JP7013433B2 - Image heating device - Google Patents

Image heating device Download PDF

Info

Publication number
JP7013433B2
JP7013433B2 JP2019201370A JP2019201370A JP7013433B2 JP 7013433 B2 JP7013433 B2 JP 7013433B2 JP 2019201370 A JP2019201370 A JP 2019201370A JP 2019201370 A JP2019201370 A JP 2019201370A JP 7013433 B2 JP7013433 B2 JP 7013433B2
Authority
JP
Japan
Prior art keywords
heater
region
heat conductive
longitudinal direction
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019201370A
Other languages
Japanese (ja)
Other versions
JP2020034940A (en
Inventor
丈晴 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019201370A priority Critical patent/JP7013433B2/en
Publication of JP2020034940A publication Critical patent/JP2020034940A/en
Application granted granted Critical
Publication of JP7013433B2 publication Critical patent/JP7013433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、像加熱装置に関するものである。 The present invention relates to an image heating device.

電子写真方式、静電記録方式等を採用する画像形成装置に具備される像加熱装置としての加熱定着装置においては、スタンバイ時に定着装置に電力を供給せず、消費電力を極力低く抑えたフィルム加熱方式の定着装置が実用化されている。
近年、複写機・プリンタ等の画像形成装置には、プリントスピードの高速化やクイックスタート性の向上、省エネやコンパクト化といった様々な要望がある。そうした背景の元、フィルム加熱方式の定着装置が広く用いられている。
フィルム加熱方式の定着装置は、フィルムと加圧部材が圧接配置され、フィルム内部には加圧部材との対向部内面にフィルムを加熱するためのヒータ(加熱体)が配置される。このような定着装置におけるフィルムの駆動方式としては、フィルム内周面に駆動ローラを設けフィルムにテンションを加えながら駆動する方式や、フィルムを支持する部材にルーズに支持させ加圧ローラを駆動することで従動回転させる方式が知られている。近年では、部品点数が少なくて済むことから、後者の加圧ローラ駆動型が採用されることが多い。
In the heating and fixing device as an image heating device provided in an image forming device that employs an electrophotographic method, an electrostatic recording method, etc., power is not supplied to the fixing device during standby, and film heating that suppresses power consumption as low as possible. The type fixing device has been put into practical use.
In recent years, there have been various demands for image forming devices such as copiers and printers, such as faster printing speed, improved quick startability, energy saving, and compactification. Against this background, film heating type fixing devices are widely used.
In the film heating type fixing device, the film and the pressurizing member are pressure-welded, and a heater (heating body) for heating the film is arranged inside the film on the inner surface of the portion facing the pressurizing member. As a method for driving the film in such a fixing device, a method in which a drive roller is provided on the inner peripheral surface of the film to drive the film while applying tension, or a method in which a member supporting the film is loosely supported to drive the pressure roller. A method of driven rotation is known. In recent years, the latter pressure roller drive type is often adopted because the number of parts is small.

ここで、フィルム加熱方式の定着装置では、以下に説明する端部昇温が既存問題として挙げられている。
定着装置に記録材を通紙し定着させた場合、加圧ローラの非通紙域(記録材が搬送される際に通過する領域外)の表面温度が過度に上昇する恐れがある。これは、定着ニップ部のうち記録材の通過しない非通紙域では、記録材による奪熱がない分だけ部分的に蓄熱されるためである。この現象は、定着装置の端部昇温或いは非通紙部昇温と称され、この端部昇温が高温になると、熱的ピークを持ち、ホットオフセットやヒータホルダの溶け等の発生につながる。
この端部昇温の課題を解決するために、特許文献1のようにヒータの裏面とヒータホルダ間に熱伝導部材を配置することでヒータの温度分布を均一化する提案がなされている。熱伝導部材の使用にあたっては、特許文献2のように安全性確保のため電気的に分割して用いる提案がなされている。
Here, in the film heating type fixing device, the temperature rise at the end described below is mentioned as an existing problem.
When the recording material is passed through the fixing device and fixed, the surface temperature of the non-passing area of the pressure roller (outside the area through which the recording material is conveyed) may rise excessively. This is because heat is partially stored in the non-passing area of the fixing nip portion where the recording material does not pass, because the heat is not taken by the recording material. This phenomenon is referred to as temperature rise at the end of the fixing device or temperature rise at the non-passing portion, and when the temperature rise at the end becomes high, it has a thermal peak, which leads to the occurrence of hot offset and melting of the heater holder.
In order to solve this problem of temperature rise at the end, it has been proposed to make the temperature distribution of the heater uniform by arranging a heat conductive member between the back surface of the heater and the heater holder as in Patent Document 1. When using a heat conductive member, it has been proposed as in Patent Document 2 that the heat conductive member is electrically divided and used to ensure safety.

特開平11-84919号公報Japanese Unexamined Patent Publication No. 11-841919 特開2014-123100号公報Japanese Unexamined Patent Publication No. 2014-123100

しかしながら、上記のような従来技術の場合には、下記のような課題が生じることが懸念される。
特許文献1に開示の構成においては、熱伝導部材に、ヒータホルダへの差し込み部を設ける必要がある。これは、熱伝導部材に対して、定着ニップ部の長手方向の位置決めが行われていないと、熱伝導部材がずれてしまった場合、特に端部昇温部分からずれてしまった場合には、所望とする端部昇温抑制効果が発現されないことが懸念されるためである。しかしながら、熱伝導部材にヒータホルダへの差し込み部を設けた場合には、差し込み部の熱容量が周辺部よりも大きくなる。そのため、差し込み部では均熱効果が促進され、ヒータの温度が局所的に低くなり、差し込み部の幅に対応した定着不良を引き起こすことが
懸念される。
さらに、特許文献2に開示の構成のように、複数の熱伝導部材を配置する場合には、熱伝導部材と熱伝導部材の間に隙間ができる。隙間部分に対応するヒータは、熱伝導部材と接触しないため、均熱効果が低減し、ヒータの温度が局所的に高くなり、隙間部の幅に対応したホットオフセットなどの画像不良を引き起こすことが懸念される。
However, in the case of the above-mentioned conventional technology, there is a concern that the following problems may occur.
In the configuration disclosed in Patent Document 1, it is necessary to provide the heat conductive member with an insertion portion into the heater holder. This is because if the heat conductive member is not positioned in the longitudinal direction of the fixing nip portion, the heat conductive member is displaced, especially when the end portion is displaced from the temperature rising portion. This is because there is a concern that the desired effect of suppressing the temperature rise at the end may not be exhibited. However, when the heat conductive member is provided with an insertion portion into the heater holder, the heat capacity of the insertion portion becomes larger than that of the peripheral portion. Therefore, there is a concern that the soaking effect is promoted at the insertion portion, the temperature of the heater is locally lowered, and fixing failure corresponding to the width of the insertion portion is caused.
Further, when a plurality of heat conductive members are arranged as in the configuration disclosed in Patent Document 2, a gap is formed between the heat conductive members and the heat conductive members. Since the heater corresponding to the gap does not come into contact with the heat conductive member, the heat equalizing effect is reduced, the temperature of the heater rises locally, and image defects such as hot offset corresponding to the width of the gap may occur. I am concerned.

本発明は上記したような事情に鑑みてなされたものであり、熱伝導部材の均熱効果を維持しつつ、ヒータの局所的な温度ムラを抑制し、良好な画像を得ることが可能な技術を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a technique capable of suppressing local temperature unevenness of a heater and obtaining a good image while maintaining the heat equalizing effect of the heat conductive member. The purpose is to provide.

上記目的を達成するために本発明にあっては、
基板と、前記基板に配置された発熱体とを含むヒータと、
前記ヒータに接触配置され、前記ヒータの長手方向における温度分布を均一化するための熱伝導部材と、
回転可能に設けられ、前記ヒータに摺動する可撓性スリーブと、
前記可撓性スリーブを介して前記ヒータとニップ部を形成する加圧部材と、
を有し、
前記ニップ部における前記可撓性スリーブと前記加圧部材との間で、現像剤像が形成された記録材を挟持搬送して加熱する像加熱装置において、
前記熱伝導部材には、第1領域と、前記第1領域よりも前記長手方向における単位長さ当たりの熱容量が小さい第2領域と、が設けられ、
前記ヒータは、
前記第1領域と接触する第1ヒータ領域と、
前記第2領域と接触する第2ヒータ領域と、
が設けられ、
前記第1領域に対応する第1発熱体全域の前記長手方向と直交する方向における幅の長さは第1長さであり、前記第2領域に対応する第2発熱体全域の前記幅の長さは前記第1長さよりも長い第2長さであり、
前記第1ヒータ領域の前記長手方向における単位長さ当たりの発熱量は、前記第2ヒータ領域の前記長手方向における単位長さ当たりの発熱量よりも大きく設定されていることを特徴とする
In order to achieve the above object, in the present invention,
A heater containing a substrate and a heating element arranged on the substrate,
A heat conductive member that is contact-arranged with the heater and for uniformizing the temperature distribution in the longitudinal direction of the heater.
A flexible sleeve that is rotatably provided and slides on the heater,
A pressure member forming the heater and the nip portion via the flexible sleeve,
Have,
In an image heating device that sandwiches, conveys, and heats a recording material on which a developer image is formed between the flexible sleeve and the pressure member in the nip portion.
The heat conductive member is provided with a first region and a second region having a smaller heat capacity per unit length in the longitudinal direction than the first region.
The heater is
The first heater region in contact with the first region and
The second heater region in contact with the second region and
Is provided,
The length of the width of the entire first heating element corresponding to the first region in the direction orthogonal to the longitudinal direction is the first length, and the length of the width of the entire second heating element corresponding to the second region. Is a second length that is longer than the first length.
The calorific value per unit length in the longitudinal direction of the first heater region is set to be larger than the calorific value per unit length in the longitudinal direction of the second heater region .

基板と、前記基板に配置された発熱体とを含むヒータと、
前記ヒータに接触配置され、前記ヒータの長手方向における温度分布を均一化するための熱伝導部材と、
回転可能に設けられ、前記ヒータに摺動する可撓性スリーブと、
前記可撓性スリーブを介して前記ヒータとニップ部を形成する加圧部材と、
を有し、
前記ニップ部における前記可撓性スリーブと前記加圧部材との間で、現像剤像が形成された記録材を挟持搬送して加熱する像加熱装置において、
前記熱伝導部材は、前記長手方向に沿って、間隙を設けて複数配置され、
前記ヒータは、前記熱伝導部材が接触する接触領域と、前記間隙部分に対応する第3ヒータ領域と、が設けられ、
前記接触領域と対応する第1発熱体全域の前記長手方向と直交する方向における幅の長さは第1長さであり、前記間隙部分に対応する第2発熱体全域の前記幅の長さは前記第1長さよりも長い第2長さであり、
前記第3ヒータ領域の前記長手方向における単位長さ当たりの発熱量は、前記接触領域の前記長手方向における単位長さ当たりの発熱量よりも小さく設定されていることを特徴とする。
A heater containing a substrate and a heating element arranged on the substrate ,
A heat conductive member that is contact-arranged with the heater and for uniformizing the temperature distribution in the longitudinal direction of the heater.
A flexible sleeve that is rotatably provided and slides on the heater,
A pressure member forming the heater and the nip portion via the flexible sleeve,
Have,
In an image heating device that sandwiches, conveys, and heats a recording material on which a developer image is formed between the flexible sleeve and the pressure member in the nip portion.
A plurality of the heat conductive members are arranged with a gap along the longitudinal direction.
The heater is provided with a contact region in which the heat conductive member contacts and a third heater region corresponding to the gap portion.
The length of the width of the entire first heating element corresponding to the contact region in the direction orthogonal to the longitudinal direction is the first length, and the length of the width of the entire second heating element corresponding to the gap portion is the first length. It is a second length longer than the first length, and is
The calorific value per unit length in the longitudinal direction of the third heater region is set to be smaller than the calorific value per unit length in the longitudinal direction of the contact region.

本発明によれば、熱伝導部材の均熱効果を維持しつつ、ヒータの局所的な温度ムラを抑制し、良好な画像を得ることが可能となる。 According to the present invention, it is possible to suppress local temperature unevenness of the heater and obtain a good image while maintaining the heat equalizing effect of the heat conductive member.

実施形態の画像形成装置の概略構成を示す断面図Sectional drawing which shows the schematic structure of the image forming apparatus of embodiment 実施形態の定着装置の概略構成を示す図The figure which shows the schematic structure of the fixing device of an embodiment. 実施形態のヒータを示す概略図Schematic diagram showing the heater of the embodiment ヒータの裏面に熱伝導部材を配置しない構成の概略図Schematic diagram of the configuration in which the heat conductive member is not arranged on the back surface of the heater ヒータの裏面に熱伝導部材を配置した本実施形態の構成の概略断面図Schematic cross-sectional view of the configuration of this embodiment in which the heat conductive member is arranged on the back surface of the heater. 熱伝導部材の長手方向の位置が規制されていない構成を示す図The figure which shows the structure which the position in the longitudinal direction of a heat conduction member is not regulated. 実施例1における熱伝導部材単体の寸法関係を示す概略図Schematic diagram showing the dimensional relationship of the heat conductive member alone in Example 1. 実施例1における熱伝導部材とヒータの寸法関係を示す図The figure which shows the dimensional relationship of the heat conduction member and a heater in Example 1. 長手方向全域における温度分布測定結果を示す図The figure which shows the temperature distribution measurement result in the whole length direction. 実施例2における熱伝導部材とヒータの寸法関係を示す図The figure which shows the dimensional relationship of the heat conduction member and a heater in Example 2. 実施例2におけるホルダの断面形状を説明するための概略図Schematic diagram for explaining the cross-sectional shape of the holder in Example 2. 長手方向全域における温度分布測定結果を示す図The figure which shows the temperature distribution measurement result in the whole length direction. 実施例3における熱伝導部材それぞれの単体での寸法関係を示す概略図Schematic diagram showing the dimensional relationship of each of the heat conductive members in Example 3 as a single unit. 実施例3における熱伝導部材とヒータの寸法関係を示す図The figure which shows the dimensional relationship of the heat conduction member and a heater in Example 3. 長手方向全域における温度分布測定結果を示す図The figure which shows the temperature distribution measurement result in the whole length direction.

以下に図面を参照して、この発明を実施するための形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状それらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものであり、この発明の範囲を以下の実施の形態に限定する趣旨のものではない。 Hereinafter, embodiments for carrying out the present invention will be exemplified in detail with reference to the drawings. However, the dimensions, materials, shapes, and relative arrangements of the components described in this embodiment should be appropriately changed depending on the configuration of the apparatus to which the invention is applied and various conditions, and the present invention The scope is not intended to be limited to the following embodiments.

(1)画像形成装置
図1は、本実施形態の画像形成装置の概略構成を示す断面図である。本実施形態では、画像形成装置として、転写式電子写真プロセス方式のレーザプリンタについて説明する。
図1において、1は像担持体としての回転ドラム型の電子写真感光体(以下、感光ドラム)であり、矢印a方向に所定の周波数(プロセススピード)にて回転駆動される。感光ドラム1は、OPC・アモルファスSi等の感光材料層が、アルミニウムやニッケルなどのシリンダ(ドラム)状の導電性基体の外周面に形成された構成から成る。感光ドラム1の表面は、その回転過程で帯電ローラ2により所定の極性・電位に一様に帯電処理される。その後、感光ドラム1の帯電面に対して、レーザビームスキャナ3より、画像情報に応じたレーザビームによる走査露光Lがなされることにより、感光ドラム表面に目的の画像情報に応じた潜像(静電潜像)が形成される。その潜像が現像装置4でトナー(現像剤)Tにより現像されて可視化される。現像方法としては、ジャンピング現像法、2成分現像法、FEED現像法などが用いられ、イメージ露光と反転現像との組み合わせで用いられることが多い。
(1) Image Forming Device FIG. 1 is a cross-sectional view showing a schematic configuration of the image forming device of the present embodiment. In this embodiment, a transfer type electrophotographic process type laser printer will be described as an image forming apparatus.
In FIG. 1, reference numeral 1 denotes a rotary drum type electrophotographic photosensitive member (hereinafter referred to as a photosensitive drum) as an image carrier, which is rotationally driven at a predetermined frequency (process speed) in the direction of arrow a. The photosensitive drum 1 has a structure in which a photosensitive material layer such as OPC / amorphous Si is formed on the outer peripheral surface of a cylinder (drum) -shaped conductive substrate such as aluminum or nickel. The surface of the photosensitive drum 1 is uniformly charged to a predetermined polarity and potential by the charging roller 2 in the rotation process. After that, the laser beam scanner 3 performs a scanning exposure L with a laser beam corresponding to the image information on the charged surface of the photosensitive drum 1, so that a latent image (static) corresponding to the target image information is performed on the surface of the photosensitive drum 1. Electrolatent image) is formed. The latent image is developed by the toner (developer) T in the developing apparatus 4 and visualized. As the developing method, a jumping developing method, a two-component developing method, a FEED developing method, or the like is used, and it is often used in combination with image exposure and reverse development.

一方、給送ローラ8の駆動により給送カセット9内に収容されている記録材Pが一枚ずつ繰り出され、ガイド・レジストローラを有するシートパスを通って感光ドラム1と転写ローラ5の圧接部である転写ニップ部に所定の制御タイミングにて給送される。そして、転写バイアス印加電源によって転写ローラ5に正極性の転写バイアスが印加されると、転写ニップ部で、感光ドラム1表面の負極性のトナー像(現像剤像)が記録材P上に転写さ
れる。
その後、転写ニップ部でトナー像が転写された記録材Pは、像加熱装置としての加熱定着装置(以下、定着装置)6に導入されてトナー像の熱定着処理を受ける。定着装置6については、(2)項で詳述する。定着装置6を通過した記録材Pは、搬送ローラ・ガイド・排出ローラを有するシートパスを通って、排出トレイにプリントアウトされる。また、転写ニップ部を通過した感光ドラム1の表面は、クリーニング装置7により転写残トナー等の付着物の除去処理を受けて清浄化され、繰り返し作像に供される。
On the other hand, the recording materials P housed in the feeding cassette 9 are fed out one by one by the drive of the feeding roller 8, and the pressure contact portion between the photosensitive drum 1 and the transfer roller 5 is passed through a sheet path having a guide / resist roller. It is supplied to the transfer nip portion, which is, at a predetermined control timing. Then, when a positive transfer bias is applied to the transfer roller 5 by the transfer bias application power supply, the negative electrode toner image (developer image) on the surface of the photosensitive drum 1 is transferred onto the recording material P at the transfer nip portion. Toner.
After that, the recording material P on which the toner image is transferred at the transfer nip portion is introduced into a heat fixing device (hereinafter, fixing device) 6 as an image heating device and undergoes a heat fixing process of the toner image. The fixing device 6 will be described in detail in the section (2). The recording material P that has passed through the fixing device 6 is printed out on the discharge tray through a sheet path having a transport roller, a guide, and a discharge roller. Further, the surface of the photosensitive drum 1 that has passed through the transfer nip portion is cleaned by a cleaning device 7 for removing deposits such as transfer residual toner, and is repeatedly subjected to image drawing.

(2)定着装置6
図2は、本実施形態の定着装置6の概略構成を示す図であり、図2(a)は定着装置6の断面図、図2(b)はヒータの断面図、図2(c)は定着装置6の分解斜視図である。
本実施形態の定着装置6は、基本的には互いに圧接してニップ部Nを形成する定着アセンブリ10と加圧ローラ20よりなるフィルム加熱方式の定着装置である。図2(a)、(c)に示すように、定着アセンブリ10は主に定着フィルム13と、ヒータ11、熱伝導部材17、ホルダ12、および加圧バネ15より加圧力を受けてホルダ12を加圧ローラ20に抗して押圧する金属ステー14から構成される。
(2) Fixing device 6
2A and 2B are views showing a schematic configuration of the fixing device 6 of the present embodiment, FIG. 2A is a sectional view of the fixing device 6, FIG. 2B is a sectional view of a heater, and FIG. 2C is a sectional view of the heater. It is an exploded perspective view of the fixing device 6.
The fixing device 6 of the present embodiment is basically a film heating type fixing device including a fixing assembly 10 and a pressure roller 20 that are pressed against each other to form a nip portion N. As shown in FIGS. 2A and 2C, the fixing assembly 10 mainly receives pressure from the fixing film 13, the heater 11, the heat conductive member 17, the holder 12, and the pressure spring 15 to press the holder 12. It is composed of a metal stay 14 that presses against the pressure roller 20.

[定着フィルム13]
定着フィルム13は、回転可能に設けられ、ヒータ11に摺動する可撓性スリーブに相当する。本実施形態では、定着フィルム13は、クイックスタートを可能にするために総厚200μm以下の厚みに設定された耐熱性フィルムである。定着フィルム13は、ポリイミド、ポリアミドイミド、PEEK等の耐熱性樹脂、あるいは耐熱性、熱伝導性を有するSUS、Al、Ni、Cu、Zn等の純金属あるいは合金を基層として形成されている。樹脂製の基層の場合は熱伝導性を向上させるために、BN、アルミナ、Al等の熱伝導性粉末を混入してあっても良い。また、長寿命の定着装置を構成するために、充分な強度を持ち、耐久性に優れた定着フィルム13として、総厚20μm以上の厚みが必要である。よって、定着フィルム13の総厚としては、20μm以上200μm以下が最適である。
[Fixing film 13]
The fixing film 13 is rotatably provided and corresponds to a flexible sleeve that slides on the heater 11. In the present embodiment, the fixing film 13 is a heat-resistant film set to a total thickness of 200 μm or less in order to enable quick start. The fixing film 13 is formed of a heat-resistant resin such as polyimide, polyamide-imide, or PEEK, or a pure metal or alloy such as SUS, Al, Ni, Cu, or Zn having heat resistance and thermal conductivity as a base layer. In the case of a resin base layer, a heat conductive powder such as BN, alumina, or Al may be mixed in order to improve the heat conductivity. Further, in order to form a fixing device having a long life, the fixing film 13 having sufficient strength and excellent durability needs to have a total thickness of 20 μm or more. Therefore, the optimum total thickness of the fixing film 13 is 20 μm or more and 200 μm or less.

さらに、オフセット防止や記録材の分離性を確保するために表層にPTFE、PFA、FEP、ETFE、CTFE、PVDF等のフッ素樹脂、シリコーン樹脂等の離型性の良好な耐熱樹脂を混合ないし単独で被覆して離型性層を形成してある。ここで、PTFEはポリテトラフルオロエチレン、PFAはテトラフルオロエチレン パーフルオロアルキルビニルエーテル共重合体、FEPはテトラフルオロエチレン ヘキサフルオロプロピレン共重合体である。また、ETFEはエチレン テトラフルオロエチレン共重合体、CTFEはポリクロロトリフルオロエチレン、PVDFはポリビニルデンフルオライドである。 Further, in order to prevent offset and ensure the separability of the recording material, a fluororesin such as PTFE, PFA, FEP, ETFE, CTFE, PVDF, and a heat-resistant resin having good releasability such as silicone resin are mixed or independently on the surface layer. It is coated to form a releasable layer. Here, PTFE is polytetrafluoroethylene, PFA is tetrafluoroethylene perfluoroalkyl vinyl ether copolymer, and FEP is tetrafluoroethylene hexafluoropropylene copolymer. ETFE is an ethylene tetrafluoroethylene copolymer, CTFE is polychlorotrifluoroethylene, and PVDF is polyvinylidene fluoride.

被覆の方法としては、定着フィルム13の外面をエッチング処理した後に離型性層をディッピングするか、粉体スプレー等を塗布するものであってもよい。あるいは、チューブ状に形成された樹脂を定着フィルム13の表面に被せる方式であってもよい。または、定着フィルム13の外面をブラスト処理した後に、接着剤であるプライマ層を塗布し、離型性層を被覆する方法であってもよい。なお、本実施形態では、表層(離型性層)が厚み10μmのPFA、プライマ層が厚み5μm、基層が厚み60μmのポリイミド、とからなる総厚75μm、外径φ18mmの定着フィルムを用いた。 As a coating method, the outer surface of the fixing film 13 may be etched and then the releaseable layer may be dipped, or a powder spray or the like may be applied. Alternatively, a method may be used in which the surface of the fixing film 13 is covered with a resin formed in a tube shape. Alternatively, a method may be used in which the outer surface of the fixing film 13 is blasted and then a primer layer as an adhesive is applied to cover the releasable layer. In this embodiment, a fixing film having a total thickness of 75 μm and an outer diameter of φ18 mm is used, which comprises a PFA having a surface layer (release layer) having a thickness of 10 μm, a primer layer having a thickness of 5 μm, and a base layer having a thickness of 60 μm.

[ヒータ11]
図2(b)に示すように、加熱部材としてのヒータ11は、定着フィルム13の内面に接触することによりニップ部Nの加熱を行う。ヒータ11は、低熱容量のプレート状である。そして、アルミナや窒化アルミニウム等の絶縁性セラミック基板11aの表面に、ニップ部Nの長手方向に沿って、Ag/Pd(銀パラジウム)、RuO、TaN等の抵
抗発熱体11bが、スクリーン印刷等により形成されている。このとき、抵抗発熱体11bは、厚み約10μm、幅約1~5mm程度で形成されている。
このヒータ11が定着フィルム13と接する面には、熱効率を損なわない範囲で抵抗発熱体を保護する保護層11cが設けられている。保護層の厚みは十分薄く、表面性を良好にする程度が望ましく、一般的には30~200μm程度のガラスコートが用いられる。なお、以下の説明では、ニップ部Nにおける長手方向を単に長手方向という。
[Heater 11]
As shown in FIG. 2B, the heater 11 as a heating member heats the nip portion N by coming into contact with the inner surface of the fixing film 13. The heater 11 has a low heat capacity plate shape. Then, on the surface of the insulating ceramic substrate 11a such as alumina or aluminum nitride, a resistance heating element 11b such as Ag / Pd (silver-palladium), RuO2 , Ta2N , etc. is attached to the screen along the longitudinal direction of the nip portion N. It is formed by printing or the like. At this time, the resistance heating element 11b is formed to have a thickness of about 10 μm and a width of about 1 to 5 mm.
A protective layer 11c is provided on the surface of the heater 11 in contact with the fixing film 13 to protect the resistance heating element within a range that does not impair the thermal efficiency. It is desirable that the thickness of the protective layer is sufficiently thin and the surface property is good, and a glass coat having a thickness of about 30 to 200 μm is generally used. In the following description, the longitudinal direction in the nip portion N is simply referred to as the longitudinal direction.

ここで、抵抗発熱体の幅をそれ以外の部分よりも細くし部分的な抵抗を上げて、発熱量を大きくする構成があり、実用化されている。以下の説明では、抵抗発熱体の幅を細くしている部分を絞り部、抵抗発熱体の幅を広くしている部分を逆絞り部、幅の変化量を絞り量と記載する。絞り量は、絞り部以外の抵抗発熱体の単位面積あたりの抵抗値を100%とした場合に、絞り部のそれが何%であるかを示す量であり、抵抗発熱体の厚さが一定かつ抵抗材料として持つ体積抵抗値の部分的なばらつきがないと仮定すると、以下の式で表される。
絞り量(%)=(絞り部以外の抵抗発熱体幅)/(絞り部の抵抗発熱体幅)
抵抗値と発熱量は比例するので、絞り量は単位面積あたりの発熱量の割合と考えてもよい。なお、ヒータ11については、(4)項にて詳述する。
Here, there is a configuration in which the width of the resistance heating element is made narrower than the other parts to increase the partial resistance and the amount of heat generated is increased, which has been put into practical use. In the following description, the portion where the width of the resistance heating element is narrowed is referred to as a throttle portion, the portion where the width of the resistance heating element is widened is referred to as a reverse throttle portion, and the amount of change in width is referred to as a throttle amount. The throttle amount is an amount indicating what percentage of the resistance heating element other than the throttle portion is when the resistance value per unit area of the resistance heating element is 100%, and the thickness of the resistance heating element is constant. Moreover, assuming that there is no partial variation in the volume resistance value of the resistance material, it is expressed by the following equation.
Aperture amount (%) = (width of resistance heating element other than the aperture) / (width of resistance heating element in the aperture)
Since the resistance value and the calorific value are proportional to each other, the throttle amount may be considered as the ratio of the calorific value per unit area. The heater 11 will be described in detail in section (4).

[加圧ローラ20]
加圧部材としての加圧ローラ20は、SUS、SUM、Al等の金属製芯金21の外周側に弾性層22が形成された弾性ローラである。弾性層22としては、シリコーンゴムやフッ素ゴム等の耐熱ゴムで形成した弾性ソリッドゴム層や、より断熱効果を持たせるためにシリコーンゴムを発泡して形成した弾性スポンジゴム層を例示できる。また、弾性層22として、シリコーンゴム層内に中空のフィラー(マイクロバルーン等)を分散させ、硬化物内に気体部分を持たせて断熱効果を高めた弾性気泡ゴム層を例示できる。また、弾性層22の外周側に、パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン樹脂(PTFE)等の離型層が形成されていてもよい。なお、本実施形態では、芯金21としてAl、弾性層22としてシリコーンゴム、離型層としてPFAを用いた外径φ20mmの加圧ローラを用いた。
[Pressurized roller 20]
The pressure roller 20 as a pressure member is an elastic roller in which an elastic layer 22 is formed on the outer peripheral side of a metal core metal 21 such as SUS, SUM, or Al. Examples of the elastic layer 22 include an elastic solid rubber layer formed of heat-resistant rubber such as silicone rubber and fluororubber, and an elastic sponge rubber layer formed by foaming silicone rubber in order to have a more heat insulating effect. Further, as the elastic layer 22, an elastic bubble rubber layer in which a hollow filler (microballoon or the like) is dispersed in the silicone rubber layer and a gas portion is provided in the cured product to enhance the heat insulating effect can be exemplified. Further, a release layer such as a perfluoroalkoxy resin (PFA) or a polytetrafluoroethylene resin (PTFE) may be formed on the outer peripheral side of the elastic layer 22. In this embodiment, a pressure roller having an outer diameter of φ20 mm using Al as the core metal 21, silicone rubber as the elastic layer 22, and PFA as the release layer was used.

[熱伝導部材17]
熱伝導部材17は、ヒータ11に接触配置され、ヒータ11の温度分布を均一化するためのものである。本実施形態では、熱伝導部材17は、ヒータ11と、ヒータ11を保持する保持部材としてのホルダ12との間に挟んで保持され、アルミナや窒化アルミニウム等からなるヒータ11の絶縁性セラミック基板11aよりも熱伝導率の良い材質からなる。熱伝導部材17としては、Al、Cu、Ag、黒鉛をシート状に加工したグラファイトシートを例示できる。熱伝導部材17の熱伝導率は、少なくともヒータ11の基板11aの熱伝導率よりも大きいことが望ましい。熱伝導部材17については、(4)項にて詳述する。
[Heat conduction member 17]
The heat conductive member 17 is arranged in contact with the heater 11 to make the temperature distribution of the heater 11 uniform. In the present embodiment, the heat conductive member 17 is sandwiched and held between the heater 11 and the holder 12 as a holding member for holding the heater 11, and is an insulating ceramic substrate 11a of the heater 11 made of alumina, aluminum nitride, or the like. It is made of a material with better thermal conductivity. As the heat conductive member 17, a graphite sheet obtained by processing Al, Cu, Ag, and graphite into a sheet can be exemplified. It is desirable that the thermal conductivity of the heat conductive member 17 is at least larger than the heat conductivity of the substrate 11a of the heater 11. The heat conductive member 17 will be described in detail in section (4).

[定着装置6の駆動および制御方法]
定着アセンブリ10は、次のような構成により加圧ローラ20の弾性に抗して押圧され、所定のニップ部Nを形成する。すなわち、図2(c)に示すように、金属ステー14は、その長手方向の両端がホルダ12から突き出ていて、ステー両端部にあるバネ受け部14aがバネ受け部材を介して加圧バネ15によって加圧される。荷重はステー足部14bを介してホルダ12の長手方向に渡って均一に伝達される。ニップ部Nでは、加圧力によって定着フィルム13がヒータ11と加圧ローラ20の間に挟まれることで撓み、ヒータ11の加熱面に密着した状態になる。
[Drive and control method of fixing device 6]
The fixing assembly 10 is pressed against the elasticity of the pressure roller 20 by the following configuration to form a predetermined nip portion N. That is, as shown in FIG. 2 (c), both ends of the metal stay 14 in the longitudinal direction protrude from the holder 12, and the spring receiving portions 14a at both ends of the stay are pressure springs 15 via the spring receiving members. Pressurized by. The load is uniformly transmitted in the longitudinal direction of the holder 12 via the stay foot portion 14b. In the nip portion N, the fixing film 13 is sandwiched between the heater 11 and the pressurizing roller 20 due to the pressing force, and is bent so as to be in close contact with the heating surface of the heater 11.

加圧ローラ20は、芯金21の端部に設けられた不図示の駆動ギアから、図2(a)の
矢印方向に回転する駆動力を得る。この駆動力は、制御手段を統制する不図示のCPUからの指令に従い、不図示のモータにより伝達される。この加圧ローラ20の回転駆動に伴って、定着フィルム13は加圧ローラ20との摩擦力により従動回転する。定着フィルム13とヒータ11との間には、フッ素系やシリコーン系の耐熱性グリース等の潤滑材を介在させることにより、摩擦抵抗を低く抑え、滑らかに定着フィルム13が回転可能となる。
The pressurizing roller 20 obtains a driving force that rotates in the direction of the arrow in FIG. 2A from a driving gear (not shown) provided at the end of the core metal 21. This driving force is transmitted by a motor (not shown) according to a command from a CPU (not shown) that controls the control means. Along with the rotational drive of the pressure roller 20, the fixing film 13 is driven to rotate due to the frictional force with the pressure roller 20. By interposing a lubricating material such as fluorine-based or silicone-based heat-resistant grease between the fixing film 13 and the heater 11, the frictional resistance is suppressed to a low level, and the fixing film 13 can rotate smoothly.

また、ヒータ11の温度制御は、感熱素子であるサーミスタ(不図示)の信号に応じて、CPUが通電発熱抵抗層に印加する電圧のデューティ比や波数等を決定し適切に制御することで、定着ニップ内の温度を所定の定着設定温度に保つ。ホルダ12には貫通穴が設けられ、その貫通穴からサーミスタが熱伝導部材17に接触するように配置されている。つまり、熱伝導部材17を介してヒータ11の熱を感熱するように感熱素子が配置されている。未定着トナー画像を保持した記録材Pは所定のタイミングで、不図示の供給手段によって適宜供給され、ニップ部N内に搬送され加熱定着が行われる。ニップ部Nで挟持搬送されながら加熱定着された記録材Pは、不図示の排出ガイドに案内されて排出される。 Further, the temperature control of the heater 11 is appropriately controlled by determining the duty ratio, wave number, etc. of the voltage applied by the CPU to the energization heat generation resistance layer according to the signal of the thermistor (not shown) which is a heat sensitive element. The temperature inside the fixing nip is kept at the specified fixing set temperature. The holder 12 is provided with a through hole, and the thermistor is arranged so as to come into contact with the heat conductive member 17 through the through hole. That is, the heat sensitive element is arranged so as to sense the heat of the heater 11 via the heat conductive member 17. The recording material P holding the unfixed toner image is appropriately supplied by a supply means (not shown) at a predetermined timing, and is conveyed into the nip portion N for heat fixing. The recording material P, which is heat-fixed while being sandwiched and conveyed by the nip portion N, is guided by a discharge guide (not shown) and discharged.

(3)熱伝導部材17の影響
本項では熱伝導部材17の影響について詳述する。
図3は、本実施形態のヒータ11を示す概略図であり、図3(a)はヒータ11の平面図、図3(b)はヒータ11の断面図、図3(c)は熱伝導部材17の平面図、図3(d)は熱伝導部材17の側面図である。
ヒータ11は、図3(a)のように、アルミナ基板上にAg/Pd(銀パラジウム)による抵抗発熱体11bをスクリーン印刷によって形成し、さらに抵抗発熱体11bに電気接点部を接続して成る。二本の抵抗発熱体11bは直列に接続され、抵抗値は14Ωである。図3(b)のように、抵抗発熱体11bを覆うように、保護層11cとして厚み60μmのガラスコートを形成した。基板11aは、長手方向の長さが270mm、短手方向の長さが6.0mm、厚みが1mmの直方体形状である。ここで、基板11a上において、長手方向に直交する方向を短手方向という。短手方向は、ニップ部Nで搬送される記録材の搬送方向(記録材搬送方向)と同じ方向となる。
(3) Effect of heat conductive member 17 In this section, the influence of heat conductive member 17 will be described in detail.
3A and 3B are schematic views showing the heater 11 of the present embodiment, FIG. 3A is a plan view of the heater 11, FIG. 3B is a sectional view of the heater 11, and FIG. 3C is a heat conductive member. 17 is a plan view and FIG. 3D is a side view of the heat conductive member 17.
As shown in FIG. 3A, the heater 11 is formed by forming a resistance heating element 11b made of Ag / Pd (silver-palladium) on an alumina substrate by screen printing, and further connecting an electric contact portion to the resistance heating element 11b. .. The two resistance heating elements 11b are connected in series and have a resistance value of 14Ω. As shown in FIG. 3B, a glass coat having a thickness of 60 μm was formed as the protective layer 11c so as to cover the resistance heating element 11b. The substrate 11a has a rectangular parallelepiped shape having a length of 270 mm in the longitudinal direction, a length of 6.0 mm in the lateral direction, and a thickness of 1 mm. Here, on the substrate 11a, the direction orthogonal to the longitudinal direction is referred to as the lateral direction. The lateral direction is the same as the transport direction (recording material transporting direction) of the recording material transported by the nip portion N.

抵抗発熱体11bは、長手方向端部で電気接点部を経由して折り返したパターンであり、それぞれ長手方向に延びる2つの抵抗発熱体11bが、記録材搬送方向に並んで配置されている。記録材搬送方向の上下流にそれぞれ位置する抵抗発熱体11bは、それぞれ同一形状(パターン中に絞り形状なし)に形成され、長手方向の長さが218mm(通紙中心Oに対し長手方向両側に夫々109mm)、短手方向の長さが1.0mmである。
ここで、記録材が搬送される際に通過する領域のうち、長手方向における中心の位置を、通紙中心Oとする。また、ヒータ11の長手方向端部において電気接点部を有する端部を給電部11d、折り返しパターンを有する端部を折り返し部11eとする。本実施形態では、サーミスタ(不図示)は、通紙中心Oから長手方向で外側25mmの位置に配置されている。サーミスタの位置に関して、図に示す場合には、符号Sを用いて図中に示すこととする。
また、熱伝導部材17は、図3(c)、3(d)のように、材質がアルミニウム材(純アルミ、合金番号A1050)の一様な金属板であり、長手方向の長さが218mm(通紙中心Oに対し長手方向両側に夫々109mm)、幅が6mm、厚さが0.3mmである。
The resistance heating element 11b has a pattern folded back via an electric contact portion at an end portion in the longitudinal direction, and two resistance heating elements 11b extending in the longitudinal direction are arranged side by side in the recording material transport direction. The resistance heating elements 11b located upstream and downstream in the recording material transport direction are each formed to have the same shape (no drawing shape in the pattern), and the length in the longitudinal direction is 218 mm (on both sides in the longitudinal direction with respect to the paper center O). Each has a length of 109 mm), and the length in the lateral direction is 1.0 mm.
Here, the position of the center in the longitudinal direction in the region through which the recording material is conveyed is defined as the paper center O. Further, at the longitudinal end of the heater 11, the end having an electric contact portion is referred to as a feeding portion 11d, and the end having a folded pattern is referred to as a folded portion 11e. In the present embodiment, the thermistor (not shown) is arranged at a position 25 mm outside in the longitudinal direction from the paper center O. When the position of the thermistor is shown in the figure, it is shown in the figure by using the reference numeral S.
Further, the heat conductive member 17 is a uniform metal plate made of an aluminum material (pure aluminum, alloy number A1050) as shown in FIGS. 3 (c) and 3 (d), and has a length of 218 mm in the longitudinal direction. (109 mm on each side in the longitudinal direction with respect to the center O of the paper), the width is 6 mm, and the thickness is 0.3 mm.

図4(a)は、ヒータ11の裏面に熱伝導部材17を配置しない構成の概略断面図、図5(a)は、ヒータ11の裏面に熱伝導部材17を配置した本実施形態の構成の概略断面図である。熱伝導部材17であるアルミニウムの金属板は熱膨張するため、熱伝導部材17の長手方向の両端とホルダ12との間には、1mm以上の空隙を設けた。ここで、熱伝
導部材17が接触配置されるヒータ11の裏面とは、基板11aのうち、抵抗発熱体11bが形成された面とは反対側の面をいう。
背景技術の項で述べた端部昇温が問題となる場合としては、抵抗発熱体11bの幅よりも幅が小さく、定着制御温度の高い記録材(坪量の大きな記録材)を連続的にプリントする場合が一般的に知られている。
そのため、長手方向全域の温度分布の評価方法を以下の通りとした。端部昇温部の温度が250℃を超えると定着性能や加圧ローラ20の耐久性に問題が生じ、300℃を超えるとホルダの溶解が発生し出すものとした。端部昇温の評価方法について以下に詳述する。
FIG. 4A is a schematic cross-sectional view of a configuration in which the heat conductive member 17 is not arranged on the back surface of the heater 11, and FIG. 5A is a configuration of the present embodiment in which the heat conductive member 17 is arranged on the back surface of the heater 11. It is a schematic sectional view. Since the aluminum metal plate which is the heat conductive member 17 thermally expands, a gap of 1 mm or more is provided between both ends of the heat conductive member 17 in the longitudinal direction and the holder 12. Here, the back surface of the heater 11 to which the heat conductive member 17 is contact-arranged refers to the surface of the substrate 11a opposite to the surface on which the resistance heating element 11b is formed.
When the temperature rise at the end described in the background technology section becomes a problem, a recording material (recording material with a large basis weight) having a width smaller than the width of the resistance heating element 11b and a high fixing control temperature is continuously used. The case of printing is generally known.
Therefore, the evaluation method of the temperature distribution over the entire longitudinal direction is as follows. If the temperature of the temperature riser at the end exceeds 250 ° C., problems will occur in the fixing performance and the durability of the pressure roller 20, and if the temperature exceeds 300 ° C., the holder will start to melt. The evaluation method of the end temperature rise will be described in detail below.

[長手方向全域の温度分布の評価方法]
環境:15℃/10%
紙種:A4(幅210mm)サイズ、坪量128g/mの普通紙
通紙モード:コールド状態から連続的にプリント
プリントスピード:約220mm/s
定着制御温度:230℃
上記通紙方法で、記録材を250枚通紙したとき、加圧ローラ20の表面温度をサーモトレーサ(日本アビオニクス社製TH9100)で測定した。
[Evaluation method of temperature distribution over the entire longitudinal direction]
Environment: 15 ° C / 10%
Paper type: A4 (width 210 mm) size, basis weight 128 g / m 2 plain paper Passing mode: Continuous printing from cold state Print speed: Approximately 220 mm / s
Fixing control temperature: 230 ° C
When 250 sheets of recording material were passed by the above-mentioned paper passing method, the surface temperature of the pressure roller 20 was measured with a thermotracer (TH9100 manufactured by Nippon Avionics Co., Ltd.).

図4(b)は、ヒータ11の裏面に熱伝導部材17を配置しない(比較例の)構成において、端部昇温を評価した結果について説明するための図である。
通紙領域(記録材が搬送される際に通過する領域)はサーミスタ(不図示)を用いて温度制御され、加圧ローラ20の表面温度としては80℃程度に安定している。非通紙領域では、通紙される記録材の端部位置から外側2~3mmの位置に熱的ピークを有し、最高温度は270℃であった。非通紙領域の温度は250℃を超えており、定着性能や加圧ローラの耐久性に問題の生じる温度であった。
FIG. 4B is a diagram for explaining the result of evaluating the temperature rise at the end portion in the configuration (in the comparative example) in which the heat conductive member 17 is not arranged on the back surface of the heater 11.
The temperature of the paper-passing region (the region through which the recording material is conveyed) is controlled by using a thermistor (not shown), and the surface temperature of the pressure roller 20 is stable at about 80 ° C. In the non-paper-passing region, there was a thermal peak at a position 2 to 3 mm outside from the end position of the recording material to be passed, and the maximum temperature was 270 ° C. The temperature in the non-paper-passing region exceeded 250 ° C., which caused problems in fixing performance and durability of the pressurizing roller.

図5(b)は、ヒータ11の裏面に熱伝導部材17を配置した(本実施形態の)構成において、端部昇温を評価した結果について説明するための図である。
通紙領域はサーミスタ(不図示)を用いて温度制御され、加圧ローラ20の表面温度としては80℃程度に安定している。
非通紙領域では、通紙される記録材の端部位置から外側2~3mmの位置に熱的ピークを有するものの、最高温度は230℃であり、定着性能等の問題が生じない温度に抑制できた。ヒータ11の裏面に絶縁性セラミック基板よりも熱伝導性の熱伝導部材を配置することにより、厚み方向、幅方向、長さ方向へ熱が移動しやすくなり、定着装置全体としては局所的な温度勾配が大幅に緩和される。
記録材が通紙される領域は、記録材により繰り返し奪熱され冷やされ、移動する熱の総量は、温度勾配に比例するため、端部昇温位置の熱はとりわけ通紙される領域側に移動することになる。一方、課題の項で述べたように、熱伝導部材17の長手方向の位置が規制されていないと、端部昇温の抑制効果が得られない問題が生じることが懸念される。
FIG. 5B is a diagram for explaining the result of evaluating the temperature rise at the end in the configuration (of the present embodiment) in which the heat conductive member 17 is arranged on the back surface of the heater 11.
The temperature of the paper-passing region is controlled by using a thermistor (not shown), and the surface temperature of the pressure roller 20 is stable at about 80 ° C.
In the non-paper-passing region, although there is a thermal peak at a position 2 to 3 mm outside the edge of the recording material to be passed, the maximum temperature is 230 ° C, which is suppressed to a temperature that does not cause problems such as fixing performance. did it. By arranging a heat conductive member having a heat conductivity on the back surface of the heater 11 rather than an insulating ceramic substrate, heat can be easily transferred in the thickness direction, the width direction, and the length direction, and the temperature of the entire fixing device as a whole is local. The gradient is greatly relaxed.
The area where the recording material is passed is repeatedly heat-removed and cooled by the recording material, and the total amount of heat transferred is proportional to the temperature gradient. Will move. On the other hand, as described in the section of the problem, if the position of the heat conductive member 17 in the longitudinal direction is not regulated, there is a concern that the effect of suppressing the temperature rise at the end may not be obtained.

図6は、ヒータ11の裏面に熱伝導部材17を配置した構成ではあるが、熱伝導部材17の長手方向の位置が規制されていない構成について説明するための図である。図6(a)には、図5のように熱伝導部材17が所望の位置に配置された状態を示す。そして、図6(b)には、熱伝導部材17が図の右側(給電部11d側)に1mmずれてしまった状態を示し、図6(c)には、図6(b)に示す、熱伝導部材17がずれてしまった場合の端部昇温を評価した結果を示す。
図6(c)に示すように、左側(折り返し部11e側)では、最高温度は230℃から250℃に昇温し、右側(給電部11d側)では、最高温度が230℃から210℃に良化した。最高温度が250℃に達した領域では、定着不良が発生した。
上記の現象は、端部昇温している部分の熱的ピーク位置の直下にある熱伝導部材17の熱容量が関与している。
FIG. 6 is a diagram for explaining a configuration in which the heat conductive member 17 is arranged on the back surface of the heater 11, but the position of the heat conductive member 17 in the longitudinal direction is not regulated. FIG. 6A shows a state in which the heat conductive member 17 is arranged at a desired position as shown in FIG. 6 (b) shows a state in which the heat conductive member 17 is displaced by 1 mm to the right side (feeding portion 11d side) of the figure, and FIG. 6 (c) shows a state shown in FIG. 6 (b). The result of evaluating the temperature rise at the end when the heat conduction member 17 is displaced is shown.
As shown in FIG. 6C, the maximum temperature on the left side (folded portion 11e side) rises from 230 ° C to 250 ° C, and on the right side (feeding portion 11d side), the maximum temperature rises from 230 ° C to 210 ° C. It has improved. In the region where the maximum temperature reached 250 ° C., fixing failure occurred.
The above phenomenon is related to the heat capacity of the heat conductive member 17 immediately below the thermal peak position of the portion where the temperature is raised at the end.

図6(d)、6(e)は、端部昇温している部分の熱的ピーク位置の直下の熱伝導部材17の体積を示す図である。図6(d)には、図6(b)に示す熱伝導部材17の左側(折り返し部11e側)を示しており、図6(e)には、図6(b)に示す熱伝導部材17の右側(給電部11d側)を示している。また、図6(d)では、熱伝導部材17が右側(給電部11d側)に1mmずれたことで体積が25%減ったことを示し、図6(e)では、熱伝導部材17が右側(給電部11d側)に1mmずれたことで体積が25%増えたことを示している。 6 (d) and 6 (e) are views showing the volume of the heat conductive member 17 immediately below the thermal peak position of the portion where the temperature is raised at the end. 6 (d) shows the left side (folded portion 11e side) of the heat conductive member 17 shown in FIG. 6 (b), and FIG. 6 (e) shows the heat conductive member shown in FIG. 6 (b). The right side (feeding portion 11d side) of 17 is shown. Further, FIG. 6 (d) shows that the volume is reduced by 25% because the heat conductive member 17 is displaced to the right side (feeding portion 11d side) by 1 mm, and in FIG. 6 (e), the heat conductive member 17 is on the right side. It shows that the volume increased by 25% by shifting 1 mm to (feeding portion 11d side).

本発明者らの検討結果によると、熱伝導部材17の熱容量を増やすと、熱容量を増やした位置のヒータ11の温度が下がり、端部昇温抑制効果が高いことがわかった。熱容量は、材質の質量(体積と比重の積)と比熱の積で表わされるため、熱伝導部材17の体積を増やせば熱容量が増えることになる。すなわち、本実施形態においては、熱伝導部材17の熱容量の変化量25%に対し、加圧ローラ20の表面温度としては20℃の変化量(=0.8℃/%)であった。
以上から、所望の端部昇温抑制効果を発現させるためには、熱伝導部材17が長手方向に移動してはならず、位置を規制しておく必要があることがわかる。
According to the study results of the present inventors, it was found that when the heat capacity of the heat conductive member 17 is increased, the temperature of the heater 11 at the position where the heat capacity is increased is lowered, and the effect of suppressing the temperature rise at the end is high. Since the heat capacity is represented by the product of the mass of the material (the product of the volume and the specific gravity) and the specific heat, increasing the volume of the heat conductive member 17 will increase the heat capacity. That is, in the present embodiment, the change amount of the surface temperature of the pressure roller 20 is 20 ° C. (= 0.8 ° C./%) with respect to the change amount of 25% in the heat capacity of the heat conductive member 17.
From the above, it can be seen that the heat conductive member 17 must not move in the longitudinal direction and the position must be regulated in order to exert the desired effect of suppressing the temperature rise at the end portion.

(4)実施例
以下、具体的な実施例を挙げて本発明を詳しく説明する。なお、以下に説明する実施例において、上述した実施形態と同様の構成部分については同一の符号を付して、その説明は省略する。
(実施例1)
以下に、実施例1について説明する。
図7は、本実施例における熱伝導部材17単体の寸法関係を示す概略図であり、図7(a)は斜視図、図7(b)~(d)はそれぞれ、図7(a)において矢印b~dで示す方向から見た図である。図8は、本実施例における熱伝導部材17とヒータ11の寸法関係を示す図である。
本実施例では、熱伝導部材17として、金属板を1本用いた。そして、熱伝導部材17の長手方向の位置決め構成としては、金属板と同体(一体)となる折り曲げ部(突出部)17aを設け、折り曲げ部17aをホルダ12に設けられた貫通穴に差し込み、係合させる構成とした。貫通穴は、金属板の熱膨張を吸収するために折り曲げ部17aよりも若干大きめにした。
(4) Examples The present invention will be described in detail below with reference to specific examples. In the examples described below, the same components as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted.
(Example 1)
The first embodiment will be described below.
7A and 7B are schematic views showing the dimensional relationship of the heat conductive member 17 alone in this embodiment, FIG. 7A is a perspective view, and FIGS. 7B to 7D are FIGS. 7A. It is a figure seen from the direction indicated by arrows b to d. FIG. 8 is a diagram showing a dimensional relationship between the heat conductive member 17 and the heater 11 in this embodiment.
In this embodiment, one metal plate is used as the heat conductive member 17. Then, as a positioning configuration in the longitudinal direction of the heat conductive member 17, a bent portion (protruding portion) 17a that is the same body (integral) with the metal plate is provided, and the bent portion 17a is inserted into a through hole provided in the holder 12 and engaged. It was configured to match. The through hole was made slightly larger than the bent portion 17a in order to absorb the thermal expansion of the metal plate.

ここで、金属板に折り曲げ部17aを設けた場合の、金属板の熱容量と、ヒータ11の発熱量について説明する。
金属板に折り曲げ部17aを設けた場合には、金属板のうち折り曲げ部17aを含む領域17a1の熱容量は、折り曲げ部17aを含まない領域17a2の熱容量よりも大きくなる。このとき、金属板において領域17a1と領域17a2の熱容量が異なることで、ヒータ11に局所的な温度ムラが生じてしまうことが懸念される。
そこで、本実施例では、上述した、熱容量とヒータの温度との間の関係により、ヒータ11の発熱量を次のように設定した。
ここで、ニップ部Nを加熱するヒータ11の領域のうち、熱伝導部材17の領域17a1が接触することによって、ニップ部Nを加熱する温度がコントロール(調整、変更)される領域をヒータ領域11b1とする。また、ニップ部Nを加熱するヒータ11の領域のうち、熱伝導部材17の領域17a2が接触することによって、ニップ部Nを加熱する温度がコントロールされる領域をヒータ領域11b2とする。なお、領域17a1は、金属板の短手方向に沿った領域のうち、折り曲げ部17aを含む領域(図8に示す熱伝導部材
17において点線で囲まれた領域)であり、領域17a2は、金属板のうち、領域17a1以外の領域となる。領域17a1と領域17a2は、長手方向に関しては、並んで配置されている。
このとき本実施例では、ヒータ領域11b1、および、ヒータ領域11b2でそれぞれ加熱されるニップ部Nの領域の温度の差が、ゼロになるように、ヒータ領域11b1の発熱量を、ヒータ領域11b2よりも大きく設定する。ここで、前記温度の差は、ゼロでなくてもよく、ヒータ領域11b1の発熱量とヒータ領域11b2の発熱量とを同じと仮定した場合よりも小さければよい。
Here, the heat capacity of the metal plate and the calorific value of the heater 11 when the bent portion 17a is provided on the metal plate will be described.
When the metal plate is provided with the bent portion 17a, the heat capacity of the region 17a1 of the metal plate including the bent portion 17a is larger than the heat capacity of the region 17a2 not including the bent portion 17a. At this time, there is a concern that local temperature unevenness may occur in the heater 11 due to the difference in heat capacity between the regions 17a1 and the regions 17a2 in the metal plate.
Therefore, in this embodiment, the calorific value of the heater 11 is set as follows according to the relationship between the heat capacity and the temperature of the heater described above.
Here, of the region of the heater 11 that heats the nip portion N, the region where the temperature for heating the nip portion N is controlled (adjusted or changed) by the contact with the region 17a1 of the heat conductive member 17 is the heater region 11b1. And. Further, of the region of the heater 11 that heats the nip portion N, the region where the temperature for heating the nip portion N is controlled by the contact with the region 17a2 of the heat conductive member 17 is referred to as the heater region 11b2. The region 17a1 is a region including the bent portion 17a (a region surrounded by a dotted line in the heat conductive member 17 shown in FIG. 8) among the regions along the lateral direction of the metal plate, and the region 17a2 is a metal. The area of the board is other than the area 17a1. The regions 17a1 and 17a2 are arranged side by side in the longitudinal direction.
At this time, in this embodiment, the calorific value of the heater region 11b1 is increased from the heater region 11b2 so that the temperature difference between the heater region 11b1 and the region of the nip portion N heated in the heater region 11b2 becomes zero. Also set large. Here, the difference in temperature does not have to be zero, and may be smaller than the case where the calorific value of the heater region 11b1 and the calorific value of the heater region 11b2 are assumed to be the same.

以下、本実施例について、より具体的に説明する。
熱伝導部材17は、基本的な形状は図3を用いて説明した通りであり、図7のように、材質がアルミニウム材(純アルミ、合金番号A1050)の一様な金属板で、各寸法は長さ218mm、幅6mm、厚さ0.3mmである。熱伝導部材17の長手方向の位置決め部となる折り曲げ部17aは、図7(b)、7(c)に示すように通紙中心Oから左側(折り返し部11e側)に80~84mm離れた位置に、幅4mm、長さ3mmの大きさに形成されている。なお、本実施例における定着装置の製造公差上発生し得る寄り力を鑑みた場合に、折り曲げ部17aの強度を十分に確保するために、幅は4mm以上、長さは2mm以上必要であった。
Hereinafter, this embodiment will be described in more detail.
The basic shape of the heat conductive member 17 is as described with reference to FIG. 3, and as shown in FIG. 7, the heat conductive member 17 is a uniform metal plate made of an aluminum material (pure aluminum, alloy number A1050), and has each dimension. Has a length of 218 mm, a width of 6 mm, and a thickness of 0.3 mm. As shown in FIGS. 7 (b) and 7 (c), the bent portion 17a, which is the positioning portion in the longitudinal direction of the heat conductive member 17, is located at a position 80 to 84 mm on the left side (folded portion 11e side) from the paper center O. In addition, it is formed in a size of 4 mm in width and 3 mm in length. In consideration of the leaning force that may occur due to the manufacturing tolerance of the fixing device in this embodiment, the width must be 4 mm or more and the length must be 2 mm or more in order to sufficiently secure the strength of the bent portion 17a. ..

本実施例において図8に示すヒータ11の基板11aおよび抵抗発熱体11bの形状、寸法は、金属板の折り曲げ部17aに対応するヒータ領域11b1の抵抗発熱体11bの短手方向の長さを除いては、図3に示した実施形態同様である。
ここで、金属板の折り曲げ部17aに対応するヒータ領域11b1の抵抗発熱体11bの短手方向の長さをLと定義した。ヒータ領域11b2の抵抗発熱体11bの短手方向の長さは1mmである。このとき、本実施例では、L=0.93mm(記録材搬送方向の上下流両側の抵抗発熱体パターン中に絞り形状あり)とし、L=1mm(抵抗発熱体パターン中に絞り形状なし)となる形態を比較例1とする。
本実施例では、記録材搬送方向の上下流両側の抵抗発熱体パターン中に絞り形状を設けたが、所望の発熱量が得られるものであれば、記録材搬送方向の上下流のうち片側のパターンのみに絞り形状を設けるものであってもよい。
In this embodiment, the shapes and dimensions of the substrate 11a of the heater 11 and the resistance heating element 11b shown in FIG. 8 exclude the length of the resistance heating element 11b of the heater region 11b1 corresponding to the bent portion 17a of the metal plate in the lateral direction. The same is true for the embodiment shown in FIG.
Here, the length of the resistance heating element 11b of the heater region 11b1 corresponding to the bent portion 17a of the metal plate in the lateral direction is defined as L. The length of the resistance heating element 11b in the heater region 11b2 in the lateral direction is 1 mm. At this time, in this embodiment, L = 0.93 mm (there is a drawing shape in the resistance heating element pattern on both the upstream and downstream sides in the recording material transport direction), and L = 1 mm (there is no drawing shape in the resistance heating element pattern). This form is referred to as Comparative Example 1.
In this embodiment, a diaphragm shape is provided in the resistance heating element pattern on both the upstream and downstream sides in the recording material transport direction, but if a desired calorific value can be obtained, one of the upstream and downstream sides in the recording material transport direction can be obtained. The aperture shape may be provided only on the pattern.

本実施例および比較例1の性能評価を行うにあたって、(3)項で詳述した長手方向全域における温度分布を測定した。図9(a)は、比較例1の長手方向全域における温度分布測定結果を示す図である。通紙される記録材の、ニップ部Nにおける端部の位置から外側2~3mmの位置に熱的ピークを有するものの、最高温度は230℃であり、熱伝導部材17である金属板の効果により端部昇温を十分抑制できた。
しかしながら、金属板の折り曲げ部17aに対応する加圧ローラ表面温度が、周囲温度よりも低くなり温度ムラとなった。温度ムラは約10℃であり、これに起因して定着不良が発生する場合があった。
比較例1および本実施例では、金属板が長手方向に移動しないよう金属板と同体の折り曲げ部17aを設けたが、比較例1では、折り曲げ部17aを設けたことによって、その部分の熱容量が周囲よりも増え、定着装置として温度の低い箇所が発生してしまった。
In the performance evaluation of this example and comparative example 1, the temperature distribution in the entire longitudinal direction detailed in the section (3) was measured. FIG. 9A is a diagram showing the temperature distribution measurement results in the entire longitudinal direction of Comparative Example 1. Although the recording material to be passed has a thermal peak at a position 2 to 3 mm outside from the position of the end portion of the nip portion N, the maximum temperature is 230 ° C. due to the effect of the metal plate which is the heat conductive member 17. The temperature rise at the end could be sufficiently suppressed.
However, the surface temperature of the pressure roller corresponding to the bent portion 17a of the metal plate became lower than the ambient temperature, resulting in temperature unevenness. The temperature unevenness was about 10 ° C., which may cause fixing failure.
In Comparative Example 1 and this embodiment, a bent portion 17a that is the same as the metal plate is provided so that the metal plate does not move in the longitudinal direction. However, in Comparative Example 1, the heat capacity of that portion is increased by providing the bent portion 17a. It increased more than the surroundings, and there were places where the temperature was low as a fixing device.

図9(b)は、本実施例の長手方向全域の温度分布測定結果を示す図である。比較例1の結果と同様に、通紙される記録材の、ニップ部Nにおける端部の位置から外側2~3mmの位置に熱的ピークを有するものの、最高温度は230℃であり、熱伝導部材17である金属板の効果により端部昇温を十分抑制できた。さらには、金属板の折り曲げ部17aにおいて、比較例1で発生したような温度ムラはなく、画像不良も発生しなかった。
これは、折り曲げ部17aを設けたことで熱容量が周囲よりも大きくなる金属板の領域17a1に対応する抵抗発熱体パターンのヒータ領域11b1に、絞り形状を設けたこと
で、この絞り形状を設けたヒータ領域11b1の発熱量が大きくなったためである。すなわち、定着装置として温度が低くなることが懸念される領域に対して、抵抗発熱体パターン中に絞り形状を設けることでヒータの発熱量を増やしたためである。
FIG. 9B is a diagram showing the temperature distribution measurement results over the entire longitudinal direction of this embodiment. Similar to the result of Comparative Example 1, the recording material to be passed has a thermal peak at a position 2 to 3 mm outside from the position of the end portion in the nip portion N, but the maximum temperature is 230 ° C. and heat conduction. Due to the effect of the metal plate which is the member 17, the temperature rise at the end could be sufficiently suppressed. Furthermore, in the bent portion 17a of the metal plate, there was no temperature unevenness as occurred in Comparative Example 1, and no image defect occurred.
This is because the drawing shape is provided in the heater region 11b1 of the resistance heating element pattern corresponding to the region 17a1 of the metal plate whose heat capacity becomes larger than the surroundings by providing the bent portion 17a. This is because the amount of heat generated in the heater region 11b1 has increased. That is, the amount of heat generated by the heater is increased by providing a diaphragm shape in the resistance heating element pattern in a region where the temperature is a concern as a fixing device.

以上説明したように、本実施例によれば、熱伝導部材17に位置決め部を設けた場合であっても、位置決め部に対応する領域のヒータ11の発熱量を増やすことで、熱伝導部材17の端部昇温抑制効果を維持しつつ、局所的な温度ムラを抑制することができる。これにより、より良好な画像を得ることが可能となる。 As described above, according to the present embodiment, even when the heat conductive member 17 is provided with the positioning portion, the heat conduction member 17 is generated by increasing the calorific value of the heater 11 in the region corresponding to the positioning portion. It is possible to suppress local temperature unevenness while maintaining the effect of suppressing the temperature rise at the end of the surface. This makes it possible to obtain a better image.

ここで、本実施例では、熱伝導部材17に、折り曲げ部17aが位置決め部として設けられた場合において、局所的な温度ムラを抑制する形態について説明したが、これに限るものではない。ヒータの温度分布を均一化するための熱伝導部材が、熱容量の異なる複数の領域で構成される場合であれば、本発明を好適に適用することができる。
すなわち、熱伝導部材のなかで熱容量が他の領域より大きく(小さく)なる領域が存在する場合に、当該領域に対応するヒータの領域の発熱量を大きく(小さく)することで、熱伝導部材の端部昇温抑制効果を維持しつつ、局所的な温度ムラを抑制することができる。
また、本実施例では、折り曲げ部17aは、金属板に同体となるものであったが、これに限るものではなく、金属板とは別体に構成されるものであってもよい。
Here, in this embodiment, when the heat conductive member 17 is provided with the bent portion 17a as the positioning portion, a mode for suppressing local temperature unevenness has been described, but the present invention is not limited to this. The present invention can be suitably applied when the heat conductive member for making the temperature distribution of the heater uniform is composed of a plurality of regions having different heat capacities.
That is, when there is a region in the heat conductive member in which the heat capacity is larger (smaller) than in other regions, the heat generation amount in the region of the heater corresponding to the region is increased (smaller), thereby causing the heat conductive member. It is possible to suppress local temperature unevenness while maintaining the effect of suppressing the temperature rise at the end.
Further, in the present embodiment, the bent portion 17a is the same as the metal plate, but the present invention is not limited to this, and the bent portion 17a may be configured as a separate body from the metal plate.

(実施例2)
以下に、実施例2について説明する。本実施例において、実施例1と同様の構成部分については同一の符号を付して、その説明は省略する。
図10(a)は、本実施例における熱伝導部材17とヒータ11の寸法関係を示す図であり、図10(b)は、本実施例における熱伝導部材17単体を示す概略斜視図である。図11は、本実施例におけるホルダ12の断面形状を説明するための概略図である。
本実施例においても、実施例1同様、熱伝導部材17として、金属板を1本用いた。熱伝導部材17の長手方向の位置決め構成として、実施例1では、折り曲げ部17aを設けたが、本実施例では、次のような凹部17bを設けた。すなわち、本実施例では、金属板の一部に、短手方向の幅が周囲よりも狭くなる形状(以下、幅狭部17c)を形成することで凹部17bを設け、この凹部17bをホルダ12に設けられたボス12aに嵌合(係合)させた。
(Example 2)
The second embodiment will be described below. In this embodiment, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
FIG. 10A is a diagram showing a dimensional relationship between the heat conductive member 17 and the heater 11 in this embodiment, and FIG. 10B is a schematic perspective view showing a single heat conductive member 17 in this embodiment. .. FIG. 11 is a schematic view for explaining the cross-sectional shape of the holder 12 in this embodiment.
In this embodiment as well, as in the first embodiment, one metal plate was used as the heat conductive member 17. As a positioning configuration in the longitudinal direction of the heat conductive member 17, the bent portion 17a is provided in the first embodiment, but the following recess 17b is provided in the present embodiment. That is, in this embodiment, a recess 17b is provided by forming a shape in which the width in the lateral direction is narrower than the surroundings (hereinafter referred to as the narrow portion 17c) in a part of the metal plate, and the recess 17b is used as the holder 12. It was fitted (engaged) with the boss 12a provided in the above.

ここで、金属板に凹部17bを設けた場合の、金属板の熱容量と、ヒータ11の発熱量について説明する。
金属板に凹部17bを設けることで、金属板のうち幅狭部17c(短手方向において凹部17bを含む領域)の熱容量は、幅狭部17c以外の領域(短手方向において凹部17bを含まない領域)17c1の熱容量よりも小さくなる。このとき、金属板において幅狭部17cと領域17c1の熱容量が異なることで、ヒータ11に局所的な温度ムラが生じてしまうことが懸念される。
そこで、本実施例では、ヒータ11の発熱量を次のように設定した。ここで、ニップ部Nを加熱するヒータ11の領域のうち、熱伝導部材17の幅狭部17cが接触することによって、ニップ部Nを加熱する温度がコントロールされる領域をヒータ領域11b3とする。また、本実施例では、ヒータ領域11b2は、ニップ部Nを加熱するヒータ11の領域のうち、熱伝導部材17の領域17c1が接触することによって、ニップ部Nを加熱する温度がコントロールされる領域となる。
このとき本実施例では、ヒータ領域11b2、および、ヒータ領域11b3でそれぞれ加熱されるニップ部Nの領域の温度の差が、ゼロになるように、ヒータ領域11b3の発熱量を、ヒータ領域11b2よりも小さく設定する。ここで、前記温度の差は、ゼロでなくてもよく、ヒータ領域11b2の発熱量とヒータ領域11b3の発熱量とを同じと仮定
した場合よりも小さければよい。
Here, the heat capacity of the metal plate and the calorific value of the heater 11 when the recess 17b is provided in the metal plate will be described.
By providing the recess 17b in the metal plate, the heat capacity of the narrow portion 17c (the region including the recess 17b in the lateral direction) of the metal plate does not include the recess 17b in the region other than the narrow portion 17c (the region including the recess 17b in the lateral direction). Region) smaller than the heat capacity of 17c1. At this time, there is a concern that local temperature unevenness may occur in the heater 11 due to the difference in heat capacity between the narrow portion 17c and the region 17c1 in the metal plate.
Therefore, in this embodiment, the calorific value of the heater 11 is set as follows. Here, in the region of the heater 11 that heats the nip portion N, the region where the temperature for heating the nip portion N is controlled by the contact with the narrow portion 17c of the heat conductive member 17 is referred to as the heater region 11b3. Further, in the present embodiment, the heater region 11b2 is a region in the region of the heater 11 that heats the nip portion N, in which the temperature for heating the nip portion N is controlled by contact with the region 17c1 of the heat conductive member 17. It becomes.
At this time, in this embodiment, the calorific value of the heater region 11b3 is increased from the heater region 11b2 so that the temperature difference between the heater region 11b2 and the region of the nip portion N heated in the heater region 11b3 becomes zero. Also set small. Here, the difference in temperature does not have to be zero, and may be smaller than the case where the calorific value of the heater region 11b2 and the calorific value of the heater region 11b3 are assumed to be the same.

以下、本実施例について、より具体的に説明する。
熱伝導部材17は、実施例1同様の金属板であり、長さ218mm、幅6mm、厚さ0.3mmである。熱伝導部材17の長手方向の位置決め部となる凹部17bは、図10(a)に示すように、通紙中心Oから左側(折り返し部11e側)に80~84mm離れた位置に、幅4mm、深さ3mmの大きさに形成されている。
本実施例において図10(a)に示すヒータ11の基板11aおよび抵抗発熱体11bの形状、寸法は、金属板の凹部17bに対応する位置の抵抗発熱体11bの短手方向の長さを除いては、図8に示した実施例1同様である。金属板の凹部17bに対応するヒータ領域11b3の抵抗発熱体11bの短手方向の長さは、説明の便宜上、本実施例においてもLと定義した。
ここで、本実施例では、L=1.07mm(記録材搬送方向の上下流両側の抵抗発熱体パターン中に逆絞り形状あり)とし、L=1mm(抵抗発熱体パターン中に絞り形状なし)となる形態を比較例2とする。
Hereinafter, this embodiment will be described in more detail.
The heat conductive member 17 is a metal plate similar to that of the first embodiment, and has a length of 218 mm, a width of 6 mm, and a thickness of 0.3 mm. As shown in FIG. 10A, the recess 17b, which is the positioning portion in the longitudinal direction of the heat conductive member 17, has a width of 4 mm at a position 80 to 84 mm on the left side (folded portion 11e side) from the center O of the paper. It is formed to a depth of 3 mm.
In this embodiment, the shapes and dimensions of the substrate 11a and the resistance heating element 11b of the heater 11 shown in FIG. 10A exclude the length of the resistance heating element 11b at the position corresponding to the recess 17b of the metal plate in the lateral direction. This is the same as in Example 1 shown in FIG. For convenience of explanation, the length of the resistance heating element 11b in the heater region 11b3 corresponding to the recess 17b of the metal plate in the lateral direction is also defined as L in this embodiment.
Here, in this embodiment, L = 1.07 mm (there is a reverse drawing shape in the resistance heating element pattern on both the upstream and downstream sides in the recording material transport direction), and L = 1 mm (there is no drawing shape in the resistance heating element pattern). Let's refer to Comparative Example 2 in this form.

本実施例および比較例2の性能評価を行うにあたって、(3)項で詳述した長手方向全域における温度分布を測定した。図12(a)は、比較例2の長手方向全域における温度分布測定結果を示す図である。
比較例2においても、比較例1同様、熱伝導部材17である金属板の効果により端部昇温を十分抑制できた。しかしながら、金属板の凹部17bに対応する加圧ローラ表面温度が、周囲温度よりも高くなり温度ムラとなった。温度ムラは約10℃であり、これに起因して定着不良が発生する場合があった。
比較例2および本実施例では、金属板が長手方向に移動しないよう金属板に凹部17bを設けたが、比較例2では、凹部17bを設けたことによって、その部分の熱容量が周囲よりも減り、定着装置として温度の高い箇所が発生してしまった。
In the performance evaluation of this example and comparative example 2, the temperature distribution in the entire longitudinal direction detailed in the section (3) was measured. FIG. 12A is a diagram showing the temperature distribution measurement results in the entire longitudinal direction of Comparative Example 2.
In Comparative Example 2, as in Comparative Example 1, the temperature rise at the end could be sufficiently suppressed by the effect of the metal plate which is the heat conductive member 17. However, the surface temperature of the pressurized roller corresponding to the recess 17b of the metal plate became higher than the ambient temperature, resulting in temperature unevenness. The temperature unevenness was about 10 ° C., which may cause fixing failure.
In Comparative Example 2 and this embodiment, the concave portion 17b is provided in the metal plate so that the metal plate does not move in the longitudinal direction, but in Comparative Example 2, the heat capacity of the portion is reduced as compared with the surroundings by providing the concave portion 17b. , A place with high temperature has occurred as a fixing device.

図12(b)は、本実施例の長手方向全域の温度分布測定結果を示す図である。比較例2、実施例1の結果と同様に、熱伝導部材17である金属板の効果により端部昇温を十分抑制できた。さらには、金属板の凹部17bにおいて、比較例2で発生した温度ムラは約2℃と大きく改善され、定着不良も発生しなかった。
これは、凹部17bを設けたことで熱容量が周囲よりも小さくなる金属板の幅狭部17cに対応する抵抗発熱体パターンのヒータ領域11b3に、逆絞り形状を設けたことで、この逆絞り形状を設けたヒータ領域11b3の発熱量が小さくなったためである。すなわち、定着装置として温度が高くなることが懸念される領域に対して、抵抗発熱体パターン中に逆絞り形状を設けることでヒータの発熱量を減らしたためである。
FIG. 12B is a diagram showing the temperature distribution measurement results over the entire longitudinal direction of this embodiment. Similar to the results of Comparative Example 2 and Example 1, the temperature rise at the end could be sufficiently suppressed by the effect of the metal plate which is the heat conductive member 17. Further, in the recess 17b of the metal plate, the temperature unevenness generated in Comparative Example 2 was greatly improved to about 2 ° C., and no fixing failure occurred.
This is because the reverse drawing shape is provided in the heater region 11b3 of the resistance heating element pattern corresponding to the narrow portion 17c of the metal plate whose heat capacity is smaller than that of the surroundings by providing the recess 17b. This is because the amount of heat generated in the heater region 11b3 provided with the above is reduced. That is, the amount of heat generated by the heater is reduced by providing a reverse throttle shape in the resistance heating element pattern in the region where the temperature is a concern as a fixing device.

以上説明したように、本実施例によれば、熱伝導部材17に凹部17bを設けた場合には、対応するヒータ領域11b3の発熱量を減らすことで、熱伝導部材17の端部昇温抑制効果を維持しつつ、局所的な温度ムラを抑制することができる。これにより、より良好な画像を得ることが可能となる。 As described above, according to the present embodiment, when the recess 17b is provided in the heat conductive member 17, the heat generation amount of the corresponding heater region 11b3 is reduced to suppress the temperature rise at the end of the heat conductive member 17. Local temperature unevenness can be suppressed while maintaining the effect. This makes it possible to obtain a better image.

(実施例3)
以下に、実施例3について説明する。本実施例において、実施例1,2と同様の構成部分については同一の符号を付して、その説明は省略する。
図13は、本実施例における熱伝導部材17それぞれの単体での寸法関係を示す概略図であり、図13(a)は斜視図、図13(b)~(d)はそれぞれ、図13(a)において矢印b~dで示す方向から見た図である。図14は、本実施例における熱伝導部材17とヒータ11の寸法関係を示す図である。
本実施例では、熱伝導部材17である金属板を、長手方向に沿って、間隙を設けて複数
配置する場合について説明するもので、以下の説明では、金属板を2本用いる場合について説明する。本実施例では、長手方向に沿って配置された2本の熱伝導部材17の間の領域(金属板の存在しない区間、間隙部分)を空隙部18という。
(Example 3)
The third embodiment will be described below. In the present embodiment, the same components as those in the first and second embodiments are designated by the same reference numerals, and the description thereof will be omitted.
13 is a schematic view showing the dimensional relationship of each of the heat conductive members 17 in this embodiment as a single unit, FIG. 13 (a) is a perspective view, and FIGS. 13 (b) to 13 (d) are FIGS. 13 (d), respectively. It is a figure seen from the direction indicated by arrows b to d in a). FIG. 14 is a diagram showing the dimensional relationship between the heat conductive member 17 and the heater 11 in this embodiment.
In this embodiment, a case where a plurality of metal plates, which are heat conductive members 17, are arranged with a gap provided along the longitudinal direction will be described, and in the following description, a case where two metal plates are used will be described. .. In this embodiment, the region between the two heat conductive members 17 arranged along the longitudinal direction (the section where the metal plate does not exist, the gap portion) is referred to as a gap portion 18.

ここで、金属板を、長手方向に沿って、間隙を設けて複数配置した場合の、ヒータ11の発熱量について説明する。
金属板を、長手方向に沿って、間隙を設けて複数配置した場合、空隙部18に対応するヒータ11のヒータ領域11b4に対しては、金属板が接触配置されていないため、ヒータ11に局所的な温度ムラが生じてしまうことが懸念される。
本実施例では、ヒータ領域11b4、および、ヒータ領域11b2でそれぞれ加熱されるニップ部Nの領域の温度の差が、ゼロになるように、ヒータ領域11b4の発熱量を、ヒータ領域11b2よりも小さく設定する。ここで、前記温度の差は、ゼロでなくてもよく、ヒータ領域11b4の発熱量とヒータ領域11b2の発熱量とを同じと仮定した場合よりも小さければよい。
なお、本実施例では、各金属板の位置決め構成は、実施例1同様とし、各熱伝導部材17に設けられた折り曲げ部17aをそれぞれ、ホルダ12に複数設けられた貫通穴にそれぞれ差し込む構成とした。金属板に折り曲げ部17aを設けることで、金属板のなかで熱容量が異なる領域が存在することとなるが、このときの、熱容量が異なる金属板の領域にそれぞれ対応するヒータ11のヒータ領域の発熱量の設定に関しては、実施例1と同様である。
Here, the calorific value of the heater 11 when a plurality of metal plates are arranged with a gap provided along the longitudinal direction will be described.
When a plurality of metal plates are arranged along the longitudinal direction with a gap provided, the metal plates are not contact-arranged with respect to the heater region 11b4 of the heater 11 corresponding to the gap portion 18, so that the metal plates are locally arranged on the heater 11. There is a concern that temperature unevenness will occur.
In this embodiment, the calorific value of the heater region 11b4 is made smaller than that of the heater region 11b2 so that the temperature difference between the heater region 11b4 and the region of the nip portion N heated in the heater region 11b2 becomes zero. Set. Here, the difference in temperature does not have to be zero, and may be smaller than the case where the calorific value of the heater region 11b4 and the calorific value of the heater region 11b2 are assumed to be the same.
In this embodiment, the positioning configuration of each metal plate is the same as that of the first embodiment, and each of the bent portions 17a provided in each heat conductive member 17 is inserted into a plurality of through holes provided in the holder 12. did. By providing the bent portion 17a on the metal plate, there are regions in the metal plate having different heat capacities. At this time, heat generation in the heater region of the heater 11 corresponding to the regions of the metal plates having different heat capacities. The amount is set in the same manner as in the first embodiment.

以下、本実施例について、より具体的に説明する。
熱伝導部材17は、実施例1同様の金属板であり、それぞれ、長さ106.5mm、幅6mm、厚さ0.3mmである。
本実施例において2本の金属板は、図13(b)に示すように通紙中心Oに対して長手方向に対称となるように配置されている。そして、熱伝導部材17の長手方向の位置決め部となる折り曲げ部17aは、2本の金属板に対して、図13(c)に示すように通紙中心Oから長手方向両側にそれぞれ80~84mm離れた位置に、幅4mm、長さ3mmの大きさに形成されている。また、2本の熱伝導部材17は、長手方向に5mmの間隔をあけて配置されている。
Hereinafter, this embodiment will be described in more detail.
The heat conductive member 17 is a metal plate similar to that of the first embodiment, and has a length of 106.5 mm, a width of 6 mm, and a thickness of 0.3 mm, respectively.
In this embodiment, the two metal plates are arranged so as to be symmetrical in the longitudinal direction with respect to the paper center O as shown in FIG. 13 (b). Then, as shown in FIG. 13 (c), the bent portion 17a, which is the positioning portion in the longitudinal direction of the heat conductive member 17, is 80 to 84 mm on both sides in the longitudinal direction from the center O of the paper, respectively, with respect to the two metal plates. It is formed at a distance of 4 mm in width and 3 mm in length. Further, the two heat conductive members 17 are arranged at intervals of 5 mm in the longitudinal direction.

本実施例において図14に示すヒータ11の基板11aおよび抵抗発熱体11bの形状、寸法は、金属板の折り曲げ部17aおよび空隙部18に対応する抵抗発熱体11bの領域の短手方向の長さを除いては、図8に示した実施例1同様である。
図14に示すように本実施例においては、折り曲げ部17aに対応するヒータ領域11b1の抵抗発熱体11bの短手方向の長さをそれぞれL1、L2と定義した。さらには、空隙部18に対応するヒータ領域11b4の抵抗発熱体11bの短手方向の長さをL3と定義した。本実施例では、L1=0.93mm、L2=0.93mm、L3=1.1mm(記録材搬送方向の上下流両側の抵抗発熱体パターン中に一部絞り、一部逆絞り形状あり)とする。また、L1,L2,L3=1mm(抵抗発熱体パターン中に絞り形状なし)となる形態を比較例3とする。
In this embodiment, the shape and dimensions of the substrate 11a and the resistance heating element 11b of the heater 11 shown in FIG. 14 are the length in the lateral direction of the region of the resistance heating element 11b corresponding to the bent portion 17a and the gap portion 18 of the metal plate. Except for the above, the same as in Example 1 shown in FIG.
As shown in FIG. 14, in this embodiment, the lengths of the resistance heating element 11b of the heater region 11b1 corresponding to the bent portion 17a in the lateral direction are defined as L1 and L2, respectively. Further, the length of the resistance heating element 11b in the heater region 11b4 corresponding to the gap 18 in the lateral direction is defined as L3. In this embodiment, L1 = 0.93 mm, L2 = 0.93 mm, L3 = 1.1 mm (partially drawn in the resistance heating element pattern on both the upstream and downstream sides in the recording material transport direction, and some have a reverse drawing shape). do. Further, a form in which L1, L2, L3 = 1 mm (no drawing shape in the resistance heating element pattern) is referred to as Comparative Example 3.

本実施例および比較例3の性能評価を行うにあたって、(3)項で詳述した長手方向全域における温度分布を測定した。図15(a)は、比較例3の長手方向全域における温度分布測定結果を示す図である。
比較例3においても、比較例1同様、熱伝導部材17ある各金属板の効果により端部昇温を十分抑制できた。しかしながら、各金属板の折り曲げ部17aに対応する加圧ローラ表面温度が、周囲温度よりも低くなり温度ムラとなった。温度ムラは約10℃であり、これに起因して定着不良が発生する場合があった。
さらには、空隙部18において、周囲温度よりも温度が高くなり温度ムラとなった。温
度ムラは約20℃であり、こちらも定着不良が発生する場合があった。
In the performance evaluation of this example and comparative example 3, the temperature distribution in the entire longitudinal direction detailed in the section (3) was measured. FIG. 15A is a diagram showing the temperature distribution measurement results in the entire longitudinal direction of Comparative Example 3.
In Comparative Example 3, as in Comparative Example 1, the temperature rise at the end could be sufficiently suppressed by the effect of each metal plate having the heat conductive member 17. However, the surface temperature of the pressure roller corresponding to the bent portion 17a of each metal plate became lower than the ambient temperature, resulting in temperature unevenness. The temperature unevenness was about 10 ° C., which may cause fixing failure.
Further, in the void portion 18, the temperature became higher than the ambient temperature, resulting in temperature unevenness. The temperature unevenness was about 20 ° C., and fixing defects sometimes occurred here as well.

図15(b)は、本実施例の長手方向全域の温度分布測定結果を示す図である。比較例3、実施例1の結果と同様に、熱伝導部材17である各金属板の効果により端部昇温を十分抑制できた。金属板の折り曲げ部17において、比較例3で発生したような温度ムラは約2℃と大きく改善され、定着不良も発生しなかった。
これは実施例1同様、折り曲げ部17aを設けたことで熱容量が周囲よりも大きくなる金属板の領域に対応する抵抗発熱体パターンの領域に、絞り形状を設けることで、この絞り形状を設けた抵抗発熱体パターン領域の発熱量が大きくなったためである。すなわち、定着装置として温度が低くなることが懸念される領域に対して、抵抗発熱体パターン中に絞り形状を設けることでヒータの発熱量を増やしたためである。
FIG. 15B is a diagram showing the temperature distribution measurement results over the entire longitudinal direction of this embodiment. Similar to the results of Comparative Example 3 and Example 1, the temperature rise at the end could be sufficiently suppressed by the effect of each metal plate which is the heat conductive member 17. In the bent portion 17 of the metal plate, the temperature unevenness as in Comparative Example 3 was greatly improved to about 2 ° C., and no fixing failure occurred.
As in the first embodiment, this drawing shape is provided by providing a drawing shape in the region of the resistance heating element pattern corresponding to the region of the metal plate whose heat capacity becomes larger than the surroundings by providing the bent portion 17a. This is because the amount of heat generated in the resistance heating element pattern region has increased. That is, the amount of heat generated by the heater is increased by providing a diaphragm shape in the resistance heating element pattern in a region where the temperature is a concern as a fixing device.

また、空隙部18において、比較例3で発生したような温度ムラは約3℃と大きく改善され、画像不良も発生しなかった。
これは、熱容量が周囲よりも小さくなる空隙部18に対応する抵抗発熱体パターンの領域に、逆絞り形状を設けることで、この逆絞り形状を設けた抵抗発熱体パターン領域の発熱量が小さくなったためである。すなわち、定着装置として温度が高くなることが懸念される領域に対して、抵抗発熱体パターン中に逆絞り形状を設けることでヒータの発熱量を減らしたためである。
Further, in the gap portion 18, the temperature unevenness as in Comparative Example 3 was greatly improved to about 3 ° C., and no image defect occurred.
This is because the reverse drawing shape is provided in the region of the resistance heating element pattern corresponding to the void portion 18 whose heat capacity is smaller than the surroundings, so that the amount of heat generated in the resistance heating element pattern region provided with the reverse drawing shape is reduced. This is because of the heat. That is, the amount of heat generated by the heater is reduced by providing a reverse throttle shape in the resistance heating element pattern in the region where the temperature is a concern as a fixing device.

以上説明したように、本実施例では、熱伝導部材である金属板を複数用いた場合において、熱伝導部材17の位置決め部ではヒータ11の発熱量を増やし、さらには金属板が接触していないヒータ領域(空隙部)ではヒータの発熱量を減らしている。このことで、熱伝導部材17の端部昇温抑制効果を維持しつつ、局所的な温度ムラを抑制することができるので、より良好な画像を得ることが可能となる。 As described above, in the present embodiment, when a plurality of metal plates as heat conductive members are used, the heat generation amount of the heater 11 is increased at the positioning portion of the heat conductive member 17, and the metal plates are not in contact with each other. In the heater region (gap), the amount of heat generated by the heater is reduced. As a result, it is possible to suppress local temperature unevenness while maintaining the effect of suppressing the temperature rise at the end of the heat conductive member 17, so that a better image can be obtained.

ここで、本実施例においては、各金属板の位置決め構成として、実施例1同様、折り曲げ部17aを設けた場合について説明したが、これに限るものではない。各金属板の位置決め構成として、例えば実施例2の凹部17bを設けるものであってもよい。また、本実施例においては、各金属板に対して、それぞれ位置決め構成を設けるものであったが、これに限るものではない。また、熱伝導部材17である金属板を、長手方向に沿って、間隙を設けて複数配置する場合には、各金属板に対して、それぞれ位置決め構成が設けられていない場合であっても、空隙部の存在により、ヒータ11に局所的な温度ムラが生じてしまうことが懸念される。このような場合には、空隙部18に対応するヒータ11のヒータ領域11b4、および、金属板が接触するヒータ11の領域(以下、接触領域)でそれぞれ加熱されるニップ部Nの領域の温度の差が、ゼロになるように、発熱量を設定すればよい。すなわち、前記温度の差が、ゼロになるように、ヒータ領域11b4の発熱量を、接触領域よりも小さく設定すればよい。ここで、前記温度の差は、ゼロでなくてもよく、ヒータ領域11b4の発熱量と接触領域の発熱量とを同じと仮定した場合よりも小さければよい。 Here, in the present embodiment, the case where the bent portion 17a is provided as the positioning configuration of each metal plate as in the first embodiment has been described, but the present invention is not limited to this. As the positioning configuration of each metal plate, for example, the recess 17b of the second embodiment may be provided. Further, in the present embodiment, the positioning configuration is provided for each metal plate, but the present invention is not limited to this. Further, when a plurality of metal plates, which are heat conductive members 17, are arranged with a gap along the longitudinal direction, even if a positioning configuration is not provided for each metal plate, the metal plates may not be provided. There is a concern that local temperature unevenness may occur in the heater 11 due to the presence of the void portion. In such a case, the temperature of the heater region 11b4 of the heater 11 corresponding to the gap portion 18 and the region of the nip portion N heated in the region of the heater 11 in contact with the metal plate (hereinafter referred to as the contact region), respectively. The calorific value may be set so that the difference becomes zero. That is, the calorific value of the heater region 11b4 may be set to be smaller than that of the contact region so that the temperature difference becomes zero. Here, the difference in temperature does not have to be zero, and may be smaller than the case where the calorific value of the heater region 11b4 and the calorific value of the contact region are assumed to be the same.

6…定着装置、11…ヒータ、11b1,11b2…ヒータ領域、13…定着フィルム、17…熱伝導部材、17a1,17a2…領域、20…加圧ローラ、N…ニップ部 6 ... Fixing device, 11 ... Heater, 11b1, 11b2 ... Heater region, 13 ... Fixing film, 17 ... Heat conductive member, 17a1, 17a2 ... Region, 20 ... Pressurized roller, N ... Nip portion

Claims (8)

基板と、前記基板に配置された発熱体とを含むヒータと、
前記ヒータに接触配置され、前記ヒータの長手方向における温度分布を均一化するための熱伝導部材と、
回転可能に設けられ、前記ヒータに摺動する可撓性スリーブと、
前記可撓性スリーブを介して前記ヒータとニップ部を形成する加圧部材と、
を有し、
前記ニップ部における前記可撓性スリーブと前記加圧部材との間で、現像剤像が形成された記録材を挟持搬送して加熱する像加熱装置において、
前記熱伝導部材には、第1領域と、前記第1領域よりも前記長手方向における単位長さ当たりの熱容量が小さい第2領域と、が設けられ、
前記ヒータは、
前記第1領域と接触する第1ヒータ領域と、
前記第2領域と接触する第2ヒータ領域と、
が設けられ、
前記第1領域に対応する第1発熱体全域の前記長手方向と直交する方向における幅の長さは第1長さであり、前記第2領域に対応する第2発熱体全域の前記幅の長さは前記第1長さよりも長い第2長さであり、
前記第1ヒータ領域の前記長手方向における単位長さ当たりの発熱量は、前記第2ヒータ領域の前記長手方向における単位長さ当たりの発熱量よりも大きく設定されていることを特徴とする像加熱装置。
A heater containing a substrate and a heating element arranged on the substrate,
A heat conductive member that is contact-arranged with the heater and for uniformizing the temperature distribution in the longitudinal direction of the heater.
A flexible sleeve that is rotatably provided and slides on the heater,
A pressure member forming the heater and the nip portion via the flexible sleeve,
Have,
In an image heating device that sandwiches, conveys, and heats a recording material on which a developer image is formed between the flexible sleeve and the pressure member in the nip portion.
The heat conductive member is provided with a first region and a second region having a smaller heat capacity per unit length in the longitudinal direction than the first region.
The heater is
The first heater region in contact with the first region and
The second heater region in contact with the second region and
Is provided,
The length of the width of the entire first heating element corresponding to the first region in the direction orthogonal to the longitudinal direction is the first length, and the length of the width of the entire second heating element corresponding to the second region. Is a second length that is longer than the first length.
The calorific value per unit length of the first heater region in the longitudinal direction is set to be larger than the calorific value per unit length of the second heater region in the longitudinal direction. Device.
前記熱伝導部材を保持する保持部材を有し、
前記熱伝導部材の前記第1領域には、前記保持部材に係合する突出部が設けられ、
前記第1領域は、前記突出部を有することで、前記第2領域よりも熱容量が大きいことを特徴とする請求項1に記載の像加熱装置。
It has a holding member that holds the heat conductive member, and has
A protrusion that engages with the holding member is provided in the first region of the heat conductive member.
The image heating device according to claim 1, wherein the first region has a heat capacity larger than that of the second region by having the protruding portion.
前記突出部は、前記ニップ部の長手方向において前記保持部材に対する前記熱伝導部材の位置決めを行う位置決め部であることを特徴とする請求項2に記載の像加熱装置。 The image heating device according to claim 2, wherein the protruding portion is a positioning portion for positioning the heat conductive member with respect to the holding member in the longitudinal direction of the nip portion. 前記熱伝導部材は、前記長手方向に沿って、間隙を設けて複数配置され、
前記ヒータには、複数の前記熱伝導部材のうち隣り合う熱伝導部材の間の間隙部分に対応する第3ヒータ領域が設けられ、
前記第3ヒータ領域の発熱量は、前記第1ヒータ領域または前記第2ヒータ領域の発熱量よりも小さく設定されていることを特徴とする請求項1乃至のいずれか1項に記載の像加熱装置。
A plurality of the heat conductive members are arranged with a gap along the longitudinal direction.
The heater is provided with a third heater region corresponding to a gap portion between adjacent heat conductive members among the plurality of heat conductive members.
The image according to any one of claims 1 to 3 , wherein the calorific value of the third heater region is set to be smaller than the calorific value of the first heater region or the second heater region. Heating device.
前記発熱体は、前記基板上において前記長手方向に延びるように形成されており、
前記発熱体における前記長手方向に直交する方向において、前記第3ヒータ領域の発熱体の幅が、前記第1ヒータ領域の発熱体及び前記第2ヒータ領域の発熱体よりも広く形成されることで、前記第3ヒータ領域の発熱量は、前記第1ヒータ領域または前記第2ヒータ領域の発熱量よりも小さく設定されることを特徴とする請求項に記載の像加熱装置。
The heating element is formed on the substrate so as to extend in the longitudinal direction.
By forming the width of the heating element in the third heater region wider than that in the heating element in the first heater region and the heating element in the second heater region in the direction orthogonal to the longitudinal direction of the heating element. The image heating device according to claim 4 , wherein the heat generation amount in the third heater region is set to be smaller than the heat generation amount in the first heater region or the second heater region.
基板と、前記基板に配置された発熱体とを含むヒータと、
前記ヒータに接触配置され、前記ヒータの長手方向における温度分布を均一化するための熱伝導部材と、
回転可能に設けられ、前記ヒータに摺動する可撓性スリーブと、
前記可撓性スリーブを介して前記ヒータとニップ部を形成する加圧部材と、
を有し、
前記ニップ部における前記可撓性スリーブと前記加圧部材との間で、現像剤像が形成された記録材を挟持搬送して加熱する像加熱装置において、
前記熱伝導部材は、前記長手方向に沿って、間隙を設けて複数配置され、
前記ヒータは、前記熱伝導部材が接触する接触領域と、前記間隙部分に対応する第3ヒータ領域と、が設けられ、
前記接触領域と対応する第1発熱体全域の前記長手方向と直交する方向における幅の長さは第1長さであり、前記間隙部分に対応する第2発熱体全域の前記幅の長さは前記第1長さよりも長い第2長さであり、
前記第3ヒータ領域の前記長手方向における単位長さ当たりの発熱量は、前記接触領域の前記長手方向における単位長さ当たりの発熱量よりも小さく設定されていることを特徴とする像加熱装置。
A heater containing a substrate and a heating element arranged on the substrate,
A heat conductive member that is contact-arranged with the heater and for uniformizing the temperature distribution in the longitudinal direction of the heater.
A flexible sleeve that is rotatably provided and slides on the heater,
A pressure member forming the heater and the nip portion via the flexible sleeve,
Have,
In an image heating device that sandwiches, conveys, and heats a recording material on which a developer image is formed between the flexible sleeve and the pressure member in the nip portion.
A plurality of the heat conductive members are arranged with a gap along the longitudinal direction.
The heater is provided with a contact region in which the heat conductive member contacts and a third heater region corresponding to the gap portion.
The length of the width of the entire first heating element corresponding to the contact region in the direction orthogonal to the longitudinal direction is the first length, and the length of the width of the entire second heating element corresponding to the gap portion is the first length. It is a second length longer than the first length, and is
An image heating device characterized in that the calorific value per unit length in the longitudinal direction of the third heater region is set smaller than the calorific value per unit length in the longitudinal direction of the contact region.
前記熱伝導部材の熱伝導率は、前記基板の熱伝導率よりも大きいことを特徴とする請求項1乃至のいずれか1項に記載の像加熱装置。 The image heating device according to any one of claims 1 to 6 , wherein the thermal conductivity of the heat conductive member is larger than the thermal conductivity of the substrate. 前記熱伝導部材は、前記基板のうち、前記発熱体が形成された面とは反対側の面に接触するように配置されていることを特徴とする請求項1乃至のいずれか1項に記載の像加熱装置。 The invention according to any one of claims 1 to 7 , wherein the heat conductive member is arranged so as to be in contact with the surface of the substrate opposite to the surface on which the heating element is formed. The image heating device described.
JP2019201370A 2019-11-06 2019-11-06 Image heating device Active JP7013433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019201370A JP7013433B2 (en) 2019-11-06 2019-11-06 Image heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019201370A JP7013433B2 (en) 2019-11-06 2019-11-06 Image heating device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015120585A Division JP6614816B2 (en) 2015-06-15 2015-06-15 Image heating device

Publications (2)

Publication Number Publication Date
JP2020034940A JP2020034940A (en) 2020-03-05
JP7013433B2 true JP7013433B2 (en) 2022-01-31

Family

ID=69668053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019201370A Active JP7013433B2 (en) 2019-11-06 2019-11-06 Image heating device

Country Status (1)

Country Link
JP (1) JP7013433B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023031969A (en) 2021-08-26 2023-03-09 キヤノン株式会社 Fixing device and image forming apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038125A1 (en) 2001-08-10 2003-02-27 Hiroshi Kataoka Image heating apparatus having rotary metal member in contact with heater, such rotary member and producing method therefor
JP2006019159A (en) 2004-07-02 2006-01-19 Canon Inc Heater and image heating device
US20090245835A1 (en) 2008-03-26 2009-10-01 Thomas Judson Campbell Printer including a fuser assembly with backup member temperature sensor
US20140186078A1 (en) 2012-12-28 2014-07-03 Canon Kabushiki Kaisha Fixing device
JP2014238560A (en) 2013-06-10 2014-12-18 キヤノン株式会社 Image heating device
JP2015049368A (en) 2013-09-02 2015-03-16 キヤノン株式会社 Image heating apparatus
US20150110531A1 (en) 2013-10-18 2015-04-23 Hiromasa Takagi Fixing device and image forming apparatus
JP2015102718A (en) 2013-11-26 2015-06-04 株式会社リコー Fixing apparatus and image forming apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3087917B2 (en) * 1991-10-04 2000-09-18 キヤノン株式会社 Heating body and heating device
JP3450637B2 (en) * 1996-03-07 2003-09-29 キヤノン株式会社 Heating body and heating device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038125A1 (en) 2001-08-10 2003-02-27 Hiroshi Kataoka Image heating apparatus having rotary metal member in contact with heater, such rotary member and producing method therefor
JP2003156954A (en) 2001-08-10 2003-05-30 Canon Inc Image heating apparatus having rotary metal member in contact with heater, the rotary member and producing method therefor
JP2006019159A (en) 2004-07-02 2006-01-19 Canon Inc Heater and image heating device
US20090245835A1 (en) 2008-03-26 2009-10-01 Thomas Judson Campbell Printer including a fuser assembly with backup member temperature sensor
US20140186078A1 (en) 2012-12-28 2014-07-03 Canon Kabushiki Kaisha Fixing device
CN103913979A (en) 2012-12-28 2014-07-09 佳能株式会社 Fixing device
JP2014238560A (en) 2013-06-10 2014-12-18 キヤノン株式会社 Image heating device
JP2015049368A (en) 2013-09-02 2015-03-16 キヤノン株式会社 Image heating apparatus
US20150110531A1 (en) 2013-10-18 2015-04-23 Hiromasa Takagi Fixing device and image forming apparatus
JP2015099352A (en) 2013-10-18 2015-05-28 株式会社リコー Fixing apparatus and image forming apparatus
JP2015102718A (en) 2013-11-26 2015-06-04 株式会社リコー Fixing apparatus and image forming apparatus

Also Published As

Publication number Publication date
JP2020034940A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
US10564579B2 (en) Fixing apparatus
US10488795B2 (en) Fixing device for fixing an image on a recording material and including a heat-conductive member with a regulating portion
US6455811B2 (en) Image heating apparatus and heater used in this apparatus
US9110416B2 (en) Image heating device and pressing roller for use with the image heating device
JP5241144B2 (en) Fixing device
US8391761B2 (en) Fixing device and image forming apparatus including fixing device
US8224222B2 (en) Fixing device and image forming apparatus including fixing device
US10067447B2 (en) Image heating device and image forming apparatus having regulation of lubricant
JP5153263B2 (en) Fixing device
JP6289146B2 (en) Fixing device
JP2009053507A5 (en)
JP2017072781A (en) Image heating device and image forming apparatus
JP7013433B2 (en) Image heating device
JP6614816B2 (en) Image heating device
JP2007178828A (en) Image heating device
JP5978655B2 (en) Fixing apparatus and image forming apparatus
JP2021085930A (en) Belt device, fixing device, and image forming apparatus
JP2009139822A (en) Heater, image heating device and image forming apparatus
JP2016004161A (en) Fixing apparatus and image forming apparatus
JP7271134B2 (en) image heating device
JP6786697B2 (en) Image heating device
JP7127496B2 (en) Fixing device and image forming device
JP5949424B2 (en) Fixing apparatus and image forming apparatus
JP7196471B2 (en) Fixing device, image forming device and heat conductive laminate
JP2016218098A (en) Fixing device and image forming apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220119