JP7017425B2 - Gas sensor element, gas sensor and gas detector - Google Patents

Gas sensor element, gas sensor and gas detector Download PDF

Info

Publication number
JP7017425B2
JP7017425B2 JP2018015572A JP2018015572A JP7017425B2 JP 7017425 B2 JP7017425 B2 JP 7017425B2 JP 2018015572 A JP2018015572 A JP 2018015572A JP 2018015572 A JP2018015572 A JP 2018015572A JP 7017425 B2 JP7017425 B2 JP 7017425B2
Authority
JP
Japan
Prior art keywords
electrode
heat insulating
heat
gas sensor
insulating portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018015572A
Other languages
Japanese (ja)
Other versions
JP2019132721A (en
Inventor
雄太 大石
哲哉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018015572A priority Critical patent/JP7017425B2/en
Publication of JP2019132721A publication Critical patent/JP2019132721A/en
Application granted granted Critical
Publication of JP7017425B2 publication Critical patent/JP7017425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

本発明は、板状の固体電解質体と固体電解質体の表面に設けられた一対の電極とを有する1つ以上のセルと、発熱部を有する板状のヒータと、が積層された積層体を備えるガスセンサ素子、ガスセンサ素子を備えるガスセンサ、及びガス検出装置に関する。 The present invention provides a laminated body in which one or more cells having a plate-shaped solid electrolyte body and a pair of electrodes provided on the surface of the solid electrolyte body, and a plate-shaped heater having a heat generating portion are laminated. The present invention relates to a gas sensor element including, a gas sensor including a gas sensor element, and a gas detection device.

ガスセンサ素子の一例として、特許文献1に記載のガスセンサ素子が知られている。特許文献1に記載のガスセンサ素子は、板状の固体電解質体と固体電解質体の両面に設けられた一対の電極とを有するセルと、発熱部を有する板状のヒータとの積層体を備える。そして、特許文献1に記載のガスセンサ素子は、発熱部の熱で一対の電極及び固体電解質体を昇温して、これらを活性化させている。 As an example of the gas sensor element, the gas sensor element described in Patent Document 1 is known. The gas sensor element described in Patent Document 1 includes a cell having a plate-shaped solid electrolyte body and a pair of electrodes provided on both sides of the solid electrolyte body, and a laminated body of a plate-shaped heater having a heat generating portion. The gas sensor element described in Patent Document 1 activates the pair of electrodes and the solid electrolyte by heating the temperature of the pair of electrodes and the solid electrolyte with the heat of the heat generating portion.

特開2013-234896号公報Japanese Unexamined Patent Publication No. 2013-234896

特許文献1に記載のガスセンサ素子では、一対の電極のそれぞれからヒータの発熱部までの距離が異なり、発熱部に近い側の電極に伝わる熱量と、発熱部に遠い側の電極に伝わる熱量とには大きな差が生じる。そのため、発熱部に近い側の電極は、発熱部に遠い側の電極よりも温度が高くなり、一対の電極間に温度差が生じる。その結果、温度差に起因して一対の電極間に熱起電力が生じ、生じた熱起電力がセンサ出力に対してノイズ成分となる。このように、センサ出力に対して一対の電極間の温度差に起因したノイズ成分が加わることにより、ガスセンサの検出精度が低下するという問題がある。 In the gas sensor element described in Patent Document 1, the distance from each of the pair of electrodes to the heat generating portion of the heater is different, and the amount of heat transferred to the electrode on the side closer to the heat generating portion and the amount of heat transferred to the electrode on the side farther from the heat generating portion are different. Makes a big difference. Therefore, the temperature of the electrode near the heat generating portion is higher than that of the electrode far from the heat generating portion, and a temperature difference occurs between the pair of electrodes. As a result, a thermoelectromotive force is generated between the pair of electrodes due to the temperature difference, and the generated thermoelectromotive force becomes a noise component with respect to the sensor output. As described above, there is a problem that the detection accuracy of the gas sensor is lowered due to the addition of a noise component due to the temperature difference between the pair of electrodes to the sensor output.

本発明は、こうした問題に鑑みてなされたものであり、一対の電極間における温度差を抑制可能なセンサ素子、センサ素子を備えるガスセンサ、及びガス検出装置を提供することを目的とする。 The present invention has been made in view of these problems, and an object of the present invention is to provide a sensor element capable of suppressing a temperature difference between a pair of electrodes, a gas sensor including the sensor element, and a gas detection device.

本発明の一つ局面におけるガスセンサ素子は、一つ以上のセルと板状のヒータとが積層された積層体を備える。一つ以上のセルは、板状の固体電解質体と固体電解質体の表面に設けられた一対の電極とを有する。板状のヒータは、通電により発熱する発熱部を有する。 The gas sensor element in one aspect of the present invention includes a laminated body in which one or more cells and a plate-shaped heater are laminated. One or more cells have a plate-shaped solid electrolyte and a pair of electrodes provided on the surface of the solid electrolyte. The plate-shaped heater has a heat generating portion that generates heat when energized.

一つ以上のセルのうち積層方向においてヒータに最も近いセルにおいては、一対の電極は、発熱部に重なる様に固体電解質体の両面に設けられ、発熱部に近い側の第1電極と発熱部に遠い側の第2電極とを備える。積層体は、第1電極と発熱部との間に設けられた断熱部と、積層方向から見たときに断熱部の周囲に連続して形成され、断熱部よりも熱伝導率が高い熱伝導部と、を備える。 In the cell closest to the heater in the stacking direction among one or more cells, the pair of electrodes are provided on both sides of the solid electrolyte body so as to overlap the heat generating portion, and the first electrode and the heat generating portion on the side closer to the heat generating portion are provided. A second electrode on the far side is provided. The laminated body is continuously formed around the heat insulating portion provided between the first electrode and the heat generating portion and the heat insulating portion when viewed from the stacking direction, and has a higher thermal conductivity than the heat insulating portion. It is equipped with a part.

このガスセンサ素子において、積層体が、ヒータの発熱部に近い側の第1電極と発熱部との間に断熱部を備えることにより、発熱部から一対の電極への熱の伝導経路が、直線的な経路ではなく、断熱部を迂回して回り込むような経路となる。これにより、発熱部から第1電極へ伝わる熱量と第2電極へ伝わる熱量との差が抑制されるため、一対の電極間の温度差を抑制することができる。 In this gas sensor element, the laminated body is provided with a heat insulating portion between the first electrode and the heat generating portion on the side close to the heat generating portion of the heater, so that the heat conduction path from the heat generating portion to the pair of electrodes is linear. It is not a simple route, but a route that bypasses the heat insulating part and goes around. As a result, the difference between the amount of heat transferred from the heat generating portion to the first electrode and the amount of heat transferred to the second electrode is suppressed, so that the temperature difference between the pair of electrodes can be suppressed.

また、積層体は、積層方向から見たときに断熱部の周囲に連続して形成される熱伝導部を備える。すなわち、断熱部は、積層方向から見たときに熱伝導部で囲われ、積層体の外部に露出していない。よって、断熱部の一部が外部に露出している場合と比べて、熱の伝導経路が多く形成されるため、発熱部から一対の電極及び固体電解質体へ効率的に熱を伝えることができる。ひいては、発熱部から第1電極へ伝わる熱量と第2電極へ伝わる熱量の差を抑制しつつ、一対の電極及び固体電解質体の活性化の低下を抑制することができる。 Further, the laminated body includes a heat conductive portion continuously formed around the heat insulating portion when viewed from the stacking direction. That is, the heat insulating portion is surrounded by the heat conductive portion when viewed from the stacking direction and is not exposed to the outside of the laminated body. Therefore, since more heat conduction paths are formed as compared with the case where a part of the heat insulating portion is exposed to the outside, heat can be efficiently transferred from the heat generating portion to the pair of electrodes and the solid electrolyte body. .. As a result, it is possible to suppress a decrease in the activation of the pair of electrodes and the solid electrolyte while suppressing the difference in the amount of heat transferred from the heat generating portion to the first electrode and the amount of heat transferred to the second electrode.

次に、上述のセンサ素子においては、積層体は、断熱部よりも熱伝導率が高く、第1電極と断熱部とに挟まれたセラミック層を備えてもよい。
第1電極と断熱部との間に断熱部よりも熱伝導率が高いセラミック層が挟まれていることにより、第1電極と断熱部が接している場合よりも、発熱部から一対の電極及び固体電解質体へより効率的に熱を伝えることができる。
Next, in the above-mentioned sensor element, the laminated body has a higher thermal conductivity than the heat insulating portion, and may include a ceramic layer sandwiched between the first electrode and the heat insulating portion.
Since a ceramic layer having a higher thermal conductivity than the heat insulating portion is sandwiched between the first electrode and the heat insulating portion, the pair of electrodes from the heat generating portion and the heat insulating portion are more than when the first electrode and the heat insulating portion are in contact with each other. Heat can be transferred to the solid electrolyte more efficiently.

次に、上述のセンサ素子においては、断熱部は、その積層方向に垂直な面の面積が、第1電極の発熱部に向く面の面積以上となるように構成されていてもよい。
実験により、断熱部の積層方向に垂直な面の面積(以下、断熱部断面積)が、第1電極の発熱部に向く面積(以下、第1電極面積)未満の場合は、断熱部断面積を大きくするほど一対の電極間の温度差が小さくなり、断熱部断面積が第1電極面積以上になると、一対の電極間の温度差はほぼ変わらなくなることがわかった。したがって、断熱部断面積を第1電極面積以上とすることで、一対の電極間の温度差を好適に抑制することができる。
Next, in the above-mentioned sensor element, the heat insulating portion may be configured so that the area of the surface perpendicular to the stacking direction is equal to or larger than the area of the surface of the first electrode facing the heat generating portion.
According to the experiment, when the area of the surface perpendicular to the stacking direction of the heat insulating portion (hereinafter, the cross-sectional area of the heat insulating portion) is less than the area facing the heat generating portion of the first electrode (hereinafter, the area of the first electrode), the cross-sectional area of the heat insulating portion. It was found that the temperature difference between the pair of electrodes became smaller as the value was increased, and when the cross-sectional area of the heat insulating portion became equal to or larger than the area of the first electrode, the temperature difference between the pair of electrodes was almost unchanged. Therefore, by setting the cross-sectional area of the heat insulating portion to be equal to or larger than the area of the first electrode, the temperature difference between the pair of electrodes can be suitably suppressed.

次に、上述のセンサ素子においては、断熱部は、空間であってもよい。
積層体が、発熱部と第1電極との間に空間を備えることにより、発熱部から第1電極への直線的な熱の伝導を抑制して、一対の電極間の温度差を抑制することができる。
Next, in the above-mentioned sensor element, the heat insulating portion may be a space.
By providing a space between the heat generating portion and the first electrode, the laminated body suppresses the linear heat conduction from the heat generating portion to the first electrode and suppresses the temperature difference between the pair of electrodes. Can be done.

次に、上述のセンサ素子においては、断熱部は、熱伝導部よりも気孔率の高い多孔質部材によって形成されていてもよい。
このような場合でも、断熱部が空間である場合と同様に、一対の電極間の温度差を抑制することができる。
Next, in the above-mentioned sensor element, the heat insulating portion may be formed of a porous member having a higher porosity than the heat conductive portion.
Even in such a case, the temperature difference between the pair of electrodes can be suppressed as in the case where the heat insulating portion is a space.

次に、上述のセンサ素子においては、断熱部は、熱伝導部よりも熱伝導率が低い緻密部材によって形成されていてもよい。
このような場合でも、断熱部が空間である場合と同様に、一対の電極間の温度差を抑制することができる。
Next, in the above-mentioned sensor element, the heat insulating portion may be formed of a dense member having a lower thermal conductivity than the heat conductive portion.
Even in such a case, the temperature difference between the pair of electrodes can be suppressed as in the case where the heat insulating portion is a space.

本発明の他の一つの局面におけるガスセンサは、上述のガスセンサ素子と、ガスセンサ素子を保持するハウジングと、を備える。
このようなガスセンサは、上述のガスセンサ素子を備えることにより、検出精度を向上させることができる。
The gas sensor in another aspect of the present invention includes the gas sensor element described above and a housing for holding the gas sensor element.
By providing such a gas sensor with the above-mentioned gas sensor element, the detection accuracy can be improved.

本発明の他の一つの局面におけるガス検出装置は、上述のガスセンサと、発熱部の通電をPWM制御するセンサ制御部と、を備える。PWMは、Pulse Width Modulationの略である。
ガスセンサ素子の温度が一定になるように発熱部をPWM制御する場合、発熱部をPWM制御しない場合と比べて、センサ出力に対して変動するノイズが加わるため、検出精度が低下しやすい。ガス検出装置は、上述のガスセンサを備えることにより、発熱部をPWM制御する場合でも、センサ出力に対して加わるノイズを抑制して、検出精度を向上させることができる。
The gas detection device in another aspect of the present invention includes the above-mentioned gas sensor and a sensor control unit that PWM controls the energization of the heat generating unit. PWM is an abbreviation for Pulse Width Modulation.
When the heat generating portion is PWM-controlled so that the temperature of the gas sensor element becomes constant, noise that fluctuates with respect to the sensor output is added as compared with the case where the heat-generating portion is not PWM-controlled, so that the detection accuracy tends to decrease. By providing the above-mentioned gas sensor, the gas detection device can suppress noise added to the sensor output and improve the detection accuracy even when the heat generating portion is PWM-controlled.

なお、ここでの「垂直」とは、厳密な意味での垂直に限るものではなく、目的とする効果を奏するのであれば厳密に垂直でなくてもよい。 The term "vertical" here is not limited to vertical in a strict sense, and may not be strictly vertical as long as it produces the desired effect.

ガスセンサとセンサコントロールユニットとを備えたガス検出装置の構成を示す図である。It is a figure which shows the structure of the gas detection device which includes a gas sensor and a sensor control unit. 第1実施形態のガスセンサ素子を示す斜視図である。It is a perspective view which shows the gas sensor element of 1st Embodiment. 第1実施形態のガスセンサ素子を図2におけるIII-III線に沿って切断した断面図である。It is sectional drawing which cut the gas sensor element of 1st Embodiment along the line III-III in FIG. 第1実施形態のガスセンサ素子を図2におけるIV-IV線に沿って切断した断面図である。It is sectional drawing which cut the gas sensor element of 1st Embodiment along the IV-IV line in FIG. ヒータの発熱抵抗体パターンを示す図である。It is a figure which shows the heat generation resistor pattern of a heater. 従来のガスセンサ素子を積層方向及び軸線方向に垂直な面で切断した断面を示す図である。It is a figure which shows the cross section which cut the conventional gas sensor element in the plane perpendicular to the stacking direction and the axial direction. 従来のガスセンサ素子のヒータをPWM制御した場合に発生する出力の変動量を示す図である。It is a figure which shows the fluctuation amount of the output generated when the heater of the conventional gas sensor element is PWM controlled. 断熱部の幅を第1電極の幅よりも小さくした場合における、第1セルと断熱部とを示す模式図である。It is a schematic diagram which shows the 1st cell and the heat insulating part in the case where the width of the heat insulating part is made smaller than the width of the 1st electrode. 断熱部の幅を第1電極の幅と等しくした場合における、第1セルと断熱部とを示す模式図である。It is a schematic diagram which shows the 1st cell and the heat insulating part in the case where the width of a heat insulating part is made equal to the width of a 1st electrode. 断熱部の幅を第1電極の幅よりも大きくした場合における、第1セルと断熱部とを示す模式図である。It is a schematic diagram which shows the 1st cell and the heat insulating part in the case where the width of a heat insulating part is made larger than the width of a 1st electrode. 断熱部の断面積を第1電極の電極面積よりも小さくした場合における、発熱部と断熱部と第1電極とを示す模式図である。It is a schematic diagram which shows the heat generating part, the heat insulating part, and the 1st electrode when the cross-sectional area of a heat insulating part is made smaller than the electrode area of a 1st electrode. 断熱部の断面積を第1電極の電極面積と等しくした場合における、発熱部と断熱部と第1電極とを示す模式図である。It is a schematic diagram which shows the heat generating part, the heat insulating part, and the 1st electrode when the cross-sectional area of a heat insulating part is made equal to the electrode area of a 1st electrode. 断熱部の断面積を第1電極の電極面積よりも大きくした場合における、発熱部と断熱部と第1電極とを示す模式図である。It is a schematic diagram which shows the heat generating part, the heat insulating part, and the 1st electrode when the cross-sectional area of a heat insulating part is made larger than the electrode area of a 1st electrode. 断熱部を空間又は多孔質部材とした場合における、第1電極の大きさと断熱部の大きさとノイズ低減率との関係を説明する図である。It is a figure explaining the relationship between the size of a 1st electrode, the size of a heat insulating part, and a noise reduction rate when a heat insulating part is a space or a porous member. 第1実施形態の他の例のガスセンサ素子の図3に対応する断面図である。It is sectional drawing corresponding to FIG. 3 of the gas sensor element of another example of 1st Embodiment. 第2実施形態のガスセンサ素子の外観を示す斜視図である。It is a perspective view which shows the appearance of the gas sensor element of 2nd Embodiment. 第2実施形態のガスセンサ素子を図15におけるXVII-XVII線に沿って切断した断面図である。It is sectional drawing which cut the gas sensor element of 2nd Embodiment along the XVII-XVII line in FIG. 第2実施形態のガスセンサ素子を図15におけるXVIII-XVIII線に沿って切断した断面図である。FIG. 5 is a cross-sectional view of the gas sensor element of the second embodiment cut along the line XVIII-XVIII in FIG.

以下、図面を参照しながら、発明を実施するための形態を説明する。
(第1実施形態)
<1.ガス検出装置>
まず、第1実施形態のガス検出装置900の構成について、図1を参照して説明する。ガス検出装置900は、ガスセンサ1とセンサコントロールユニット800(以下、SCU800)とを備える。ガスセンサ1は、車両に搭載されて用いられるガスセンサを想定しており、例えば、排ガス中の酸素濃度を検出する酸素センサである。図1では、ガスセンサ1を軸線方向に沿って切断した断面図によってガスセンサ1を示している。
Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings.
(First Embodiment)
<1. Gas detector>
First, the configuration of the gas detection device 900 of the first embodiment will be described with reference to FIG. The gas detection device 900 includes a gas sensor 1 and a sensor control unit 800 (hereinafter referred to as SCU800). The gas sensor 1 is assumed to be a gas sensor mounted on a vehicle and used, and is, for example, an oxygen sensor that detects an oxygen concentration in an exhaust gas. In FIG. 1, the gas sensor 1 is shown by a cross-sectional view obtained by cutting the gas sensor 1 along the axial direction.

ガスセンサ1は、主体金具5と、セラミックスリーブ9と、絶縁コンタクト部材13と、5個(図1には2個のみ図示)の接続端子15と、外筒57と、グロメット61と、プロテクタ55と、ガスセンサ素子7と、を備えている。 The gas sensor 1 includes a main metal fitting 5, a ceramic sleeve 9, an insulating contact member 13, five connection terminals 15 (only two are shown in FIG. 1), an outer cylinder 57, a grommet 61, and a protector 55. , And a gas sensor element 7.

主体金具5は、ガスセンサ1をエンジンの排気管に固定するためのネジ部3を外表面に有する。また、主体金具5は、軸線方向に貫通する貫通孔37を有するとともに、貫通孔37の径方向内側に突出する棚部39を有する筒状に構成されている。この主体金具5は、後述するガスセンサ素子7のガス導入部94を貫通孔37の先端よりも先端側に配置し、ガスセンサ素子7の電極パッド25,27,29,31,33を貫通孔37の後端よりも後端側に配置する状態で、貫通孔37に挿通されたガスセンサ素子7を保持するよう構成されている。なお、軸線方向は、ガスセンサ1の長手方向であり、図1の上下方向である。また、先端側は図1における下側であり、後端側は図1における上側である。 The main metal fitting 5 has a screw portion 3 on the outer surface for fixing the gas sensor 1 to the exhaust pipe of the engine. Further, the main metal fitting 5 has a tubular shape having a through hole 37 penetrating in the axial direction and a shelf portion 39 protruding inward in the radial direction of the through hole 37. In the main metal fitting 5, the gas introduction portion 94 of the gas sensor element 7, which will be described later, is arranged closer to the tip side than the tip of the through hole 37, and the electrode pads 25, 27, 29, 31, 33 of the gas sensor element 7 are formed in the through hole 37. It is configured to hold the gas sensor element 7 inserted through the through hole 37 in a state of being arranged on the rear end side of the rear end. The axial direction is the longitudinal direction of the gas sensor 1 and is the vertical direction in FIG. The front end side is the lower side in FIG. 1, and the rear end side is the upper side in FIG.

また、主体金具5の貫通孔37の内部には、ガスセンサ素子7の径方向周囲を取り囲む状態で、環状形状のセラミックホルダ41、滑石リング43、滑石リング45、及びセラミックスリーブ9が、この順に先端側から後端側にかけて積層されている。 Further, inside the through hole 37 of the main metal fitting 5, an annular ceramic holder 41, a talc ring 43, a talc ring 45, and a ceramic sleeve 9 are tipped in this order while surrounding the radial circumference of the gas sensor element 7. It is laminated from the side to the rear end side.

セラミックスリーブ9は、筒状に形成されており、ガスセンサ素子7の径方向周囲を取り囲むように配置される。このセラミックスリーブ9と主体金具5の後端部47との間には、加締パッキン49が配置される。一方、セラミックホルダ41と主体金具5の棚部39との間には、滑石リング43やセラミックホルダ41を保持するための金属ホルダ51が配置されている。主体金具5の後端部47は、加締パッキン49を介してセラミックスリーブ9を先端側に押し付けるように、加締められている。 The ceramic sleeve 9 is formed in a cylindrical shape and is arranged so as to surround the radial circumference of the gas sensor element 7. A crimping packing 49 is arranged between the ceramic sleeve 9 and the rear end portion 47 of the main metal fitting 5. On the other hand, a metal holder 51 for holding the talc ring 43 and the ceramic holder 41 is arranged between the ceramic holder 41 and the shelf portion 39 of the main metal fitting 5. The rear end portion 47 of the main metal fitting 5 is crimped so as to press the ceramic sleeve 9 toward the tip end side via the crimping packing 49.

プロテクタ55は、円筒状の部材の二重構造となっている。各円筒状の部材は、複数の孔部を有する金属製(例えば、ステンレス)の部材である。プロテクタ55は、ガスセンサ素子7の主体金具5からの突出部分を覆うように、主体金具5の先端部53の外周に溶接等によって固定されている。 The protector 55 has a double structure of cylindrical members. Each cylindrical member is a metal (for example, stainless steel) member having a plurality of holes. The protector 55 is fixed to the outer periphery of the tip portion 53 of the main metal fitting 5 by welding or the like so as to cover the protruding portion of the gas sensor element 7 from the main metal fitting 5.

外筒57は、円筒状に形成されており、主体金具5の後端側の外周に固定されている。絶縁コンタクト部材13は、筒状に形成されており、内部に軸線方向に貫通する挿通孔11を備える。絶縁コンタクト部材13は、挿通孔11の内壁面がガスセンサ素子7の後端部の周囲を取り囲むように、外筒57の内部に配置される。絶縁コンタクト部材13の外周には、突出部63が形成されており、突出部63は、保持部材65を介して外筒57に固定されている。 The outer cylinder 57 is formed in a cylindrical shape and is fixed to the outer periphery of the rear end side of the main metal fitting 5. The insulating contact member 13 is formed in a cylindrical shape, and has an insertion hole 11 that penetrates in the axial direction inside. The insulating contact member 13 is arranged inside the outer cylinder 57 so that the inner wall surface of the insertion hole 11 surrounds the periphery of the rear end portion of the gas sensor element 7. A protrusion 63 is formed on the outer periphery of the insulating contact member 13, and the protrusion 63 is fixed to the outer cylinder 57 via the holding member 65.

5個の接続端子15は、それぞれ、ガスセンサ素子7と絶縁コンタクト部材13との間に配置される。5個の接続端子15は、ガスセンサ素子7の電極パッド25,27,29,31,33にそれぞれ電気的に接続されるとともに、SCU800からガスセンサ1の内部に配設されるリード線35にも電気的に接続されている。 Each of the five connection terminals 15 is arranged between the gas sensor element 7 and the insulating contact member 13. The five connection terminals 15 are electrically connected to the electrode pads 25, 27, 29, 31, 33 of the gas sensor element 7, respectively, and are also electrically connected to the lead wire 35 disposed inside the gas sensor 1 from the SCU 800. Is connected.

グロメット61は、外筒57の後端側の開口部に配置されている。グロメット61は、5本のリード線35が挿通される挿通孔59を備える。5本のリード線35は、第1端が接続端子15を介して電極パッド25,27,29,31,33とそれぞれ電気的に接続されるとともに、第2端がSCU800に接続される。図1では、5本のリード線35のうちの3本を示している。 The grommet 61 is arranged in the opening on the rear end side of the outer cylinder 57. The grommet 61 includes an insertion hole 59 through which five lead wires 35 are inserted. The first end of the five lead wires 35 is electrically connected to the electrode pads 25, 27, 29, 31, 33 via the connection terminal 15, and the second end is connected to the SCU 800. FIG. 1 shows three of the five lead wires 35.

ガスセンサ素子7は、軸線方向に延びる板状の素子である。図2に示すように、ガスセンサ素子7は、軸線方向に延びる板状の素子部71と、同じく軸線方向に延びる板状のヒータ73と、素子部71及びヒータ73の先端側を覆う保護層17と、を備える。素子部71およびヒータ73の先端側は、測定対象となるガスに向けられる素子本体部70である。また、ガスセンサ素子7は、後端側の外表面のうち表裏の位置関係となる第1主面21および第2主面23に、電極パッド25,27,29,31,33が形成されている。ガスセンサ素子7の構成の詳細は後述する。 The gas sensor element 7 is a plate-shaped element extending in the axial direction. As shown in FIG. 2, the gas sensor element 7 includes a plate-shaped element portion 71 extending in the axial direction, a plate-shaped heater 73 extending in the axial direction, and a protective layer 17 covering the element portion 71 and the tip end side of the heater 73. And prepare. The tip end side of the element unit 71 and the heater 73 is an element body unit 70 directed to the gas to be measured. Further, in the gas sensor element 7, electrode pads 25, 27, 29, 31, 33 are formed on the first main surface 21 and the second main surface 23, which are in a positional relationship between the front and back surfaces of the outer surface on the rear end side. .. Details of the configuration of the gas sensor element 7 will be described later.

センサコントロールユニット800(以下、SCU800)は、CPU、ROM、RAM等を備えたマイクロコンピュータを主体として構成された制御装置である。SCU800は、ガスセンサ1の濃度検出処理やヒータ73の通電制御を含む各種処理を実行する。 The sensor control unit 800 (hereinafter referred to as SCU800) is a control device mainly composed of a microcomputer equipped with a CPU, ROM, RAM and the like. The SCU 800 executes various processes including a concentration detection process of the gas sensor 1 and an energization control of the heater 73.

<2.ガスセンサ素子>
次に、ガスセンサ素子7の構成について、図2~図5を参照して説明する。ガスセンサ素子7は、板状の素子部71と板状のヒータ73とが積層された積層体72と、保護層17と、を備える、長尺の略直方体形状の板材である。ガスセンサ素子7の後端側(図2の上方)には、C面取り部131が形成されている。C面取り部131は、ガスセンサ素子7の後端面の周囲四方の稜線に対して、C面取りを施すことによって形成されている。ガスセンサ素子の後端面は、ガスセンサ素子の長手方向と垂直な面である。
<2. Gas sensor element>
Next, the configuration of the gas sensor element 7 will be described with reference to FIGS. 2 to 5. The gas sensor element 7 is a long, substantially rectangular parallelepiped plate material including a laminated body 72 in which a plate-shaped element portion 71 and a plate-shaped heater 73 are laminated, and a protective layer 17. A C-chamfered portion 131 is formed on the rear end side (upper side of FIG. 2) of the gas sensor element 7. The C chamfered portion 131 is formed by performing C chamfering on the ridges on all four sides around the rear end surface of the gas sensor element 7. The rear end surface of the gas sensor element is a surface perpendicular to the longitudinal direction of the gas sensor element.

ここで、各図において、ガスセンサ素子7の長手方向をY軸方向、長手方向に垂直な積層方向をZ軸方向、長手方向及び積層方向に垂直な幅方向をX軸方向とする。ガスセンサ素子7において、素子部71は、積層方向の一方の側に配置されており、ヒータ73は、素子部71の反対側に配置されている。 Here, in each figure, the longitudinal direction of the gas sensor element 7 is the Y-axis direction, the stacking direction perpendicular to the longitudinal direction is the Z-axis direction, and the width direction perpendicular to the longitudinal direction and the stacking direction is the X-axis direction. In the gas sensor element 7, the element portion 71 is arranged on one side in the stacking direction, and the heater 73 is arranged on the opposite side of the element portion 71.

素子部71は、酸素濃度検出セル81及び酸素ポンプセル89の二つのセルと、これら二つのセルの間に積層され、中空のガス測定室を形成するための絶縁スペーサ93と、を備えている。 The element unit 71 includes two cells, an oxygen concentration detection cell 81 and an oxygen pump cell 89, and an insulating spacer 93 laminated between the two cells to form a hollow gas measuring chamber.

酸素濃度検出セル81は、酸素ポンプセル89よりもヒータ73に近い側に形成されており、第1固体電解質体75と、一対の電極である第1電極79及び第2電極77と、を備える。酸素ポンプセル89は、第2固体電解質体83と、一対の電極である第3電極87及び第4電極85と、を備える。第1及び第2固体電解質体75,83は、イットリアを安定化剤として固溶させたジルコニアから、長手方向に延びる板形状に形成されている。 The oxygen concentration detection cell 81 is formed closer to the heater 73 than the oxygen pump cell 89, and includes a first solid electrolyte body 75, and a pair of electrodes, a first electrode 79 and a second electrode 77. The oxygen pump cell 89 includes a second solid electrolyte body 83, and a pair of electrodes, a third electrode 87 and a fourth electrode 85. The first and second solid electrolytes 75 and 83 are formed in a plate shape extending in the longitudinal direction from zirconia in which yttria is dissolved as a stabilizer.

第1電極79、第2電極77、第3電極87、及び第4電極85は、Ptを主体として形成された多孔質電極である。第1電極79及び第2電極77は、第1固体電解質体75の先端部分の両面に設けられており、第1電極79はヒータ73に近い側の面に設けられており、第2電極77はヒータ73に遠い側の面に設けられている。また、第3電極87と第4電極85は、第2固体電解質体83の両面に設けられており、第3電極87はヒータ73に近い側の面に設けられており、第4電極85はヒータ73に遠い側の面に設けられている。 The first electrode 79, the second electrode 77, the third electrode 87, and the fourth electrode 85 are porous electrodes formed mainly of Pt. The first electrode 79 and the second electrode 77 are provided on both sides of the tip portion of the first solid electrolyte body 75, the first electrode 79 is provided on the surface closer to the heater 73, and the second electrode 77 is provided. Is provided on the surface far from the heater 73. Further, the third electrode 87 and the fourth electrode 85 are provided on both surfaces of the second solid electrolyte body 83, the third electrode 87 is provided on the surface closer to the heater 73, and the fourth electrode 85 is provided. It is provided on the surface far from the heater 73.

また、ガス測定室91を形成する絶縁スペーサ93は、アルミナを主体に形成されており、中空のガス測定室91の内側には、酸素濃度検出セル81の第2電極77と、酸素ポンプセル89の第3電極87が露出するように配置されている。 Further, the insulating spacer 93 forming the gas measuring chamber 91 is mainly formed of alumina, and inside the hollow gas measuring chamber 91, the second electrode 77 of the oxygen concentration detection cell 81 and the oxygen pump cell 89 are formed. The third electrode 87 is arranged so as to be exposed.

絶縁スペーサ93の側面、つまり素子部71の側面には、排ガスの取り込み口となる2つのガス導入部94が形成されている。ガス導入部94は、ガス測定室91に連通している。2つのガス導入部94からガス測定室91までの各経路には、拡散律速部95が形成されている。拡散律速部95は、例えば、アルミナ等からなる多孔質体で構成されており、測定対象ガスがガス測定室91へ流入する際の律速を行う。拡散律速部95は、その一部がガス導入部94から露出する状態で備えられている。つまり、このガスセンサ素子7においては、ガス導入部94は、素子本体部70の最外面において異なる2方向に向けて形成されており、拡散律速部95は、異なる2方向に向けて露出している。 Two gas introduction portions 94 serving as exhaust gas intake ports are formed on the side surface of the insulating spacer 93, that is, the side surface of the element portion 71. The gas introduction unit 94 communicates with the gas measurement chamber 91. A diffusion rate control section 95 is formed in each path from the two gas introduction sections 94 to the gas measurement chamber 91. The diffusion rate-determining unit 95 is composed of, for example, a porous body made of alumina or the like, and controls the rate when the gas to be measured flows into the gas measuring chamber 91. The diffusion rate control unit 95 is provided in a state where a part thereof is exposed from the gas introduction unit 94. That is, in the gas sensor element 7, the gas introduction portion 94 is formed in two different directions on the outermost surface of the element main body portion 70, and the diffusion rate controlling portion 95 is exposed in two different directions. ..

素子部71の第1主面21側にはアルミナを主体とする絶縁基板97が積層されており、この絶縁基板97には、拡散律速部95と同様に、多孔質体で構成された通気部99が形成されている。この通気部99は、酸素ポンプセル89の駆動により移動する酸素を通過させるために使用される。 An insulating substrate 97 mainly composed of alumina is laminated on the first main surface 21 side of the element portion 71, and the insulating substrate 97 has a ventilation portion made of a porous body, similarly to the diffusion rate controlling portion 95. 99 is formed. The vent 99 is used to pass oxygen that is moved by the drive of the oxygen pump cell 89.

ガス測定室91は、素子部71のうち先端側の素子本体部70に位置するように形成されており、酸素濃度検出セル81及び酸素ポンプセル89は、ガス測定室91に面しており、酸素を検出するためのガス検出部として備えられる。
The gas measurement chamber 91 is formed so as to be located at the element main body 70 on the tip side of the element 71, and the oxygen concentration detection cell 81 and the oxygen pump cell 89 face the gas measurement chamber 91 and oxygen. It is provided as a gas detector for detecting.

保護層17は、多孔質状のアルミナで構成されており、素子本体部70の最外面を覆うように形成されている。具体的には、保護層17は、拡散律速部95よりも拡散抵抗が小さい多孔質材料で構成されている。このような構成のガスセンサ素子7においては、排ガスは、保護層17を介してガス導入部94に到達し、ガス導入部94から拡散律速部95を介してガス測定室91に導入される。 The protective layer 17 is made of porous alumina and is formed so as to cover the outermost surface of the element main body 70. Specifically, the protective layer 17 is made of a porous material having a diffusion resistance smaller than that of the diffusion rate controlling portion 95. In the gas sensor element 7 having such a configuration, the exhaust gas reaches the gas introduction unit 94 via the protective layer 17 and is introduced from the gas introduction unit 94 to the gas measurement chamber 91 via the diffusion rate control unit 95.

ヒータ73は、アルミナを主体とする緻密層である絶縁基板101、103の間に、Ptを主体とする発熱抵抗体パターン105が挟み込まれて形成されており、酸素濃度検出セル81及び酸素ポンプセル89を活性化温度まで加熱する。絶縁基板101,103が、発熱抵抗体パターン105の上下を挟むように発熱抵抗体パターン105を包みこんでいるため、発熱抵抗体パターン105からの熱が速やかに酸素濃度検出セル81及び酸素ポンプセル89へ伝わる。 The heater 73 is formed by sandwiching a heat generating resistor pattern 105 mainly composed of Pt between insulating substrates 101 and 103 which are dense layers mainly composed of alumina, and an oxygen concentration detection cell 81 and an oxygen pump cell 89. Is heated to the activation temperature. Since the insulating substrates 101 and 103 surround the heat-generating resistor pattern 105 so as to sandwich the heat-generating resistor pattern 105 above and below, the heat from the heat-generating resistor pattern 105 promptly causes the oxygen concentration detection cell 81 and the oxygen pump cell 89. Is transmitted to.

また、ヒータ73は、SCU800によって通電制御が行われる。本実施形態では、ヒータ73は、素子部71の温度が一定となるように、PWM制御される。すなわち、SCU80は、所定の周期におけるオン期間とオフ期間の割合が所定のデューティ比となるように、ヒータ73の通電を制御する。 Further, the heater 73 is energized and controlled by the SCU 800. In the present embodiment, the heater 73 is PWM controlled so that the temperature of the element unit 71 becomes constant. That is, the SCU 80 controls the energization of the heater 73 so that the ratio of the on period to the off period in the predetermined cycle becomes a predetermined duty ratio.

発熱抵抗体パターン105は、図5に示すように、先端側に設けられた複数の直線部105aと、複数の直線部105aの後端から後端側へ延びたヒータリード部と、を備える。本実施形態では、発熱抵抗体パターン105は、4本の直線部105aを備える。発熱抵抗体パターン105のうち、発熱するのは複数の直線部105aである。複数の直線部105aは、積層方向において、複数の直線部105a、酸素濃度検出セル81、ガス測定室91、及び酸素ポンプセル89がこの順番で重なるように、素子本体部70に設けられている。 As shown in FIG. 5, the heat generation resistor pattern 105 includes a plurality of straight line portions 105a provided on the front end side, and a heater lead portion extending from the rear end to the rear end side of the plurality of straight line portions 105a. In this embodiment, the heat generation resistor pattern 105 includes four linear portions 105a. Of the heat generation resistor patterns 105, the plurality of linear portions 105a generate heat. The plurality of linear portions 105a are provided in the element main body portion 70 so that the plurality of straight portions 105a, the oxygen concentration detection cell 81, the gas measuring chamber 91, and the oxygen pump cell 89 overlap in this order in the stacking direction.

また、積層体72は、発熱抵抗体パターン105の複数の直線部105aと酸素濃度検出セル81の第1電極79との間に設けられた断熱部18を備える。断熱部18は、ヒータ73の素子部71側の絶縁基板101において、第1電極79と重なる部分に設けられた凹部に形成されている。つまり、断熱部18は複数の直線部105aに直に接してはおらず、断熱部18と複数の直線部105aとの間に絶縁基板101が挟まれている。また、断熱部18は、ガスセンサ素子7の幅方向において、複数の直線部105aのうちの少なくとも2本を跨ぐように設けられている。 Further, the laminated body 72 includes a heat insulating portion 18 provided between a plurality of linear portions 105a of the heat generation resistor pattern 105 and the first electrode 79 of the oxygen concentration detection cell 81. The heat insulating portion 18 is formed in a recess provided in a portion of the insulating substrate 101 on the element portion 71 side of the heater 73 so as to overlap with the first electrode 79. That is, the heat insulating portion 18 is not directly in contact with the plurality of straight line portions 105a, and the insulating substrate 101 is sandwiched between the heat insulating portion 18 and the plurality of straight line portions 105a. Further, the heat insulating portion 18 is provided so as to straddle at least two of the plurality of linear portions 105a in the width direction of the gas sensor element 7.

断熱部18は、凹部に形成される空間でもよいし、凹部に埋め込まれた多孔質部材でもよいし、凹部に埋め込まれた緻密部材でもよい。断熱部18を多孔質部材とした場合、多孔質部材としては、断熱部18の周囲の絶縁基板103よりも気孔率の高い多孔質部材、例えば、気孔径0.7μm、気孔率約45%の多孔質部材を採用できる。また、断熱部18を緻密部材とした場合、緻密部材としては、断熱部18の周囲の絶縁基板101よりも熱伝導率が低い緻密部材を採用できる。 The heat insulating portion 18 may be a space formed in the recess, a porous member embedded in the recess, or a dense member embedded in the recess. When the heat insulating portion 18 is a porous member, the porous member has a porosity higher than that of the insulating substrate 103 around the heat insulating portion 18, for example, a pore diameter of 0.7 μm and a porosity of about 45%. Porous members can be adopted. Further, when the heat insulating portion 18 is a dense member, a dense member having a lower thermal conductivity than the insulating substrate 101 around the heat insulating portion 18 can be adopted as the dense member.

断熱部18は、積層体72の内部に埋め込まれており、積層体72から露出していない。すなわち、積層方向から見たときに、絶縁基板101は、断熱部18の周囲に連続して形成されている。絶縁基板101は、断熱部18よりも熱伝導率が高い部材である。具体的には、絶縁基板101は、断熱部18である空間又は多孔質部材又は緻密部材を形成する物質よりも熱伝導率が高い物質で形成された部材でもよいし、断熱部18である多孔質部材又は緻密部材と気孔率及び/又は気孔径が異なることによって、断熱部18よりも熱伝導率が高い部材でもよい。 The heat insulating portion 18 is embedded inside the laminated body 72 and is not exposed from the laminated body 72. That is, when viewed from the stacking direction, the insulating substrate 101 is continuously formed around the heat insulating portion 18. The insulating substrate 101 is a member having a higher thermal conductivity than the heat insulating portion 18. Specifically, the insulating substrate 101 may be a member formed of a substance having a higher thermal conductivity than a substance forming a space or a porous member or a dense member which is a heat insulating portion 18, or a porous member which is a heat insulating portion 18. A member having a higher thermal conductivity than the heat insulating portion 18 may be used because the porosity and / or the pore diameter is different from that of the quality member or the dense member.

よって、直線部105aから酸素濃度検出セル81への熱の伝導経路が、直線部105aから酸素濃度検出セル81へ向かう直線的な経路ではなく、断熱部18を迂回して回り込むような経路となる。そのため、直線部105aから第1電極79へ伝わる熱量と第2電極77へ伝わる熱量と差が抑制される。さらに、断熱部18が積層体72の外部に露出していないため、断熱部18の一部が外部に露出している場合と比べて、熱の伝導経路が多く形成される。また、断熱部18が複数の直線部105aのうちの少なくとも2本を跨ぐように設けられていることにより、複数の熱源から酸素濃度検出セル81へ熱が伝わるため、直線部105aから第1電極79へ伝わる熱量と第2電極77へ伝わる熱量との差を抑制し、熱起電力の発生を抑制しつつ、より効果的に酸素濃度検出セル81を加熱することができる。 Therefore, the heat conduction path from the straight section 105a to the oxygen concentration detection cell 81 is not a straight path from the straight section 105a to the oxygen concentration detection cell 81, but a path that bypasses the heat insulating section 18. .. Therefore, the difference between the amount of heat transferred from the linear portion 105a to the first electrode 79 and the amount of heat transferred to the second electrode 77 is suppressed. Further, since the heat insulating portion 18 is not exposed to the outside of the laminated body 72, more heat conduction paths are formed as compared with the case where a part of the heat insulating portion 18 is exposed to the outside. Further, since the heat insulating portion 18 is provided so as to straddle at least two of the plurality of straight portions 105a, heat is transferred from the plurality of heat sources to the oxygen concentration detection cell 81, so that the first electrode is formed from the straight portion 105a. The oxygen concentration detection cell 81 can be heated more effectively while suppressing the difference between the amount of heat transferred to the 79 and the amount of heat transferred to the second electrode 77 and suppressing the generation of thermoelectromotive force.

また、積層体72は、断熱部18と第1電極79とに挟まれたセラミック製の絶縁基板102を備える。詳しくは、絶縁基板102は、絶縁基板101と第1固体電解質体75との間に設けられており、第1電極79は絶縁基板102に埋め込まれている。よって、第1電極79は断熱部18に直に接してはおらず、第1電極79と断熱部18との間に絶縁基板102が挟まれている。絶縁基板102は、断熱部18よりも熱伝導率が高い部材である。このように、第1電極79と断熱部18との間に、断熱部18よりも熱伝導率が高い絶縁基板102が挟まれていることにより、直線部105aから断熱部18を迂回して伝達された熱は、絶縁基板102の部分で軸線方向へ広がり、酸素濃度検出セル81へ効率的に伝えられる。 Further, the laminated body 72 includes a ceramic insulating substrate 102 sandwiched between the heat insulating portion 18 and the first electrode 79. Specifically, the insulating substrate 102 is provided between the insulating substrate 101 and the first solid electrolyte body 75, and the first electrode 79 is embedded in the insulating substrate 102. Therefore, the first electrode 79 is not in direct contact with the heat insulating portion 18, and the insulating substrate 102 is sandwiched between the first electrode 79 and the heat insulating portion 18. The insulating substrate 102 is a member having a higher thermal conductivity than the heat insulating portion 18. In this way, the insulating substrate 102 having a higher thermal conductivity than the heat insulating portion 18 is sandwiched between the first electrode 79 and the heat insulating portion 18, so that the linear portion 105a bypasses the heat insulating portion 18 and is transmitted. The generated heat spreads in the axial direction at the portion of the insulating substrate 102 and is efficiently transferred to the oxygen concentration detection cell 81.

ここで、図6に示す従来のガスセンサ素子は、ヒータH11と第1セルC11と第2セルC12とを備え、断熱部を備えていない。第1セルC11は、ヒータH11に近い側の電極Vs+とヒータH11に遠い側の電極Vs-とを備える。従来のガスセンサ素子は、断熱部を備えていないため、断熱部を備えている場合と比べて、電極Vs+と電極Vs-とに伝わる熱量の差が大きくなり、電極Vs+と電極Vs-の温度差が大きくなる。その結果、電極Vs+と電極Vs-との間に、ゼーベック効果によって熱起電力が生じる。 Here, the conventional gas sensor element shown in FIG. 6 includes a heater H11, a first cell C11, and a second cell C12, and does not include a heat insulating portion. The first cell C11 includes an electrode Vs + on the side closer to the heater H11 and an electrode Vs− on the side farther from the heater H11. Since the conventional gas sensor element does not have a heat insulating portion, the difference in the amount of heat transferred between the electrode Vs + and the electrode Vs- becomes larger than that in the case where the heat insulating portion is provided, and the temperature difference between the electrode Vs + and the electrode Vs- Becomes larger. As a result, a thermoelectromotive force is generated between the electrode Vs + and the electrode Vs-due by the Seebeck effect.

図7に示すように、電極Vs+と電極Vs-との温度差によって生じる熱起電力は、起電力Vsの変動量ΔVsに寄与するノイズ成分となる。起電力Vsに対する他のノイズ成分は、ヒータ73の通電のオンオフの切り替えに伴う電磁誘導とホワイトノイズがある。これらのノイズ成分の中でも、熱起電力に伴う出力変動は大きく常時発生するため、電極Vs+と電極Vs-との温度差が大きいと、ガスセンサのセンサ出力が不安定になる可能性がある。これに対して、本実施形態のガスセンサ素子7は断熱部18を備えているため、熱起電力による出力変動が抑制され、ガスセンサ1のセンサ出力は安定しやすい。 As shown in FIG. 7, the thermoelectromotive force generated by the temperature difference between the electrode Vs + and the electrode Vs− is a noise component that contributes to the fluctuation amount ΔVs of the electromotive force Vs. Other noise components with respect to the electromotive force Vs are electromagnetic induction and white noise associated with switching on / off of energization of the heater 73. Among these noise components, the output fluctuation due to the thermoelectromotive force is large and always occurs. Therefore, if the temperature difference between the electrode Vs + and the electrode Vs- is large, the sensor output of the gas sensor may become unstable. On the other hand, since the gas sensor element 7 of the present embodiment includes the heat insulating portion 18, the output fluctuation due to the thermoelectromotive force is suppressed, and the sensor output of the gas sensor 1 is likely to be stable.

<3.断熱部の大きさ>
次に、断熱部18の大きさとノイズの低減効果について説明する。ここでは、断熱部18の積層方向の厚みと軸線方向の長さ、すなわち、断熱部18のz方向の厚みとy方向の長さを一定にし、断熱部18の幅すなわちx方向の長さを3通りに変化させて、ノイズの低減効果を比較した。
<3. Size of heat insulation part>
Next, the size of the heat insulating portion 18 and the noise reducing effect will be described. Here, the thickness in the stacking direction and the length in the axial direction of the heat insulating portion 18, that is, the thickness in the z direction and the length in the y direction of the heat insulating portion 18 are made constant, and the width of the heat insulating portion 18, that is, the length in the x direction is set. The noise reduction effect was compared by changing in three ways.

具体的には、(i)図8及び図11に示すように、断熱部18の幅を第1電極79の幅よりも小さくする。(ii)図9及び図12に示すように、断熱部18の幅を第1電極79の幅と等しくする。(iii)図10及び図13に示すように、断熱部18の幅を第1電極79の幅よりも大きくする。(i)の場合は、断熱部18の積層方向に垂直な面の面積(以下、断熱部断面積)が、第1電極79の発熱抵抗体パターン105の直線部105aに向く面の面積(以下、第1電極面積)、つまり、断熱部18に対向する面の面積よりも小さくなる。(ii)の場合、断熱部断面積と第1電極面積は等しくなる。(iii)の場合、断熱部断面積は第1電極面積よりも大きくなる。 Specifically, as shown in (i) FIGS. 8 and 11, the width of the heat insulating portion 18 is made smaller than the width of the first electrode 79. (Ii) As shown in FIGS. 9 and 12, the width of the heat insulating portion 18 is made equal to the width of the first electrode 79. (Iii) As shown in FIGS. 10 and 13, the width of the heat insulating portion 18 is made larger than the width of the first electrode 79. In the case of (i), the area of the surface perpendicular to the stacking direction of the heat insulating portion 18 (hereinafter, the cross-sectional area of the heat insulating portion) is the area of the surface facing the straight portion 105a of the heat generating resistor pattern 105 of the first electrode 79 (hereinafter,). , First electrode area), that is, smaller than the area of the surface facing the heat insulating portion 18. In the case of (ii), the cross-sectional area of the heat insulating portion and the area of the first electrode are equal. In the case of (iii), the cross-sectional area of the heat insulating portion is larger than the area of the first electrode.

図14に、断熱部18なし、断熱部18を空間とした(i)~(iii)の場合、断熱部18を多孔質材とした(i)~(iii)の場合における、ノイズの有無、ノイズの低減率を示す。ノイズの有無は、×、△、○、◎の順で後になるほどノイズが少ないことを示す。ノイズの低減率は、断熱部18なしとした場合と比較して、どの程度ノイズが低減したかを示す数値である。 FIG. 14 shows the presence or absence of noise in the cases of (i) to (iii) in which the heat insulating portion 18 is not provided and the heat insulating portion 18 is used as a space, and in the cases of (i) to (iii) in which the heat insulating portion 18 is used as a porous material. Shows the noise reduction rate. The presence or absence of noise indicates that the noise is less in the order of ×, Δ, ○, and ◎. The noise reduction rate is a numerical value indicating how much the noise is reduced as compared with the case where the heat insulating portion 18 is not used.

図14に示すように、断熱部18がない場合と比べて、断熱部18を空間及び多孔質材のどちらにした場合も、ノイズ低減効果が得られているが、断熱部18を空間にした場合に、特にノイズ低減効果が高いことがわかる。断熱部18を多孔質材とする場合は、気孔径を大きくする及び/又は気孔率を大きくすることで、ノイズ低減効果を、断熱部18を空間とした場合のノイズ低減効果に近づけることができる。 As shown in FIG. 14, the noise reduction effect is obtained when the heat insulating portion 18 is made of a space or a porous material as compared with the case where the heat insulating portion 18 is not provided, but the heat insulating portion 18 is made a space. In this case, it can be seen that the noise reduction effect is particularly high. When the heat insulating portion 18 is made of a porous material, the noise reducing effect can be brought closer to the noise reducing effect when the heat insulating portion 18 is used as a space by increasing the pore diameter and / or the porosity. ..

また、断熱部18がない場合と比べて、断熱部18の大きさを(i)~(iii)のどれにした場合でも、ノイズ低減効果が得られることがわかる。そして、断熱部18の大きさを(i)とした場合と比べて、(ii)及び(iii)とした場合の方が、ノイズ低減効果が高くなっていることがわかる。よって、ノイズ低減効果を向上させるためには、断熱部断面積を第1電極面積以上とすることが望ましい。 Further, it can be seen that the noise reduction effect can be obtained regardless of the size of the heat insulating portion 18 (i) to (iii) as compared with the case where the heat insulating portion 18 is not provided. It can be seen that the noise reduction effect is higher when the size of the heat insulating portion 18 is set to (i) and when the size is set to (ii) and (iii). Therefore, in order to improve the noise reduction effect, it is desirable that the cross-sectional area of the heat insulating portion is equal to or larger than the first electrode area.

ただし、断熱部18の大きさを(ii)とした場合と(iii)とした場合とでは、ノイズ低減効果は略等しく、有意な差は見られない。また、断熱部18を空間又は多孔質材とする場合、断熱部18を大きくするほど、ガスセンサ素子7の強度が低下する。したがって、ノイズ低減効果及びガスセンサ素子7の強度の観点から、断熱部断面積は第1電極面積と等しくすることが最も望ましい。 However, the noise reduction effect is substantially the same between the case where the size of the heat insulating portion 18 is set to (ii) and the case where the size is set to (iii), and no significant difference is observed. Further, when the heat insulating portion 18 is made of a space or a porous material, the larger the heat insulating portion 18, the lower the strength of the gas sensor element 7. Therefore, from the viewpoint of noise reduction effect and strength of the gas sensor element 7, it is most desirable that the cross-sectional area of the heat insulating portion is equal to the area of the first electrode.

<4.効果>
以上説明した第1実施形態によれば、以下の効果が得られる。
(1)断熱部18を備えることにより、直線部105aから酸素濃度検出セル81への熱の伝導経路が、直線的な経路ではなく、断熱部18を迂回して回り込むような経路となる。これにより、直線部105aから第1電極79へ伝わる熱量と第2電極77へ伝わる熱量との差が抑制され、第1電極79と第2電極77の電極間の温度差を抑制することができる。さらに、断熱部18は、積層体72の外部に露出していないため、断熱部18の一部が外部に露出している場合と比べて、熱の伝導経路が多く形成される。よって、直線部105aから酸素濃度検出セル81へ効率的に熱を伝えることができる。ひいては、直線部105aから第1電極79へ伝わる熱量と第2電極77へ伝わる熱量の差を抑制しつつ、酸素濃度検出セル81の活性化の低下を抑制することができる。
<4. Effect>
According to the first embodiment described above, the following effects can be obtained.
(1) By providing the heat insulating portion 18, the heat conduction path from the straight section 105a to the oxygen concentration detection cell 81 is not a linear path but a path that bypasses the heat insulating section 18 and goes around. As a result, the difference between the amount of heat transferred from the linear portion 105a to the first electrode 79 and the amount of heat transferred to the second electrode 77 is suppressed, and the temperature difference between the electrodes of the first electrode 79 and the second electrode 77 can be suppressed. .. Further, since the heat insulating portion 18 is not exposed to the outside of the laminated body 72, more heat conduction paths are formed as compared with the case where a part of the heat insulating portion 18 is exposed to the outside. Therefore, heat can be efficiently transferred from the linear portion 105a to the oxygen concentration detection cell 81. As a result, it is possible to suppress a decrease in activation of the oxygen concentration detection cell 81 while suppressing a difference in the amount of heat transferred from the linear portion 105a to the first electrode 79 and the amount of heat transferred to the second electrode 77.

(2)第1電極79と断熱部18との間に断熱部18よりも熱伝導率が高い絶縁基板102が挟まれていることにより、第1電極79と断熱部18が接している場合よりも、直線部105aから酸素濃度検出セル81へより効率的に熱を伝えることができる。 (2) Since the insulating substrate 102 having a higher thermal conductivity than the heat insulating portion 18 is sandwiched between the first electrode 79 and the heat insulating portion 18, the first electrode 79 and the heat insulating portion 18 are in contact with each other. Also, heat can be transferred more efficiently from the linear portion 105a to the oxygen concentration detection cell 81.

(3)断熱部18の断熱断面積を第1電極79の第1電極面積以上とすることで、第1電極79と第2電極77との電極間の温度差を好適に抑制することができる。
(4)ガスセンサ1は、ガスセンサ素子7を備えることにより、検出精度を向上させることができる。
(3) By setting the heat insulating cross-sectional area of the heat insulating portion 18 to be equal to or larger than the area of the first electrode of the first electrode 79, the temperature difference between the first electrode 79 and the second electrode 77 can be suitably suppressed. ..
(4) The gas sensor 1 is provided with the gas sensor element 7, so that the detection accuracy can be improved.

(5)ガス検出装置900は、ガスセンサ素子7を備えることにより、ヒータ73の通電をPWM制御する場合でも、センサ出力に対して加わるノイズを抑制して、検出精度を向上させることができる。 (5) By providing the gas sensor element 7 in the gas detection device 900, noise added to the sensor output can be suppressed and the detection accuracy can be improved even when the energization of the heater 73 is PWM-controlled.

<5.第1実施形態の変形例>
上述した第1実施形態では、積層体72は、断熱部18と第1電極79とに挟まれた絶縁基板102を備えていた。酸素濃度検出セル81への熱伝導の効率の観点からすると、積層体72は、絶縁基板102を備えている方が望ましいが、図15に示すように、絶縁基板102を備えていなくてもよい。すなわち、第1電極79が断熱部18に直に接していてもよい。第1電極79が断熱部18に直に接していても、断熱部18を設けたことにより熱起電力を抑制して、出力変動を抑制することができる。
<5. Modification example of the first embodiment>
In the first embodiment described above, the laminated body 72 includes an insulating substrate 102 sandwiched between the heat insulating portion 18 and the first electrode 79. From the viewpoint of the efficiency of heat conduction to the oxygen concentration detection cell 81, it is desirable that the laminated body 72 is provided with the insulating substrate 102, but as shown in FIG. 15, the laminated body 72 may not be provided with the insulating substrate 102. .. That is, the first electrode 79 may be in direct contact with the heat insulating portion 18. Even if the first electrode 79 is in direct contact with the heat insulating portion 18, the thermoelectromotive force can be suppressed by providing the heat insulating portion 18, and the output fluctuation can be suppressed.

<6.文言の対応関係>
ここで、文言の対応関係について説明する。
第1及び第2固体電解質体75,83が板状の固体電解質体に相当し、第1及び第2電極79,77と第3及び第4電極87,85が一対の電極に相当する。また、ヒータ73、複数の直線部105a、積層体72が、それぞれ板状のヒータ、発熱部、積層体に相当する。また、酸素濃度検出セル81及び酸素ポンプセル89が一つ以上のセルに相当し、酸素濃度検出セル81がヒータに最も近いセルに相当する。また、第1電極79、第2電極77、断熱部18、絶縁基板101、絶縁基板102が、それぞれ第1電極、第2電極、断熱部、熱伝導部、セラミック層に相当する。また、ガスセンサ素子7、ガスセンサ1、SCU800、ガス検出装置900が、それぞれガスセンサ素子、ガスセンサ、制御部、ガス検出装置に相当する。また、主体金具5と外筒57とプロテクタ55がハウジングに相当する。
<6. Correspondence of words>
Here, the correspondence between words will be described.
The first and second solid electrolytes 75 and 83 correspond to plate-shaped solid electrolytes, and the first and second electrodes 79 and 77 and the third and fourth electrodes 87 and 85 correspond to a pair of electrodes. Further, the heater 73, the plurality of linear portions 105a, and the laminated body 72 correspond to the plate-shaped heater, the heat generating portion, and the laminated body, respectively. Further, the oxygen concentration detection cell 81 and the oxygen pump cell 89 correspond to one or more cells, and the oxygen concentration detection cell 81 corresponds to the cell closest to the heater. Further, the first electrode 79, the second electrode 77, the heat insulating portion 18, the insulating substrate 101, and the insulating substrate 102 correspond to the first electrode, the second electrode, the heat insulating portion, the heat conductive portion, and the ceramic layer, respectively. Further, the gas sensor element 7, the gas sensor 1, the SCU 800, and the gas detection device 900 correspond to the gas sensor element, the gas sensor, the control unit, and the gas detection device, respectively. Further, the main metal fitting 5, the outer cylinder 57, and the protector 55 correspond to the housing.

(第2実施形態)
<1.第1実施形態との相違点>
第2実施形態は、基本的な構成は第1実施形態と同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
(Second Embodiment)
<1. Differences from the first embodiment>
Since the basic configuration of the second embodiment is the same as that of the first embodiment, the description of the common configuration will be omitted, and the differences will be mainly described. It should be noted that the same reference numerals as those in the first embodiment indicate the same configuration, and the preceding description will be referred to.

前述した第1実施形態では、ガスセンサ素子7は2つのセルを備えていた。これに対し、第2実施形態では、ガスセンサ素子204が1つのセルしか備えていない点で、第1実施形態と相違する。 In the first embodiment described above, the gas sensor element 7 includes two cells. On the other hand, the second embodiment differs from the first embodiment in that the gas sensor element 204 includes only one cell.

ガスセンサ素子204は、図16~図18に示すように、遮蔽層312、拡散律速部315、酸素ポンプセル500、絶縁基板307、ヒータ400が積層された積層体350と、積層体350の先端側を覆う保護層330と、を備えている。積層体350の先端側は、測定対象となるガスに向けられる素子本体部501である。 As shown in FIGS. 16 to 18, the gas sensor element 204 has a laminated body 350 in which a shielding layer 312, a diffusion rate controlling unit 315, an oxygen pump cell 500, an insulating substrate 307, and a heater 400 are laminated, and the tip end side of the laminated body 350. A protective layer 330 for covering is provided. The tip end side of the laminated body 350 is an element main body portion 501 directed to the gas to be measured.

ヒータ400は、ヒータ73と同様に、軸線方向に延びる板状に形成されており、絶縁基板301と絶縁基板303で発熱抵抗体パターン105を挟んで構成されている。
酸素ポンプセル500は、酸素ポンプセル89と同様に、軸線方向に延びる板状に形成されており、固体電解質体309と、固体電解質体309の両面に形成された第5電極308と第6電極310と、を備える。第5電極308及び第6電極310は、ヒータ400の直線部105aに重なる様に、固体電解質体309の両面に設けられている。第5電極308は、固体電解質体309の長手方向に沿って延びる不図示のリード部を備えており、このリード部は、電極端子部321と電気的に接続されている。ガスセンサ素子204では、第5電極308と第6電極310との間に微小電流を流して、第5電極308を基準濃度に応じた基準電位にして用いる。
Like the heater 73, the heater 400 is formed in a plate shape extending in the axial direction, and is configured such that the heat generating resistor pattern 105 is sandwiched between the insulating substrate 301 and the insulating substrate 303.
Like the oxygen pump cell 89, the oxygen pump cell 500 is formed in a plate shape extending in the axial direction, and includes the solid electrolyte body 309 and the fifth electrode 308 and the sixth electrode 310 formed on both sides of the solid electrolyte body 309. , Equipped with. The fifth electrode 308 and the sixth electrode 310 are provided on both sides of the solid electrolyte body 309 so as to overlap the linear portion 105a of the heater 400. The fifth electrode 308 includes a lead portion (not shown) extending along the longitudinal direction of the solid electrolyte body 309, and this lead portion is electrically connected to the electrode terminal portion 321. In the gas sensor element 204, a minute current is passed between the fifth electrode 308 and the sixth electrode 310, and the fifth electrode 308 is used as a reference potential according to the reference concentration.

また、素子本体部501は、排ガスを導入するためのガス導入部322を備える。素子本体部501は、その内部に、ガス導入部322を介して排ガスが導入されるガス測定室316を備えている。ガス測定室316は、第6電極310を覆うように、固体電解質体309の表面に設けられている。 Further, the element main body portion 501 includes a gas introduction portion 322 for introducing exhaust gas. The element main body portion 501 includes a gas measuring chamber 316 in which the exhaust gas is introduced via the gas introducing portion 322. The gas measuring chamber 316 is provided on the surface of the solid electrolyte body 309 so as to cover the sixth electrode 310.

拡散律速部315は、アルミナから構成された多孔質材であり、ガス測定室316を覆うように、固体電解質体309の表面に設けられている。さらに、拡散律速部315の表面のうち固体電解質体309とは反対側の面には遮蔽層312が積層されている。また、拡散律速部315は、遮蔽層312及び固体電解質体309には接しない4つの側面が外部に露出している。拡散律速部315におけるこの露出部分が、ガスセンサ素子204の素子本体部501のうち排ガスを導入するためのガス導入部322となる。 The diffusion rate control unit 315 is a porous material made of alumina, and is provided on the surface of the solid electrolyte body 309 so as to cover the gas measuring chamber 316. Further, a shielding layer 312 is laminated on the surface of the diffusion rate controlling portion 315 on the side opposite to the solid electrolyte body 309. Further, the diffusion rate controlling unit 315 has four side surfaces exposed to the outside, which are not in contact with the shielding layer 312 and the solid electrolyte body 309. This exposed portion of the diffusion rate control unit 315 becomes the gas introduction unit 322 for introducing the exhaust gas from the element main body portion 501 of the gas sensor element 204.

絶縁基板307は、ヒータ400と酸素ポンプセル500との間に設けられている。絶縁基板307は、絶縁性を有するセラミック焼結体であればとくに限定されるものではなく、例えば、アルミナやムライト等の酸化物系セラミックを採用することができる。 The insulating substrate 307 is provided between the heater 400 and the oxygen pump cell 500. The insulating substrate 307 is not particularly limited as long as it is a ceramic sintered body having an insulating property, and for example, an oxide-based ceramic such as alumina or mullite can be adopted.

また、絶縁基板307は、ヒータ400に近い側の第5電極308と対向する部分がくり抜かれており、くり抜かれた部分に断熱部325が形成されている。つまり、断熱部325は、発熱抵抗体パターン105の直線部105aと第5電極308との間に設けられており、直に第5電極308と接している。 Further, in the insulating substrate 307, a portion facing the fifth electrode 308 on the side close to the heater 400 is hollowed out, and a heat insulating portion 325 is formed in the hollowed out portion. That is, the heat insulating portion 325 is provided between the linear portion 105a of the heat generation resistor pattern 105 and the fifth electrode 308, and is in direct contact with the fifth electrode 308.

絶縁基板307は、断熱部325よりも熱伝導率が高い部材であり、積層方向から見たときに、断熱部325の周囲に連続して形成されている。すなわち、断熱部325は、積層体350に埋め込まれており、積層体350から露出していない。 The insulating substrate 307 is a member having a higher thermal conductivity than the heat insulating portion 325, and is continuously formed around the heat insulating portion 325 when viewed from the stacking direction. That is, the heat insulating portion 325 is embedded in the laminated body 350 and is not exposed from the laminated body 350.

また、断熱部325は、断熱部18と同様に、空間でもよいし、周囲の絶縁基板307よりも気孔率の高い多孔質部材でもよいし、絶縁基板307よりも熱伝導率の低い緻密部材でもよい。また、断熱部325は、断熱部18と同様に、ガスセンサ素子204の幅方向において、複数の直線部105aのうちの少なくとも2本を跨ぐように設けられている。 Further, the heat insulating portion 325 may be a space, a porous member having a higher porosity than the surrounding insulating substrate 307, or a dense member having a lower thermal conductivity than the insulating substrate 307, as in the heat insulating portion 18. good. Further, the heat insulating portion 325 is provided so as to straddle at least two of the plurality of linear portions 105a in the width direction of the gas sensor element 204, similarly to the heat insulating portion 18.

また、断熱部325の大きさは、断熱部18と同様に、断熱部断面積を、第5電極308の直線部105aに向く面積(以下、第5電極面積)以上にすることが望ましい。特に、断熱部18の断熱部段絵面積と第5電極面積を等しくすることが最も望ましい。 Further, as for the size of the heat insulating portion 325, it is desirable that the cross-sectional area of the heat insulating portion is equal to or larger than the area facing the straight portion 105a of the fifth electrode 308 (hereinafter referred to as the fifth electrode area), similarly to the heat insulating portion 18. In particular, it is most desirable to make the area of the heat insulating portion step picture of the heat insulating portion 18 equal to the area of the fifth electrode.

また、断熱部325は、第5電極308に直に接しているが、断熱部18と第1電極79との間に絶縁基板102が設けられていたように、熱の伝導効率を上げるために、断熱部325と第5電極308との間に、断熱部325よりも熱伝導率が高く、絶縁基板307の熱伝導率以上の熱伝導率の絶縁基板が設けられていてもよい。 Further, the heat insulating portion 325 is in direct contact with the fifth electrode 308, but in order to increase the heat conduction efficiency, as the insulating substrate 102 is provided between the heat insulating portion 18 and the first electrode 79. An insulating substrate having a thermal conductivity higher than that of the heat insulating portion 325 and having a thermal conductivity higher than that of the insulating substrate 307 may be provided between the heat insulating portion 325 and the fifth electrode 308.

保護層330は、多孔質材のアルミナで、素子本体部501の最外面を覆うように形成されている。具体的には、保護層330は、拡散律速部315よりも拡散抵抗が小さい多孔質材料で構成されている。このような構成のガスセンサ素子204においては、排ガスは、保護層330を介してガス導入部322に到達し、ガス導入部322から拡散律速部315を介してガス測定室316に導入される。 The protective layer 330 is made of a porous material, alumina, and is formed so as to cover the outermost surface of the element main body portion 501. Specifically, the protective layer 330 is made of a porous material having a diffusion resistance smaller than that of the diffusion rate controlling unit 315. In the gas sensor element 204 having such a configuration, the exhaust gas reaches the gas introduction unit 322 via the protective layer 330 and is introduced from the gas introduction unit 322 to the gas measurement chamber 316 via the diffusion rate control unit 315.

以上説明した第2実施形態によれば、前述した第1実施形態の効果(1)~(5)と同様の効果を奏する。ただし、第1実施形態の酸素濃度検出セル81は、第2実施形態の酸素ポンプセル500に対応する。 According to the second embodiment described above, the same effects as those of the above-mentioned effects (1) to (5) of the first embodiment are obtained. However, the oxygen concentration detection cell 81 of the first embodiment corresponds to the oxygen pump cell 500 of the second embodiment.

<2.文言の対応関係>
ここで、文言の対応関係について説明する。
固体電解質体309が板状の固体電解質体に相当し、第5及び第6電極308,310が一対の電極に相当する。また、ヒータ400、積層体350が、それぞれ板状のヒータ、積層体に相当する。また、酸素ポンプセル500が一つ以上のセル及びヒータに最も近いセルに相当する。また、ガスセンサ素子204がガスセンサ素子に相当する。また、第5電極308、第6電極310、断熱部325、絶縁基板307が、それぞれ第1電極、第2電極、断熱部、熱伝導部に相当する。
<2. Correspondence of words>
Here, the correspondence between words will be described.
The solid electrolyte body 309 corresponds to a plate-shaped solid electrolyte body, and the fifth and sixth electrodes 308 and 310 correspond to a pair of electrodes. Further, the heater 400 and the laminated body 350 correspond to the plate-shaped heater and the laminated body, respectively. Also, the oxygen pump cell 500 corresponds to one or more cells and the cell closest to the heater. Further, the gas sensor element 204 corresponds to the gas sensor element. Further, the fifth electrode 308, the sixth electrode 310, the heat insulating portion 325, and the insulating substrate 307 correspond to the first electrode, the second electrode, the heat insulating portion, and the heat conductive portion, respectively.

(他の実施形態)
以上、本開示を実施するための形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
(Other embodiments)
Although the embodiment for carrying out the present disclosure has been described above, the present disclosure is not limited to the above-described embodiment, and can be variously modified and carried out.

(a)上記実施形態では、SCU800は、ヒータ73,400の通電をPWM制御していたが、PWM制御に限定されるものではなく、例えば、オンし続けてもよい。SCU800がヒータ73,400をPWM制御しない場合、熱起電力が発生すると、センサ出力はオフセットされる。 (A) In the above embodiment, the SCU 800 has PWM controlled the energization of the heaters 73 and 400, but the present invention is not limited to the PWM control, and may be continuously turned on, for example. When the SCU 800 does not PWM control the heaters 73 and 400, the sensor output is offset when a thermoelectromotive force is generated.

(b)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 (B) A plurality of functions possessed by one component in the above embodiment may be realized by a plurality of components, or one function possessed by one component may be realized by a plurality of components. .. Further, a plurality of functions possessed by the plurality of components may be realized by one component, or one function realized by the plurality of components may be realized by one component. Further, a part of the configuration of the above embodiment may be omitted. Further, at least a part of the configuration of the above embodiment may be added or replaced with the configuration of the other above embodiment. It should be noted that all aspects included in the technical idea specified only by the wording described in the claims are embodiments of the present disclosure.

1…ガスセンサ、5…主体金具、7,204…ガスセンサ素子、17,330…保護層、18,325…断熱部、55…プロテクタ、57…外筒、70,501…素子本体部、71…素子部、72,350…積層体、73,400…ヒータ、75…第1固体電解質体、77…第2電極、79…第1電極、81…酸素濃度検出セル、83…第2固体電解質体、85…第4電極、87…第3電極、89,500…酸素ポンプセル、91,316…ガス測定室、94,322…ガス導入部、95,315…拡散律速部、97,101,102,103,301,303,307…絶縁基板、105…発熱抵抗体パターン、105a…直線部、308…第5電極、309…固体電解質体、310…第6電極、800…センサコントロールユニット、900…ガス検出装置。 1 ... Gas sensor, 5 ... Main metal fittings, 7,204 ... Gas sensor element, 17,330 ... Protective layer, 18,325 ... Insulation part, 55 ... Protector, 57 ... Outer cylinder, 70,501 ... Element body part, 71 ... Element Part, 72, 350 ... Laminated body, 73, 400 ... Heater, 75 ... First solid electrolyte body, 77 ... Second electrode, 79 ... First electrode, 81 ... Oxygen concentration detection cell, 83 ... Second solid electrolyte body, 85 ... 4th electrode, 87 ... 3rd electrode, 89,500 ... Oxygen pump cell, 91,316 ... Gas measuring chamber, 94,322 ... Gas introduction section, 95,315 ... Diffusion rate control section, 97,101,102,103 , 301, 303, 307 ... Insulated substrate, 105 ... Heat generation resistor pattern, 105a ... Straight part, 308 ... Fifth electrode, 309 ... Solid electrolyte, 310 ... Sixth electrode, 800 ... Sensor control unit, 900 ... Gas detection Device.

Claims (5)

板状の固体電解質体と前記固体電解質体の表面に設けられた一対の電極とを有する一つ以上のセルと、通電により発熱する発熱部を有する板状のヒータと、が積層された積層体を備えるガスセンサ素子であって、
前記一つ以上のセルのうち積層方向において前記ヒータに最も近いセルにおいては、前記一対の電極は、前記発熱部に重なる様に前記固体電解質体の両面に設けられ、前記発熱部に近い側の第1電極と前記発熱部に遠い側の第2電極とを備え、
前記積層体は、
前記第1電極と前記発熱部との間に設けられた断熱部と、
前記断熱部の全周囲を囲む絶縁基板と、を備え、
前記絶縁基板は、
積層方向から見たときに前記断熱部の周囲に連続して形成され、該断熱部よりも熱伝導率が高い熱伝導部と、
前記断熱部よりも熱伝導率が高く、前記第1電極と前記断熱部とに挟まれたセラミック層と、を備え、
前記断熱部は、空間である、
ガスセンサ素子。
A laminated body in which one or more cells having a plate-shaped solid electrolyte body and a pair of electrodes provided on the surface of the solid electrolyte body, and a plate-shaped heater having a heat generating portion that generates heat by energization are laminated. It is a gas sensor element equipped with
In the cell closest to the heater in the stacking direction among the one or more cells, the pair of electrodes are provided on both sides of the solid electrolyte body so as to overlap the heat generating portion, and the side closer to the heat generating portion. A first electrode and a second electrode on the far side of the heat generating portion are provided.
The laminated body is
A heat insulating portion provided between the first electrode and the heat generating portion,
An insulating substrate that surrounds the entire periphery of the heat insulating portion is provided.
The insulating substrate is
A heat conductive portion that is continuously formed around the heat insulating portion when viewed from the stacking direction and has a higher thermal conductivity than the heat insulating portion.
It has a higher thermal conductivity than the heat insulating portion, and includes a ceramic layer sandwiched between the first electrode and the heat insulating portion.
The heat insulating portion is a space.
Gas sensor element.
板状の固体電解質体と前記固体電解質体の表面に設けられた一対の電極とを有する一つ以上のセルと、通電により発熱する発熱部を有する板状のヒータと、が積層された積層体を備えるガスセンサ素子であって、
前記一つ以上のセルのうち積層方向において前記ヒータに最も近いセルにおいては、前記一対の電極は、前記発熱部に重なる様に前記固体電解質体の両面に設けられ、前記発熱部に近い側の第1電極と前記発熱部に遠い側の第2電極とを備え、
前記積層体は、
前記第1電極と前記発熱部との間に設けられた断熱部と、積層方向から見たときに前記断熱部の周囲に連続して形成され、該断熱部よりも熱伝導率が高い熱伝導部と、
前記断熱部よりも熱伝導率が高く、前記第1電極と前記断熱部とに挟まれたセラミック層と、を備え、
前記断熱部は、前記熱伝導部よりも気孔率の高い多孔質部材によって形成されている、
ガスセンサ素子。
A laminated body in which one or more cells having a plate-shaped solid electrolyte body and a pair of electrodes provided on the surface of the solid electrolyte body, and a plate-shaped heater having a heat generating portion that generates heat by energization are laminated. It is a gas sensor element equipped with
In the cell closest to the heater in the stacking direction among the one or more cells, the pair of electrodes are provided on both sides of the solid electrolyte body so as to overlap the heat generating portion, and the side closer to the heat generating portion. A first electrode and a second electrode on the far side of the heat generating portion are provided.
The laminated body is
A heat insulating portion provided between the first electrode and the heat generating portion, and a heat conduction portion which is continuously formed around the heat insulating portion when viewed from the stacking direction and has a higher thermal conductivity than the heat insulating portion. Department and
It has a higher thermal conductivity than the heat insulating portion, and includes a ceramic layer sandwiched between the first electrode and the heat insulating portion.
The heat insulating portion is formed of a porous member having a higher porosity than the heat conductive portion.
Gas sensor element.
前記断熱部は、その前記積層方向に垂直な面の面積が、前記第1電極の前記発熱部に向く面の面積以上となるように構成されている、
請求項1又は2に記載のガスセンサ素子。
The heat insulating portion is configured such that the area of the surface perpendicular to the stacking direction is equal to or larger than the area of the surface of the first electrode facing the heat generating portion.
The gas sensor element according to claim 1 or 2 .
請求項1~のいずれか1項に記載のガスセンサ素子と、前記ガスセンサ素子を保持するハウジングと、を備える、
ガスセンサ。
The gas sensor element according to any one of claims 1 to 3 and a housing for holding the gas sensor element are provided.
Gas sensor.
請求項に記載のガスセンサと、前記発熱部の通電をPWM制御するセンサ制御部と、を備える、
ガス検出装置。
The gas sensor according to claim 4 and a sensor control unit that PWM controls the energization of the heat generating unit.
Gas detector.
JP2018015572A 2018-01-31 2018-01-31 Gas sensor element, gas sensor and gas detector Active JP7017425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018015572A JP7017425B2 (en) 2018-01-31 2018-01-31 Gas sensor element, gas sensor and gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018015572A JP7017425B2 (en) 2018-01-31 2018-01-31 Gas sensor element, gas sensor and gas detector

Publications (2)

Publication Number Publication Date
JP2019132721A JP2019132721A (en) 2019-08-08
JP7017425B2 true JP7017425B2 (en) 2022-02-08

Family

ID=67546726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018015572A Active JP7017425B2 (en) 2018-01-31 2018-01-31 Gas sensor element, gas sensor and gas detector

Country Status (1)

Country Link
JP (1) JP7017425B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228626A (en) 2000-11-30 2002-08-14 Denso Corp Gas sensor element
JP2003043011A (en) 2001-07-26 2003-02-13 Ngk Insulators Ltd Oxygen sensor
US20070000780A1 (en) 2005-07-01 2007-01-04 Ngk Spark Plug Co., Ltd. Plural-cell gas sensor with heater
JP2012211863A (en) 2011-03-31 2012-11-01 Ngk Insulators Ltd Gas sensor
JP2013072671A (en) 2011-09-27 2013-04-22 Denso Corp Gas sensor element, method for manufacturing the same and gas sensor
JP2013234896A (en) 2012-05-08 2013-11-21 Ngk Spark Plug Co Ltd Gas sensor element and gas sensor
JP2018040717A (en) 2016-09-08 2018-03-15 株式会社デンソー Gas sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2791473B2 (en) * 1988-02-12 1998-08-27 フィガロ技研株式会社 Gas detection method and device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228626A (en) 2000-11-30 2002-08-14 Denso Corp Gas sensor element
JP2003043011A (en) 2001-07-26 2003-02-13 Ngk Insulators Ltd Oxygen sensor
US20070000780A1 (en) 2005-07-01 2007-01-04 Ngk Spark Plug Co., Ltd. Plural-cell gas sensor with heater
JP2012211863A (en) 2011-03-31 2012-11-01 Ngk Insulators Ltd Gas sensor
JP2013072671A (en) 2011-09-27 2013-04-22 Denso Corp Gas sensor element, method for manufacturing the same and gas sensor
JP2013234896A (en) 2012-05-08 2013-11-21 Ngk Spark Plug Co Ltd Gas sensor element and gas sensor
JP2018040717A (en) 2016-09-08 2018-03-15 株式会社デンソー Gas sensor

Also Published As

Publication number Publication date
JP2019132721A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
US8118985B2 (en) Gas sensor
JP6059110B2 (en) Sensor element and sensor
US8377273B2 (en) Gas sensor
JP2018169329A (en) Sensor element and gas sensor
JP4966266B2 (en) Gas sensor
US9989487B2 (en) Gas sensor
JP5204638B2 (en) Gas sensor
JP6814086B2 (en) Gas sensor element and gas sensor
JP7017425B2 (en) Gas sensor element, gas sensor and gas detector
JP6203650B2 (en) Gas sensor element and gas sensor
JP6367708B2 (en) Gas sensor element and gas sensor
US11054382B2 (en) Sensor and method of manufacturing sensor
US20200064303A1 (en) Gas sensor element
US10481122B2 (en) Gas sensor element and gas sensor
JP5139955B2 (en) Ceramic heater, gas sensor element and gas sensor
JP4621186B2 (en) Sensor heater and sensor
US20200340940A1 (en) Sensor element and gas sensor
JP7349300B2 (en) gas sensor
JP6438851B2 (en) Gas sensor element and gas sensor
JP2018021820A (en) Gas sensor element
JP6439765B2 (en) Gas sensor
JP6313075B2 (en) Gas sensor
JP2018021819A (en) Gas sensor element and gas sensor
JP2019045473A (en) Gas sensor element and gas sensor
JP7372870B2 (en) gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220127

R150 Certificate of patent or registration of utility model

Ref document number: 7017425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350