device as a micro flow path chip because the recovery efficiency of the medium can be improved.

マイクロ流路チップは、例えば、各流路の底面を構成する平板(下部基板)上に、各流路を貫通させたシート(上部基板)を積層して固定することにより容易に作製することができる。この場合、シートの厚さは一定であるので、各流路の深さは同じとなる。したがって、流路のサイズは、流路の幅により規定される。もっとも、上記のとおり、マイクロ流路チップであっても、型を用いたプラスチック、ガラス、紙などの成形により、各流路の深さを容易に変えることが可能であるので、深さが同じということは必須的ではない。 The microchannel chip can be easily manufactured, for example, by laminating and fixing a sheet (upper substrate) penetrating each channel on a flat plate (lower substrate) constituting the bottom surface of each channel. can. In this case, since the thickness of the sheet is constant, the depth of each flow path is the same. Therefore, the size of the flow path is defined by the width of the flow path. However, as described above, even with microchannel chips, the depth of each channel can be easily changed by molding plastic, glass, paper, etc. using a mold, so the depth is the same. That is not essential.

マイクロ流路チップの場合、いずれの流路とも、幅が通常、5μm~2mm程度、特に10μm~2mm程度、深さも通常、5μm~2mm程度、特に5μm~500μmでよいが、上記した第1の流路の幅は、例えば10μm~200μmであり、前記第2の流路の幅は、例えば200μm~2mmである。また、第3の流路及び第4の流路の幅は、通常、これらの幅の第1の流路及び第2の流路に対して上記した範囲の比率となる幅である。また、第1の流路12の長さは任意でよく、例えば、1mm~5mm程度である。他の流路の長さも全くの任意でよい。 In the case of the microchannel chip, the width of each channel is usually about 5 μm to 2 mm, particularly about 10 μm to 2 mm, and the depth is usually about 5 μm to 2 mm, particularly 5 μm to 500 μm. The width of the flow path is, for example, 10 μm to 200 μm, and the width of the second flow path is, for example, 200 μm to 2 mm. Further, the width of the third flow path and the fourth flow path is usually a width that is a ratio of these widths to the first flow path and the second flow path in the above range. Further, the length of the first flow path 12 may be arbitrary, for example, about 1 mm to 5 mm. The length of the other channels may be completely arbitrary.

流路デバイスがマイクロ流路チップであり、第4の流路も形成した好ましい一実施形態の模式平面図を図1に示す。図1に示す流路デバイス10は、第1の流路12と、該第1の流路12に接続され、第1の流路12よりも幅が大きい第2の流路と、該第2の流路から分岐し、該第2の流路よりも幅が小さい第3の流路を具備する。さらに、第1の流路12の上流側に、該第1の流路12よりも幅が大きい第4の流路18が接続されている。 FIG. 1 shows a schematic plan view of a preferred embodiment in which the flow path device is a micro flow path chip and a fourth flow path is also formed. The flow path device 10 shown in FIG. 1 has a first flow path 12, a second flow path connected to the first flow path 12, and wider than the first flow path 12, and the second flow path. It is provided with a third flow path that branches from the flow path of No. 1 and has a width smaller than that of the second flow path. Further, a fourth flow path 18 having a width larger than that of the first flow path 12 is connected to the upstream side of the first flow path 12.

次に、図1に示すマイクロ流路チップを用いて本発明の方法を実施する操作方法と動作原理を説明する。図1中の3つの白抜き矢印は、それぞれ液の流れる方向を示している。先ず、第4の流路18の上流側(第1の流路12が接続されている側とは反対側)から、粒子浮遊液20を流す。これは図示しないポンプを用いて容易に行うことができる。図1中、参照番号22で示される多数の小さな円は、粒子浮遊液中20に浮遊する粒子を模式的に示す。この際の流速は、特に限定されないが、通常、10μL/分~200μL/分程度である。また、圧力は、特に限定されないが、通常、50ヘクトパスカル~500ヘクトパスカル程度である。 Next, an operation method and an operation principle for carrying out the method of the present invention using the microchannel chip shown in FIG. 1 will be described. The three white arrows in FIG. 1 indicate the direction in which the liquid flows. First, the particle suspension liquid 20 is flowed from the upstream side of the fourth flow path 18 (the side opposite to the side to which the first flow path 12 is connected). This can be easily done using a pump (not shown). In FIG. 1, a large number of small circles indicated by reference number 22 schematically indicate particles suspended in the particle suspended liquid 20. The flow velocity at this time is not particularly limited, but is usually about 10 μL / min to 200 μL / min. The pressure is not particularly limited, but is usually about 50 hectopascals to 500 hectopascals.

そうすると、粒子浮遊液20は、第1の流路12に進む。なお、第4の流路18から、粒子22がスムースに第1の流路12内に侵入するように、第4の流路18の下流端部(第1の流路12に近い側)には、テーパー部18aを設けることが好ましい。 Then, the particle suspension liquid 20 proceeds to the first flow path 12. In addition, from the fourth flow path 18, the downstream end of the fourth flow path 18 (the side closer to the first flow path 12) so that the particles 22 smoothly enter the first flow path 12. Is preferably provided with a tapered portion 18a.

次いで、粒子浮遊液20は、第2の流路14に進む。この際、粒子浮遊液20は、第4の流路18内での圧力よりも大きな圧力(概ね、第4の流路内の圧力に、第4の流路18と第1の流路12の断面積の比を乗じた圧力になる)で第2の流路14に押し出される。 Next, the particle suspension liquid 20 proceeds to the second flow path 14. At this time, the particle suspension liquid 20 has a pressure higher than the pressure in the fourth flow path 18 (generally, the pressure in the fourth flow path is adjusted to the pressure in the fourth flow path 18 and the first flow path 12). The pressure is multiplied by the ratio of the cross-sectional area) and is extruded into the second flow path 14.

本願発明者らは、第2の流路14に押し出された粒子浮遊液20中の粒子22は、第2の流路14の中央部分を進み、周縁部には進まないことを見出した。この様子を図1の下図に模式的に示す。図1の下図は、第1の流路12の近傍を拡大した模式平面図である。図1の下図に模式的に示されるように、粒子22は、「粒子の流出領域」と図中に記載されている領域にしか進まず、その周縁部には、粒子22が存在しない領域が生じる。そこで、この領域に第3の流路16を分岐として設けることにより、粒子22を実質的に含まない媒体のみが第3の流路16に進入する。したがって、粒子22を実質的に含まない媒体のみを第3の流路16から回収することができる。なお、第3の流路16は、図示のように、第2の流路の最上流側に設けることが好ましい。粒子22は、図1下図に示す粒子の流出領域を進むが、下流側に進むにつれて再び拡散して第2の流路14の周縁部にも入ってくるので、まだ拡散が起きていない部位で第3の流路16を分岐させることが好ましい。なお、粒子22を含む粒子浮遊液20は、第2の流路14内をそのまま進む。 The inventors of the present application have found that the particles 22 in the particle suspension liquid 20 extruded into the second flow path 14 proceed to the central portion of the second flow path 14 and do not advance to the peripheral portion. This situation is schematically shown in the lower figure of FIG. The lower figure of FIG. 1 is an enlarged schematic plan view in the vicinity of the first flow path 12. As schematically shown in the lower figure of FIG. 1, the particle 22 advances only to the region described in the figure as the “particle outflow region”, and the peripheral portion thereof has a region in which the particle 22 does not exist. Occurs. Therefore, by providing the third flow path 16 as a branch in this region, only the medium substantially free of the particles 22 enters the third flow path 16. Therefore, only the medium substantially free of the particles 22 can be recovered from the third flow path 16. As shown in the figure, the third flow path 16 is preferably provided on the most upstream side of the second flow path. The particles 22 travel through the outflow region of the particles shown in the lower figure of FIG. 1, but diffuse again as they proceed to the downstream side and enter the peripheral edge of the second flow path 14, so that the particles 22 are at a site where diffusion has not yet occurred. It is preferable to branch the third flow path 16. The particle suspension liquid 20 containing the particles 22 proceeds as it is in the second flow path 14.

上記した好ましい一実施形態では、各流路の深さは同じであり、粒子の流出領域は、流路の平面方向に規定されているが、各流路の深さを変えて、粒子の流出領域を例えば鉛直方向等、任意の方向に規定することも可能である。深さの異なる流路は、型を用いたプラスチック、ガラス、紙等の成形や、マイクロドリルを用いた掘削等により作製可能である。 In one preferred embodiment described above, the depth of each flow path is the same and the particle outflow region is defined in the plane direction of the flow path, but the depth of each flow path is changed to allow the outflow of particles. It is also possible to define the region in any direction, for example, in the vertical direction. Channels with different depths can be produced by molding plastic, glass, paper, etc. using a mold, excavation using a microdrill, or the like.

上記した好ましい一実施形態では、第1の流路12の下流端は、第2の流路14の上流端のほぼ中央に接続している。
In one preferred embodiment described above, the downstream end of the first flow path 12 is connected to approximately the center of the upstream end of the second flow path 14 .

なお、非特許文献1に記載された装置では、第4の流路18と第1の流路12の接続部分にさらなる流路を接続し、粒子を含まない媒体を流して粒子を第1の流路内の一方の壁面に接触させているが、本発明においては、このようなさらなる流路を設けなくても、粒子を含まない媒体を回収することが可能であるので、このようなさらなる流路は不要である。 In the apparatus described in Non-Patent Document 1, a further flow path is connected to the connection portion between the fourth flow path 18 and the first flow path 12, and a medium containing no particles is flowed to flow the particles to the first flow path. Although it is in contact with one wall surface in the flow path, in the present invention, it is possible to recover the medium containing no particles without providing such a further flow path. No flow path is required.

上記したマイクロ流路チップ10を、粒子浮遊液の供給源タンク(例えば微生物の培養物に適用する場合には培養タンク)に接続される閉じた回路に組み入れ、ポンプにより回路に粒子浮遊液を連続的に循環させることにより、第3の流路16から連続的に粒子22を含まない媒体を回収することができる。この場合、回収される媒体と同量の新鮮な媒体を補充しながら行うことにより、長期間に亘って連続的に粒子22を含まない媒体を回収することができる。したがって、本発明の方法を微生物等の細胞の培養物に適用した場合には、細胞の培養を全く中断することなく、細胞により生産された有用物質を含む液体培地を長期間に亘って連続的に回収することができるので、従来法のように培養を少なくとも部分的に中断して遠心分離やろ過を行う必要がなく、有用物質の回収効率を大幅に向上させることができる。 The above-mentioned microchannel chip 10 is incorporated into a closed circuit connected to a particle suspension source tank (for example, a culture tank when applied to a microbial culture), and the particle suspension is continuously pumped into the circuit by a pump. By circulating the particles 22 continuously, the medium containing no particles 22 can be continuously recovered from the third flow path 16. In this case, by replenishing the same amount of fresh medium as the recovered medium, the medium containing no particles 22 can be continuously recovered for a long period of time. Therefore, when the method of the present invention is applied to a culture of cells such as microorganisms, a liquid medium containing useful substances produced by the cells is continuously applied for a long period of time without interrupting the culture of the cells. Since it is possible to recover the cells, it is not necessary to interrupt the culture at least partially and perform centrifugation or filtration as in the conventional method, and the recovery efficiency of useful substances can be significantly improved.

本発明の方法を工業的に実施する場合、マイクロ流路チップが1つだけでは処理量が少ないので、上記したようなマイクロ流路チップを多数同時併用することが好ましい。この場合、複数のマイクロ流路チップを直列に接続する(すなわち、マイクロ流路の第2の流路14の下流端を、次のマイクロ流路チップの第4の流路18の上流端に接続する)こともできるし、並列に接続(例えば、粒子浮遊液の供給源タンクに多数の出入り口を設けてそれぞれ閉じた回路を形成し、各回路内に上記マイクロ流路チップを組み込む等)こともできるし、直列接続と並列接続の両者を併用することもできる。これらにより、工業的に実用化が可能な程度の処理量を達成することができる。これは様々な他の化学プロセスにおいても確認されている。また、第3の流路16から回収された媒体を、さらに他のマイクロ流路チップの第4の流路18の上流側から供給し、そのマイクロ流路チップの第3の流路16から培地を回収することにより、1個目のマイクロ流路チップから回収された媒体に混入する恐れがある粒子22を確実に排除することもできる。 When the method of the present invention is industrially carried out, it is preferable to simultaneously use a large number of microchannel chips as described above because the amount of processing is small if only one microchannel chip is used. In this case, a plurality of microchannel chips are connected in series (that is, the downstream end of the second channel 14 of the microchannel is connected to the upstream end of the fourth channel 18 of the next microchannel chip. It can be connected in parallel (for example, a large number of entrances and exits are provided in the particle suspension tank to form a closed circuit, and the microchannel chip is incorporated in each circuit, etc.). It is possible, and both series connection and parallel connection can be used together. As a result, it is possible to achieve a processing amount that can be industrially put into practical use. This has also been confirmed in various other chemical processes. Further, the medium recovered from the third channel 16 is supplied from the upstream side of the fourth channel 18 of the other microchannel chip, and the medium is supplied from the third channel 16 of the microchannel chip. By recovering the particles 22, the particles 22 that may be mixed in the medium recovered from the first microchannel chip can be reliably eliminated.

上記した本発明の装置に供給する粒子浮遊液として、粒子の軸集中により得られた、粒子濃度が低減された粒子浮遊液を用いることにより、粒子を含まない媒体をより確実に回収することが可能になるので好ましい。「粒子の軸集中」現象は、直線状のマイクロ流路中に粒子浮遊液を流すと、粒子が流路の中心付近に集中し、その結果、流路の中心付近では粒子濃度が高く、流路の周縁部では粒子濃度が低くなる現象である。この現象自体は公知であり、例えば、特開2010-237050号公報や、米国特許公報8,889,071 B2に記載されている。すなわち、幅が30μm~500μm、好ましくは100μm~400μmであり、深さが10μm~500μmの範囲、好ましくは50μm~400μmの範囲であるマイクロ流路に粒子浮遊液を流通させると、例えば、図2の顕微鏡写真に示されるように、粒子の大部分が流路の中心から直径の約80%の範囲内を流れ、直径の約10%ずつの流路周縁部に流れる粒子は少なくなっている。軸集中現象を起こすためには、粒子浮遊液を所定の流速に達するまで加速する(以下、便宜的に「軸集中加速」と呼ぶことがある)必要があり、所定の流速は、流路の幅と深さに応じて適宜設定することができる。すなわち、軸集中が起きているかどうかは、顕微鏡観察により容易にわかるので、ルーチンな実験により、軸集中現象が起きる流速を容易に設定することができる。図2の顕微鏡写真は、幅100μm、深さ40μmの流路に30μL/分の流速で粒子浮遊液を流した際の様子を示すものである。軸集中加速を行うための流路(第5の流路)の長さは、10mm以上であり、上限は特にないが、長すぎても無駄であるので、通常、10mm~50mm、好ましくは20mm~30mm程度である。 By using the particle suspension liquid having a reduced particle concentration obtained by the axial concentration of the particles as the particle suspension liquid supplied to the above-mentioned apparatus of the present invention, it is possible to more reliably recover the medium containing no particles. It is preferable because it becomes possible. In the phenomenon of "axial concentration of particles", when a particle suspension liquid is flowed in a linear microchannel, the particles are concentrated near the center of the channel, and as a result, the particle concentration is high near the center of the channel and the flow is high. It is a phenomenon that the particle concentration becomes low at the peripheral edge of the road. This phenomenon itself is known, and is described in, for example, Japanese Patent Application Laid-Open No. 2010-237050 and US Patent Publication No. 8,889,071 B2. That is, when the particle suspension is circulated in the microchannel having a width of 30 μm to 500 μm, preferably 100 μm to 400 μm, and a depth of 10 μm to 500 μm, preferably 50 μm to 400 μm, for example, FIG. As shown in the photomicrograph of the above, most of the particles flow from the center of the flow path within a range of about 80% of the diameter, and less particles flow to the periphery of the flow path by about 10% of the diameter. In order to cause the axial concentration phenomenon, it is necessary to accelerate the particle suspension until it reaches a predetermined flow velocity (hereinafter, may be referred to as "axis concentration acceleration" for convenience), and the predetermined flow velocity is the flow velocity of the flow path. It can be set as appropriate according to the width and depth. That is, since it can be easily known by microscopic observation whether or not the axis concentration occurs, the flow velocity at which the axis concentration phenomenon occurs can be easily set by a routine experiment. The photomicrograph of FIG. 2 shows a state when a particle suspension is flowed through a flow path having a width of 100 μm and a depth of 40 μm at a flow rate of 30 μL / min. The length of the flow path (fifth flow path) for performing axial concentrated acceleration is 10 mm or more, and there is no particular upper limit, but it is useless if it is too long, so it is usually 10 mm to 50 mm, preferably 20 mm. It is about 30 mm.

粒子が軸集中した粒子浮遊液から、粒子濃度が低減した浮遊液を回収することは、単に軸集中加速した浮遊液が流れる流路に分岐路(第6の流路)を設ければよい。この分岐路には、軸集中現象により粒子の濃度が低下した粒子浮遊液が流れるので、これを、前記第1の流路、又は第4の流路が接続されている場合には、第4の流路に供給することにより、粒子を含まない媒体をより確実に回収することが可能になる。この場合、分岐路の幅は、軸集中加速を行う軸集中加速流路の幅の5%~30%程度が好ましい。また、分岐路は、流路を上から見て左右に1本ずつ設け、それぞれの分岐路に本発明の装置をそれぞれ接続することも可能である。 To recover the suspended liquid having a reduced particle concentration from the suspended liquid in which the particles are axially concentrated, it is sufficient to simply provide a branch path (sixth flow path) in the flow path through which the suspended liquid in which the accelerated concentration of particles flows flows. A particle suspension whose concentration of particles has decreased due to the axial concentration phenomenon flows through this branch path, and therefore, when the first flow path or the fourth flow path is connected, a fourth flow path is connected. By supplying the medium to the flow path of the above, it becomes possible to more reliably recover the medium containing no particles. In this case, the width of the branch path is preferably about 5% to 30% of the width of the axis-concentrated acceleration flow path for axial-concentrated acceleration. Further, it is also possible to provide one branch path on each side when the flow path is viewed from above, and to connect the device of the present invention to each branch path.

以下、実施例に基づき、本発明をより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples. However, the present invention is not limited to the following examples.

実施例1
図1に示すマイクロ流路チップを作製した。第2の流路14及び第4の流路18の幅は2mm、第1の流路の幅は100μm、第3の流路の幅は500μm、各流路の深さは全て100μmであった。また、第1の流路12の長さは、5mmであった。このマイクロ流路チップの上流にポンプ、流量計及び圧力計を直列に接続した。
Example 1
The microchannel chip shown in FIG. 1 was produced. The width of the second flow path 14 and the fourth flow path 18 was 2 mm, the width of the first flow path was 100 μm, the width of the third flow path was 500 μm, and the depth of each flow path was 100 μm. .. The length of the first flow path 12 was 5 mm. A pump, a flow meter and a pressure gauge were connected in series upstream of this microchannel tip.

直径10μm又は50μmのプラスチックビーズの浮遊液(媒体は水、粒子濃度2重量%)を調製した。このビーズ浮遊液を、ポンプによりマイクロ流路チップの第4の流路18の上流から流した。この際の圧力は125ヘクトパスカル又は150ヘクトパスカルであり、流速は30μL/分~50μL/分であった。 A suspension of plastic beads having a diameter of 10 μm or 50 μm (water as a medium, particle concentration 2% by weight) was prepared. This bead suspension was pumped from upstream of the fourth flow path 18 of the microchannel tip. The pressure at this time was 125 hectopascals or 150 hectopascals, and the flow rate was 30 μL / min to 50 μL / min.

その結果、第3の流路16から、粒子を全く含まない媒体を連続的に回収することができた。回収速度は、1.75μL/分(125ヘクトパスカル又は3.5μL/分(250ヘクトパスカル)であった。 As a result, the medium containing no particles could be continuously recovered from the third flow path 16. The recovery rate was 1.75 μL / min (125 hectopascals or 3.5 μL / min (250 hectopascals).

実施例2
図1に示すマイクロ流路チップを作製した。第2の流路14及び第4の流路18の幅は300μm、第1の流路の幅は100μm、第3の流路の幅は100μm、各流路の深さは全て100μmであった。また、第1の流路12の長さは、5mmであった。このマイクロ流路チップの上流にポンプ、流量計及び圧力計を直列に接続した。
Example 2
The microchannel chip shown in FIG. 1 was produced. The width of the second flow path 14 and the fourth flow path 18 was 300 μm, the width of the first flow path was 100 μm, the width of the third flow path was 100 μm, and the depth of each flow path was 100 μm. .. The length of the first flow path 12 was 5 mm. A pump, a flow meter and a pressure gauge were connected in series upstream of this microchannel tip.

直径約5μmの酵母培養液を、ポンプによりマイクロ流路チップの第4の流路18の上流から流した。この際の圧力は100ヘクトパスカル又は300ヘクトパスカルであり、流速は30μL/分~90μL/分であった。 A yeast culture solution having a diameter of about 5 μm was pumped from the upstream of the fourth channel 18 of the microchannel tip. The pressure at this time was 100 hectopascals or 300 hectopascals, and the flow rate was 30 μL / min to 90 μL / min.

酵母培養液は以下に示す手法に従って調製した。Saccharomyces cerevisiae IFO 10217株をYPD寒天培地(10 g/l Yeast extract, 20 g/l Peptone, 20 g/l Dextrose, 2% Agar)上で30℃、一晩、恒温層にて静置培養した。この培養物を、あらかじめ121℃、20分間オートクレーブ滅菌したYPD液体培地(10 g/l Yeast extract, 20 g/l Peptone, 20 g/l Dextrose)50 mlに一白金耳量接種し、30℃にて24時間、しんとう培養した。得られた培養液を以降の実験に使用した。なお、Saccharomyces cerevisiae IFO 10217株は、独立行政法人産業技術総合研究所に寄託されているものを使用した。 The yeast culture broth was prepared according to the method shown below. The Saccharomyces cerevisiae IFO 10217 strain was cultured on a YPD agar medium (10 g / l Yeast extract, 20 g / l Peptone, 20 g / l Extract, 2% Agar) at 30 ° C. overnight in a constant temperature layer. This culture was pre-inoculated into 50 ml of YPD liquid medium (10 g / l Yeast extract, 20 g / l Peptone, 20 g / l Extract) sterilized by autoclaving at 121 ° C for 20 minutes, and then inoculated to 30 ° C. It was sterilized for 24 hours. The obtained culture broth was used in subsequent experiments. As the Saccharomyces cerevisiae IFO 10217 strain, the one deposited at the National Institute of Advanced Industrial Science and Technology was used.

その結果、第3の流路16から、酵母を全く含まない液体培地を連続的に回収することができた。回収速度は、0.7μL/分(100ヘクトパスカル)又は4.0μL/分(300ヘクトパスカル)であった。 As a result, the liquid medium containing no yeast could be continuously recovered from the third flow path 16. The recovery rate was 0.7 μL / min (100 hectopascals) or 4.0 μL / min (300 hectopascals).

10 マイクロ流路チップ
12 第1の流路
14 第2の流路
16 第3の流路
18 第4の流路
18a 第4の流路のテーパー部
20 粒子浮遊液
22 粒子
10 Micro flow path chip 12 1st flow path 14 2nd flow path 16 3rd flow path 18 4th flow path 18a Tapered part of 4th flow path 20 Particle suspension liquid 22 Particles

Claims (5)

液状の媒体中に粒子が浮遊した粒子浮遊液から媒体を回収する方法であって、
第1の流路と、該第1の流路に接続され、第1の流路よりもサイズが大きい第2の流路と、該第2の流路から分岐し、該第2の流路よりもサイズが小さい第3の流路を具備する流路デバイスを準備する工程と、
前記第1の流路側から前記粒子浮遊液を前記第2の流路側に流通させる工程と、
前記第3の流路から、媒体を回収する工程とを含み、前記第1の流路の下流端は、前記第2の流路の上流端のほぼ中央に接続しており、前記粒子が微生物細胞であり、前記媒体が液体培地であり、該液体培地を補充しながら培養物を循環させる、粒子浮遊液の媒体の回収方法。
It is a method of recovering a medium from a particle suspension liquid in which particles are suspended in a liquid medium.
The first flow path, the second flow path connected to the first flow path and having a size larger than that of the first flow path, and the second flow path branching from the second flow path. The process of preparing a flow path device with a third flow path that is smaller in size than
A step of circulating the particle suspension liquid from the first flow path side to the second flow path side,
Including the step of collecting the medium from the third flow path, the downstream end of the first flow path is connected to substantially the center of the upstream end of the second flow path, and the particles are microorganisms. A method for recovering a medium of suspended particles, wherein the medium is a cell and the medium is a liquid medium, and the culture is circulated while supplementing the liquid medium.
前記第1の流路の上流側に、該第1の流路よりもサイズが大きい第4の流路が接続されており、前記粒子浮遊液を、該第4の流路から前記第1の流路に流通させる請求項1記載の方法。 A fourth flow path having a size larger than that of the first flow path is connected to the upstream side of the first flow path, and the particle suspended liquid is transferred from the fourth flow path to the first flow path. The method according to claim 1, wherein the particles are distributed in the flow path. 前記流路デバイスがマイクロ流路チップの形態にある請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the flow path device is in the form of a micro flow path chip. 前記微生物が細菌又は酵母である請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the microorganism is a bacterium or yeast. 前記第1の流路、又は該第1の流路よりもサイズが大きい第4の流路が接続されている場合には、該第4の流路に、粒子の軸集中により得られた、粒子濃度が低減された粒子浮遊液を供給する、請求項1~4のいずれか1項に記載の方法。 When a first flow path or a fourth flow path having a size larger than that of the first flow path is connected, the fourth flow path is obtained by axial concentration of particles. The method according to any one of claims 1 to 4, wherein a particle suspension liquid having a reduced particle concentration is supplied.
JP2017556470A 2015-12-17 2016-12-16 Method and device for separating the medium from the particle suspension Active JP7019144B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015245909 2015-12-17
JP2015245909 2015-12-17
PCT/JP2016/087580 WO2017104812A1 (en) 2015-12-17 2016-12-16 Method and device for separating medium from particle suspension

Publications (2)

Publication Number Publication Date
JPWO2017104812A1 JPWO2017104812A1 (en) 2018-12-20
JP7019144B2 true JP7019144B2 (en) 2022-02-15

Family

ID=59056660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017556470A Active JP7019144B2 (en) 2015-12-17 2016-12-16 Method and device for separating the medium from the particle suspension

Country Status (3)

Country Link
JP (1) JP7019144B2 (en)
TW (1) TW201728754A (en)
WO (1) WO2017104812A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175381A1 (en) * 2019-02-27 2020-09-03 京セラ株式会社 Particle separation and measurement device, and particle separation and measurement apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009115575A1 (en) 2008-03-19 2009-09-24 Oncnosis Pharma Aie Method and apparatus for separating particles in a fluid
JP2012076017A (en) 2010-10-01 2012-04-19 Chiba Univ Microchannel system for elutriator and particle separation method
JP2015077119A (en) 2013-10-15 2015-04-23 カンウォン ナショナル ユニバーシティ, ユニバーシティ−インダストリー コーペレーション ファンデーション Continuous fermentation process for succinic acid by using actinobacillus succinogenes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4328885A1 (en) * 1993-08-27 1995-03-02 Bayer Ag Method for separating a dispersion of particles in liquids into a partial stream enriched with particles and a partial stream depleted of particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009115575A1 (en) 2008-03-19 2009-09-24 Oncnosis Pharma Aie Method and apparatus for separating particles in a fluid
JP2012076017A (en) 2010-10-01 2012-04-19 Chiba Univ Microchannel system for elutriator and particle separation method
JP2015077119A (en) 2013-10-15 2015-04-23 カンウォン ナショナル ユニバーシティ, ユニバーシティ−インダストリー コーペレーション ファンデーション Continuous fermentation process for succinic acid by using actinobacillus succinogenes

Also Published As

Publication number Publication date
JPWO2017104812A1 (en) 2018-12-20
TW201728754A (en) 2017-08-16
WO2017104812A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
Wang et al. High‐throughput inertial focusing of micrometer‐and sub‐micrometer‐sized particles separation
Warkiani et al. An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells
Fritzsch et al. Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments
US20170292104A1 (en) Microfluidic system and method for perfusion bioreactor cell retention
KR101892214B1 (en) The composition containing exsome for continuous separating organic molecule and process for separating using the same
EP3497228A1 (en) Combined multiple-displacement amplification and pcr in an emulsion microdroplet
CN105505761A (en) Digital isothermal nucleic acid detecting device and detecting method thereof
Huang et al. Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform
EP3210022B1 (en) Method for detecting organisms in a diluted sample
CN102586094A (en) Microfluidic device and method for concentrating a sample containing cells or viruses and lysing the cells or viruses, and method of producing the microfluidic device
JP7019144B2 (en) Method and device for separating the medium from the particle suspension
US20140255270A1 (en) Removing sacrificial layer to form liquid containment structure and methods of use thereof
CA3151248A1 (en) Size-based asymmetric nanopore membrane (anm) filtration for high-efficiency exosome isolation, concentration, and fractionation
Godino et al. Purification of microalgae from bacterial contamination using a disposable inertia-based microfluidic device
Runge et al. Ultrasonically manufactured microfluidic device for yeast analysis
Cai et al. Disk-like hydrogel bead-based immunofluorescence staining toward identification and observation of circulating tumor cells
Tay et al. High-throughput microfluidic sorting of live magnetotactic bacteria
Bagi et al. Advances in technical assessment of spiral inertial microfluidic devices toward bioparticle separation and profiling: A critical review
Ning et al. Recent developments of droplets-based microfluidics for bacterial analysis
US20220364076A1 (en) Microfluidic platform for selective exosome isolation
US10590378B2 (en) Cell separation chip and method for separating cells using same
US20180161774A1 (en) High efficiency microfluidic device for trapping circulating tumor cells
Nam et al. Pneumatically controlled multi-level microchannel for separation and extraction of microparticles
JP6070125B2 (en) Solid-liquid separation method and apparatus
US20230347345A1 (en) Spiral inertial microfluidic devices and methods to remove contaminants

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211008

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211008

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211108

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220125

R150 Certificate of patent or registration of utility model

Ref document number: 7019144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150