JP7016474B2 - Method for Producing High-Content 2-Methylallyl Chloride - Google Patents

Method for Producing High-Content 2-Methylallyl Chloride Download PDF

Info

Publication number
JP7016474B2
JP7016474B2 JP2020542000A JP2020542000A JP7016474B2 JP 7016474 B2 JP7016474 B2 JP 7016474B2 JP 2020542000 A JP2020542000 A JP 2020542000A JP 2020542000 A JP2020542000 A JP 2020542000A JP 7016474 B2 JP7016474 B2 JP 7016474B2
Authority
JP
Japan
Prior art keywords
chloride
column
methylallyl
dichloro
dichloroisobutylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020542000A
Other languages
Japanese (ja)
Other versions
JP2021512128A (en
Inventor
紅 尹
志栄 陳
偉松 王
夏坤 馬
振祥 馬
月芬 王
慶梅 万
建芳 銭
楠 董
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Zhejiang Huangma Technology Co Ltd
Original Assignee
Zhejiang University ZJU
Zhejiang Huangma Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Zhejiang Huangma Technology Co Ltd filed Critical Zhejiang University ZJU
Publication of JP2021512128A publication Critical patent/JP2021512128A/en
Application granted granted Critical
Publication of JP7016474B2 publication Critical patent/JP7016474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/001Processes specially adapted for distillation or rectification of fermented solutions
    • B01D3/002Processes specially adapted for distillation or rectification of fermented solutions by continuous methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/146Multiple effect distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • C07C17/386Separation; Purification; Stabilisation; Use of additives by distillation with auxiliary compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/04Chloro-alkenes
    • C07C21/067Allyl chloride; Methallyl chloride

Description

本発明は、ファイン有機化学工学分野に属し、有機物の分離方法に関し、特に高含有量の2-メチルアリルクロリドの製造方法に関する。 The present invention belongs to the field of fine organic chemical engineering, and relates to a method for separating organic substances, and particularly to a method for producing a high-content 2-methylallyl chloride.

2-メチルアリルクロリドは、重要な有機合成の中間体であり、医薬、農薬、香料モノマー、高分子材料等の分野で広く使用されている。 2-Methylallyl chloride is an important organic synthetic intermediate and is widely used in the fields of medicine, pesticides, fragrance monomers, polymer materials and the like.

2-メチルアリルクロリドは、通常、イソブチレンと塩素ガスとを気相塩素化反応させて得られる。例えば、DE3402446、CN1030407、CN1288119、CN101182279、CN202044960にはいずれもイソブチレンの気相塩素化反応を用いて2-メチルアリルクロリドを製造することが報告される。 2-Methylallyl chloride is usually obtained by subjecting isobutylene and chlorine gas to a gas phase chlorination reaction. For example, DE3402446, CN1030407, CN1288119, CN101182279, and CN2010424960 are all reported to produce 2-methylallyl chloride using the gas phase chlorination reaction of isobutylene.

塩素化反応過程においては各種副反応が発生し、反応生成物のうち、主生成物である2-メチルアリルクロリド以外に、通常、一定量のt-ブチルクロリド、イソクロチルクロリド、1,2-ジクロロ-t-ブタン、3,3’-ジクロロイソブチレン等の副産物を含んでいる。2-メチルアリルクロリド製品を得るためには、多塔式連続精留分離を経ることが必要となる。 Various side reactions occur in the chlorination reaction process, and among the reaction products, in addition to the main product 2-methylallyl chloride, usually a certain amount of t-butyl chloride, isochlorideyl chloride, 1, 2 -Contains by-products such as dichloro-t-butane and 3,3'-dichloroisobutylene. In order to obtain a 2-methylallyl chloride product, it is necessary to undergo multi-column continuous rectification separation.

最も簡単な分離プロセスは、2塔式連続精留であり、第1塔の塔頂から低沸点成分を分離し、第2塔の塔底から高沸点成分を分離し、塔頂で2-メチルアリルクロリド製品を得る(『年産1000トンのt-ブチルクロリドの工業化生産技術』,南京梅山化工総場,1995)。粗塩素化反応液は4~5%のイソクロチルクロリドを含有するが、その沸点と2-メチルアリルクロリドの沸点の差は3℃しかないため、分離が極めて難しく、2塔プロセスでは高含有量の製品を得ることと高精留収率を両立することができない。 The simplest separation process is two-column continuous rectification, separating the low-boiling components from the top of the first column, separating the high-boiling components from the bottom of the second column, and 2-methyl at the top. Obtain allyl chloride products ("Industrial production technology of t-butyl chloride with annual production of 1000 tons", Nanjing Umeyama Kakosojo, 1995). The crude chlorination reaction solution contains 4 to 5% isoclotyl chloride, but the difference between the boiling point and the boiling point of 2-methylallyl chloride is only 3 ° C, so separation is extremely difficult and the content is high in the two-column process. It is not possible to obtain both a large amount of product and a high rectification yield.

上述した分離の課題を解決するために、CN1288119では5塔プロセスを用いている。ここで、2つの高理論段数の塔を直列にしてイソクロチルクロリドを分離することにより、製品である2-メチルアリルクロリドの含有量が99.5%以上に達し、精留収率が98%に達している。しかし、この方法による分離プロセスが複雑であり、コストが高く、エネルギー消費量が多い。 In order to solve the above-mentioned separation problem, CN1288119 uses a 5-tower process. Here, by separating isoclotyl chloride by connecting two high-theoretical plate columns in series, the content of 2-methylallyl chloride, which is a product, reaches 99.5% or more, and the rectification yield is 98. Has reached%. However, the separation process by this method is complicated, costly and energy consuming.

上記文献に報告された2-メチルアリルクロリドの精留分離過程に存在する課題に対して、本発明は、まず抽出精留の方式によりイソクロチルクロリドを除去してから通常の連続精留により高含有量の2-メチルアリルクロリドを得る、高含有量の2-メチルアリルクロリドの製造方法を提供する。 In response to the problems present in the rectification separation process of 2-methylallyl chloride reported in the above literature, the present invention first removes isoclotyl chloride by an extraction rectification method and then by normal continuous rectification. Provided is a method for producing a high content 2-methylallyl chloride, which obtains a high content 2-methylallyl chloride.

イソブチレンと塩素ガスとを反応させて2-メチルアリルクロリドを製造する、高含有量で2-メチルアリルクロリドを製造する方法であって、塩素化反応液を原料として、t-ブチルクロリド分離塔、イソクロチルクロリド分離塔、2-メチルアリルクロリド分離塔の3塔により順次連続して精留し、2-メチルアリルクロリド分離塔の塔頂から高含有量の2-メチルアリルクロリドを得る方法で、塩素化反応液中は主生成物である2-メチルアリルクロリド、及び少量の副産物であるt-ブチルクロリド、イソクロチルクロリド、1,2-ジクロロ-t-ブタン、3,3’-ジクロロイソブチレンを含有し、前記イソクロチルクロリド分離塔では抽出精留方法を用い、抽出剤はジハロアルカン、トリハロアルカン、テトラハロアルカン、若しくはジハロオレフィン、トリハロオレフィン、テトラハロオレフィン又はそれらの混合物であることを特徴とする。 A method for producing 2-methylallyl chloride by reacting isobutylene with chlorine gas to produce 2-methylallyl chloride with a high content. The t-butyl chloride separation tower, which uses a chlorination reaction solution as a raw material, A method of continuously rectifying with three towers, an isochromtyl chloride separation tower and a 2-methylallyl chloride separation tower, to obtain a high content of 2-methylallyl chloride from the top of the 2-methylallyl chloride separation tower. , 2-Methylallyl chloride, which is the main product in the chlorination reaction solution, and t-butyl chloride, isocrotyl chloride, 1,2-dichloro-t-butane, 3,3'-dichloro, which are small amounts of by-products. It contains isobutylene, the extraction rectification method is used in the isoclotyl chloride separation column, and the extractant is dihaloalkane, trihaloalkane, tetrahaloalkane, or dihaloolefin, trihaloolefin, tetrahaloolefin or a mixture thereof. It is characterized by.

前記抽出剤は、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,2-ジクロロブタン、1,2-ジクロロ-t-ブタン、3,3’-ジクロロイソブチレンのうちの1種又は複数種であることが好ましい。 The extractant is among 1,1,2-trichloroethane, 1,1,1,2-tetrachloroethane, 1,2-dichlorobutane, 1,2-dichloro-t-butane, and 3,3'-dichloroisobutylene. It is preferable that it is one kind or a plurality of kinds.

前記抽出剤は、1,2-ジクロロ-t-ブタン及び/又は3,3’-ジクロロイソブチレンであることがより好ましい。 More preferably, the extractant is 1,2-dichloro-t-butane and / or 3,3'-dichloroisobutylene.

前記抽出剤は、1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物であることがさらに好ましい。 The extractant is more preferably a mixture of 1,2-dichloro-t-butane and 3,3'-dichloroisobutylene.

前記抽出剤は、1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物であり、両者の質量比は(2~7):1であってもよい。 The extractant is a mixture of 1,2-dichloro-t-butane and 3,3'-dichloroisobutylene, and the mass ratio of the two may be (2 to 7): 1.

前記抽出剤は、1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物であり、両者の質量比は(4~5):1であることが好ましい。 The extractant is a mixture of 1,2-dichloro-t-butane and 3,3'-dichloroisobutylene, and the mass ratio of the two is preferably (4 to 5): 1.

前記抽出剤とイソクロチルクロリド分離塔への投入物との質量比は、(1~3):1であることが好ましい。 The mass ratio of the extractant to the input material to the isocrotyl chloride separation column is preferably (1 to 3): 1.

前記2-メチルアリルクロリド分離塔の塔底において高沸点液体を循環させてイソクロチルクロリド分離塔の抽出剤として用いることもできる。 It is also possible to circulate a high boiling point liquid at the bottom of the 2-methylallyl chloride separation column and use it as an extractant for the isoclotyl chloride separation column.

本発明者らは、計算により、イソクロチルクロリドと2-メチルアリルクロリドの沸点の差がわずか3℃で、相対揮発度が1.1程度であり、直接精留分離するのに必要な理論段数が150を超え、還流比が350を超えることを明らかにした。発明者らが、研究した結果、イソクロチルクロリドと2-メチルアリルクロリドの混合物中に一定量の特定構造のポリハライドを添加することによりイソクロチルクロリドの2-メチルアリルクロリドに対する相対揮発度を増加させることができ、抽出精留の抽出剤とすることができることを見出した。上記ポリハライドとしては、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,2-ジクロロブタン、1,2-ジクロロ-t-ブタン、3,3’-ジクロロイソブチレンが挙げられ、その混合物も同様に有効である。ポリハライドと、イソクロチルクロリド及び2-メチルアリルクロリドの混合物との質量比が1:1以上に達した場合、相対揮発度が1.3を超え、ポリハライドとイソクロチルクロリド及び2-メチルアリルクロリドの混合物との質量比が3:1に達した場合、相対揮発度が1.45に達する。ポリハライドと、イソクロチルクロリド及び2-メチルアリルクロリドの混合物との質量比を増加し続けると、相対揮発度が増加する幅が非常に小さくなるので、ポリハライドと、イソクロチルクロリド及び2-メチルアリルクロリドの混合物との好適な質量比は1~3:1である。1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,2-ジクロロブタンも相対揮発度を増加させることができるが、分離プロセスが複雑化するため、好適なポリハライドは、1,2-ジクロロ-t-ブタン、3,3’-ジクロロイソブチレン又はそれらの任意割合の混合物である。 The present inventors calculated that the difference in boiling points between isoclotyl chloride and 2-methylallyl chloride is only 3 ° C, and the relative volatility is about 1.1, which is a theory necessary for direct rectification and separation. It was clarified that the number of stages exceeds 150 and the reflux ratio exceeds 350. As a result of research by the inventors, the relative volatility of isoclotyl chloride to 2-methylallyl chloride was determined by adding a certain amount of polyhalide having a specific structure to the mixture of isoclotyl chloride and 2-methylallyl chloride. It has been found that it can be increased and can be used as an extractant for extraction rectification. Examples of the polyhalide include 1,1,2-trichloroethane, 1,1,1,2-tetrachloroethane, 1,2-dichlorobutane, 1,2-dichloro-t-butane, and 3,3'-dichloroisobutylene. And the mixture is also effective. When the mass ratio of polyhalide to the mixture of isoclotyl chloride and 2-methylallyl chloride reaches 1: 1 or higher, the relative volatility exceeds 1.3 and the polyhalide with isoclotyl chloride and 2-methylallyl chloride. When the mass ratio of chloride to the mixture reaches 3: 1, the relative volatility reaches 1.45. As the mass ratio of polyhalide to the mixture of isoclotyl chloride and 2-methylallyl chloride continues to increase, the range of increase in relative volatility becomes very small, so polyhalide and isoclotyl chloride and 2-methyl A suitable mass ratio of allyl chloride to the mixture is 1-3: 1. 1,1,2-trichloroethane, 1,1,1,2-tetrachloroethane, 1,2-dichlorobutane can also increase relative volatility, but because of the complexity of the separation process, suitable polyhalides are 1,2-Dichloro-t-butane, 3,3'-dichloroisobutylene or a mixture thereof in any proportion.

抽出精留分離の沸点差が非常に小さいイソクロチルクロリド及び2-メチルアリルクロリドを用いることにより、還流比が大幅に低下し、理論段数が明らかに減少し、エネルギー消費及び設備コストを明らかに低下させることができる。用いる蒸留原料に含まれる1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物を抽出剤とすることにより、分離プロセスを簡略化することができ、かつ、循環使用することができる。 By using isoclotyl chloride and 2-methylallyl chloride, which have very small boiling point differences in extraction and rectification separation, the reflux ratio is significantly reduced, the number of theoretical plates is clearly reduced, and energy consumption and equipment cost are revealed. Can be reduced. By using a mixture of 1,2-dichloro-t-butane and 3,3'-dichloroisobutylene contained in the distillation raw material to be used as an extractant, the separation process can be simplified and recycled. can.

本発明に係る3塔式連続精留プロセスに用いられる装置の一例を示す模式図である。It is a schematic diagram which shows an example of the apparatus used for the three-column continuous rectification process which concerns on this invention.

以下、実施例を参照しながら、本発明の技術的解決手段をさらに詳細に説明する。 Hereinafter, the technical solution of the present invention will be described in more detail with reference to Examples.

図1は、本発明に係る3塔式連続精留プロセスに用いられる装置の一例を示す模式図である。3つの塔底には、それぞれ再沸器H1、H2、H3という熱源が備えられる。塩素化反応液を第1塔であるt-ブチルクロリド分離塔T1に添加し、塔頂で分離した成分を凝縮器L1により凝縮して副産物であるt-ブチルクロリドを得る。第1塔の排出液を第2塔であるイソクロチルクロリド分離塔T2に投入し、同時に、抽出剤を添加し、第2塔の塔頂で分離して得られた成分を凝縮器L2により凝縮した副産物であるイソクロチルクロリドを得る。第2塔の排出液を第3塔であるイソクロチルクロリド分離塔T3に投入し、第3塔の塔頂で分離して得られた成分を凝縮器L3により凝縮して主生成物である2-メチルアリルクロリドを得る。第3塔の排出液は高沸点混合物であり、主に抽出剤成分であり、第2塔に循環利用できる。 FIG. 1 is a schematic view showing an example of an apparatus used in the three-tower continuous rectification process according to the present invention. The bottoms of the three towers are provided with heat sources called reboilers H1, H2, and H3, respectively. The chlorination reaction solution is added to the t-butyl chloride separation column T1 which is the first column, and the components separated at the column top are condensed by the condenser L1 to obtain t-butyl chloride which is a by-product. The effluent from the first tower is charged into the isoclotyl chloride separation tower T2, which is the second tower, and at the same time, an extractant is added, and the components obtained by separation at the top of the second tower are separated by the condenser L2. Obtain a condensed by-product, isoclotyl chloride. The effluent from the second tower is charged into the isoclotyl chloride separation tower T3, which is the third tower, and the components obtained by separating at the top of the third tower are condensed by the condenser L3 to be the main product. Obtain 2-methylallyl chloride. The effluent of the third column is a high boiling point mixture, which is mainly an extractant component, and can be recycled to the second column.

実施例1
図1に示す3塔式連続精留装置の第1の精留塔(総理論段数が20段)の内部に塩素化反応液(質量含有量は、2-メチルアリルクロリドが89.6%、t-ブチルクロリド 2.3%、イソクロチルクロリド 1.3%、1,2-ジクロロ-t-ブタン 5.6%、3,3’-ジクロロイソブチレン 1.2%)を連続的に添加し、還流比を50に調節し、塔頂から総投入量2.3%の割合で含有量99%以上のt-ブチルクロリドを得た。第1塔の排出液を第2の精留塔(総理論段数が60段)の下部に連続的に投入し、同時に精留塔の上部に1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物(質量比が82:18)を添加した。1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物と、投入物との質量比を2:1に制御し、塔頂の還流比を230に制御し、塔頂から第1塔投入量の1.3%の割合で含有量99%以上のイソクロチルクロリドを得た。第2塔の排出液を第3塔(総理論段数が20段)の内部に連続的に投入し、還流比を2.5に制御し、塔頂から第1塔投入量の89.7%の割合で含有量99.8%以上の2-メチルアリルクロリドを得た。塔底で1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物(質量比が82:18)を得、排出液をほとんど第2塔の抽出剤として、残り(第1塔投入量の6.7%の割合を占める)は高沸点成分として収集した。
Example 1
A chlorination reaction solution (mass content is 89.6% for 2-methylallyl chloride, inside the first rectifying column (total theoretical plate number is 20)) of the three-column continuous rectifying device shown in FIG. t-Butyl chloride 2.3%, isochlortyl chloride 1.3%, 1,2-dichloro-t-butane 5.6%, 3,3'-dichloroisobutylene 1.2%) were continuously added. The reflux ratio was adjusted to 50, and t-butyl chloride having a content of 99% or more was obtained from the top of the column at a rate of a total input amount of 2.3%. The effluent from the first column is continuously poured into the lower part of the second rectification column (total theoretical plate number is 60), and at the same time, 1,2-dichloro-t-butane and 3,3 are added to the upper part of the rectification column. A mixture of'-dichloroisobutylene (mass ratio 82:18) was added. The mass ratio of the mixture of 1,2-dichloro-t-butane and 3,3'-dichloroisobutylene to the input was controlled to 2: 1 and the reflux ratio of the top of the tower was controlled to 230. Isoclotyl chloride having a content of 99% or more was obtained at a ratio of 1.3% of the input amount per tower. The effluent from the 2nd tower is continuously charged into the 3rd tower (the total number of theoretical plates is 20), the reflux ratio is controlled to 2.5, and 89.7% of the input amount from the top of the tower to the 1st tower. 2-Methylallyl chloride having a content of 99.8% or more was obtained. A mixture of 1,2-dichloro-t-butane and 3,3'-dichloroisobutylene (mass ratio 82:18) was obtained at the bottom of the column, and the effluent was mostly used as an extractant for the second column and remained (the first column). (Accounting for 6.7% of the input amount) was collected as a high boiling point component.

実施例2
図1に示す3塔式連続精留装置の第1の精留塔(総理論段数が20段)の内部に塩素化反応液(質量含有量は、2-メチルアリルクロリド 88.7%、t-ブチルクロリド 2.1%、イソクロチルクロリド 1.5%、1,2-ジクロロ-t-ブタン 6.0%、3,3’-ジクロロイソブチレン 1.5%)を連続的に添加し、還流比を56に調節し、塔頂から総投入量2.1%の割合で含有量99%以上のt-ブチルクロリドを得た。第1塔の排出液を第2の精留塔(総理論段数が55段)の下部に連続的に投入し、同時に精留塔の上部に1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物(質量比が80:20)を添加し、1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物と、投入物との質量比を3:1に制御し、塔頂の還流比を180に制御し、塔頂から第1塔投入量の1.5%の割合で含有量99%以上のイソクロチルクロリドを得た。第2塔の缶出液が第3塔(総理論段数が20段)の内部に連続的に投入し、還流比を3.0に制御し、塔頂から第1塔投入量の88.8%の割合で含有量99.8%以上の2-メチルアリルクロリドを得た。塔底で1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物(質量比が80:20)を得、排出液をほとんど第2塔の抽出剤として、残り(第1塔投入量の7.4%の割合を占める)は高沸点成分として収集した。
Example 2
A chlorination reaction solution (mass content: 2-methylallyl chloride 88.7%, t) inside the first rectifying column (total theoretical plate number: 20) of the three-column continuous rectifying apparatus shown in FIG. -Butyl chloride 2.1%, isochlortyl chloride 1.5%, 1,2-dichloro-t-butane 6.0%, 3,3'-dichloroisobutylene 1.5%) were added continuously. The reflux ratio was adjusted to 56, and t-butyl chloride having a content of 99% or more was obtained from the top of the column at a rate of a total input amount of 2.1%. The effluent from the first column is continuously poured into the lower part of the second rectification column (total theoretical number of stages is 55), and at the same time, 1,2-dichloro-t-butane and 3,3 are added to the upper part of the rectification column. '-Dichloroisobutylene mixture (mass ratio 80:20) was added to make the mass ratio of the mixture of 1,2-dichloro-t-butane and 3,3'-dichloroisobutylene to the input 3: 1. By controlling, the reflux ratio of the column top was controlled to 180, and isoclotyl chloride having a content of 99% or more was obtained from the column top at a ratio of 1.5% of the input amount of the first column. The canned liquid from the 2nd tower is continuously charged into the 3rd tower (the total number of theoretical plates is 20), the reflux ratio is controlled to 3.0, and the amount charged from the top of the tower to the 1st tower is 88.8. 2-Methylallyl chloride having a content of 99.8% or more was obtained at a rate of%. A mixture of 1,2-dichloro-t-butane and 3,3'-dichloroisobutylene (mass ratio 80:20) was obtained at the bottom of the column, and the effluent was mostly used as an extractant for the second column and remained (the first column). (Accounting for 7.4% of the input) was collected as a high boiling point component.

実施例3
図1に示す3塔式連続精留装置の第1の精留塔(総理論段数が20段)の内部に塩素化反応液(質量含有量は、2-メチルアリルクロリド 85.2%、イソブチルクロリド 3.2%、イソクロチルクロリド 3.6%、1,2-ジクロロ-t-ブタン 6.1%、3,3’-ジクロロイソブチレン 1.9%)を連続的に添加し、還流比を37に調節し、塔頂から総投入量3.2%の割合で含有量99%以上のt-ブチルクロリドを得た。第1塔の排出液を第2の精留塔(総理論段数が55段)の下部に連続的に投入し、同時に精留塔の上部に1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物(質量比が80:20)を添加し、1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物と、投入物との質量比を1:1に制御し、塔頂の還流比を110に制御し、塔頂から第1塔投入量の3.6%の割合で含有量99%以上のイソクロチルクロリドを得た。第2塔の排出液を第3塔(総理論段数が20段)の内部に連続的に投入し、還流比を1.4に制御し、塔頂から第1塔投入量の85.3%の割合で含有量99.8%以上の2-メチルアリルクロリドを得た。塔底で1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物(質量比が76:24)を得、缶出液をほとんど第2塔の抽出剤として、残り(第1塔投入量の7.9%の割合を占める)は高沸点成分として収集した。
Example 3
A chlorination reaction solution (mass content is 2-methylallyl chloride 85.2%, isobutyl) inside the first rectifying column (total theoretical plate number is 20) of the three-column continuous rectifying device shown in FIG. Chloride 3.2%, isoclotyl chloride 3.6%, 1,2-dichloro-t-butane 6.1%, 3,3'-dichloroisobutylene 1.9%) were continuously added to the reflux ratio. Was adjusted to 37, and t-butyl chloride having a content of 99% or more was obtained from the top of the column at a rate of a total input amount of 3.2%. The effluent from the first column is continuously poured into the lower part of the second rectification column (total theoretical number of stages is 55), and at the same time, 1,2-dichloro-t-butane and 3,3 are added to the upper part of the rectification column. '-Dichloroisobutylene mixture (mass ratio 80:20) was added to make the mass ratio of the mixture of 1,2-dichloro-t-butane and 3,3'-dichloroisobutylene to the input 1: 1. By controlling, the reflux ratio of the column top was controlled to 110, and isoclotyl chloride having a content of 99% or more was obtained from the column top at a ratio of 3.6% of the input amount of the first column. The effluent from the 2nd tower is continuously charged into the 3rd tower (the total number of theoretical plates is 20), the reflux ratio is controlled to 1.4, and 85.3% of the input amount from the top of the tower to the 1st tower. 2-Methylallyl chloride having a content of 99.8% or more was obtained. A mixture of 1,2-dichloro-t-butane and 3,3'-dichloroisobutylene (mass ratio 76:24) was obtained at the bottom of the column, and the candidate was mostly used as the extractant of the second column and remained (first). (Accounting for 7.9% of the tower input) was collected as a high boiling point component.

比較例1
図1に示す3塔式連続精留装置の第1の精留塔(総理論段数が20段)の内部に塩素化反応液(質量含有量は、2-メチルアリルクロリド 89.6%、t-ブチルクロリド 2.3%、イソクロチルクロリド 1.3%、1,2-ジクロロイソブタン 5.6%、3,3’-ジクロロイソブチレン 1.2%)を連続的に添加し、還流比を50に調節し、塔頂から総投入量2.3%の割合で含有量99%以上のt-ブチルクロリドを得た。第1塔の排出液を第2の精留塔(総理論段数が160段)の下部に連続的に投入し、抽出剤を添加せずに、塔頂の還流比を760に制御し、塔頂から第1塔投入量の1.3%の割合で含有量98%以上のイソクロチルクロリドを得た。第2塔の排出液を第3塔(総理論段数が20段)の内部に連続的に導入し、還流比を0.5に制御し、塔頂から第1塔投入量の89.7%の割合で含有量99.5%以上の2-メチルアリルクロリドを得た。塔底で1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物(質量比が82:18)を得、排出液をほとんど第2塔の抽出剤として、残り(第1塔投入量の6.7%の割合を占める)は高沸点成分として収集した。
Comparative Example 1
A chlorination reaction solution (mass content: 2-methylallyl chloride 89.6%, t) inside the first rectifying column (total theoretical plate number: 20) of the three-column continuous rectifying apparatus shown in FIG. -Butyl chloride 2.3%, isochlortyl chloride 1.3%, 1,2-dichloroisobutane 5.6%, 3,3'-dichloroisobutylene 1.2%) were continuously added to adjust the reflux ratio. The temperature was adjusted to 50, and t-butyl chloride having a content of 99% or more was obtained from the top of the column at a rate of a total input of 2.3%. The effluent from the first column is continuously poured into the lower part of the second rectification column (total theoretical plate number is 160), and the reflux ratio at the top of the column is controlled to 760 without adding an extractant. Isoclotyl chloride having a content of 98% or more was obtained from the top at a ratio of 1.3% of the input amount of the first column. The effluent of the 2nd tower is continuously introduced into the 3rd tower (the total number of theoretical plates is 20), the reflux ratio is controlled to 0.5, and 89.7% of the input amount of the 1st tower from the top of the tower. 2-Methylallyl chloride having a content of 99.5% or more was obtained. A mixture of 1,2-dichloro-t-butane and 3,3'-dichloroisobutylene (mass ratio 82:18) was obtained at the bottom of the column, and the effluent was mostly used as an extractant for the second column and remained (the first column). (Accounting for 6.7% of the input amount) was collected as a high boiling point component.

実施例1と比較例1とを比較してわかるように、抽出精留を用いずにイソクロチルクロリドを分離するのに必要な精留塔理論段数及び還流比は抽出精留を用いた場合より非常に多く、かつ、生成物である2-メチルアリルクロリドの含有量もより低いので、同様な分離目的を達成するために、コスト及びエネルギー消費がより大きい。
As can be seen by comparing Example 1 and Comparative Example 1, the theoretical number of rectification towers and the reflux ratio required to separate isocrotyl chloride without using extraction rectification are the cases where extraction rectification is used. Due to the much higher and lower content of the product 2-methylallyl chloride, the cost and energy consumption are higher to achieve similar separation objectives.

H1、H2、H3 再沸器
L1、L2、L3 凝縮器
T1 t-ブチルクロリド分離塔
T2 イソクロチルクロリド分離塔
T3 2-メチルアリルクロリド分離塔

H1, H2, H3 Reboiler L1, L2, L3 Condensator T1 t-Butyl Chloride Separation Tower T2 Isoclotyl Chloride Separation Tower T3 2-Methylallyl Chloride Separation Tower

Claims (5)

イソブチレンと塩素ガスとを反応させて2-メチルアリルクロリドを製造する、2-メチルアリルクロリドの製造方法であって、
塩素化反応液を原料として、t-ブチルクロリド分離塔、イソクロチルクロリド分離塔、及び2-メチルアリルクロリド分離塔の3塔により順次連続精留し、2-メチルアリルクロリド分離塔の塔頂から2-メチルアリルクロリドを得る方法で、塩素化反応液は主生成物である2-メチルアリルクロリド、及び副産物であるt-ブチルクロリド、イソクロチルクロリド、1,2-ジクロロ-t-ブタン及び3,3’-ジクロロイソブチレンを含有し、
前記イソクロチルクロリド分離塔では抽出精留方法を用い、抽出剤は1,2-ジクロロ-t-ブタン及び/又は3,3’-ジクロロイソブチレンである、ことを特徴とする方法。
A method for producing 2-methylallyl chloride, which comprises reacting isobutylene with chlorine gas to produce 2-methylallyl chloride.
Using the chlorination reaction solution as a raw material, continuous rectification was carried out by three columns, a t-butyl chloride separation column, an isochlorotyl chloride separation column, and a 2-methylallyl chloride separation column, and the top of the 2-methylallyl chloride separation column. In the method of obtaining 2-methylallyl chloride from, the chlorination reaction solution is 2-methylallyl chloride, which is the main product, and t-butyl chloride, isoclotyl chloride, 1,2-dichloro-t-butane, which are by-products. And contains 3,3'-dichloroisobutylene,
The method is characterized in that an extraction rectification method is used in the isochlortyl chloride separation column, and the extractant is 1,2-dichloro-t-butane and / or 3,3'-dichloroisobutylene .
前記抽出剤は、1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの混合物であり、両者の質量比は(2~7):1である、請求項に記載の方法。 The method according to claim 1 , wherein the extractant is a mixture of 1,2-dichloro-t-butane and 3,3'-dichloroisobutylene, and the mass ratio of the two is (2 to 7): 1. 前記1,2-ジクロロ-t-ブタンと3,3’-ジクロロイソブチレンの質量比は、(4~5):1である、請求項に記載の方法。 The method according to claim 2 , wherein the mass ratio of 1,2-dichloro-t-butane to 3,3'-dichloroisobutylene is (4 to 5): 1. 前記抽出剤とイソクロチルクロリド分離塔への投入物との質量比が(1~3):1である、請求項1に記載の方法。 The method according to claim 1, wherein the mass ratio of the extractant to the input to the isocrotyl chloride separation column is (1 to 3): 1. 前記2-メチルアリルクロリド分離塔の塔底において高沸点液体を循環させてイソクロチルクロリド分離塔の抽出剤として用いる、請求項1~のいずれか1項に記載の方法。
The method according to any one of claims 1 to 4 , wherein a high boiling point liquid is circulated at the bottom of the 2-methylallyl chloride separation column and used as an extractant for the isoclotyl chloride separation column.
JP2020542000A 2018-02-09 2018-10-10 Method for Producing High-Content 2-Methylallyl Chloride Active JP7016474B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810134168.X 2018-02-09
CN201810134168.XA CN108164388B (en) 2018-02-09 2018-02-09 Preparation method of high-content 2-methyl allyl chloride
PCT/CN2018/109597 WO2019153773A1 (en) 2018-02-09 2018-10-10 Preparation method for high-content 2-methallyl chloride

Publications (2)

Publication Number Publication Date
JP2021512128A JP2021512128A (en) 2021-05-13
JP7016474B2 true JP7016474B2 (en) 2022-02-07

Family

ID=62513441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020542000A Active JP7016474B2 (en) 2018-02-09 2018-10-10 Method for Producing High-Content 2-Methylallyl Chloride

Country Status (4)

Country Link
JP (1) JP7016474B2 (en)
KR (1) KR102364284B1 (en)
CN (1) CN108164388B (en)
WO (1) WO2019153773A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164389B (en) * 2018-01-29 2020-07-10 浙江大学 Synthesis method and synthesis reactor of high-selectivity 2-methylallyl chloride
CN110818558B (en) * 2019-12-17 2023-09-08 山东民基新材料科技有限公司 Method and device for continuously preparing chloro-pivaloyl chloride by utilizing micro-channel
CN112174775B (en) * 2020-09-29 2023-03-17 浙江皇马科技股份有限公司 Method for decoloring high-chlorine-content organic mixture
CN115073260B (en) * 2022-06-30 2023-08-08 浙江皇马科技股份有限公司 Preparation method of 3-chloro-2-chloromethyl propylene

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2604439A (en) * 1952-07-22 Distillation of
GB684577A (en) * 1949-11-26 1952-12-17 Bataafsche Petroleum Process for separating alkenyl halide mixtures by distillation
JPS53124202A (en) * 1977-04-05 1978-10-30 Toagosei Chem Ind Co Ltd Continuous preparation of methallyl chloride
CN1288119C (en) * 2003-05-14 2006-12-06 刘德全 Methallyl chloride synthetic process and apparatus thereof
CN101182279B (en) * 2007-01-22 2010-09-29 丁凌 Method for preparing 3-chlorine-2-methyl-1-propylene
CN200995994Y (en) * 2007-01-22 2007-12-26 丁凌 Chlorinating reactor for producing 3-chlorine-2-methane-1-propylene from chlorine and isobutylene
CN106608811B (en) * 2015-10-27 2019-09-17 江西天宇化工有限公司 A method of chloropropane is prepared using micro passage reaction
CN107652163B (en) * 2017-09-27 2020-11-03 荆楚理工学院 Production method of high-purity methyl allyl alcohol
CN108164389B (en) * 2018-01-29 2020-07-10 浙江大学 Synthesis method and synthesis reactor of high-selectivity 2-methylallyl chloride

Also Published As

Publication number Publication date
WO2019153773A1 (en) 2019-08-15
KR20200049863A (en) 2020-05-08
CN108164388A (en) 2018-06-15
KR102364284B1 (en) 2022-02-17
CN108164388B (en) 2020-07-10
JP2021512128A (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP7016474B2 (en) Method for Producing High-Content 2-Methylallyl Chloride
US10532965B2 (en) E-1-chloro-3,3,3-trifluoropropene production process from 1,1,3,3-tetrachloropropene
Hanika et al. Butylacetate via reactive distillation—modelling and experiment
US5415741A (en) Separation of ethanol from isopropanol by azeotropic distillation
US6846389B2 (en) Method for distillative separation of mixtures containing tetrahydrofuran, γ-butyrolactone and/or 1,4-butanediol
KR101143244B1 (en) Method and apparatus for production of alkyl aryl ether and diaryl carbonate
DE102005032430A1 (en) Process for the preparation of toluenediamine
DE19953762C2 (en) Process for the use of the resulting in 1,2-dichloroethane production in Direktchlorierungsreaktor heat
Momoh Assessing the accuracy of selectivity as a basis for solvent screening in extractive distillation processes
CA1238919A (en) Obtaining anhydrous or substantially anhydrous formic acid by hydrolysis of methyl formate
US2646393A (en) Process for the purification of dimethyl terephthalate by distillation
CN105753649A (en) Method of recycling isooctanol from waste solvent in production process of isooctyl thioglycolate
EP3322696B1 (en) Process for making hydroxyethyl piperazine compounds
US4994152A (en) Removal of small amounts of a medium-boiling fraction from a liquid mixture by distillation
US3196085A (en) Process for purifying acrylonitrile
Venkata Recovery of lactic acid by reactive distillation
US5417814A (en) Separation of 3-methyl-2-butanol from 2-pentanol by extractive distillation
US5154800A (en) Dehydration of acrylic acid by extractive distillation
CN111194300A (en) Dividing wall distillation column and method for purifying vinylidene chloride by using the same
US3300531A (en) Process for preparing dimethylacetamide
WO2018118702A1 (en) Acrylic acid purification via dividing wall columns
US5380405A (en) Separation of alpha-phellandrene from 3-carene by azeotropic distillation
US5407540A (en) Separation of 3-methyl-2-butanol from 1-butanol by extractive distillation
JP4960546B2 (en) Purification of crude pyrrolidine
US6045662A (en) Process for preparing high-purity cyclopropyl methyl ketone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220107