JP7016557B1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP7016557B1
JP7016557B1 JP2021003881A JP2021003881A JP7016557B1 JP 7016557 B1 JP7016557 B1 JP 7016557B1 JP 2021003881 A JP2021003881 A JP 2021003881A JP 2021003881 A JP2021003881 A JP 2021003881A JP 7016557 B1 JP7016557 B1 JP 7016557B1
Authority
JP
Japan
Prior art keywords
light
image
wavelength component
wavelength
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021003881A
Other languages
Japanese (ja)
Other versions
JP2022108769A (en
Inventor
隆義 長谷川
大刀夫 長谷川
義己 松本
太 石井
進 八木
芳浩 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANAKA ENGINEERING INC.
Original Assignee
TANAKA ENGINEERING INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANAKA ENGINEERING INC. filed Critical TANAKA ENGINEERING INC.
Priority to JP2021003881A priority Critical patent/JP7016557B1/en
Application granted granted Critical
Publication of JP7016557B1 publication Critical patent/JP7016557B1/en
Publication of JP2022108769A publication Critical patent/JP2022108769A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】2種類の異なる波長範囲の光で撮影した被写体の画像の夫々を高精細に生成可能な撮像装置を提供する。【解決手段】本撮像装置は、レンズと、レンズを介して入射する被写体からの光を可視光を含む第1の波長成分の光と非可視光を含む第2波長成分の光とに分光する分光体と、レンズと分光体との間に設けられ、第1の波長成分の光と第2波長成分の光の重複成分の光のうち少なくとも一部の光を吸収する吸収体と、第1の波長成分の光を受光する第1の撮像素子と、第2の波長成分の光を受光する第2の撮像素子と、を備えることを特徴とする。【選択図】図1PROBLEM TO BE SOLVED: To provide an image pickup device capable of generating high-definition images of a subject taken with two kinds of light having different wavelength ranges. SOLUTION: This image pickup apparatus splits light from a lens and a subject incident through the lens into light having a first wavelength component including visible light and light having a second wavelength component including invisible light. An absorber provided between the spectroscope, the lens and the spectroscope, and absorbing at least a part of the light of the overlapping component of the light of the first wavelength component and the light of the second wavelength component, and the first It is characterized by including a first image pickup element that receives the light of the wavelength component of the above and a second image pickup element that receives the light of the second wavelength component. [Selection diagram] Fig. 1

Description

本発明は、撮像装置に関する。 The present invention relates to an image pickup apparatus.

可視光を用いて撮影する撮像装置が利用されている。入射光を基に撮像データを生成するCharge Coupled Device(CCD)イメージセンサやComplementary Metal-Oxide-Semiconductor(CMOS)イメージセンサ等は、可視光よりも広い範囲の波長に対して感度を有する。そのため、可視光で撮影を行う撮像装置では、CCDイメージセンサやCMOSイメージセンサへの可視光以外の光の入射を抑止するフィルタが利用される。 An imaging device that shoots using visible light is used. The Charge Coupled Device (CCD) image sensor and the Complex Mary Metal-Oxide-Semicondutor (CMOS) image sensor that generate image pickup data based on incident light have sensitivity to a wider range of wavelengths than visible light. Therefore, in an imaging device that shoots with visible light, a filter that suppresses the incident of light other than visible light on the CCD image sensor or CMOS image sensor is used.

例えば、特許文献1では、レンズを介して入射した光を可視光を主に含む第1の光波長成分と非可視光を主に含む第2の光波長成分とに分光するビームスプリッタと、第1の光波長成分の光路上に配置され第1の光波長成分及び第2の光波長成分の重複成分の通過を制限するローパスフィルタと、第2の波長成分の光路上に配置され第1の波長成分及び第2の波長成分の重複成分の通過を制限するハイパスフィルタと、を備える撮像装置が提案されている。 For example, in Patent Document 1, a beam splitter that splits light incident through a lens into a first light wavelength component mainly containing visible light and a second light wavelength component mainly containing invisible light, and a first beam splitter. A low-pass filter arranged on the optical path of the first optical wavelength component and restricting the passage of overlapping components of the first optical wavelength component and the second optical wavelength component, and a first arranged on the optical path of the second optical wavelength component. An imaging device including a high-pass filter that limits the passage of overlapping components of a wavelength component and a second wavelength component has been proposed.

特開2015-108692号公報JP-A-2015-108692

可視光による撮影で取得する可視光像は被写体の色の情報を含む。そのため、可視光像によれば、色のみが異なる被写体の識別も容易に行うことができる。周囲が暗い環境では、可視光像は不鮮明な撮像になりやすいため、赤外光による撮影が行われる。赤外光で撮影することで、周囲が暗い環境において可視光像よりも鮮明な赤外光像を取得することができる。しかしながら、赤外光像は白黒画像になることから、被写体がどのような色であったのかを赤外光像から判別することは困難となる。このように、波長成分の異なる光を基に生成された画像は、夫々異なる特徴を備える。 The visible light image acquired by shooting with visible light includes information on the color of the subject. Therefore, according to the visible light image, it is possible to easily identify a subject whose color is different only. In a dark environment, the visible light image tends to be unclear, so infrared light is used for shooting. By shooting with infrared light, it is possible to obtain an infrared light image that is clearer than the visible light image in a dark environment. However, since the infrared light image is a black-and-white image, it is difficult to determine what color the subject was from the infrared light image. As described above, the images generated based on the light having different wavelength components have different characteristics.

開示の技術の1つの側面は、2種類の異なる波長成分の光で撮影した被写体の画像の夫々を高精細に生成可能な撮像装置を提供することを目的とする。 One aspect of the disclosed technique is to provide an image pickup apparatus capable of producing high-definition images of a subject taken with light of two kinds of different wavelength components.

開示の技術の1つの側面は、次のような撮像装置によって例示される。本撮像装置は、レンズと、レンズを介して入射する被写体からの光を可視光を含む第1の波長成分の光と非可視光を含む第2の波長成分の光とに分光する分光体と、レンズと分光体との間に設けられ、第1の波長成分の光と第2の波長成分の光の重複成分の光のうち少なくとも一部の光を吸収する吸収体と、第1の波長成分の光を受光する第1の撮像素子と、第2の波長成分の光を受光する第2の撮像素子と、を備えることを特徴とする。 One aspect of the disclosed technique is exemplified by the following imaging devices. The image pickup apparatus includes a lens and a spectroscope that splits light from a subject incident through the lens into light having a first wavelength component including visible light and light having a second wavelength component including invisible light. An absorber provided between the lens and the spectroscope, which absorbs at least a part of the light of the overlapping component of the light of the first wavelength component and the light of the second wavelength component, and the first wavelength. It is characterized by including a first image pickup element that receives light of a component and a second image pickup element that receives light of a second wavelength component.

本撮像装置は、2種類の異なる波長成分の光で撮影した被写体の画像の夫々を高精細に生成することができる。 This image pickup apparatus can generate high-definition images of a subject taken with light of two kinds of different wavelength components.

図1は、実施形態に係る撮像装置を模式的に示す図である。FIG. 1 is a diagram schematically showing an image pickup apparatus according to an embodiment. 図2は、実施形態で用いるビームスプリッタの特性を模式的に例示する図である。FIG. 2 is a diagram schematically illustrating the characteristics of the beam splitter used in the embodiment. 図3は、近赤外光吸収基板の透過特性を模式的に例示する図である。FIG. 3 is a diagram schematically illustrating the transmission characteristics of the near-infrared light absorption substrate. 図4は、実施形態において、近赤外光吸収基板とビームスプリッタとを組み合わせたときの特性を模式的に示す図である。FIG. 4 is a diagram schematically showing the characteristics when the near-infrared light absorption substrate and the beam splitter are combined in the embodiment. 図5は、画像処理回路による可視光像と赤外光像の合成を例示する図であるFIG. 5 is a diagram illustrating the composition of a visible light image and an infrared light image by an image processing circuit. 図6は、第1変形例に係る撮像装置の一例を示す図である。FIG. 6 is a diagram showing an example of an image pickup apparatus according to the first modification. 図7は、第2変形例に係る撮像装置の一例を示す図である。FIG. 7 is a diagram showing an example of an image pickup apparatus according to a second modification. 図8は、適用例を模式的に例示する図である。FIG. 8 is a diagram schematically illustrating an application example.

<実施形態>
以下に示す実施形態の構成は例示であり、開示の技術は実施形態の構成に限定されない。実施形態に係る撮像装置は、例えば、以下の構成を備える。本実施形態に係る撮像装置は、レンズと、第1の撮像素子と、第2の撮像素子と、吸収体とを備える。
<Embodiment>
The configurations of the embodiments shown below are exemplary, and the disclosed techniques are not limited to the configurations of the embodiments. The image pickup apparatus according to the embodiment includes, for example, the following configurations. The image pickup device according to the present embodiment includes a lens, a first image pickup element, a second image pickup element, and an absorber.

第1の撮像素子は、上記分光体によって分光された第1の波長成分の光に感度のピークを有する撮像素子である。第2の撮像素子は、上記分光体によって分光された第2の波長成分の光に感度のピークを有する撮像素子である。ここで、第1の撮像素子及び第2の撮像素子の感度分布としては、山型、台形型等の様々な感度分布を挙げることができる。また、第1の撮像素子及び第2の撮像素子の感度は、複数の波長に対してピークを有してもよい。複数のピークを有する場合、複数のピークのうちのいずれかのピークが所望の波長成分(例えば、第1の撮像素子であれば第1の波長成分)に含まれればよい。例えば、第1の波長成分の光及び第2の波長成分の光の一方は可視光を含む光であり、他方は近赤外光を含む光である。 The first image pickup device is an image pickup device having a peak sensitivity to the light of the first wavelength component dispersed by the spectroscope. The second image pickup device is an image pickup device having a peak sensitivity to the light of the second wavelength component dispersed by the spectroscope. Here, as the sensitivity distribution of the first image sensor and the second image sensor, various sensitivity distributions such as a mountain type and a trapezoidal type can be mentioned. Further, the sensitivities of the first image sensor and the second image sensor may have peaks for a plurality of wavelengths. When having a plurality of peaks, any one of the plurality of peaks may be included in a desired wavelength component (for example, in the case of the first image sensor, the first wavelength component). For example, one of the light having the first wavelength component and the light having the second wavelength component is light containing visible light, and the other is light containing near infrared light.

分光体は、例えば、プリズム式ビームスプリッタである。分光体は、レンズを介して入射する被写体からの光を可視光を含む第1の波長成分の光と非可視光を含む第2の波長成分の光とに分光する。分光体は、例えば、上記レンズを介して入射する入射光のうち、第1の波長成分の光を透過させて第1の撮像素子に入射させてもよい。また、分光体は、第2の波長成分の光を反射して第2の撮像素子に入射させてもよい。分光体によって分光された第1の波長成分の光と第2の波長成分の光とは、近赤外光の近傍の100nm程度の波長範囲の重複が生じる。 The spectroscope is, for example, a prism beam splitter. The spectroscope splits the light from the subject incident through the lens into the light of the first wavelength component including visible light and the light of the second wavelength component including invisible light. The spectroscope may, for example, transmit the light of the first wavelength component among the incident light incident through the lens and incident it on the first image pickup device. Further, the spectroscope may reflect the light of the second wavelength component and make it incident on the second image pickup device. The light of the first wavelength component and the light of the second wavelength component spectroscopically separated by the spectroscope have an overlap of a wavelength range of about 100 nm in the vicinity of the near infrared light.

吸収体は、上記レンズと上記分光体との間に設けられる。吸収体は、上記第1の波長成分の光と上記第2の波長成分の光の重複成分の光のうち少なくとも一部の光を吸収する。 The absorber is provided between the lens and the spectroscope. The absorber absorbs at least a part of the light of the overlapping component of the light of the first wavelength component and the light of the second wavelength component.

上記第1の撮像素子及び第2の撮像素子は、所望の波長成分以外の波長の光にも感度を有する。そのため、上記重複成分の光が第1の撮像素子及び第2の撮像素子に入射すると、第1の撮像素子及び第2の撮像素子が生成する画像の画質が低下する虞がある。本撮像装置は、上記重複成分のうち少なくとも一部の光を吸収体に吸収させることで、このような画質の低下を抑制することができる。 The first image pickup element and the second image pickup element are sensitive to light having a wavelength other than the desired wavelength component. Therefore, when the light of the overlapping components is incident on the first image sensor and the second image sensor, the image quality of the images generated by the first image sensor and the second image sensor may deteriorate. The present image pickup apparatus can suppress such deterioration of image quality by allowing the absorber to absorb at least a part of the light among the overlapping components.

上記分光体は、上記分光体の分光面の法線と、上記レンズの光軸との角度が45度となるように設けられ、上記第1の波長成分の光及び上記第2の波長成分の光のうちの一方を透過させるとともに上記第1の波長成分の光及び上記第2の波長成分の光のうちの他方を上記光軸に対して直角方向に反射させるものであってもよい。 The spectroscope is provided so that the angle between the normal line of the spectral surface of the spectroscope and the optical axis of the lens is 45 degrees, and the light of the first wavelength component and the light of the second wavelength component are One of the light may be transmitted and the other of the light having the first wavelength component and the light having the second wavelength component may be reflected in the direction perpendicular to the optical axis.

ここで、上記第1の波長成分の光は、波長750nm以下の光であってもよい。また、上記第2の波長成分の光は、波長650nm以上の光であってもよい。また、上記吸収体は、650nm以上800nm以下の波長範囲のうちの100nm以上の波長範囲における光の吸収率が95%以上であってもよい。換言すれば、第1の撮像素子は650nm以下の波長範囲の光(すなわち、可視光)を基に可視光像を生成し、第2の撮像素子は750nm以上の波長範囲の光(すなわち、近赤外光)を基に赤外光像を生成するものであって良い。 Here, the light having the first wavelength component may be light having a wavelength of 750 nm or less. Further, the light having the second wavelength component may be light having a wavelength of 650 nm or more. Further, the absorber may have an absorption rate of light of 95% or more in the wavelength range of 100 nm or more in the wavelength range of 650 nm or more and 800 nm or less. In other words, the first image pickup element generates a visible light image based on the light in the wavelength range of 650 nm or less (that is, visible light), and the second image pickup element generates the visible light image in the wavelength range of 750 nm or more (that is, near). It may generate an infrared light image based on (infrared light).

上記分光体は、フッ化マグネシウム(MgF)、二酸化チタン(TiO)、二酸化ケイ素(SiO)、五酸化ニオブ(Nb)、五酸化タンタル(Ta)の群から選択される互いに異なる屈折率を有する誘電体を積層して形成されてもよい。また、上記分光体は、分光体は、スクアリリウム化合物を含んでもよい。 The spectroscope is selected from the group of magnesium fluoride (MgF 2 ), titanium dioxide (TIO 3 ), silicon dioxide (SiO 2 ), niobium pentoxide (Nb 2 O 5 ), and tantalum pentoxide (Ta 2 O 5 ). It may be formed by laminating dielectrics having different refractive indexes from each other. Further, the spectroscope may contain a squarylium compound.

本撮像装置は、上記第1の撮像素子が生成する第1の画像と上記第2の撮像素子が生成する第2の画像とを合成した合成画像を生成する生成手段をさらに備えてもよい。第1の撮像素子と第2の撮像素子は、画像生成に用いる波長成分が異なる。そのため、第1の撮像素子が生成する画像と第2の撮像素子が生成する画像とは、異なる特徴を有する。このような特徴の異なる画像を合成することで、様々な用途に活用可能な新たな画像を生成することができる。例えば、可視光像は被写体の色を示す情報を含む一方で、周囲が暗い環境では不鮮明になりやすい。赤外光像は、周囲が暗い環境でも撮像が鮮明である一方で、被写体の色の情報は白黒に変換されてしまう。生成手段は、可視光像と赤外光像とを合成することで、周囲が暗い環境でも鮮明な、また、被写体の色の情報を含む合成画像を生成することができる。 The present image pickup apparatus may further include a generation means for generating a composite image obtained by synthesizing a first image generated by the first image pickup element and a second image generated by the second image pickup element. The first image pickup element and the second image pickup element have different wavelength components used for image generation. Therefore, the image generated by the first image sensor and the image generated by the second image sensor have different characteristics. By synthesizing such images with different characteristics, it is possible to generate a new image that can be used for various purposes. For example, while a visible light image contains information indicating the color of a subject, it tends to be unclear in a dark environment. Infrared light images are clearly imaged even in a dark environment, but the color information of the subject is converted to black and white. By synthesizing the visible light image and the infrared light image, the generation means can generate a composite image that is clear even in a dark environment and includes information on the color of the subject.

以下、図面を参照して上記撮像装置の実施形態についてさらに説明する。図1は、実施形態に係る撮像装置を模式的に示す図である。図1に例示される撮像装置100は、レンズユニット1、ビームスプリッタ2、可視光センサ3、赤外光センサ4、画像処理回路5及び近赤外光吸収基板6を備える。 Hereinafter, embodiments of the image pickup apparatus will be further described with reference to the drawings. FIG. 1 is a diagram schematically showing an image pickup apparatus according to an embodiment. The image pickup apparatus 100 exemplified in FIG. 1 includes a lens unit 1, a beam splitter 2, a visible light sensor 3, an infrared light sensor 4, an image processing circuit 5, and a near-infrared light absorption substrate 6.

レンズユニット1は、鏡筒12内に1または複数のレンズ11を収容するユニットである。撮像装置100では、ビームスプリッタ2、可視光センサ3がレンズ11の光軸L上に設けられる。レンズユニット1やレンズ11は、「レンズ」の一例である。 The lens unit 1 is a unit that accommodates one or a plurality of lenses 11 in the lens barrel 12. In the image pickup apparatus 100, the beam splitter 2 and the visible light sensor 3 are provided on the optical axis L of the lens 11. The lens unit 1 and the lens 11 are examples of "lenses".

可視光センサ3は、例えば、入射した可視光を基に可視光像を生成する撮像素子である。可視光センサ3は、例えば、波長650nm以下の光に感度のピークを有する。可視光センサ3は、例えば、CCDイメージセンサやCMOSイメージセンサである。CCDイメージセンサやCMOSイメージセンサは、可視光以外の光(例えば、赤外光)にも感度を有する。そのため、可視光センサ3とレンズユニット1との間には、レンズ11を介して入射する光から可視光以外の光が可視光センサ3に入射することを抑止するフィルタが設けられる。可視光センサ3は、「第1の撮像素子」の一例である。可視光は、「第1の波長成分の光」の一例である。 The visible light sensor 3 is, for example, an image pickup device that generates a visible light image based on incident visible light. The visible light sensor 3 has, for example, a peak of sensitivity to light having a wavelength of 650 nm or less. The visible light sensor 3 is, for example, a CCD image sensor or a CMOS image sensor. The CCD image sensor and the CMOS image sensor are also sensitive to light other than visible light (for example, infrared light). Therefore, a filter is provided between the visible light sensor 3 and the lens unit 1 to prevent light other than visible light from being incident on the visible light sensor 3 from the light incident on the lens 11. The visible light sensor 3 is an example of the "first image sensor". Visible light is an example of "light having a first wavelength component".

ビームスプリッタ2は、レンズ11を介して入射した被写体光を可視光と赤外光とに分離する立方体形状のプリズムである。ビームスプリッタ2は、レンズ11の後方(撮像装置100において、レンズ11よりも可視光センサ3や赤外光センサ4側)に配置される。ビームスプリッタ2は、被写体光のうち可視光を含む光を透過して可視光センサ3に入射させ、被写体光のうち赤外光を含む光を反射して赤外光センサ4に入射させる。すなわち、ビームスプリッタ2は、可視光以外の光が可視光センサ3に入射することを抑止するフィルタということができる。 The beam splitter 2 is a cube-shaped prism that separates subject light incident through the lens 11 into visible light and infrared light. The beam splitter 2 is arranged behind the lens 11 (in the image pickup apparatus 100, the visible light sensor 3 and the infrared light sensor 4 are closer to the lens 11). The beam splitter 2 transmits the light including visible light among the subject lights and causes the light to be incident on the visible light sensor 3, and reflects the light including the infrared light among the subject lights to be incident on the infrared light sensor 4. That is, the beam splitter 2 can be said to be a filter that suppresses light other than visible light from entering the visible light sensor 3.

ビームスプリッタ2は、側面が四角形に形成され、底面が直角三角形に形成された三角プリズム24a、24bを含む。ビームスプリッタ2の作製は、例えば、以下のように行われる。三角プリズム24bの側面のうちのひとつに、近赤外線反射体21が設けられる。三角プリズム24aの側面のひとつと、三角プリズム24bにおいて近赤外線反射体21が設けられた側面とが張り合わされることで、ビームスプリッタ2は作製される。このように作製されたビームスプリッタ2は、撮像装置100において、近赤外線反射体21が光軸Lに対して斜めになるように(例えば、近赤外線反射体21が設けられた側面の法線Nと光軸Lとの角度Dが45度となるように)配置される。なお、角度Dは、反射した赤外光を赤外光センサ4に入射させ、透過させた可視光を可視光センサ3に入射させることができれば、45度以外の角度であってもよい。 The beam splitter 2 includes triangular prisms 24a and 24b whose side surfaces are formed into a quadrangle and whose bottom surface is formed into a right triangle. The beam splitter 2 is made, for example, as follows. A near-infrared reflector 21 is provided on one of the side surfaces of the triangular prism 24b. The beam splitter 2 is produced by sticking one of the side surfaces of the triangular prism 24a to the side surface of the triangular prism 24b provided with the near-infrared reflector 21. In the image pickup apparatus 100, the beam splitter 2 produced in this way has a normal line N on the side surface where the near-infrared reflector 21 is provided so that the near-infrared reflector 21 is oblique to the optical axis L (for example, the near-infrared reflector 21 is provided. (So that the angle D between the light axis L and the optical axis L is 45 degrees). The angle D may be an angle other than 45 degrees as long as the reflected infrared light can be incident on the infrared light sensor 4 and the transmitted visible light can be incident on the visible light sensor 3.

ビームスプリッタ2は、所定の波長帯域の光(例えば、近赤外光)を反射するとともに他の波長帯域の光(例えば、可視光)を透過する。ビームスプリッタ2は、例えば、互いに屈折率が異なる誘電体を積層して作製される。ビームスプリッタ2の作製に用いる誘電体としては、例えば、フッ化マグネシウム(MgF)、二酸化チタン(TiO)、二酸化ケイ素(SiO)、五酸化ニオブ(Nb)、五酸化タンタル(Ta)等を挙げることができる。ビームスプリッタ2が反射させる光の波長は、積層する誘電体それぞれの厚みや素材によって適宜設定可能である。ビームスプリッタ2は、「分光体」の一例である。近赤外線反射体21が設けられた側面は、「分光面」の一例である。 The beam splitter 2 reflects light in a predetermined wavelength band (for example, near-infrared light) and transmits light in another wavelength band (for example, visible light). The beam splitter 2 is made by stacking dielectrics having different refractive indexes from each other, for example. Examples of the dielectric used for producing the beam splitter 2 include magnesium fluoride (MgF 2 ), titanium dioxide (TiO 3 ), silicon dioxide (SiO 2 ), niobium pentoxide (Nb 2 O 5 ), and tantalum pentoxide (Tantalum pentoxide). Ta 2 O 5 ) and the like can be mentioned. The wavelength of light reflected by the beam splitter 2 can be appropriately set depending on the thickness and material of each of the dielectrics to be laminated. The beam splitter 2 is an example of a "spectrometer". The side surface on which the near-infrared reflector 21 is provided is an example of a “spectral surface”.

赤外光センサ4は、例えば、赤外光を基に赤外光像を生成する撮像素子である。赤外光センサ4は、例えば、波長750nm以上の光に感度のピークを有する。赤外光センサ4は、例えば、赤外光に対する感度を有するCCDイメージセンサやCMOSイメージセンサである。赤外光センサ4は、「第2の撮像素子」の一例である。赤外光は、「第2の波長成分の光」の一例である。 The infrared light sensor 4 is, for example, an image pickup device that generates an infrared light image based on infrared light. The infrared light sensor 4 has, for example, a peak of sensitivity to light having a wavelength of 750 nm or more. The infrared light sensor 4 is, for example, a CCD image sensor or a CMOS image sensor having sensitivity to infrared light. The infrared light sensor 4 is an example of a "second image sensor". Infrared light is an example of "light having a second wavelength component".

画像処理回路5は、可視光センサ3から取得した可視光像及び赤外光センサ4から取得した赤外光像を合成した合成像を生成する回路である。画像処理回路5は、Field-Programmable Gate Array(FPGA)等によって形成された専用回路によって実現されてもよいし、プロセッサとメモリとの組み合わせによって実現されてもよい。画像処理回路5は、「生成手段」の一例である。 The image processing circuit 5 is a circuit that generates a composite image obtained by synthesizing a visible light image acquired from the visible light sensor 3 and an infrared light image acquired from the infrared light sensor 4. The image processing circuit 5 may be realized by a dedicated circuit formed by a Field-Programmable Gate Array (FPGA) or the like, or may be realized by a combination of a processor and a memory. The image processing circuit 5 is an example of a “generation means”.

近赤外光吸収基板6は、光軸L上において、レンズ11とビームスプリッタ2との間に配置される。近赤外光吸収基板6は、可視光を透過させるとともに、近赤外光を吸収する。近赤外光吸収基板6は、近赤外線吸収色素を含む。近赤外線吸収色素としては、例えば、有機色素や有機無機複合色素を挙げることができる。近赤外線吸収色素は、例えば、スクアリリウム化合物を挙げることができる。近赤外光吸収基板6は、さらに、紫外線吸収色素を含んでもよい。近赤外光吸収基板6が吸収する光の波長は、近赤外線吸収色素や紫外線吸収色素の素材の選択によって適宜調整可能である。近赤外光吸収基板6としては、例えば、特開2019-49586に記載の光選択フィルターを採用することができる。 The near-infrared light absorption substrate 6 is arranged between the lens 11 and the beam splitter 2 on the optical axis L. The near-infrared light absorption substrate 6 transmits visible light and absorbs near-infrared light. The near-infrared light absorbing substrate 6 contains a near-infrared absorbing dye. Examples of the near-infrared absorbing dye include an organic dye and an organic-inorganic composite dye. Examples of the near-infrared absorbing dye include a squarylium compound. The near-infrared light absorbing substrate 6 may further contain an ultraviolet absorbing dye. The wavelength of the light absorbed by the near-infrared light absorbing substrate 6 can be appropriately adjusted by selecting the material of the near-infrared absorbing dye or the ultraviolet absorbing dye. As the near-infrared light absorption substrate 6, for example, the light selection filter described in JP-A-2019-49586 can be adopted.

<ビームスプリッタ2の特性>
図2は、実施形態で用いるビームスプリッタの特性を模式的に例示する図である。図2において、実線はビームスプリッタ2を透過する透過率(%)を例示する。また、点線はビームスプリッタ2で反射される反射率(%)を例示する。図2の横軸は、ビームスプリッタ2に入射する光の波長(nm)を例示する。図2において、実線のグラフはビームスプリッタ2の透過率を例示する。また、図2において、点線のグラフはビームスプリッタ2の反射率を例示する。図2を参照すると理解できるように、ビームスプリッタ2は、波長700nm以下の光を5%以上の透過率でさせるとともに、波長650nm以上の光を5%以上の反射率で反射させる。波長750nm以下の波長範囲の光は、「第1の波長成
分の光」の一例である。波長650nm以上の波長範囲の光は、「第2の波長成分の光」の一例である。
<Characteristics of beam splitter 2>
FIG. 2 is a diagram schematically illustrating the characteristics of the beam splitter used in the embodiment. In FIG. 2, the solid line exemplifies the transmittance (%) transmitted through the beam splitter 2. Further, the dotted line exemplifies the reflectance (%) reflected by the beam splitter 2. The horizontal axis of FIG. 2 illustrates the wavelength (nm) of light incident on the beam splitter 2. In FIG. 2, the solid line graph illustrates the transmittance of the beam splitter 2. Further, in FIG. 2, the dotted line graph exemplifies the reflectance of the beam splitter 2. As can be understood with reference to FIG. 2, the beam splitter 2 causes light having a wavelength of 700 nm or less to have a transmittance of 5% or more, and reflects light having a wavelength of 650 nm or more with a reflectance of 5% or more. Light having a wavelength range of 750 nm or less is an example of "light having a first wavelength component". Light having a wavelength range of 650 nm or more is an example of "light having a second wavelength component".

ここで、ビームスプリッタ2は、波長650nmから750nmの光に対する反射率及び透過率が50%となっている。以下、本明細書において、波長650nmから750nmの範囲を「重複波長領域」とも称する。撮像装置100が近赤外光吸収基板6を備えない場合、重複波長領域の光は、ビームスプリッタ2を透過する光と、ビームスプリッタ2によって反射される光とが混在することになる。すなわち、重複波長領域の光は、ビームスプリッタ2を透過して可視光センサ3に入射するとともに、ビームスプリッタ2によって反射されて赤外光センサ4にも入射する。波長650nmから750nmの光は、「重複成分の光のうち少なくとも一部の光」の一例である。 Here, the beam splitter 2 has a reflectance and a transmittance of 50% for light having a wavelength of 650 nm to 750 nm. Hereinafter, in the present specification, the range of wavelengths from 650 nm to 750 nm is also referred to as “overlapping wavelength region”. When the image pickup apparatus 100 does not include the near-infrared light absorption substrate 6, the light in the overlapping wavelength region is a mixture of the light transmitted through the beam splitter 2 and the light reflected by the beam splitter 2. That is, the light in the overlapping wavelength region passes through the beam splitter 2 and is incident on the visible light sensor 3, and is reflected by the beam splitter 2 and incident on the infrared light sensor 4. Light having a wavelength of 650 nm to 750 nm is an example of "light of at least a part of the light having overlapping components".

可視光センサ3に重複波長領域の光が入射すると、可視光センサ3によって生成される可視光像の画質が低下する虞がある。また、赤外光センサ4に重複波長領域の光が入射すると、赤外光センサ4によって生成される赤外光像の画質が低下する虞がある。本実施形態に係る撮像装置100は、このような画質の低下を抑制するため、近赤外光吸収基板6を採用する。 When light in an overlapping wavelength region is incident on the visible light sensor 3, the image quality of the visible light image generated by the visible light sensor 3 may deteriorate. Further, when light in an overlapping wavelength region is incident on the infrared light sensor 4, the image quality of the infrared light image generated by the infrared light sensor 4 may deteriorate. The image pickup apparatus 100 according to the present embodiment employs a near-infrared light absorption substrate 6 in order to suppress such deterioration of image quality.

<近赤外光吸収基板6の特性>
図3は、近赤外光吸収基板の透過特性を模式的に例示する図である。図3の縦軸は、近赤外光吸収基板6を透過する光の透過率(%)を例示する。図3の横軸は、近赤外光吸収基板6に入射する光の波長(nm)を例示する。
<Characteristics of near-infrared light absorption substrate 6>
FIG. 3 is a diagram schematically illustrating the transmission characteristics of the near-infrared light absorption substrate. The vertical axis of FIG. 3 exemplifies the transmittance (%) of the light transmitted through the near-infrared light absorption substrate 6. The horizontal axis of FIG. 3 exemplifies the wavelength (nm) of light incident on the near-infrared light absorption substrate 6.

図3を参照すると、近赤外光吸収基板6は、波長が680nmから750nmの範囲の光に対しては透過率が低く(例えば、5%以下)、波長が450nmから600nmの光に対しては透過率が高い(例えば、平均透過率80%以上)ことが理解できる。また、近赤外光吸収基板6は、波長が780nm以上の光に対する透過率が高いことも理解できる。なお、近赤外光吸収基板6の透過特性は被写体光の入射角には依存しない。そのため、近赤外光吸収基板6は、光軸Lに対して直交するように配置されてもよいし、光軸Lに対して斜めに配置されてもよい。なお、図3では、波長が680nmから750nmの範囲の光に対する透過率が5%以下(吸収率が95%以上)となる近赤外光吸収基板6の特性が説明されたが、近赤外光吸収基板6の特性はこれに限定されず、例えば、波長が650nmから800nmの範囲の光に対する透過率が5%以下であってもよい。近赤外光吸収基板6の特性としては、重複波長領域の範囲内の光に対する透過率が低い(例えば、5%以下、換言すれば吸収率95%以上)ものが好ましい。例えば、近赤外光吸収基板6は、重複波長領域のうちの100nm以上の波長範囲における光の吸収率が95%以上であることが好ましい。近赤外光吸収基板6は、「吸収体」の一例である。 Referring to FIG. 3, the near-infrared light absorption substrate 6 has a low transmittance (for example, 5% or less) for light having a wavelength in the range of 680 nm to 750 nm, and has a low transmittance for light having a wavelength in the range of 450 nm to 600 nm. It can be understood that has a high transmittance (for example, an average transmittance of 80% or more). It can also be understood that the near-infrared light absorption substrate 6 has a high transmittance for light having a wavelength of 780 nm or more. The transmission characteristics of the near-infrared light absorption substrate 6 do not depend on the incident angle of the subject light. Therefore, the near-infrared light absorption substrate 6 may be arranged so as to be orthogonal to the optical axis L, or may be arranged diagonally to the optical axis L. Although FIG. 3 describes the characteristics of the near-infrared light absorbing substrate 6 having a transmittance of 5% or less (absorption rate of 95% or more) for light having a wavelength in the range of 680 nm to 750 nm. The characteristics of the light absorption substrate 6 are not limited to this, and for example, the transmittance for light having a wavelength in the range of 650 nm to 800 nm may be 5% or less. As the characteristics of the near-infrared light absorption substrate 6, those having a low transmittance for light within the overlapping wavelength region (for example, 5% or less, in other words, an absorption rate of 95% or more) are preferable. For example, the near-infrared light absorption substrate 6 preferably has a light absorption rate of 95% or more in a wavelength range of 100 nm or more in the overlapping wavelength region. The near-infrared light absorption substrate 6 is an example of an “absorbent”.

<近赤外光吸収基板6とビームスプリッタ2とを組み合わせた特性>
図4は、実施形態において、近赤外光吸収基板とビームスプリッタとを組み合わせたときの特性を模式的に示す図である。図4では、レンズ11の光軸L上において、ビームスプリッタ2とレンズ11との間に近赤外光吸収基板6を配置した場合(図1参照)を例示する。図4において、実線は近赤外光吸収基板6及びビームスプリッタ2を透過する透過率(%)を例示する。また、点線は近赤外光吸収基板6を透過してビームスプリッタ2で反射される反射率(%)を例示する。図4の横軸は、光の波長(nm)を例示する。
<Characteristics of combining the near-infrared light absorption substrate 6 and the beam splitter 2>
FIG. 4 is a diagram schematically showing the characteristics when the near-infrared light absorption substrate and the beam splitter are combined in the embodiment. FIG. 4 illustrates a case where the near-infrared light absorption substrate 6 is arranged between the beam splitter 2 and the lens 11 on the optical axis L of the lens 11 (see FIG. 1). In FIG. 4, the solid line exemplifies the transmittance (%) transmitted through the near-infrared light absorption substrate 6 and the beam splitter 2. Further, the dotted line exemplifies the reflectance (%) transmitted through the near-infrared light absorbing substrate 6 and reflected by the beam splitter 2. The horizontal axis of FIG. 4 illustrates the wavelength (nm) of light.

図4を参照すると、近赤外光吸収基板6をレンズ11とビームスプリッタ2との間に配置したことで、重複波長領域の光について反射も透過も抑制されることが理解できる。すなわち、近赤外光吸収基板6をレンズ11とビームスプリッタ2との間に配置したことで、重複波長領域の光の入射が、可視光センサ3及び赤外光センサ4のいずれに対しても抑
制されることが理解できる。可視光センサ3に対する重複波長領域の光の入射が抑制されることで、可視光センサ3が生成する可視光像の画質の低下が抑制される。また、赤外光センサ4に対する重複波長領域の光の入射が抑制されることで、赤外光センサ4が生成する赤外光像の画質の低下が抑制される。
With reference to FIG. 4, it can be understood that by arranging the near-infrared light absorption substrate 6 between the lens 11 and the beam splitter 2, both reflection and transmission of light in the overlapping wavelength region are suppressed. That is, by arranging the near-infrared light absorption substrate 6 between the lens 11 and the beam splitter 2, the incident of light in the overlapping wavelength region is applied to both the visible light sensor 3 and the infrared light sensor 4. It can be understood that it is suppressed. By suppressing the incident of light in the overlapping wavelength region on the visible light sensor 3, deterioration of the image quality of the visible light image generated by the visible light sensor 3 is suppressed. Further, by suppressing the incident of light in the overlapping wavelength region on the infrared light sensor 4, deterioration of the image quality of the infrared light image generated by the infrared light sensor 4 is suppressed.

(画像処理回路5による可視光像と赤外光像の合成)
夜間や照明の無い室内等の周囲が暗い環境において、可視光による撮影で鮮明な可視光像を得ることは困難である。そのため、周囲が暗い環境においては赤外光による撮影が行われることが多い。しかしながら、赤外光による撮影では被写体の色の情報を取得できないため、被写体が白黒で表現された白黒の撮像となる。撮像装置100では、可視光による可視光像を可視光センサ3が生成し、赤外光による赤外光像を赤外光センサ4によって生成する。そして、画像処理回路5では、可視光像と赤外光像とを合成することで、周囲が暗い環境においてもより鮮明な合成像を生成することができる。
(Combining visible light image and infrared light image by image processing circuit 5)
It is difficult to obtain a clear visible light image by shooting with visible light at night or in a dark environment such as a room without lighting. Therefore, in an environment where the surroundings are dark, infrared light is often used for photography. However, since the color information of the subject cannot be acquired by shooting with infrared light, the subject is expressed in black and white in black and white imaging. In the image pickup apparatus 100, the visible light sensor 3 generates a visible light image by visible light, and the infrared light sensor 4 generates an infrared light image by infrared light. Then, in the image processing circuit 5, by synthesizing the visible light image and the infrared light image, it is possible to generate a clearer composite image even in an environment where the surroundings are dark.

図5は、画像処理回路による可視光像と赤外光像の合成を例示する図である。図5では、可視光センサ3が生成した可視光像P1と赤外光センサ4が生成した赤外光像P2とが例示される。可視光像P1と赤外光像P2には、被写体P11、P12が映っている。図5では、撮像における被写体P11、P12の色の情報の有無を被写体P11、P12内のパターンの有無によって例示する。また、図5では、被写体P11、P12がはっきり映っているか否かを被写体P11、P12の境界線の色の濃さで例示する。 FIG. 5 is a diagram illustrating the composition of a visible light image and an infrared light image by an image processing circuit. In FIG. 5, a visible light image P1 generated by the visible light sensor 3 and an infrared light image P2 generated by the infrared light sensor 4 are exemplified. The subjects P11 and P12 are reflected in the visible light image P1 and the infrared light image P2. In FIG. 5, the presence / absence of color information of the subjects P11 and P12 in the imaging is illustrated by the presence / absence of a pattern in the subjects P11 and P12. Further, in FIG. 5, whether or not the subjects P11 and P12 are clearly reflected is illustrated by the color density of the boundary line between the subjects P11 and P12.

可視光像P1では、被写体P11、P12の色の情報が取得されている一方で、被写体がはっきりとは映っていないことが理解できる。赤外光像P2では、被写体がはっきりと映っている一方で、被写体P11、P12の色の情報は取得できていないことが理解できる。画像処理回路5では、このような可視光像P1と赤外光像P2とを合成することで、色の情報を含むとともに、被写体P11、P12がはっきりと映った合成像P3を生成する。 It can be understood that in the visible light image P1, while the color information of the subjects P11 and P12 is acquired, the subject is not clearly reflected. It can be understood that the infrared light image P2 clearly shows the subject, but the color information of the subjects P11 and P12 cannot be acquired. In the image processing circuit 5, by synthesizing such a visible light image P1 and an infrared light image P2, a composite image P3 that includes color information and clearly reflects the subjects P11 and P12 is generated.

<実施形態の作用効果>
実施形態に係る撮像装置100では、レンズユニット1を介して入射した被写体光がビームスプリッタ2によって可視光と赤外光とに分離される。ビームスプリッタ2によって被写体光から分離された可視光は可視光センサ3に入射される。また、ビームスプリッタ2によって被写体光から分離された赤外光は赤外光センサ4に入射される。このような構成を採用することで、実施形態に係る撮像装置100は、複数のレンズユニット1を用いることなく、被写体の可視光像と赤外光像とを一度の撮影で取得することができる。
<Action and effect of the embodiment>
In the image pickup apparatus 100 according to the embodiment, the subject light incident through the lens unit 1 is split into visible light and infrared light by the beam splitter 2. The visible light separated from the subject light by the beam splitter 2 is incident on the visible light sensor 3. Further, the infrared light separated from the subject light by the beam splitter 2 is incident on the infrared light sensor 4. By adopting such a configuration, the image pickup apparatus 100 according to the embodiment can acquire a visible light image and an infrared light image of a subject in one shooting without using a plurality of lens units 1. ..

可視光センサ3は、色の情報を含む可視光像を生成できる一方で、周囲が暗い環境で鮮明な撮像を生成することは難しい。また、赤外光センサ4は、周囲が暗い環境でも鮮明な撮像を生成できる一方で、生成する撮像は白黒となる。実施形態に係る撮像装置100は、可視光センサ3が生成する可視光像と赤外光センサ4が生成する赤外光像とを合成することで、周囲が暗い環境においても、より鮮明で色の情報を含む合成像を生成することができる。 While the visible light sensor 3 can generate a visible light image including color information, it is difficult to generate a clear image in a dark environment. Further, the infrared light sensor 4 can generate a clear image even in a dark environment, while the generated image is black and white. The image pickup apparatus 100 according to the embodiment synthesizes the visible light image generated by the visible light sensor 3 and the infrared light image generated by the infrared light sensor 4, so that the color becomes clearer and more vivid even in a dark surrounding environment. It is possible to generate a composite image containing the information of.

実施形態に係る撮像装置100では、ビームスプリッタ2は、レンズ11の光軸Lに対して斜めになるように設けられる。そのため、ビームスプリッタ2が反射した光は、レンズ11に逆入射することはない。そのため、実施形態に係る撮像装置100は、レンズ11に逆入射する迷光がなく、可視光センサ3及び赤外光センサ4が生成する撮像の画質低下を抑制できる。 In the image pickup apparatus 100 according to the embodiment, the beam splitter 2 is provided so as to be oblique to the optical axis L of the lens 11. Therefore, the light reflected by the beam splitter 2 does not back-inject into the lens 11. Therefore, the image pickup apparatus 100 according to the embodiment has no stray light that is back-incident to the lens 11, and can suppress the deterioration of the image quality of the image pickup generated by the visible light sensor 3 and the infrared light sensor 4.

実施形態に係る撮像装置100は、レンズ11とビームスプリッタ2との間に近赤外光
吸収基板6が配置される。そのため、可視光センサ3及び赤外光センサ4のいずれに対しても重複波長領域の光の入射が抑制される。そのため、実施形態に係る撮像装置100は、可視光センサ3が生成する可視光像の画質の低下を抑制することができるとともに、赤外光センサ4が生成する赤外光像の画質の低下を抑制することができる。
In the image pickup apparatus 100 according to the embodiment, the near-infrared light absorption substrate 6 is arranged between the lens 11 and the beam splitter 2. Therefore, the incident of light in the overlapping wavelength region is suppressed for both the visible light sensor 3 and the infrared light sensor 4. Therefore, the image pickup apparatus 100 according to the embodiment can suppress the deterioration of the image quality of the visible light image generated by the visible light sensor 3, and also suppresses the deterioration of the image quality of the infrared light image generated by the infrared light sensor 4. It can be suppressed.

本実施形態では、上記の通り、可視光センサ3及び赤外光センサ4への重複波長領域の光の入射を近赤外光吸収基板6によって抑制した。そのため、可視光センサ3への重複波長領域の光の入射抑制にローパスフィルターを採用し、赤外光センサ4への重複波長領域の入射抑制にハイパスフィルターを採用する特許文献1に記載の技術と比較して、本実施形態に係る撮像装置は、光学系設計の容易さ、組立の容易さ、生産効率の高さ、製造コストの低さ等のメリットがある。 In the present embodiment, as described above, the incident of light in the overlapping wavelength region on the visible light sensor 3 and the infrared light sensor 4 is suppressed by the near-infrared light absorption substrate 6. Therefore, the technique described in Patent Document 1 that employs a low-pass filter for suppressing the incident of light in the overlapping wavelength region on the visible light sensor 3 and adopts a high-pass filter for suppressing the incident on the infrared light sensor 4 in the overlapping wavelength region. In comparison, the image pickup apparatus according to the present embodiment has merits such as easy optical system design, easy assembly, high production efficiency, and low manufacturing cost.

(第1変形例)
図6は、第1変形例に係る撮像装置の一例を示す図である。図6に例示される撮像装置100aは、ビームスプリッタ2に代えてビームスプリッタ2aを備える点で、実施形態に係るに係る撮像装置100とは異なる。
(First modification)
FIG. 6 is a diagram showing an example of an image pickup apparatus according to the first modification. The imaging device 100a exemplified in FIG. 6 is different from the imaging device 100 according to the embodiment in that the beam splitter 2a is provided in place of the beam splitter 2.

ビームスプリッタ2aは、ビームスプリッタ2aを形成するプリズムの各面のうち、赤外光センサ4と対向する面に光路長補正フィルタ23が設けられる。光路長補正フィルタ23は、入射した光を屈折させることで光路長を補正するフィルタである。光路長補正フィルタ23によって赤外光センサ4に入射させる赤外光の光路長を赤外光センサ4での撮像に好適な長さに補正することができる。 The beam splitter 2a is provided with an optical path length correction filter 23 on the surface of each surface of the prism forming the beam splitter 2a that faces the infrared light sensor 4. The optical path length correction filter 23 is a filter that corrects the optical path length by refracting the incident light. The optical path length correction filter 23 can correct the optical path length of the infrared light incident on the infrared light sensor 4 to a length suitable for imaging by the infrared light sensor 4.

(第2変形例)
図7は、第2変形例に係る撮像装置の一例を示す図である。図7に例示される撮像装置100bは、赤外光センサ4に代えて赤外光センサ4aを備える点で、実施形態に係る撮像装置100とは異なる。
(Second modification)
FIG. 7 is a diagram showing an example of an image pickup apparatus according to a second modification. The image pickup apparatus 100b exemplified in FIG. 7 is different from the image pickup apparatus 100 according to the embodiment in that it includes an infrared light sensor 4a instead of the infrared light sensor 4.

赤外光センサ4aは、赤外光センサ4よりも赤外光を検出する検出面が小さく形成された小型のセンサである。赤外線は可視光線よりも波長が長いことから、遠い被写体の撮影には可視光線よりも適していると考えられる。遠い被写体の撮影には画角は狭くてもよい。そのため、可視光線で近くの被写体を撮影し、赤外線で遠くの被写体を撮影する場合には、小型の赤外光センサ4aを採用可能である。また、赤外光センサ4aを採用することで、撮像装置100bの小型化も容易となる。 The infrared light sensor 4a is a small sensor having a smaller detection surface for detecting infrared light than the infrared light sensor 4. Since infrared rays have a longer wavelength than visible light, it is considered to be more suitable than visible light for shooting distant subjects. The angle of view may be narrow for shooting distant subjects. Therefore, when a near subject is photographed with visible light and a distant subject is photographed with infrared rays, a small infrared light sensor 4a can be adopted. Further, by adopting the infrared light sensor 4a, it becomes easy to miniaturize the image pickup apparatus 100b.

(その他の変形例)
実施形態及び第1及び第2変形例では、光軸L上にビームスプリッタ及び可視光センサ3が配置された。そして、ビームスプリッタを透過した可視光が可視光センサ3に入射し、ビームスプリッタによって反射された近赤外光が赤外光センサ4に入射した。しかしながら、開示の技術はこのような構成に限定されない。開示の技術では、例えば、近赤外線反射するビームスプリッタに代えて可視光を反射するビームスプリッタを配置するとともに、可視光センサ3と赤外光センサ4の位置を入れ替えてもよい。すなわち、光軸L上に可視光を反射するビームスプリッタと赤外光センサ4が配置されてもよい。そして、可視光を反射するビームスプリッタを透過した近赤外光が赤外光センサ4に入射し、可視光を反射するビームスプリッタによって反射された可視光が可視光センサ3に入射してもよい。
(Other variants)
In the embodiment and the first and second modifications, the beam splitter and the visible light sensor 3 are arranged on the optical axis L. Then, the visible light transmitted through the beam splitter was incident on the visible light sensor 3, and the near-infrared light reflected by the beam splitter was incident on the infrared light sensor 4. However, the disclosed technique is not limited to such a configuration. In the disclosed technique, for example, a beam splitter that reflects visible light may be arranged in place of the beam splitter that reflects near infrared rays, and the positions of the visible light sensor 3 and the infrared light sensor 4 may be exchanged. That is, a beam splitter that reflects visible light and an infrared light sensor 4 may be arranged on the optical axis L. Then, the near-infrared light transmitted through the beam splitter that reflects visible light may be incident on the infrared light sensor 4, and the visible light reflected by the beam splitter that reflects visible light may be incident on the visible light sensor 3. ..

<適用例>
以上で説明した実施形態や各変形例に係る撮像装置は、様々なシステムに適用可能である。図8は、適用例を模式的に例示する図である。以下に説明する適用例では、第2変形
例に係る撮像装置100bを車両800の監視カメラとして採用する。図8の例では、2台の撮像装置100bが、車両800の進行方向を撮影するように設けられている。
<Application example>
The image pickup apparatus according to the embodiment and each modification described above can be applied to various systems. FIG. 8 is a diagram schematically illustrating an application example. In the application example described below, the image pickup apparatus 100b according to the second modification is adopted as the surveillance camera of the vehicle 800. In the example of FIG. 8, two image pickup devices 100b are provided so as to photograph the traveling direction of the vehicle 800.

適用例では、可視光センサ3が可視光を用いて監視領域W1を撮影し、赤外光センサ4aが赤外光を用いて監視領域W1よりも遠方の監視領域W2を撮影する。上述の通り、赤外光は可視光よりも遠方の撮影に適しているため、適用例によれば、監視領域W1と監視領域W1よりも遠方の監視領域W2とを好適に監視することができる。 In the application example, the visible light sensor 3 uses visible light to photograph the monitoring area W1, and the infrared light sensor 4a uses infrared light to photograph the monitoring area W2 farther than the monitoring area W1. As described above, since infrared light is suitable for photographing farther than visible light, according to the application example, the monitoring area W1 and the monitoring area W2 farther than the monitoring area W1 can be suitably monitored. ..

図8では、車両800の車外の監視カメラとして撮像装置100bを採用したが、車両800の車内の監視に撮像装置100bを採用してもよい。例えば、車両800において、後部座席等の広い画角で撮影することが好ましい領域を撮像装置100bの可視光センサ3で撮影し、運転席のように狭い画角で撮影可能な領域を撮像装置100bの赤外光センサ4aで撮影することが考えられる。 In FIG. 8, the image pickup device 100b is adopted as the surveillance camera outside the vehicle 800, but the image pickup device 100b may be adopted for monitoring the inside of the vehicle 800. For example, in the vehicle 800, an area where it is preferable to take a picture with a wide angle of view such as a rear seat is taken by the visible light sensor 3 of the image pickup device 100b, and an area which can be taken with a narrow angle of view such as a driver's seat is taken with the image pickup device 100b. It is conceivable to take a picture with the infrared light sensor 4a of.

図8を参照して説明した適用例では、監視カメラとして第2変形例に係る撮像装置100bを採用したが、実施形態に係る撮像装置100及び第1変形例に係る撮像装置100aのいずれも監視カメラとして採用可能である。 In the application example described with reference to FIG. 8, the image pickup device 100b according to the second modification is adopted as the surveillance camera, but both the image pickup device 100 according to the embodiment and the image pickup device 100a according to the first modification are monitored. It can be used as a camera.

また、実施形態や各変形例に係る撮像装置では、周囲が暗い環境でも鮮明な赤外光像と色の情報を含む可視光像とを基に、暗い環境でも鮮明で色の情報を有する合成像を画像処理回路5が生成する。そのため、実施形態や各変形例に係る撮像装置を車両800の監視カメラとして採用することで、従来の赤外線カメラでは困難であった道路上の白線と黄色線との識別を高精度で実行できるようになる。 Further, in the image pickup apparatus according to the embodiment and each modification, a composition having clear and color information even in a dark environment is based on an infrared light image that is clear even in a dark environment and a visible light image that includes color information. The image processing circuit 5 generates an image. Therefore, by adopting the image pickup device according to the embodiment and each modification as the surveillance camera of the vehicle 800, it is possible to discriminate between the white line and the yellow line on the road with high accuracy, which was difficult with the conventional infrared camera. become.

(その他の適用例)
実施形態や各変形例に係る撮像装置は、暗い環境でも鮮明で色の情報を有する合成像を生成できる。そのため、老人の徘徊監視、線路内への侵入の監視、野生動物の撮影、山等で遭難した人物の探索等にも好適である。また、実施形態や各変形例に係る撮像装置をロボット掃除機に採用することで、暗い室内における掃除の精度を高めることもできる。さらに、実施形態や各変形例に係る撮像装置を顔認証用のカメラに採用することで、暗い環境でも高精度で顔認証を行うことができる。
(Other application examples)
The image pickup apparatus according to the embodiment and each modification can generate a composite image having clear color information even in a dark environment. Therefore, it is also suitable for monitoring the wandering of old people, monitoring the invasion of railway tracks, photographing wild animals, searching for people in distress in mountains, and the like. Further, by adopting the image pickup device according to the embodiment and each modification to the robot vacuum cleaner, the accuracy of cleaning in a dark room can be improved. Further, by adopting the image pickup device according to the embodiment and each modification as the camera for face recognition, face recognition can be performed with high accuracy even in a dark environment.

以上で開示した実施形態、変形例及び適用例はそれぞれ組み合わせることができる。 The embodiments, modifications and applications disclosed above can be combined.

100、100a、100b・・・撮像装置
1・・・レンズユニット
11・・・レンズ
2、2a・・・ビームスプリッタ
21・・・近赤外線反射体
23・・・光路長補正フィルタ
3・・・可視光センサ
4、4a・・・赤外光センサ
5・・・画像処理回路
6・・・近赤外光吸収基板
100, 100a, 100b ... Imaging device 1 ... Lens unit 11 ... Lens 2, 2a ... Beam splitter 21 ... Near infrared reflector 23 ... Optical path length correction filter 3 ... Visible Optical sensor 4, 4a ... Infrared light sensor 5 ... Image processing circuit 6 ... Near infrared light absorption substrate

Claims (4)

レンズと、
前記レンズを介して入射する被写体からの光を可視光を含む第1の波長成分の光と非可視光を含む第2の波長成分の光とに分光する分光体と、
前記レンズと前記分光体との間に設けられ、前記第1の波長成分の光と前記第2の波長成分の光の重複成分の光のうち少なくとも一部の光を吸収する吸収体と、
前記第1の波長成分の光を受光する第1の撮像素子と、
前記第2の波長成分の光を受光する第2の撮像素子と、を備え、
前記吸収体は、前記重複成分の光のうち少なくとも一部の光に対する吸収率が95%以上であり、
前記分光体は、前記分光体の分光面の法線と、前記レンズの光軸との角度が45度となるように設けられ、前記第1の波長成分の光及び前記第2の波長成分の光のうちの一方を透過させるとともに前記第1の波長成分の光及び前記第2の波長成分の光のうちの他方を前記光軸に対して直角方向に反射させ、
前記第1の波長成分の光は、波長750nm以下の光であり、
前記第2の波長成分の光は、波長650nm以上の光であり、
前記重複成分の光のうち少なくとも一部の光は、650nm以上800nm以下の波長範囲のうちの100nm以上の波長範囲の光を含むことを特徴とする、
撮像装置。
With the lens
A spectroscope that splits light from a subject incident through the lens into light having a first wavelength component including visible light and light having a second wavelength component including invisible light.
An absorber provided between the lens and the spectroscope and absorbing at least a part of the light of the overlapping component of the light of the first wavelength component and the light of the second wavelength component.
The first image sensor that receives the light of the first wavelength component, and
A second image pickup device that receives light of the second wavelength component is provided.
The absorber has an absorption rate of 95% or more for at least a part of the light of the overlapping components .
The spectroscope is provided so that the angle between the normal line of the spectroscopic surface of the spectroscope and the optical axis of the lens is 45 degrees, and the light of the first wavelength component and the light of the second wavelength component are One of the light is transmitted and the other of the light of the first wavelength component and the light of the second wavelength component is reflected in the direction perpendicular to the optical axis.
The light having the first wavelength component is light having a wavelength of 750 nm or less.
The light having the second wavelength component is light having a wavelength of 650 nm or more.
At least a part of the light having the overlapping components includes light having a wavelength range of 100 nm or more in a wavelength range of 650 nm or more and 800 nm or less .
Imaging device.
前記分光体は、フッ化マグネシウム(MgF)、二酸化チタン(TiO)、二酸化ケイ素(SiO)、五酸化ニオブ(NbO)、五酸化タンタル(TaO)の群から選択される互いに異なる屈折率を有する誘電体を積層して形成される、
請求項1に記載の撮像装置。
The spectroscopic body is selected from the group of magnesium fluoride (MgF), titanium dioxide (TIO), silicon dioxide (SiO), niobium pentoxide (NbO), and tantalum pentoxide (TaO), which have different refractive indexes from each other. Formed by stacking bodies,
The imaging device according to claim 1 .
前記分光体は、スクアリリウム化合物を含む、
請求項1または2に記載の撮像装置。
The spectroscope contains a squarylium compound.
The imaging device according to claim 1 or 2 .
前記第1の撮像素子が生成する第1の画像と前記第2の撮像素子が生成する第2の画像とを合成した合成画像を生成する生成手段をさらに備える、
請求項1からのいずれか一項に記載の撮像装置。
Further comprising a generation means for generating a composite image in which the first image generated by the first image pickup element and the second image generated by the second image pickup element are combined.
The imaging device according to any one of claims 1 to 3 .
JP2021003881A 2021-01-14 2021-01-14 Imaging device Active JP7016557B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021003881A JP7016557B1 (en) 2021-01-14 2021-01-14 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021003881A JP7016557B1 (en) 2021-01-14 2021-01-14 Imaging device

Publications (2)

Publication Number Publication Date
JP7016557B1 true JP7016557B1 (en) 2022-02-07
JP2022108769A JP2022108769A (en) 2022-07-27

Family

ID=80817803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021003881A Active JP7016557B1 (en) 2021-01-14 2021-01-14 Imaging device

Country Status (1)

Country Link
JP (1) JP7016557B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058019A1 (en) * 2022-09-16 2024-03-21 ソニーグループ株式会社 Imaging device and medical observation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289547A (en) * 1998-04-01 1999-10-19 Canon Inc Color correcting device
JP2002016931A (en) * 2000-06-29 2002-01-18 Victor Co Of Japan Ltd Image pickup device
JP2007282054A (en) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus, camera, and signal processing method
JP2007334311A (en) * 2006-05-18 2007-12-27 Nippon Hoso Kyokai <Nhk> Visible and infrared light imaging optical system
JP2011085876A (en) * 2009-10-14 2011-04-28 Meiou Co Ltd Device for simultaneous photography of wide and narrow areas
JP2015108692A (en) * 2013-12-04 2015-06-11 株式会社ブルービジョン Image capturing optical system and image capturing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289547A (en) * 1998-04-01 1999-10-19 Canon Inc Color correcting device
JP2002016931A (en) * 2000-06-29 2002-01-18 Victor Co Of Japan Ltd Image pickup device
JP2007282054A (en) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus, camera, and signal processing method
JP2007334311A (en) * 2006-05-18 2007-12-27 Nippon Hoso Kyokai <Nhk> Visible and infrared light imaging optical system
JP2011085876A (en) * 2009-10-14 2011-04-28 Meiou Co Ltd Device for simultaneous photography of wide and narrow areas
JP2015108692A (en) * 2013-12-04 2015-06-11 株式会社ブルービジョン Image capturing optical system and image capturing device

Also Published As

Publication number Publication date
JP2022108769A (en) 2022-07-27

Similar Documents

Publication Publication Date Title
JP6994678B2 (en) Imaging system
KR102201627B1 (en) Solid-state imaging device and imaging device
WO2018079296A1 (en) Imaging element and electronic device
US9848118B2 (en) Phase detection autofocus using opposing filter masks
KR102377023B1 (en) Method and system for multiple F-number lenses
JP4799550B2 (en) Pupil detection method and system
WO2015015717A1 (en) Imaging device and imaging system, electronic mirroring system, and distance measurement device using same
US20180139378A1 (en) Imaging device and automatic control system
WO2019142687A1 (en) Semiconductor element and electronic device
US11675174B2 (en) Single optic for low light and high light level imaging
JP2006238093A (en) Imaging device
JP2008294819A (en) Image pick-up device
JP4506678B2 (en) Prism optical system and imaging device
JP7016557B1 (en) Imaging device
US20110115919A1 (en) Solid-state imaging element and imaging device
US20190121005A1 (en) Imaging device and filter
JP2021076722A (en) camera
JP7358611B2 (en) Imaging device
JP2003169260A (en) Visible and infrared imaging unit and system
JP2009109753A (en) Imaging device
TW200812366A (en) Image module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210412

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220119

R150 Certificate of patent or registration of utility model

Ref document number: 7016557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150