JP7016375B2 - Power semiconductor module - Google Patents

Power semiconductor module Download PDF

Info

Publication number
JP7016375B2
JP7016375B2 JP2020032611A JP2020032611A JP7016375B2 JP 7016375 B2 JP7016375 B2 JP 7016375B2 JP 2020032611 A JP2020032611 A JP 2020032611A JP 2020032611 A JP2020032611 A JP 2020032611A JP 7016375 B2 JP7016375 B2 JP 7016375B2
Authority
JP
Japan
Prior art keywords
heat conduction
layer
power semiconductor
conduction anisotropic
anisotropic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020032611A
Other languages
Japanese (ja)
Other versions
JP2021136363A (en
Inventor
昌樹 田屋
侑司 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020032611A priority Critical patent/JP7016375B2/en
Priority to CN202110202188.8A priority patent/CN113327902A/en
Publication of JP2021136363A publication Critical patent/JP2021136363A/en
Application granted granted Critical
Publication of JP7016375B2 publication Critical patent/JP7016375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本願は、パワー半導体モジュールに関するものである。 The present application relates to a power semiconductor module.

電気自動車又はハイブリッド自動車のように、駆動源にモータが用いられている電動車両には、複数の電力変換装置が搭載されている。電力変換装置としては、商用の交流電源から直流電源に変換して高圧バッテリに充電する充電器、高圧バッテリの直流電源から補助機器用のバッテリの電圧(例えば12V)に変換するDC/DCコンバータ、バッテリからの直流電力をモータへの交流電力に変換してモータを制御するインバータ装置等が挙げられる。 An electric vehicle such as an electric vehicle or a hybrid vehicle in which a motor is used as a drive source is equipped with a plurality of electric power conversion devices. Power converters include chargers that convert commercial AC power to DC power to charge high-voltage batteries, and DC / DC converters that convert the DC power of high-pressure batteries to the voltage of batteries for auxiliary equipment (eg 12V). Examples thereof include an inverter device that controls a motor by converting DC power from a battery into AC power to a motor.

インバータ装置にはパワー半導体素子を搭載したパワー半導体モジュールが含まれ、パワー半導体モジュールによりインバータ回路が形成される。インバータ回路のスイッチング動作によって、直流電力と交流電力とは相互に変換される。これらの電力により、モータの力行動作及び回生動作が行われる。 The inverter device includes a power semiconductor module equipped with a power semiconductor element, and the inverter circuit is formed by the power semiconductor module. DC power and AC power are mutually converted by the switching operation of the inverter circuit. These electric powers are used to perform power running operation and regenerative operation of the motor.

近年、パワー半導体モジュールの小型化及び高出力化に伴い、放熱性能に対する要求が高まっている。放熱性能に対する要求を満たすために、熱拡散部材として一般的に用いられる銅あるいは銅合金のほかに、異方性熱伝導率を有するグラファイト等が提案されている。例えば、板状のグラフェンシートが板厚方向に積層されたグラファイトを、熱伝導率の低い方向を直交させて複数積層した熱拡散部材が開示されている(例えば特許文献1参照)。グラフェンシートは、板厚方向に比べて長手方向および幅方向に、銅あるいは銅合金よりも良好な熱伝導性を有している。一方、板厚方向の熱伝導性は、銅あるいは銅合金よりも低い。熱伝導性の低い積層させた方向が、発熱体である半導体素子と冷却器とを結ぶ方向に対して直交するように複数のグラファイトを配置させることで、熱拡散部材は半導体素子に生じた熱を効率的に冷却器まで伝えている。 In recent years, with the miniaturization and high output of power semiconductor modules, the demand for heat dissipation performance has increased. In order to satisfy the requirements for heat dissipation performance, in addition to copper or a copper alloy generally used as a heat diffusion member, graphite having an anisotropic thermal conductivity has been proposed. For example, there is disclosed a heat diffusion member in which a plurality of graphites in which plate-shaped graphene sheets are laminated in the plate thickness direction are laminated in a direction perpendicular to the direction of low thermal conductivity (see, for example, Patent Document 1). The graphene sheet has better thermal conductivity than copper or a copper alloy in the longitudinal direction and the width direction as compared with the plate thickness direction. On the other hand, the thermal conductivity in the plate thickness direction is lower than that of copper or a copper alloy. By arranging a plurality of graphites so that the laminated direction having low thermal conductivity is orthogonal to the direction connecting the semiconductor element which is a heating element and the cooler, the heat diffusion member generates heat generated in the semiconductor element. Is efficiently transmitted to the cooler.

特開2011-258755号公報Japanese Unexamined Patent Publication No. 2011-258755

上記特許文献1においては、熱伝導率の低い方向を直交させて複数のグラファイトを積層することで、半導体素子と冷却器とを結ぶ方向に対するグラファイトの熱拡散の効率を高めることができる。しかしながら、グラファイトに代表される、異方性熱伝導率を有した材料は、線膨張係数にも異方性を有することが一般的である。例えば、グラフェンシートが積層されたグラファイトでは、グラフェンシートの長手方向および幅方向の線膨張係数が、積層方向の線膨張係数より小さい。2つの異方性線膨張部材であるグラファイトを、線膨張係数が大きい方向を直交させて積層した熱拡散部材の場合、線膨張係数の差に起因して、熱拡散部材は鞍型に湾曲しようとする。そのため、熱拡散部材と、熱拡散部材と接合される他の部材との間に設けた接合材に大きな熱応力が発生する。熱応力は接合材に疲労破壊を生じさせるため、熱拡散部材と他の部材との接合材を介した熱的な接続の維持が困難になり、パワー半導体モジュールの伝熱性能が大幅に低下するという課題があった。 In Patent Document 1, the efficiency of heat diffusion of graphite in the direction connecting the semiconductor element and the cooler can be enhanced by laminating a plurality of graphites with the directions of low thermal conductivity orthogonal to each other. However, a material having an anisotropic thermal conductivity, such as graphite, generally has an anisotropic linear expansion coefficient. For example, in graphite on which graphene sheets are laminated, the linear expansion coefficient in the longitudinal direction and the width direction of the graphene sheet is smaller than the linear expansion coefficient in the laminated direction. In the case of a heat diffusion member in which graphite, which is an anisotropic linear expansion member, is laminated in a direction orthogonal to each other in which the linear expansion coefficient is large, the heat diffusion member will be curved in a saddle shape due to the difference in the linear expansion coefficient. And. Therefore, a large thermal stress is generated in the bonding material provided between the heat diffusion member and another member bonded to the heat diffusion member. Since thermal stress causes fatigue fracture in the bonding material, it becomes difficult to maintain a thermal connection between the heat diffusion member and other members via the bonding material, and the heat transfer performance of the power semiconductor module is significantly reduced. There was a problem.

そこで、本願は、熱拡散部材の湾曲を抑制することで、伝熱性能の低下を抑制することができるパワー半導体モジュールを得ることを目的としている。 Therefore, an object of the present application is to obtain a power semiconductor module capable of suppressing deterioration of heat transfer performance by suppressing bending of the heat diffusion member.

本願に開示されるパワー半導体モジュールは、積層されたN層(Nは3以上の奇数)の板状の熱伝導異方性部材と、1番目の層の熱伝導異方性部材の外側の板面に接合されたパワー半導体素子とを備え、奇数番目の層の熱伝導異方性部材では、板厚の方向及び板面に平行な第1方向の熱伝導率が、第1方向に直交し板面に平行な第2方向の熱伝導率よりも高く、偶数番目の層の熱伝導異方性部材では、板厚の方向及び第2方向の熱伝導率が、第1方向の熱伝導率よりも高く、1番目の層の熱伝導異方性部材の厚みが、N番目の層の熱伝導異方性部材の厚みと同じであり、奇数番目の層の熱伝導異方性部材のそれぞれの厚みの和が、偶数番目の層の熱伝導異方性部材のそれぞれの厚みの和と同じであり、偶数番目の層の熱伝導異方性部材の厚みは、奇数番目の層の熱伝導異方性部材の厚みよりも大きい

The power semiconductor module disclosed in the present application includes a laminated N-layer (N is an odd number of 3 or more) plate-shaped heat conduction anisotropic member and an outer plate of the first layer heat conduction anisotropic member. In the heat conduction anisotropic member of the odd-th layer, which is provided with a power semiconductor element bonded to the surface, the heat conductivity in the direction of the plate thickness and the heat conductivity in the first direction parallel to the plate surface are orthogonal to the first direction. In the heat conduction anisotropic member of the even-th layer, which is higher than the heat conductivity in the second direction parallel to the plate surface, the heat conductivity in the plate thickness direction and the second direction is the heat conductivity in the first direction. The thickness of the heat conduction anisotropic member of the first layer is the same as the thickness of the heat conduction anisotropic member of the Nth layer, which is higher than that of the heat conduction anisotropic member of the oddth layer. The sum of the thicknesses is the same as the sum of the thicknesses of the heat conduction anisotropic members of the even-th layer, and the thickness of the heat conduction anisotropic members of the even-th layer is the heat of the odd-th layer. It is larger than the thickness of the conduction anisotropic member .

本願に開示されるパワー半導体モジュールによれば、奇数番目の層の熱伝導異方性部材と偶数番目の層の熱伝導異方性部材の何れにおいても板厚の方向の熱伝導率は高いため、積層されたN層(Nは3以上の奇数)の板状の熱伝導異方性部材はパワー半導体素子で生じた熱を効率的に板厚の方向に伝えることができる。また、奇数番目の層の熱伝導異方性部材の板面に平行な第1方向の熱伝導率が第1方向に直交し板面に平行な第2方向の熱伝導率よりも高く、偶数番目の層の熱伝導異方性部材の第2方向の熱伝導率が第1方向の熱伝導率よりも高いため、奇数番目の層の熱伝導異方性部材と偶数番目の層の熱伝導異方性部材とが積層されることで、積層されたN層(Nは3以上の奇数)の板状の熱伝導異方性部材はパワー半導体素子で生じた熱を効率的に第1方向及び第2方向にも伝えることができる。さらにまた、1番目の層の熱伝導異方性部材の厚みがN番目の層の熱伝導異方性部材の厚みと同じであり、これらの厚みを同じにすることで、1番目の層の熱伝導異方性部材と偶数番目の層である2番目の層の熱伝導異方性部材とに生じる湾曲しようとする力と、N番目の層の熱伝導異方性部材と偶数番目の層であるN-1番目の層の熱伝導異方性部材とに生じる湾曲しようとする力を打ち消すことができるため、積層されたN層(Nは3以上の奇数)の板状の熱伝導異方性部材の湾曲は抑制され、パワー半導体モジュールの伝熱性能の低下を抑制することができる。 According to the power semiconductor module disclosed in the present application, the thermal conductivity in the plate thickness direction is high in both the heat conduction anisotropic member of the odd-th layer and the heat conduction anisotropic member of the even-th layer. The laminated N-layer (N is an odd number of 3 or more) plate-shaped heat conduction anisotropic member can efficiently transfer the heat generated by the power semiconductor element in the direction of the plate thickness. Further, the thermal conductivity in the first direction parallel to the plate surface of the heat conduction anisotropic member of the odd-th layer is higher than the thermal conductivity in the second direction orthogonal to the first direction and parallel to the plate surface, and is even. Since the thermal conductivity of the heat conduction anisotropic member of the second layer in the second direction is higher than the thermal conductivity of the first direction, the heat conduction anisotropic member of the odd-th layer and the heat conduction of the even-th layer By laminating the anisotropic member, the laminated plate-shaped thermal conductivity anisotropic member of the N layer (N is an odd number of 3 or more) efficiently transfers the heat generated by the power semiconductor element in the first direction. And can also be transmitted in the second direction. Furthermore, the thickness of the heat transfer anisotropic member of the first layer is the same as the thickness of the heat transfer anisotropic member of the Nth layer, and by making these thicknesses the same, the thickness of the first layer can be increased. The force to bend between the heat transfer anisotropic member and the heat transfer anisotropic member of the second layer, which is the even-th layer, and the heat transfer anisotropic member and the even-th layer of the Nth layer. Since it is possible to cancel the bending force generated with the heat transfer anisotropic member of the N-1st layer, which is, the plate-like heat transfer difference of the laminated N layers (N is an odd number of 3 or more). The bending of the square member is suppressed, and the deterioration of the heat transfer performance of the power semiconductor module can be suppressed.

実施の形態1に係るパワー半導体モジュールの外観を模式的に示した斜視図である。It is a perspective view schematically showing the appearance of the power semiconductor module which concerns on Embodiment 1. FIG. 実施の形態1に係るパワー半導体モジュールの熱伝導異方性部材を説明する図である。It is a figure explaining the heat conduction anisotropic member of the power semiconductor module which concerns on Embodiment 1. FIG. 実施の形態2に係るパワー半導体モジュールの外観を模式的に示した斜視図である。It is a perspective view schematically showing the appearance of the power semiconductor module which concerns on Embodiment 2. FIG. 実施の形態3に係るパワー半導体モジュールの外観を模式的に示した斜視図である。It is a perspective view schematically showing the appearance of the power semiconductor module which concerns on Embodiment 3. FIG. 実施の形態4に係るパワー半導体モジュールの外観を模式的に示した斜視図である。It is a perspective view schematically showing the appearance of the power semiconductor module which concerns on Embodiment 4. FIG. 実施の形態5に係るパワー半導体モジュールの外観を模式的に示した平面図である。It is a top view schematically showing the appearance of the power semiconductor module which concerns on Embodiment 5.

以下、本願の実施の形態による電力変換装置を図に基づいて説明する。なお、各図において同一、または相当部材、部位については同一符号を付して説明する。 Hereinafter, the power conversion device according to the embodiment of the present application will be described with reference to the drawings. In each figure, the same or corresponding members and parts will be described with the same reference numerals.

実施の形態1.
図1は実施の形態1に係るパワー半導体モジュール100の外観を模式的に示した斜視図、図2はパワー半導体モジュール100の熱伝導異方性部材3を説明する図である。パワー半導体モジュール100はパワー半導体素子1が搭載されたモジュールで、例えばインバータ装置においてインバータ回路を構成するものである。
Embodiment 1.
FIG. 1 is a perspective view schematically showing the appearance of the power semiconductor module 100 according to the first embodiment, and FIG. 2 is a diagram illustrating a heat conduction anisotropic member 3 of the power semiconductor module 100. The power semiconductor module 100 is a module on which a power semiconductor element 1 is mounted, and constitutes an inverter circuit in, for example, an inverter device.

パワー半導体モジュール100は、積層されたN層(Nは3以上の奇数)の板状の熱伝導異方性部材3と、1番目の層の第1の熱伝導異方性部材3aの外側の板面である素子接合面2aに接合されたパワー半導体素子1とを備える。図1に示すように、実施の形態1では、Nが3の場合の3層の熱伝導異方性部材3を備えたパワー半導体モジュール100について説明する。熱拡散部材2は、3層の熱伝導異方性部材3で形成される。パワー半導体モジュール100は、3番目の層の第3の熱伝導異方性部材3cの外側の板面である冷却器接合面2bに、絶縁放熱部材(図示せず)を介して接合された冷却器20を備える。冷却器接合面2bは、素子接合面2aに平行な熱拡散部材2の反対側の板面である。パワー半導体素子1で生じた熱は、熱拡散部材2を介して冷却器20に向けて拡散され、パワー半導体素子1は冷却される。 The power semiconductor module 100 is formed on the outer side of the laminated N-layer (N is an odd number of 3 or more) plate-shaped heat conduction anisotropic member 3 and the first heat conduction anisotropic member 3a of the first layer. A power semiconductor element 1 bonded to an element bonding surface 2a, which is a plate surface, is provided. As shown in FIG. 1, in the first embodiment, the power semiconductor module 100 including the three-layer heat conduction anisotropic member 3 when N is 3 will be described. The heat diffusion member 2 is formed of three layers of heat conduction anisotropic members 3. The power semiconductor module 100 is cooled by being joined to the cooler joint surface 2b, which is the outer plate surface of the third heat conduction anisotropic member 3c of the third layer, via an insulating heat dissipation member (not shown). A vessel 20 is provided. The cooler joint surface 2b is a plate surface on the opposite side of the heat diffusion member 2 parallel to the element joint surface 2a. The heat generated in the power semiconductor element 1 is diffused toward the cooler 20 via the heat diffusion member 2, and the power semiconductor element 1 is cooled.

<パワー半導体素子1>
パワー半導体素子1には、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)などの電力制御用半導体素子、もしくは還流ダイオードなどが用いられる。また、パワー半導体素子1は、炭化ケイ素、シリコン、もしくは窒化ガリウムなどの材料からなる半導体が用いられる。パワー半導体素子1は、素子接合面2aに銀を主成分とした焼結材(図示せず)を用いて、熱的かつ電気的に接続される。なお、パワー半導体素子1の接合は、はんだ接合、もしくは拡散接合などであっても構わない。
<Power semiconductor element 1>
As the power semiconductor element 1, a power control semiconductor element such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), an IGBT (Insulated Gate Bipolar Transistor), a freewheeling diode, or the like is used. Further, as the power semiconductor element 1, a semiconductor made of a material such as silicon carbide, silicon, or gallium nitride is used. The power semiconductor device 1 is thermally and electrically connected to the device bonding surface 2a by using a sintered material (not shown) containing silver as a main component. The bonding of the power semiconductor element 1 may be solder bonding, diffusion bonding, or the like.

<熱伝導異方性部材3>
熱伝導異方性部材3は、図2に示すように、長方形状の複数のグラフェンシート5が積層されたグラファイト4である。グラフェンシート5は、炭素原子が六角形の網目を描くようにシート状に結合された薄板である。グラファイト4は、異方性熱伝導率を有する。グラフェンシート5の面と平行な方向については高い熱伝導率(例えば1700W/mK程度)を有し、グラフェンシート5の面と垂直な方向については低い熱伝導率(例えば7W/mK程度)を示す。
<Heat conduction anisotropic member 3>
As shown in FIG. 2, the heat conduction anisotropic member 3 is graphite 4 on which a plurality of rectangular graphene sheets 5 are laminated. The graphene sheet 5 is a thin plate in which carbon atoms are bonded in a sheet shape so as to form a hexagonal network. Graphite 4 has anisotropic thermal conductivity. It has a high thermal conductivity (for example, about 1700 W / mK) in the direction parallel to the surface of the graphene sheet 5, and shows a low thermal conductivity (for example, about 7 W / mK) in the direction perpendicular to the surface of the graphene sheet 5. ..

<熱拡散部材2>
熱拡散部材2は、図1に示すように、1番目の層の第1の熱伝導異方性部材3a、2番目の層の第2の熱伝導異方性部材3b、及び3番目の層の第3の熱伝導異方性部材3cを備える。それぞれの熱伝導異方性部材3の間は、ロウ材(図示せず)によるロウ付けによって接合される。奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cと偶数番目の層の第2の熱伝導異方性部材3bとでは、熱伝導率の高い方向が異なる。奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cでは、板厚の方向及び板面に平行な第1方向の熱伝導率が、第1方向に直交し板面に平行な第2方向の熱伝導率よりも高い。奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cは、長辺が第1方向に平行で、短辺が板厚の方向に平行な長方形状の複数のグラフェンシート5を第2方向に積層して形成されている。偶数番目の層の第2の熱伝導異方性部材3bでは、板厚の方向及び第2方向の熱伝導率が、第1方向の熱伝導率よりも高い。偶数番目の層の第2の熱伝導異方性部材3bは、長辺が第2方向に平行で、短辺が板厚の方向に平行な長方形状の複数のグラフェンシート5を第1方向に積層して形成されている。
<Heat diffusion member 2>
As shown in FIG. 1, the heat diffusion member 2 includes a first heat conduction anisotropic member 3a in the first layer, a second heat conduction anisotropic member 3b in the second layer, and a third layer. The third heat conduction anisotropic member 3c is provided. The heat conduction anisotropic members 3 are joined by brazing with a brazing material (not shown). The first heat conduction anisotropic member 3a and the third heat conduction anisotropic member 3c of the odd-th layer and the second heat conduction anisotropic member 3b of the even-th layer have high thermal conductivity. The direction is different. In the first heat conduction anisotropic member 3a and the third heat conduction anisotropic member 3c of the odd-th layer, the thermal conductivity in the direction of the plate thickness and in the first direction parallel to the plate surface is the first direction. It is higher than the thermal conductivity in the second direction orthogonal to and parallel to the plate surface. The first heat conduction anisotropic member 3a and the third heat conduction anisotropic member 3c of the odd-th layer have a rectangular shape in which the long side is parallel to the first direction and the short side is parallel to the plate thickness direction. It is formed by laminating a plurality of graphene sheets 5 in the second direction. In the second heat conduction anisotropic member 3b of the even-th layer, the heat conductivity in the plate thickness direction and the second direction is higher than the heat conductivity in the first direction. The second heat conduction anisotropic member 3b of the even-th layer has a plurality of rectangular graphene sheets 5 having long sides parallel to the second direction and short sides parallel to the plate thickness direction in the first direction. It is formed by stacking.

奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cと偶数番目の層の第2の熱伝導異方性部材3bの何れにおいても、パワー半導体素子1と冷却器20とを結ぶ板厚の方向の熱伝導率は高い。この構成によれば、パワー半導体素子1と冷却器20とを結ぶ板厚の方向の熱拡散部材2の熱伝導率が高いため、熱拡散部材2はパワー半導体素子1で生じた熱を効率的に冷却器20まで伝えることができる。 The power semiconductor element in any of the first heat conduction anisotropic member 3a and the third heat conduction anisotropic member 3c of the odd-th layer and the second heat conduction anisotropic member 3b of the even-th layer. The thermal conductivity in the direction of the plate thickness connecting 1 and the cooler 20 is high. According to this configuration, since the thermal conductivity of the heat diffusion member 2 in the plate thickness direction connecting the power semiconductor element 1 and the cooler 20 is high, the heat diffusion member 2 efficiently dissipates the heat generated by the power semiconductor element 1. Can be transmitted to the cooler 20.

奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cと偶数番目の層の第2の熱伝導異方性部材3bとは、パワー半導体素子1と冷却器20とを結ぶ板厚の方向に直交する方向に、それぞれの板面の熱伝導率の高い方向が直交している。熱伝導率の高い方向である第1方向と第2方向を直交させてそれぞれの熱伝導異方性部材3を積層したことで、熱拡散部材2はパワー半導体素子1と冷却器20とを結ぶ板厚の方向に直交する方向の熱伝導率も高い。この構成によれば、パワー半導体素子1と冷却器20とを結ぶ板厚の方向に直交する方向の熱拡散部材2の熱伝導率も高めることができるため、熱拡散部材2はパワー半導体素子1で生じた熱をさらに効率的に冷却器20まで伝えることができる。 The first heat conduction anisotropic member 3a and the third heat conduction anisotropic member 3c in the odd-th layer and the second heat conduction anisotropic member 3b in the even-th layer are the power semiconductor element 1. The direction of high thermal conductivity of each plate surface is orthogonal to the direction orthogonal to the direction of the plate thickness connecting the cooler 20. The heat diffusion member 2 connects the power semiconductor element 1 and the cooler 20 by laminating the respective heat conduction anisotropic members 3 so that the first direction and the second direction, which are the directions having high thermal conductivity, are orthogonal to each other. The thermal conductivity in the direction orthogonal to the plate thickness direction is also high. According to this configuration, the thermal conductivity of the heat diffusion member 2 in the direction orthogonal to the plate thickness direction connecting the power semiconductor element 1 and the cooler 20 can also be increased, so that the heat diffusion member 2 is the power semiconductor element 1. The heat generated in the above can be transferred to the cooler 20 more efficiently.

<熱伝導異方性部材3の厚み>
本願の要部である熱伝導異方性部材3の厚みの構成について説明する。異方性熱伝導率を有した部材は、一般的に線膨張係数にも異方性を有している。例えば、図2に示したグラファイト4では、グラフェンシート5の面と平行な方向の線膨張係数が、グラフェンシート5の面と垂直な方向の線膨張係数よりも小さい。2つのグラファイト4を線膨張係数が大きい方向を直交させて積層した場合、線膨張係数の差に起因して、積層された2つのグラファイト4は鞍型に湾曲しようとする。この湾曲しようとする力により、グラファイト4と、グラファイト4と接合された他の部材との間に設けた接合材に大きな熱応力が発生する。熱応力により接合材に疲労破壊が生じると、グラファイト4と他の部材との接合材を介した熱的な接続が維持されないため、パワー半導体モジュール100としての伝熱性能が大幅に低下する。
<Thickness of heat conduction anisotropic member 3>
The structure of the thickness of the heat conduction anisotropic member 3 which is the main part of the present application will be described. A member having an anisotropic thermal conductivity generally also has anisotropy in the linear expansion coefficient. For example, in graphite 4 shown in FIG. 2, the linear expansion coefficient in the direction parallel to the plane of the graphene sheet 5 is smaller than the linear expansion coefficient in the direction perpendicular to the plane of the graphene sheet 5. When two graphites 4 are laminated so that the directions in which the linear expansion coefficients are large are orthogonal to each other, the two laminated graphites 4 tend to bend in a saddle shape due to the difference in the linear expansion coefficients. Due to this bending force, a large thermal stress is generated in the bonding material provided between the graphite 4 and the other member bonded to the graphite 4. When fatigue fracture occurs in the bonding material due to thermal stress, the thermal connection between graphite 4 and other members via the bonding material is not maintained, so that the heat transfer performance of the power semiconductor module 100 is significantly reduced.

図1に示すように、1番目の層の第1の熱伝導異方性部材3aの厚みは、3番目の層の第3の熱伝導異方性部材3cの厚みと同じである。これらの厚みを同じにすることで、第1の熱伝導異方性部材3aと第2の熱伝導異方性部材3bとに生じる湾曲しようとする力と、第2の熱伝導異方性部材3bと第3の熱伝導異方性部材3cとに生じる湾曲しようとする力は、逆方向に働き、かつそれらの力はつりあうことになるため、それらの力を打ち消すことができる。そのため、熱拡散部材2が鞍型に湾曲することを抑制することができる。 As shown in FIG. 1, the thickness of the first heat conduction anisotropic member 3a of the first layer is the same as the thickness of the third heat conduction anisotropic member 3c of the third layer. By making these thicknesses the same, the bending force generated in the first heat conduction anisotropic member 3a and the second heat conduction anisotropic member 3b and the second heat conduction anisotropic member 3b The bending forces generated in the 3b and the third heat conduction anisotropic member 3c act in opposite directions, and the forces are balanced, so that the forces can be canceled out. Therefore, it is possible to prevent the heat diffusion member 2 from bending into a saddle shape.

この構成によれば、熱拡散部材2が鞍型に湾曲することが抑制でき、熱拡散部材2と冷却器20との間に設けた接合材である絶縁接合部材の疲労破壊が抑制されるため、絶縁接合部材を介した熱拡散部材2と冷却器20との熱的な接続が維持され、パワー半導体モジュール100における伝熱性能の低下を抑制することができる。 According to this configuration, it is possible to suppress the heat diffusion member 2 from bending into a saddle shape, and it is possible to suppress fatigue failure of the insulating bonding member which is a bonding material provided between the heat diffusion member 2 and the cooler 20. The thermal connection between the heat diffusion member 2 and the cooler 20 via the insulating bonding member is maintained, and deterioration of the heat transfer performance in the power semiconductor module 100 can be suppressed.

また、奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cのそれぞれの厚みの和が、偶数番目の層の第2の熱伝導異方性部材3bの厚みと同じである。奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cのそれぞれの厚みの和と、偶数番目の層の第2の熱伝導異方性部材3bの厚みとを同じにすることで、熱拡散部材2を全体としてみたときの、第1方向と第2方向の実効的な線膨張係数を等しくすることができる。第1方向と第2方向の実効的な線膨張係数が等しいため、熱拡散部材2が鞍型に湾曲することを抑制することができる。 Further, the sum of the thicknesses of the first heat conduction anisotropic member 3a and the third heat conduction anisotropic member 3c of the odd-th layer is the sum of the thicknesses of the second heat conduction anisotropic member 3c of the even-th layer. It is the same as the thickness of 3b. The sum of the thicknesses of the first heat conduction anisotropic member 3a and the third heat conduction anisotropic member 3c of the odd-th layer and the second heat conduction anisotropic member 3b of the even-th layer. By making the thickness the same, the effective linear expansion coefficients in the first direction and the second direction when the heat diffusion member 2 is viewed as a whole can be made equal. Since the effective linear expansion coefficients in the first direction and the second direction are the same, it is possible to prevent the heat diffusion member 2 from bending into a saddle shape.

この構成によれば、熱拡散部材2と冷却器20とを接合する絶縁接合部材の疲労破壊がさらに抑制されるため、パワー半導体モジュール100における伝熱性能の低下をさらに抑制することができる。 According to this configuration, fatigue fracture of the insulating joining member that joins the heat diffusion member 2 and the cooler 20 is further suppressed, so that deterioration of the heat transfer performance in the power semiconductor module 100 can be further suppressed.

<冷却器20>
冷却器20は、アルミニウム等の熱伝導率の高い金属で形成される。冷却器20は、例えば、高さ方向に厚みを備え、外側に冷却面20aを有し、内側に冷媒が流れる流路及び冷却フィンが形成される。冷媒は流体であり、冷却器20の側面に設けられた2つのパイプ(図示せず)から冷媒は流出入される。冷媒には、例えば水またはエチレングリコール液が使用される。冷却面20aは、冷媒によって冷却される。冷却器20は、タンク、ポンプ、ラジエータ等とともに冷媒を循環させる冷却回路の一部を形成する。冷却器20と冷却器接合面2bとを接合する絶縁放熱部材は、例えば、シリコーングリース、放熱フィラー入りの絶縁シート、もしくは放熱フィラー入りの絶縁性接着剤である。冷却器20と熱拡散部材2との間は熱的には接続され、電気的には接続されていない。
<Cooler 20>
The cooler 20 is made of a metal having high thermal conductivity such as aluminum. The cooler 20 has, for example, a thickness in the height direction, has a cooling surface 20a on the outside, and forms a flow path through which the refrigerant flows and cooling fins on the inside. The refrigerant is a fluid, and the refrigerant flows in and out from two pipes (not shown) provided on the side surface of the cooler 20. As the refrigerant, for example, water or an ethylene glycol liquid is used. The cooling surface 20a is cooled by the refrigerant. The cooler 20 forms a part of a cooling circuit that circulates a refrigerant together with a tank, a pump, a radiator, and the like. The insulating heat-dissipating member that joins the cooler 20 and the cooler joint surface 2b is, for example, a silicone grease, an insulating sheet containing a heat-dissipating filler, or an insulating adhesive containing a heat-dissipating filler. The cooler 20 and the heat diffusion member 2 are thermally connected and not electrically connected.

なお、パワー半導体素子1に、炭化ケイ素半導体からなるMOSFETが含まれることが望ましい。炭化ケイ素半導体は、シリコン半導体よりも高価である。また、熱拡散部材2を構成するグラファイト4は、他の熱拡散部材である銅よりも高価である。このため、熱拡散部材2の伝熱性が向上させることにより、炭化ケイ素半導体をより小さい素子サイズにできるため、パワー半導体モジュール100をより安価に製造することができる。 It is desirable that the power semiconductor device 1 includes a MOSFET made of a silicon carbide semiconductor. Silicon carbide semiconductors are more expensive than silicon semiconductors. Further, the graphite 4 constituting the heat diffusion member 2 is more expensive than copper, which is another heat diffusion member. Therefore, by improving the heat transfer property of the heat diffusion member 2, the silicon carbide semiconductor can be made into a smaller element size, so that the power semiconductor module 100 can be manufactured at a lower cost.

以上のように、実施の形態1によるパワー半導体モジュール100において、奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cでは、板厚の方向及び板面に平行な第1方向の熱伝導率が第1方向に直交し板面に平行な第2方向の熱伝導率よりも高く、偶数番目の層の第2の熱伝導異方性部材3bでは、板厚の方向及び第2方向の熱伝導率が第1方向の熱伝導率よりも高く、奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cと偶数番目の層の第2の熱伝導異方性部材3bの何れにおいても板厚の方向の熱伝導率は高いため、積層された3層の板状の熱伝導異方性部材3はパワー半導体素子1で生じた熱を効率的に板厚の方向に伝えることができる。また、奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cと偶数番目の層の第2の熱伝導異方性部材3bとが積層されることで、積層された3層の板状の熱伝導異方性部材3はパワー半導体素子1で生じた熱を効率的に第1方向及び第2方向にも伝えることができる。また、1番目の層の第1の熱伝導異方性部材3aの厚みが3番目の層の第3の熱伝導異方性部材3cの厚みと同じであるため、これらの厚みを同じにすることで、第1の熱伝導異方性部材3aと第2の熱伝導異方性部材3bとに生じる湾曲しようとする力と、第2の熱伝導異方性部材3bと第3の熱伝導異方性部材3cとに生じる湾曲しようとする力を打ち消すことができ、積層された3層の板状の熱伝導異方性部材3の湾曲は抑制され、熱拡散部材2と冷却器20との間に設けた接合材である絶縁接合部材の疲労破壊が抑制されるので、パワー半導体モジュールの伝熱性能の低下を抑制することができる。 As described above, in the power semiconductor module 100 according to the first embodiment, in the first heat conduction anisotropic member 3a and the third heat conduction anisotropic member 3c of the odd-th layer, the direction of the plate thickness and the plate In the second heat conduction anisotropic member 3b of the even-th layer, the heat conductivity in the first direction parallel to the surface is higher than the heat conductivity in the second direction orthogonal to the first direction and parallel to the plate surface. , The heat conductivity in the thickness direction and the second direction is higher than the heat conductivity in the first direction, and the first heat conduction anisotropic member 3a and the third heat conduction anisotropic member of the odd-th layer are Since the heat conductivity in the direction of the plate thickness is high in both the 3c and the second heat conduction anisotropic member 3b of the even-th layer, the laminated three-layer plate-shaped heat conduction anisotropic member 3 is used. The heat generated by the power semiconductor element 1 can be efficiently transferred in the direction of the plate thickness. Further, the first heat conduction anisotropic member 3a and the third heat conduction anisotropic member 3c of the odd-th layer and the second heat conduction anisotropic member 3b of the even-th layer are laminated. The three-layered plate-shaped heat conduction anisotropic member 3 can efficiently transfer the heat generated by the power semiconductor element 1 to the first direction and the second direction. Further, since the thickness of the first heat transfer anisotropic member 3a of the first layer is the same as the thickness of the third heat transfer anisotropic member 3c of the third layer, these thicknesses are made the same. As a result, the force to bend generated in the first heat conduction anisotropic member 3a and the second heat conduction anisotropic member 3b, and the second heat conduction anisotropic member 3b and the third heat conduction It is possible to cancel the bending force generated in the anisotropic member 3c, the curvature of the three-layered plate-shaped heat transfer anisotropic member 3 is suppressed, and the heat diffusion member 2 and the cooler 20 Since the fatigue failure of the insulating joining member, which is the joining material provided between the two, is suppressed, it is possible to suppress the deterioration of the heat transfer performance of the power semiconductor module.

また、奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cは、長辺が第1方向に平行で短辺が板厚の方向に平行な長方形状の複数のグラフェンシート5を第2方向に積層して形成され、偶数番目の層の第2の熱伝導異方性部材3bは、長辺が第2方向に平行で短辺が板厚の方向に平行な長方形状の複数のグラフェンシート5を第1方向に積層して形成されているため、板厚の方向に加えて、板面に平行な第1方向もしくは第1方向に直交し板面に平行な第2方向の熱伝導率を高くすることができる。また、熱伝導異方性部材3を容易に製造することができる。また、奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cのそれぞれの厚みの和が、偶数番目の層の第2の熱伝導異方性部材3bの厚みと同じである場合、熱拡散部材2と冷却器20とを接合する絶縁接合部材の疲労破壊がさらに抑制されるため、パワー半導体モジュール100における伝熱性能の低下をさらに抑制することができる。また、パワー半導体素子1に、炭化ケイ素半導体からなるMOSFETが含まれる場合、パワー半導体モジュール100をより安価に製造することができる。また、最下層である3番目の層の第3の熱伝導異方性部材3cの外側の板面に、絶縁放熱部材を介して接合された冷却器20を備えた場合、パワー半導体素子1を効率的に冷却することができる。 Further, in the first heat conduction anisotropic member 3a and the third heat conduction anisotropic member 3c of the odd-th layer, the long side is parallel to the first direction and the short side is parallel to the plate thickness direction. The second heat conduction anisotropic member 3b of the even-th layer, which is formed by laminating a plurality of graphene sheets 5 in the second direction, has a long side parallel to the second direction and a short side having a plate thickness. Since a plurality of rectangular graphene sheets 5 parallel to the direction are laminated in the first direction, the plate is orthogonal to the first direction parallel to the plate surface or the first direction in addition to the plate thickness direction. The thermal conductivity in the second direction parallel to the plane can be increased. In addition, the heat conduction anisotropic member 3 can be easily manufactured. Further, the sum of the thicknesses of the first heat transfer anisotropic member 3a and the third heat transfer anisotropic member 3c of the odd-th layer is the sum of the thicknesses of the second heat transfer anisotropic member 3a of the even-th layer. When the thickness is the same as that of 3b, the fatigue failure of the insulating joining member that joins the heat diffusion member 2 and the cooler 20 is further suppressed, so that the deterioration of the heat transfer performance in the power semiconductor module 100 can be further suppressed. can. Further, when the power semiconductor element 1 includes a MOSFET made of a silicon carbide semiconductor, the power semiconductor module 100 can be manufactured at a lower cost. Further, when the cooler 20 bonded via the insulating heat radiating member is provided on the outer plate surface of the third heat conduction anisotropic member 3c of the third layer which is the lowest layer, the power semiconductor element 1 is provided. It can be cooled efficiently.

実施の形態2.
実施の形態2に係るパワー半導体モジュール100について説明する。図3は、実施の形態2に係るパワー半導体モジュール100の外観を模式的に示した斜視図である。実施の形態2に係るパワー半導体モジュール100は、Nが5の場合の5層の熱伝導異方性部材3を備えた構成になっている。
Embodiment 2.
The power semiconductor module 100 according to the second embodiment will be described. FIG. 3 is a perspective view schematically showing the appearance of the power semiconductor module 100 according to the second embodiment. The power semiconductor module 100 according to the second embodiment has a configuration including a five-layer heat conduction anisotropic member 3 when N is 5.

<熱拡散部材2>
熱拡散部材2は、1番目の層の第1の熱伝導異方性部材3a、2番目の層の第2の熱伝導異方性部材3b、3番目の層の第3の熱伝導異方性部材3c、4番目の層の第4の熱伝導異方性部材3d、及び5番目の層の第5の熱伝導異方性部材3eを備える。それぞれの熱伝導異方性部材3の間は、ロウ材(図示せず)によるロウ付けによって接合される。奇数番目の層の第1の熱伝導異方性部材3a、第3の熱伝導異方性部材3c及び第5の熱伝導異方性部材3eと偶数番目の層の第2の熱伝導異方性部材3b及び第4の熱伝導異方性部材3dとでは、熱伝導率の高い方向が異なる。奇数番目の層の第1の熱伝導異方性部材3a、第3の熱伝導異方性部材3c及び第5の熱伝導異方性部材3eでは、板厚の方向及び板面に平行な第1方向の熱伝導率が、第1方向に直交し板面に平行な第2方向の熱伝導率よりも高い。偶数番目の層の第2の熱伝導異方性部材3b及び第4の熱伝導異方性部材3dでは、板厚の方向及び第2方向の熱伝導率が、第1方向の熱伝導率よりも高い。
<Heat diffusion member 2>
The heat diffusion member 2 is a first heat conduction anisotropic member 3a of the first layer, a second heat conduction anisotropic member 3b of the second layer, and a third heat conduction anisotropic member of the third layer. It includes a sex member 3c, a fourth heat conduction anisotropic member 3d in the fourth layer, and a fifth heat conduction anisotropic member 3e in the fifth layer. The heat conduction anisotropic members 3 are joined by brazing with a brazing material (not shown). The first heat conduction anisotropic member 3a, the third heat conduction anisotropic member 3c and the fifth heat conduction anisotropic member 3e of the odd-th layer and the second heat conduction anisotropic member of the even-th layer The direction of high thermal conductivity is different between the sex member 3b and the fourth heat conduction anisotropic member 3d. In the first heat conduction anisotropic member 3a, the third heat conduction anisotropic member 3c, and the fifth heat conduction anisotropic member 3e of the odd-th layer, the first heat conduction anisotropic member 3a is parallel to the plate thickness direction and the plate surface. The thermal conductivity in one direction is higher than the thermal conductivity in the second direction, which is orthogonal to the first direction and parallel to the plate surface. In the second heat conduction anisotropic member 3b and the fourth heat conduction anisotropic member 3d of the even-th layer, the thermal conductivity in the plate thickness direction and the second direction is higher than the thermal conductivity in the first direction. Is also expensive.

<熱伝導異方性部材3の厚み>
1番目の層の第1の熱伝導異方性部材3aの厚みは5番目の層の第5の熱伝導異方性部材3eの厚みと同じであり、2番目の層の第2の熱伝導異方性部材3bの厚みは4番目の層の第4の熱伝導異方性部材3dの厚みと同じである。これらの厚みを同じにすることで、熱伝導異方性部材3の厚みは板厚の方向に対称になるように設けられる。熱伝導異方性部材3の厚みが板厚の方向に対称になるため、第1の熱伝導異方性部材3aと第2の熱伝導異方性部材3bと第3の熱伝導異方性部材3cとに生じる湾曲しようとする力と、第3の熱伝導異方性部材3cと第4の熱伝導異方性部材3dと第5の熱伝導異方性部材3eとに生じる湾曲しようとする力は、逆方向に働き、かつそれらの力はつりあうことになるため、それらの力を打ち消すことができる。そのため、熱拡散部材2が鞍型に湾曲することを抑制することができる。
<Thickness of heat conduction anisotropic member 3>
The thickness of the first heat conduction anisotropic member 3a of the first layer is the same as the thickness of the fifth heat conduction anisotropic member 3e of the fifth layer, and the thickness of the second heat conduction anisotropic member 3e of the second layer is the same. The thickness of the anisotropic member 3b is the same as the thickness of the fourth heat conduction anisotropic member 3d of the fourth layer. By making these thicknesses the same, the thickness of the heat conduction anisotropic member 3 is provided so as to be symmetrical in the direction of the plate thickness. Since the thickness of the heat conduction anisotropy member 3 is symmetrical in the direction of the plate thickness, the first heat conduction anisotropy member 3a, the second heat conduction anisotropy member 3b, and the third heat conduction anisotropy member 3b. The bending force generated in the member 3c and the bending force generated in the third heat conduction anisotropic member 3c, the fourth heat conduction anisotropic member 3d, and the fifth heat conduction anisotropic member 3e. The forces that do work in the opposite direction, and the forces are balanced, so they can be counteracted. Therefore, it is possible to prevent the heat diffusion member 2 from bending into a saddle shape.

この構成によれば、熱拡散部材2が鞍型に湾曲することが抑制でき、熱拡散部材2と冷却器20との間に設けた接合材である絶縁接合部材の疲労破壊が抑制されるため、絶縁接合部材を介した熱拡散部材2と冷却器20との熱的な接続が維持され、パワー半導体モジュール100における伝熱性能の低下を抑制することができる。 According to this configuration, it is possible to suppress the heat diffusion member 2 from bending into a saddle shape, and it is possible to suppress fatigue failure of the insulating bonding member which is a bonding material provided between the heat diffusion member 2 and the cooler 20. The thermal connection between the heat diffusion member 2 and the cooler 20 via the insulating bonding member is maintained, and deterioration of the heat transfer performance in the power semiconductor module 100 can be suppressed.

また、奇数番目の層の第1の熱伝導異方性部材3a、第3の熱伝導異方性部材3c及び第5の熱伝導異方性部材3eのそれぞれの厚みの和が、偶数番目の層の第2の熱伝導異方性部材3b及び第4の熱伝導異方性部材3dの厚みと同じである。奇数番目の層の第1の熱伝導異方性部材3a、第3の熱伝導異方性部材3c及び第5の熱伝導異方性部材3eのそれぞれの厚みの和と、偶数番目の層の第2の熱伝導異方性部材3b及び第4の熱伝導異方性部材3dの厚みとを同じにすることで、熱拡散部材2を全体としてみたときの、第1方向と第2方向の実効的な線膨張係数を等しくすることができる。第1方向と第2方向の実効的な線膨張係数が等しいため、熱拡散部材2が鞍型に湾曲することを抑制することができる。 Further, the sum of the thicknesses of the first heat conduction anisotropic member 3a, the third heat conduction anisotropic member 3c, and the fifth heat conduction anisotropic member 3e of the odd-th layer is an even number. It is the same as the thickness of the second heat conduction anisotropic member 3b and the fourth heat conduction anisotropic member 3d of the layer. The sum of the thicknesses of the first heat conduction anisotropic member 3a, the third heat conduction anisotropic member 3c, and the fifth heat conduction anisotropic member 3e of the odd-th layer, and the thickness of the even-th layer. By making the thickness of the second heat conduction anisotropic member 3b and the fourth heat conduction anisotropic member 3d the same, the heat diffusion member 2 as a whole is viewed in the first direction and the second direction. The effective linear expansion coefficients can be equalized. Since the effective linear expansion coefficients in the first direction and the second direction are the same, it is possible to prevent the heat diffusion member 2 from bending into a saddle shape.

この構成によれば、熱拡散部材2と冷却器20とを接合する絶縁接合部材の疲労破壊がさらに抑制されるため、パワー半導体モジュール100における伝熱性能の低下をさらに抑制することができる。 According to this configuration, fatigue fracture of the insulating joining member that joins the heat diffusion member 2 and the cooler 20 is further suppressed, so that deterioration of the heat transfer performance in the power semiconductor module 100 can be further suppressed.

奇数番目の層である1番目の層の第1の熱伝導異方性部材3aの厚みと5番目の層の第5の熱伝導異方性部材3eの厚みが同じであれば、3番目の層の第3の熱伝導異方性部材3cの厚みが他の奇数番目の層の厚みと同じでなくても、熱伝導異方性部材3の厚みは板厚の方向に対称になるように設けることができる。しがしながら、奇数番目の層の第1の熱伝導異方性部材3a、第3の熱伝導異方性部材3c及び第5の熱伝導異方性部材3eのそれぞれの厚みが同じであることが望ましい。奇数番目の層の第1の熱伝導異方性部材3a、第3の熱伝導異方性部材3c及び第5の熱伝導異方性部材3eのそれぞれの厚みが同じである場合、第1の熱伝導異方性部材3aと第2の熱伝導異方性部材3bと第3の熱伝導異方性部材3cとに生じる湾曲しようとする力と、第3の熱伝導異方性部材3cと第4の熱伝導異方性部材3dと第5の熱伝導異方性部材3eとに生じる湾曲しようとする力は容易につりあうことになるため、熱拡散部材2が鞍型に湾曲することをさらに抑制することができる。また、奇数番目の層の第1の熱伝導異方性部材3a、第3の熱伝導異方性部材3c及び第5の熱伝導異方性部材3eのそれぞれの厚みが同じである場合、奇数番目の層の第1の熱伝導異方性部材3a、第3の熱伝導異方性部材3c及び第5の熱伝導異方性部材3eが全て同じ寸法の部材であるため、容易な製造工程で熱拡散部材2を作製することができる。 If the thickness of the first heat conduction anisotropic member 3a of the first layer, which is the odd-th layer, and the thickness of the fifth heat conduction anisotropic member 3e of the fifth layer are the same, the third layer. Even if the thickness of the third heat conduction anisotropic member 3c of the layer is not the same as the thickness of the other odd-th layer, the thickness of the heat conduction anisotropic member 3 is symmetrical in the direction of the plate thickness. Can be provided. However, the thicknesses of the first heat conduction anisotropic member 3a, the third heat conduction anisotropic member 3c, and the fifth heat conduction anisotropic member 3e of the odd-numbered layer are the same. Is desirable. When the thicknesses of the first heat conduction anisotropic member 3a, the third heat conduction anisotropic member 3c, and the fifth heat conduction anisotropic member 3e of the odd-th layer are the same, the first The force to bend generated in the heat conduction anisotropic member 3a, the second heat conduction anisotropic member 3b, and the third heat conduction anisotropic member 3c, and the third heat conduction anisotropic member 3c. Since the bending forces generated in the fourth heat conduction anisotropic member 3d and the fifth heat conduction anisotropic member 3e are easily balanced, the heat diffusion member 2 is curved in a saddle shape. It can be further suppressed. Further, when the thicknesses of the first heat conduction anisotropic member 3a, the third heat conduction anisotropic member 3c, and the fifth heat conduction anisotropic member 3e of the odd-th layer are the same, the thickness is odd. Since the first heat conduction anisotropic member 3a, the third heat conduction anisotropic member 3c, and the fifth heat conduction anisotropic member 3e of the second layer are all members having the same dimensions, an easy manufacturing process. The heat diffusion member 2 can be manufactured with.

なお、パワー半導体モジュール100が、Nが5の場合の5層の熱伝導異方性部材3を備えた構成について説明したが、Nは5以上の奇数であっても構わない。Nが5以上の奇数である場合、奇数番目の層の熱伝導異方性部材3のそれぞれの厚みが同じであることが望ましい。Nが5以上の奇数である場合、1番目の層の熱伝導異方性部材3の厚みがN番目の層の熱伝導異方性部材3の厚みと同じであり、2番目の層の熱伝導異方性部材3の厚みがN-1番目の層の熱伝導異方性部材3の厚みと同じであれば、熱拡散部材2の一方の側の2層の熱伝導異方性部材3の厚みと他方の側の2層の熱伝導異方性部材3の厚みは、板厚方向に対称である。さらに奇数番目の層の熱伝導異方性部材3のそれぞれの厚みが同じであれば、熱拡散部材2の板厚方向の対称性が向上するため、熱拡散部材2と冷却器20とを接合する絶縁接合部材の疲労破壊がさらに抑制され、パワー半導体モジュール100における伝熱性能の低下を抑制することができる。 Although the configuration of the power semiconductor module 100 including the five-layer heat conduction anisotropic member 3 when N is 5, the N may be an odd number of 5 or more. When N is an odd number of 5 or more, it is desirable that the thicknesses of the heat conduction anisotropic members 3 of the odd-numbered layers are the same. When N is an odd number of 5 or more, the thickness of the heat conduction anisotropic member 3 of the first layer is the same as the thickness of the heat conduction anisotropic member 3 of the Nth layer, and the heat of the second layer is the same. If the thickness of the conduction anisotropic member 3 is the same as the thickness of the heat conduction anisotropic member 3 of the N-1st layer, the two layers of the heat conduction anisotropic member 3 on one side of the heat diffusion member 2 And the thickness of the two layers of the heat conduction anisotropic member 3 on the other side are symmetrical in the plate thickness direction. Further, if the thicknesses of the heat transfer anisotropic members 3 of the odd-numbered layers are the same, the symmetry of the heat diffusion member 2 in the plate thickness direction is improved, so that the heat diffusion member 2 and the cooler 20 are joined. Fatigue failure of the insulating joint member is further suppressed, and deterioration of heat transfer performance in the power semiconductor module 100 can be suppressed.

以上のように、実施の形態2によるパワー半導体モジュール100において、1番目の層の第1の熱伝導異方性部材3aの厚みは5番目の層の第5の熱伝導異方性部材3eの厚みと同じであり、2番目の層の第2の熱伝導異方性部材3bの厚みは4番目の層の第4の熱伝導異方性部材3dの厚みと同じであるため、熱拡散部材2と冷却器20とを接合する絶縁接合部材の疲労破壊が抑制され、パワー半導体モジュール100における伝熱性能の低下を抑制することができる。また、奇数番目の層の第1の熱伝導異方性部材3a、第3の熱伝導異方性部材3c及び第5の熱伝導異方性部材3eのそれぞれの厚みの和が、偶数番目の層の第2の熱伝導異方性部材3b及び第4の熱伝導異方性部材3dの厚みと同じである場合、熱拡散部材2と冷却器20とを接合する絶縁接合部材の疲労破壊がさらに抑制されるため、パワー半導体モジュール100における伝熱性能の低下をさらに抑制することができる。また、奇数番目の層の第1の熱伝導異方性部材3a、第3の熱伝導異方性部材3c及び第5の熱伝導異方性部材3eのそれぞれの厚みが同じである場合、熱拡散部材2が鞍型に湾曲することをさらに抑制することができる。 As described above, in the power semiconductor module 100 according to the second embodiment, the thickness of the first heat transfer anisotropic member 3a of the first layer is that of the fifth heat transfer anisotropic member 3e of the fifth layer. Since it is the same as the thickness and the thickness of the second heat transfer anisotropic member 3b of the second layer is the same as the thickness of the fourth heat transfer anisotropic member 3d of the fourth layer, the heat diffusion member Fatigue failure of the insulating joining member that joins 2 and the cooler 20 can be suppressed, and deterioration of the heat transfer performance in the power semiconductor module 100 can be suppressed. Further, the sum of the thicknesses of the first heat transfer anisotropic member 3a, the third heat transfer anisotropic member 3c, and the fifth heat transfer anisotropic member 3e of the odd-th layer is an even number. When the thickness of the second heat transfer anisotropic member 3b and the fourth heat transfer anisotropic member 3d of the layer is the same, the fatigue failure of the insulating joining member that joins the heat diffusion member 2 and the cooler 20 is caused. Since it is further suppressed, it is possible to further suppress the deterioration of the heat transfer performance in the power semiconductor module 100. Further, when the thicknesses of the first heat conduction anisotropic member 3a, the third heat conduction anisotropic member 3c, and the fifth heat conduction anisotropic member 3e of the odd-th layer are the same, heat is obtained. It is possible to further suppress the diffusion member 2 from being curved in a saddle shape.

実施の形態3.
実施の形態3に係るパワー半導体モジュール100について説明する。図4は、実施の形態3に係るパワー半導体モジュール100の外観を模式的に示した斜視図である。実施の形態3に係るパワー半導体モジュール100は、Nが4の場合の4層の熱伝導異方性部材3を備えた構成になっている。
Embodiment 3.
The power semiconductor module 100 according to the third embodiment will be described. FIG. 4 is a perspective view schematically showing the appearance of the power semiconductor module 100 according to the third embodiment. The power semiconductor module 100 according to the third embodiment has a configuration including a four-layer heat conduction anisotropic member 3 when N is 4.

<熱拡散部材2>
熱拡散部材2は、1番目の層の第1の熱伝導異方性部材3a、2番目の層の第2の熱伝導異方性部材3b、3番目の層の第3の熱伝導異方性部材3c、及び4番目の層の第4の熱伝導異方性部材3dを備える。それぞれの熱伝導異方性部材3の間は、ロウ材(図示せず)によるロウ付けによって接合される。奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cと偶数番目の層の第2の熱伝導異方性部材3b及び第4の熱伝導異方性部材3dとでは、熱伝導率の高い方向が異なる。奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cでは、板厚の方向及び板面に平行な第1方向の熱伝導率が、第1方向に直交し板面に平行な第2方向の熱伝導率よりも高い。偶数番目の層の第2の熱伝導異方性部材3b及び第4の熱伝導異方性部材3dでは、板厚の方向及び第2方向の熱伝導率が、第1方向の熱伝導率よりも高い。
<Heat diffusion member 2>
The heat diffusion member 2 is a first heat conduction anisotropic member 3a of the first layer, a second heat conduction anisotropic member 3b of the second layer, and a third heat conduction anisotropic member of the third layer. The sex member 3c and the fourth heat conduction anisotropic member 3d of the fourth layer are provided. The heat conduction anisotropic members 3 are joined by brazing with a brazing material (not shown). The first heat conduction anisotropic member 3a and the third heat conduction anisotropic member 3c of the odd-th layer, the second heat conduction anisotropic member 3b and the fourth heat conduction heterogeneity of the even-th layer. The direction of high thermal conductivity is different from that of the sex member 3d. In the first heat conduction anisotropic member 3a and the third heat conduction anisotropic member 3c of the odd-th layer, the thermal conductivity in the direction of the plate thickness and in the first direction parallel to the plate surface is the first direction. It is higher than the thermal conductivity in the second direction orthogonal to and parallel to the plate surface. In the second heat conduction anisotropic member 3b and the fourth heat conduction anisotropic member 3d of the even-th layer, the thermal conductivity in the plate thickness direction and the second direction is higher than the thermal conductivity in the first direction. Is also expensive.

<熱伝導異方性部材3の厚み>
1番目の層の第1の熱伝導異方性部材3aの厚みは3番目の層の第3の熱伝導異方性部材3cの厚みと同じであり、2番目の層の第2の熱伝導異方性部材3bの厚みは4番目の層の第4の熱伝導異方性部材3dの厚みと同じである。これらの厚みを同じにすることで、熱伝導異方性部材3の厚みは板厚の方向に対称になるように設けられる。熱伝導異方性部材3の厚みが板厚の方向に対称になるため、第1の熱伝導異方性部材3aと第2の熱伝導異方性部材3bとに生じる湾曲しようとする力と、第3の熱伝導異方性部材3cと第4の熱伝導異方性部材3dとに生じる湾曲しようとする力は、逆方向に働き、かつそれらの力はつりあうことになるため、それらの力を打ち消すことができる。そのため、熱拡散部材2が鞍型に湾曲することを抑制することができる。
<Thickness of heat conduction anisotropic member 3>
The thickness of the first heat conduction anisotropic member 3a of the first layer is the same as the thickness of the third heat conduction anisotropic member 3c of the third layer, and the thickness of the second heat conduction anisotropic member 3c of the second layer is the same. The thickness of the anisotropic member 3b is the same as the thickness of the fourth heat conduction anisotropic member 3d of the fourth layer. By making these thicknesses the same, the thickness of the heat conduction anisotropic member 3 is provided so as to be symmetrical in the direction of the plate thickness. Since the thickness of the heat conduction anisotropic member 3 becomes symmetrical in the direction of the plate thickness, the force that tends to bend between the first heat conduction anisotropic member 3a and the second heat conduction anisotropic member 3b , The bending forces generated in the third heat conduction anisotropic member 3c and the fourth heat conduction anisotropic member 3d act in opposite directions, and the forces are balanced. You can counteract the power. Therefore, it is possible to prevent the heat diffusion member 2 from bending into a saddle shape.

この構成によれば、熱拡散部材2が鞍型に湾曲することが抑制でき、熱拡散部材2と冷却器20とを接合する絶縁接合部材の疲労破壊が抑制されるため、絶縁接合部材を介した熱拡散部材2と冷却器20との熱的な接続が維持され、パワー半導体モジュール100における伝熱性能の低下を抑制することができる。 According to this configuration, it is possible to suppress the heat diffusion member 2 from bending into a saddle shape, and the fatigue failure of the insulation joining member that joins the heat diffusion member 2 and the cooler 20 is suppressed. The thermal connection between the heat diffusion member 2 and the cooler 20 is maintained, and deterioration of the heat transfer performance in the power semiconductor module 100 can be suppressed.

また、奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cのそれぞれの厚みの和が、偶数番目の層の第2の熱伝導異方性部材3b及び第4の熱伝導異方性部材3dの厚みと同じである。奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cのそれぞれの厚みの和と、偶数番目の層の第2の熱伝導異方性部材3b及び第4の熱伝導異方性部材3dの厚みとを同じにすることで、熱拡散部材2を全体としてみたときの、第1方向と第2方向の実効的な線膨張係数を等しくすることができる。第1方向と第2方向の実効的な線膨張係数が等しいため、熱拡散部材2が鞍型に湾曲することを抑制することができる。 Further, the sum of the thicknesses of the first heat conduction anisotropic member 3a and the third heat conduction anisotropic member 3c of the odd-th layer is the sum of the thicknesses of the second heat conduction anisotropic member 3c of the even-th layer. It is the same as the thickness of 3b and the fourth heat conduction anisotropic member 3d. The sum of the thicknesses of the first heat conduction anisotropic member 3a and the third heat conduction anisotropic member 3c in the odd-th layer, and the second heat conduction anisotropic member 3b and the second heat conduction anisotropic member 3b in the even-th layer. By making the thickness of the fourth heat conduction anisotropic member 3d the same, the effective linear expansion coefficients in the first direction and the second direction when the heat diffusion member 2 is viewed as a whole can be made equal. can. Since the effective linear expansion coefficients in the first direction and the second direction are the same, it is possible to prevent the heat diffusion member 2 from bending into a saddle shape.

この構成によれば、熱拡散部材2と冷却器20とを接合する絶縁接合部材の疲労破壊がさらに抑制されるため、パワー半導体モジュール100における伝熱性能の低下をさらに抑制することができる。 According to this configuration, fatigue fracture of the insulating joining member that joins the heat diffusion member 2 and the cooler 20 is further suppressed, so that deterioration of the heat transfer performance in the power semiconductor module 100 can be further suppressed.

なお、パワー半導体モジュール100が、Nが4の場合の4層の熱伝導異方性部材3を備えた構成について説明したが、Nは4以上の偶数であっても構わない。Nが4以上の偶数である場合、奇数番目の層の熱伝導異方性部材3のそれぞれの厚みが同じであることが望ましい。Nが4以上の偶数である場合、1番目の層の熱伝導異方性部材3の厚みがN-1番目の層の熱伝導異方性部材3の厚みと同じであり、2番目の層の熱伝導異方性部材3の厚みがN番目の層の熱伝導異方性部材3の厚みと同じであれば、熱拡散部材2の一方の側の2層の熱伝導異方性部材3の厚みと他方の側の2層の熱伝導異方性部材3の厚みは、板厚方向に対称である。さらに奇数番目の層の熱伝導異方性部材3のそれぞれの厚みが同じであれば、熱拡散部材2の板厚方向の対称性が向上するため、熱拡散部材2と冷却器20とを接合する絶縁接合部材の疲労破壊がさらに抑制され、パワー半導体モジュール100における伝熱性能の低下を抑制することができる。 Although the configuration of the power semiconductor module 100 including the four-layer heat conduction anisotropic member 3 when N is 4, the N may be an even number of 4 or more. When N is an even number of 4 or more, it is desirable that the thicknesses of the heat conduction anisotropic members 3 of the odd-numbered layers are the same. When N is an even number of 4 or more, the thickness of the heat conduction anisotropic member 3 of the first layer is the same as the thickness of the heat conduction anisotropic member 3 of the N-1st layer, and the thickness of the second layer is the same. If the thickness of the heat conduction anisotropic member 3 of the above is the same as the thickness of the heat conduction anisotropic member 3 of the Nth layer, the two layers of the heat conduction anisotropic member 3 on one side of the heat diffusion member 2 And the thickness of the two layers of the heat conduction anisotropic member 3 on the other side are symmetrical in the plate thickness direction. Further, if the thicknesses of the heat transfer anisotropic members 3 of the odd-numbered layers are the same, the symmetry of the heat diffusion member 2 in the plate thickness direction is improved, so that the heat diffusion member 2 and the cooler 20 are joined. Fatigue failure of the insulating joint member is further suppressed, and deterioration of heat transfer performance in the power semiconductor module 100 can be suppressed.

以上のように、実施の形態3によるパワー半導体モジュール100において、1番目の層の第1の熱伝導異方性部材3aの厚みは3番目の層の第3の熱伝導異方性部材3cの厚みと同じであり、2番目の層の第2の熱伝導異方性部材3bの厚みは4番目の層の第4の熱伝導異方性部材3dの厚みと同じであり、奇数番目の層の第1の熱伝導異方性部材3a及び第3の熱伝導異方性部材3cのそれぞれの厚みの和が、偶数番目の層の第2の熱伝導異方性部材3b及び第4の熱伝導異方性部材3dの厚みと同じであるため、熱拡散部材2と冷却器20とを接合する絶縁接合部材の疲労破壊が抑制され、パワー半導体モジュール100における伝熱性能の低下を抑制することができる。また、Nが4以上の偶数で、奇数番目の層の熱伝導異方性部材3のそれぞれの厚みが同じである場合、熱拡散部材2と冷却器20とを接合する絶縁接合部材の疲労破壊がさらに抑制され、パワー半導体モジュール100における伝熱性能の低下を抑制することができる。 As described above, in the power semiconductor module 100 according to the third embodiment, the thickness of the first heat transfer anisotropic member 3a of the first layer is that of the third heat transfer anisotropic member 3c of the third layer. It is the same as the thickness, and the thickness of the second heat transfer anisotropic member 3b of the second layer is the same as the thickness of the fourth heat transfer anisotropic member 3d of the fourth layer, and is the oddth layer. The sum of the thicknesses of the first heat conduction anisotropic member 3a and the third heat transfer anisotropic member 3c is the second heat transfer anisotropic member 3b and the fourth heat of the even-th layer. Since the thickness is the same as that of the conduction anisotropic member 3d, fatigue failure of the insulating joining member that joins the heat diffusion member 2 and the cooler 20 is suppressed, and deterioration of the heat transfer performance in the power semiconductor module 100 is suppressed. Can be done. Further, when N is an even number of 4 or more and the thickness of each of the heat transfer anisotropic members 3 of the odd-numbered layers is the same, fatigue failure of the insulating joining member that joins the heat diffusion member 2 and the cooler 20 Is further suppressed, and deterioration of heat transfer performance in the power semiconductor module 100 can be suppressed.

実施の形態4.
実施の形態4に係るパワー半導体モジュール100について説明する。図5は、実施の形態4に係るパワー半導体モジュール100の外観を模式的に示した斜視図である。実施の形態4に係るパワー半導体モジュール100は、2つのパワー半導体素子1a、1bを備えた構成になっている。
Embodiment 4.
The power semiconductor module 100 according to the fourth embodiment will be described. FIG. 5 is a perspective view schematically showing the appearance of the power semiconductor module 100 according to the fourth embodiment. The power semiconductor module 100 according to the fourth embodiment has a configuration including two power semiconductor elements 1a and 1b.

パワー半導体モジュール100は、2つのパワー半導体素子1a、1bを備える。2つのパワー半導体素子1a、1bは、奇数番目の層である1番目の層の第1の熱伝導異方性部材3aの外側の板面である素子接合面2aに、第2方向に並べられ、接合されている。第1の熱伝導異方性部材3aでは、素子接合面2aに平行な第2方向の熱伝導率は、第2方向に直交し素子接合面2aに平行な第1方向の熱伝導率よりも低い。 The power semiconductor module 100 includes two power semiconductor elements 1a and 1b. The two power semiconductor devices 1a and 1b are arranged in the second direction on the element junction surface 2a which is the outer plate surface of the first heat conduction anisotropic member 3a of the first layer which is an odd-numbered layer. , Are joined. In the first heat conduction anisotropic member 3a, the thermal conductivity in the second direction parallel to the element junction surface 2a is higher than the thermal conductivity in the first direction orthogonal to the second direction and parallel to the element junction surface 2a. Low.

この配置によれば、パワー半導体素子1aで生じた熱は、第1の熱伝導異方性部材3aにおいて、パワー半導体素子1bが配置された第2方向ではなく、パワー半導体素子1bが配置されていない第1方向に主に拡散される。また、パワー半導体素子1bで生じた熱は、第1の熱伝導異方性部材3aにおいて、パワー半導体素子1aが配置された第2方向ではなく、パワー半導体素子1aが配置されていない第1方向に主に拡散される。2つのパワー半導体素子1a、1bが並べて配置されていても、発熱している2つのパワー半導体素子1a、1bの間への熱の拡散は抑制されるため、熱拡散部材2の熱拡散の効率を高めることができる。また、パワー半導体素子1同士の熱干渉を抑制することができ、パワー半導体モジュール100の小型化及び伝熱性能の向上を図ることができる。 According to this arrangement, the heat generated in the power semiconductor element 1a is not in the second direction in which the power semiconductor element 1b is arranged in the first heat conduction anisotropic member 3a, but in the power semiconductor element 1b. Not mainly diffused in the first direction. Further, the heat generated by the power semiconductor element 1b is not in the second direction in which the power semiconductor element 1a is arranged in the first heat conduction anisotropic member 3a, but in the first direction in which the power semiconductor element 1a is not arranged. Mainly spread to. Even if the two power semiconductor elements 1a and 1b are arranged side by side, the heat diffusion between the two power semiconductor elements 1a and 1b that are generating heat is suppressed, so that the heat diffusion efficiency of the heat diffusion member 2 is suppressed. Can be enhanced. Further, it is possible to suppress thermal interference between the power semiconductor elements 1, and it is possible to reduce the size of the power semiconductor module 100 and improve the heat transfer performance.

パワー半導体素子1にMOSFETを用いた場合、複数のパワー半導体素子1を並べて密に配置することにより、各々のパワー半導体素子1に入力されるゲート信号の入力波形の乱れ及びドレイン-ソース間に流れる電流ばらつきを抑制することができる。そのため、電気特性の良好なパワー半導体モジュール100が得られる。 When a MOSFET is used for the power semiconductor element 1, by arranging a plurality of power semiconductor elements 1 side by side and densely arranging them, the input waveform of the gate signal input to each power semiconductor element 1 is disturbed and flows between the drain and the source. Current variation can be suppressed. Therefore, a power semiconductor module 100 having good electrical characteristics can be obtained.

ここでは2つのパワー半導体素子1a、1bを備えた構成について示したが、さらに複数のパワー半導体素子1を第2方向に並べて設けても構わない。複数のパワー半導体素子1を設けた場合、少なくとも2つのパワー半導体素子1が第2方向に並べて設けられていれば、熱拡散部材2の熱拡散の効率を高めることができる。 Although the configuration including the two power semiconductor elements 1a and 1b is shown here, a plurality of power semiconductor elements 1 may be provided side by side in the second direction. When a plurality of power semiconductor elements 1 are provided, if at least two power semiconductor elements 1 are provided side by side in the second direction, the efficiency of heat diffusion of the heat diffusion member 2 can be improved.

以上のように、実施の形態4によるパワー半導体モジュール100において、2つのパワー半導体素子1a、1bが1番目の層の第1の熱伝導異方性部材3aの外側の素子接合面2aに、第2方向に並べられ接合されているため、熱拡散部材2の熱拡散の効率を高めることができる。また、2つのパワー半導体素子1a、1b同士の熱干渉を抑制することができ、パワー半導体モジュール100の小型化及び伝熱性能の向上を図ることができる。また、パワー半導体素子1にMOSFETを用いた場合、電気特性の良好なパワー半導体モジュール100を得ることができる。 As described above, in the power semiconductor module 100 according to the fourth embodiment, the two power semiconductor elements 1a and 1b are on the outer element bonding surface 2a of the first heat conduction anisotropic member 3a of the first layer. Since they are arranged and joined in two directions, the efficiency of heat diffusion of the heat diffusion member 2 can be improved. Further, it is possible to suppress thermal interference between the two power semiconductor elements 1a and 1b, and it is possible to reduce the size of the power semiconductor module 100 and improve the heat transfer performance. Further, when a MOSFET is used for the power semiconductor element 1, a power semiconductor module 100 having good electrical characteristics can be obtained.

実施の形態5.
実施の形態5に係るパワー半導体モジュール100について説明する。図6は、実施の形態5に係るパワー半導体モジュール100の外観を模式的に示した平面図である。実施の形態5に係るパワー半導体モジュール100は、外部接続電極を備えた構成になっている。
Embodiment 5.
The power semiconductor module 100 according to the fifth embodiment will be described. FIG. 6 is a plan view schematically showing the appearance of the power semiconductor module 100 according to the fifth embodiment. The power semiconductor module 100 according to the fifth embodiment is configured to include an external connection electrode.

異方性熱伝導率を有した部材は、一般的に電気伝導率にも異方性を有している。例えば、図2に示したグラファイト4では、グラフェンシート5の面と平行な方向の電気伝導率が、グラフェンシート5の面と垂直な方向の電気伝導率よりも大きい。すなわち、グラファイト4では、グラフェンシート5の積層方向の電気抵抗が大きい。 A member having anisotropy thermal conductivity generally also has anisotropy in electrical conductivity. For example, in graphite 4 shown in FIG. 2, the electric conductivity in the direction parallel to the plane of the graphene sheet 5 is larger than the electric conductivity in the direction perpendicular to the plane of the graphene sheet 5. That is, in graphite 4, the electric resistance of the graphene sheet 5 in the stacking direction is large.

パワー半導体素子1a、1bにMOSFETを用いた場合について説明する。パワー半導体モジュール100は、外部接続電極であるドレイン端子6を備える。ドレイン端子6は、パワー半導体素子1a、1bの接合面の側の電極と接合された1番目の層の第1の熱伝導異方性部材3aの外側の板面である素子接合面2aに、電気的に接続される。ドレイン端子6が接続される素子接合面2aは、MOSFETのドレイン電位である。ドレイン端子6は、パワー半導体素子1a、1bの第1方向の一方側に配置されている。パワー半導体素子1a、1bの表面側の電極には、ソース端子7が電気的に接続される。また、パワー半導体素子1a、1bは、それぞれの表面側にゲートパッド10を備える。ゲートパッド10は、外部に設けられたゲート端子8と、ボンディングされたワイヤ9によって電気的に接続される。パワー半導体モジュール100を流れる主電流は、ドレイン端子6からソース端子7へと流れる。 A case where MOSFETs are used for power semiconductor devices 1a and 1b will be described. The power semiconductor module 100 includes a drain terminal 6 which is an external connection electrode. The drain terminal 6 is provided on the element junction surface 2a, which is the outer plate surface of the first heat conduction anisotropic member 3a of the first layer bonded to the electrode on the junction surface side of the power semiconductor elements 1a and 1b. It is electrically connected. The element junction surface 2a to which the drain terminal 6 is connected is the drain potential of the MOSFET. The drain terminal 6 is arranged on one side of the power semiconductor elements 1a and 1b in the first direction. The source terminal 7 is electrically connected to the electrodes on the surface side of the power semiconductor elements 1a and 1b. Further, each of the power semiconductor elements 1a and 1b is provided with a gate pad 10 on the surface side thereof. The gate pad 10 is electrically connected to the external gate terminal 8 by a bonded wire 9. The main current flowing through the power semiconductor module 100 flows from the drain terminal 6 to the source terminal 7.

第1の熱伝導異方性部材3aでは、素子接合面2aに平行な第1方向の電気抵抗は、第1方向に直交し素子接合面2aに平行な第2方向の電気抵抗よりも小さい。ドレイン端子6は、パワー半導体素子1a、1bの第1方向の一方側に配置されているため、ドレイン端子6とパワー半導体素子1a、1bの接合面の側の電極との間の電気抵抗を小さく構成できる。ドレイン端子6からソース端子7までの電気抵抗を小さくできるので、パワー半導体モジュール100の損失を改善することができる。 In the first heat conduction anisotropic member 3a, the electric resistance in the first direction parallel to the element joining surface 2a is smaller than the electric resistance in the second direction orthogonal to the first direction and parallel to the element joining surface 2a. Since the drain terminal 6 is arranged on one side of the power semiconductor elements 1a and 1b in the first direction, the electric resistance between the drain terminal 6 and the electrodes on the junction surface side of the power semiconductor elements 1a and 1b is reduced. Can be configured. Since the electric resistance from the drain terminal 6 to the source terminal 7 can be reduced, the loss of the power semiconductor module 100 can be improved.

パワー半導体素子1a、1bにMOSFETを用いた場合について説明したが、パワー半導体素子1はMOSFETに限るものではなく、他の電力制御用半導体素子、もしくは還流ダイオードなどであっても構わない。外部接続電極をパワー半導体素子1の第1方向の一方側に配置することで、外部接続電極とパワー半導体素子1の接合面の側の電極との間の電気抵抗を小さくすることができる。 Although the case where MOSFETs are used for the power semiconductor elements 1a and 1b has been described, the power semiconductor element 1 is not limited to the MOSFET, and may be another power control semiconductor element, a freewheeling diode, or the like. By arranging the external connection electrode on one side in the first direction of the power semiconductor element 1, the electric resistance between the external connection electrode and the electrode on the joint surface side of the power semiconductor element 1 can be reduced.

以上のように、実施の形態5によるパワー半導体モジュール100において、ドレイン端子6は、パワー半導体素子1a、1bの第1方向の一方側に配置されているため、ドレイン端子6とパワー半導体素子1a、1bの接合面の側の電極との間の電気抵抗を小さく構成でき、パワー半導体モジュール100の損失を改善することができる。 As described above, in the power semiconductor module 100 according to the fifth embodiment, since the drain terminal 6 is arranged on one side of the power semiconductor elements 1a and 1b in the first direction, the drain terminal 6 and the power semiconductor element 1a, The electric resistance between the electrode and the electrode on the joint surface side of 1b can be made small, and the loss of the power semiconductor module 100 can be improved.

なお、以上では熱伝導異方性部材3は長方形状の複数のグラフェンシート5が積層されたグラファイト4としたが、熱伝導異方性部材3の構成はこれに限るものではない。例えば、繊維状の金属からなる層で構成された熱伝導異方性部材3であっても構わない。 In the above, the heat conduction anisotropic member 3 is graphite 4 on which a plurality of rectangular graphene sheets 5 are laminated, but the configuration of the heat conduction anisotropic member 3 is not limited to this. For example, the heat conduction anisotropic member 3 composed of a layer made of a fibrous metal may be used.

また本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
The present application also describes various exemplary embodiments and examples, although the various features, embodiments, and functions described in one or more embodiments are those of a particular embodiment. It is not limited to application, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.

1 パワー半導体素子、1a パワー半導体素子、1b パワー半導体素子、2 熱拡散部材、2a 素子接合面、2b 冷却器接合面、3 熱伝導異方性部材、3a 第1の熱伝導異方性部材、3b 第2の熱伝導異方性部材、3c 第3の熱伝導異方性部材、3d 第4の熱伝導異方性部材、3e 第5の熱伝導異方性部材、4 グラファイト、5 グラフェンシート、6 ドレイン端子、7 ソース端子、8 ゲート端子、9 ワイヤ、10 ゲートパッド、20 冷却器、20a 冷却面、100 パワー半導体モジュール 1 power semiconductor element, 1a power semiconductor element, 1b power semiconductor element, 2 heat diffusion member, 2a element joint surface, 2b cooler joint surface, 3 heat conduction anisotropic member, 3a first heat conduction anisotropic member, 3b 2nd heat conduction anisotropic member, 3c 3rd heat conduction anisotropic member, 3d 4th heat conduction anisotropic member, 3e 5th heat conduction anisotropic member, 4 graphite, 5 graphene sheet , 6 drain terminal, 7 source terminal, 8 gate terminal, 9 wire, 10 gate pad, 20 cooler, 20a cooling surface, 100 power semiconductor module

Claims (9)

積層されたN層(Nは3以上の奇数)の板状の熱伝導異方性部材と、
1番目の層の前記熱伝導異方性部材の外側の板面に接合されたパワー半導体素子と、を備え、
奇数番目の層の前記熱伝導異方性部材では、板厚の方向及び板面に平行な第1方向の熱伝導率が、前記第1方向に直交し前記板面に平行な第2方向の熱伝導率よりも高く、
偶数番目の層の前記熱伝導異方性部材では、前記板厚の方向及び前記第2方向の熱伝導率が、前記第1方向の熱伝導率よりも高く、
前記1番目の層の前記熱伝導異方性部材の厚みが、N番目の層の前記熱伝導異方性部材の厚みと同じであり、
前記奇数番目の層の熱伝導異方性部材のそれぞれの厚みの和が、前記偶数番目の層の熱伝導異方性部材のそれぞれの厚みの和と同じであり、前記偶数番目の層の熱伝導異方性部材の厚みは、前記奇数番目の層の熱伝導異方性部材の厚みよりも大きいパワー半導体モジュール。
Laminated N-layer (N is an odd number of 3 or more) plate-shaped heat conduction anisotropic member,
A power semiconductor device bonded to the outer plate surface of the heat conduction anisotropic member of the first layer is provided.
In the heat conduction anisotropic member of the odd-th layer, the thermal conductivity in the direction of the plate thickness and the heat conductivity in the first direction parallel to the plate surface is orthogonal to the first direction and parallel to the plate surface in the second direction. Higher than thermal conductivity,
In the heat conduction anisotropic member of the even-th layer, the heat conductivity in the plate thickness direction and the second direction is higher than the heat conductivity in the first direction.
The thickness of the heat conduction anisotropic member in the first layer is the same as the thickness of the heat conduction anisotropic member in the Nth layer.
The sum of the thicknesses of the heat conduction anisotropic members of the even-numbered layer is the same as the sum of the thicknesses of the heat conduction anisotropic members of the even-numbered layer, and the heat of the even-numbered layer is the same. A power semiconductor module in which the thickness of the conduction anisotropic member is larger than the thickness of the heat conduction anisotropic member of the even-numbered layer.
積層された3層の板状の前記熱伝導異方性部材を備え、
前記1番目の層及び3番目の層の前記熱伝導異方性部材では、前記板厚の方向及び前記第1方向の熱伝導率が、前記第2方向の熱伝導率よりも高く、
2番目の層の前記熱伝導異方性部材では、前記板厚の方向及び前記第2方向の熱伝導率が、前記第1方向の熱伝導率よりも高く、
前記1番目の層の前記熱伝導異方性部材の厚みが、前記3番目の層の前記熱伝導異方性部材の厚みと同じであり、
前記1番目の層及び前記3番目の層の熱伝導異方性部材のそれぞれの厚みの和が、前記2番目の層の熱伝導異方性部材の厚みと同じである請求項1に記載のパワー半導体モジュール。
It is provided with the three-layered plate-shaped heat conduction anisotropy member.
In the heat conduction anisotropic member of the first layer and the third layer, the heat conductivity in the plate thickness direction and the first direction is higher than the heat conductivity in the second direction.
In the heat conduction anisotropic member of the second layer, the heat conductivity in the plate thickness direction and the second direction is higher than the heat conductivity in the first direction.
The thickness of the heat conduction anisotropic member of the first layer is the same as the thickness of the heat conduction anisotropic member of the third layer.
The first aspect of the present invention, wherein the sum of the thicknesses of the heat conduction anisotropic members of the first layer and the third layer is the same as the thickness of the heat conduction anisotropic members of the second layer. Power semiconductor module.
2番目の層の前記熱伝導異方性部材の厚みが、N-1番目の層の前記熱伝導異方性部材の厚みと同じである請求項1に記載のパワー半導体モジュール。 The power semiconductor module according to claim 1, wherein the thickness of the heat conduction anisotropic member of the second layer is the same as the thickness of the heat conduction anisotropic member of the N-1st layer. 前記奇数番目の層の熱伝導異方性部材のそれぞれの厚みが、同じである請求項1に記載のパワー半導体モジュール。 The power semiconductor module according to claim 1, wherein the thicknesses of the heat conduction anisotropic members of the odd-numbered layers are the same. 前記奇数番目の層の熱伝導異方性部材は、長辺が前記第1方向に平行で、短辺が前記板厚の方向に平行な長方形状の複数のグラフェンシートを前記第2方向に積層して形成され、
前記偶数番目の層の熱伝導異方性部材は、長辺が前記第2方向に平行で、短辺が前記板厚の方向に平行な長方形状の複数のグラフェンシートを前記第1方向に積層して形成されている請求項1からのいずれか1項に記載のパワー半導体モジュール。
In the heat conduction anisotropic member of the odd-th layer, a plurality of rectangular graphene sheets whose long sides are parallel to the first direction and whose short sides are parallel to the plate thickness direction are laminated in the second direction. Formed by
In the heat conduction anisotropic member of the even-th layer, a plurality of rectangular graphene sheets whose long sides are parallel to the second direction and whose short sides are parallel to the plate thickness direction are laminated in the first direction. The power semiconductor module according to any one of claims 1 to 4 , which is formed in the above-mentioned.
複数の前記パワー半導体素子を備え、
少なくとも2つの前記パワー半導体素子は、奇数番目の層である前記1番目の層の熱伝導異方性部材の外側の板面に、前記第2方向に並べられ、接合されている請求項1からのいずれか1項に記載のパワー半導体モジュール。
Equipped with a plurality of the power semiconductor elements,
From claim 1, the at least two power semiconductor devices are arranged and joined in the second direction on the outer plate surface of the heat conduction anisotropic member of the first layer, which is an odd-numbered layer. 5. The power semiconductor module according to any one of 5.
前記パワー半導体素子に、炭化ケイ素半導体からなるMOSFETが含まれた請求項1からのいずれか1項に記載のパワー半導体モジュール。 The power semiconductor module according to any one of claims 1 to 6 , wherein the power semiconductor element includes a MOSFET made of a silicon carbide semiconductor. 前記パワー半導体素子の接合面の側の電極と接合された前記1番目の層の熱伝導異方性部材の外側の板面に電気的に接続された外部接続電極を備え、
前記外部接続電極は、前記パワー半導体素子の前記第1方向の一方側に配置されている請求項1からのいずれか1項に記載のパワー半導体モジュール。
An external connection electrode electrically connected to the outer plate surface of the heat conduction anisotropic member of the first layer bonded to the electrode on the bonding surface side of the power semiconductor device is provided.
The power semiconductor module according to any one of claims 1 to 7 , wherein the external connection electrode is arranged on one side of the first direction of the power semiconductor element.
N番目の層の前記熱伝導異方性部材の外側の板面に、絶縁放熱部材を介して接合された冷却器を備えた請求項1からのいずれか1項に記載のパワー半導体モジュール。 The power semiconductor module according to any one of claims 1 to 8 , further comprising a cooler bonded to the outer plate surface of the heat conduction anisotropic member of the Nth layer via an insulating heat dissipation member.
JP2020032611A 2020-02-28 2020-02-28 Power semiconductor module Active JP7016375B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020032611A JP7016375B2 (en) 2020-02-28 2020-02-28 Power semiconductor module
CN202110202188.8A CN113327902A (en) 2020-02-28 2021-02-23 Power semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020032611A JP7016375B2 (en) 2020-02-28 2020-02-28 Power semiconductor module

Publications (2)

Publication Number Publication Date
JP2021136363A JP2021136363A (en) 2021-09-13
JP7016375B2 true JP7016375B2 (en) 2022-02-04

Family

ID=77414380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020032611A Active JP7016375B2 (en) 2020-02-28 2020-02-28 Power semiconductor module

Country Status (2)

Country Link
JP (1) JP7016375B2 (en)
CN (1) CN113327902A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069670A (en) 2010-09-22 2012-04-05 Sanken Electric Co Ltd Semiconductor module and manufacturing method therefor
JP2012142547A (en) 2010-12-16 2012-07-26 Nippon Soken Inc Joining structure of thermal diffusion member, cooling structure of heating element, and method for joining thermal diffusion member
JP2016149450A (en) 2015-02-12 2016-08-18 株式会社豊田中央研究所 Semiconductor module
JP2016149431A (en) 2015-02-12 2016-08-18 株式会社豊田中央研究所 Semiconductor module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148695A (en) * 1995-11-24 1997-06-06 Mitsui Toatsu Chem Inc Flexible printed circuit board and its manufacture
CN206506767U (en) * 2017-01-12 2017-09-19 宜兴硅谷电子科技有限公司 A kind of asymmetric printed wiring board of warpage preventing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069670A (en) 2010-09-22 2012-04-05 Sanken Electric Co Ltd Semiconductor module and manufacturing method therefor
JP2012142547A (en) 2010-12-16 2012-07-26 Nippon Soken Inc Joining structure of thermal diffusion member, cooling structure of heating element, and method for joining thermal diffusion member
JP2016149450A (en) 2015-02-12 2016-08-18 株式会社豊田中央研究所 Semiconductor module
JP2016149431A (en) 2015-02-12 2016-08-18 株式会社豊田中央研究所 Semiconductor module

Also Published As

Publication number Publication date
CN113327902A (en) 2021-08-31
JP2021136363A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
JP6286543B2 (en) Power module device, power conversion device, and method of manufacturing power module device
WO2011064841A1 (en) Cooling structure of semiconductor device
JP5217884B2 (en) Semiconductor device
JP2017195687A (en) Electric power conversion system
JP6423731B2 (en) Semiconductor module
JP4531087B2 (en) Power semiconductor device
JP2010135697A (en) Lamination module structure
JP2010140969A (en) Stacked module structure
JP6286541B2 (en) Power module device and power conversion device
US11350517B2 (en) Circuit device and power conversion device
JP5100535B2 (en) Power semiconductor module and semiconductor power conversion device including the same
JP7016375B2 (en) Power semiconductor module
JP6520871B2 (en) Semiconductor module
JP2007215302A (en) Inverter apparatus
JP2009021445A (en) Inverter apparatus
JP6469604B2 (en) Insulating substrate and power conversion device comprising insulating substrate
JP5100674B2 (en) Inverter device
JP5621812B2 (en) Semiconductor device
JP4158648B2 (en) Semiconductor cooling unit
JP6372433B2 (en) Power converter
JP6468095B2 (en) Semiconductor device
JP4193633B2 (en) Semiconductor cooling unit
JP6266544B2 (en) Inverter module
WO2016079970A1 (en) Cooling module
JP2015053775A (en) Semiconductor power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211208

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220125