JP7013303B2 - Force sensor - Google Patents

Force sensor Download PDF

Info

Publication number
JP7013303B2
JP7013303B2 JP2018064905A JP2018064905A JP7013303B2 JP 7013303 B2 JP7013303 B2 JP 7013303B2 JP 2018064905 A JP2018064905 A JP 2018064905A JP 2018064905 A JP2018064905 A JP 2018064905A JP 7013303 B2 JP7013303 B2 JP 7013303B2
Authority
JP
Japan
Prior art keywords
detection target
displacement
force sensor
target body
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018064905A
Other languages
Japanese (ja)
Other versions
JP2019174367A (en
Inventor
康裕 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018064905A priority Critical patent/JP7013303B2/en
Publication of JP2019174367A publication Critical patent/JP2019174367A/en
Application granted granted Critical
Publication of JP7013303B2 publication Critical patent/JP7013303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は、受力部に作用する外力及びモーメントの複数の方向の成分を検出する力覚センサに関する。 The present invention relates to a force sensor that detects components in a plurality of directions of an external force and a moment acting on a receiving portion.

産業用ロボットのアームや医療用マニピュレータ等の関節部や先端部等の所定の部位に作用する外力を検出する手段として、力覚センサが用いられている。力覚センサの一例として、光学式変位センサを備える6軸力覚センサが特許文献1に開示されている。特許文献1に記載されている力覚センサは、支持部と、受力部と、これらを連結する弾性連結部と、支持部と受力部との間に配置される変位方向変換機構とを備える。変位方向変換機構には検出対象体が設けられ、検出対象体と対面するように支持部に設けられた変位検出素子により、検出対象体の変位(移動)を検出する。例えば、支持部が固定された状態で受力部に外力が作用すると弾性連結部が弾性変形し、受力部は支持部に対して外力の方向と大きさに応じた変位を生じる。このとき、変位方向変換機構も弾性連結部の変形に伴って変形するが、変位方向変換機構の変位方向は受力部の変位方向と直交する方向となる。 A force sensor is used as a means for detecting an external force acting on a predetermined portion such as a joint portion or a tip portion of an arm of an industrial robot or a medical manipulator. As an example of the force sensor, a 6-axis force sensor including an optical displacement sensor is disclosed in Patent Document 1. The force sensor described in Patent Document 1 includes a support portion, a receiving portion, an elastic connecting portion connecting them, and a displacement direction changing mechanism arranged between the supporting portion and the receiving portion. Be prepared. The displacement direction conversion mechanism is provided with a detection target body, and the displacement (movement) of the detection target body is detected by a displacement detection element provided on the support portion so as to face the detection target body. For example, when an external force acts on the receiving portion while the supporting portion is fixed, the elastic connecting portion is elastically deformed, and the receiving portion is displaced with respect to the supporting portion according to the direction and magnitude of the external force. At this time, the displacement direction conversion mechanism also deforms with the deformation of the elastic connecting portion, but the displacement direction of the displacement direction conversion mechanism is a direction orthogonal to the displacement direction of the receiving portion.

特許第5602582号公報Japanese Patent No. 5602582

上記特許文献1には、変位方向変換機構と弾性連結部とが別途に設けられた実施形態について説明されているが、変位方向変換機構を弾性連結部に組み込むことも可能であり、これにより、部品点数の削減と組立工程の簡略化を図ることができる。しかし、変位方向変換機構が弾性連結部に組み込まれた力覚センサでは、受力部に作用する外力の方向によっては、変位方向変換機構に設けられた検出対象体が変位検出素子と接触してしまうおそれがある。 Although the above-mentioned Patent Document 1 describes an embodiment in which a displacement direction changing mechanism and an elastic connecting portion are separately provided, it is also possible to incorporate the displacement direction changing mechanism into the elastic connecting portion. It is possible to reduce the number of parts and simplify the assembly process. However, in the force sensor in which the displacement direction conversion mechanism is incorporated in the elastic connection portion, the detection target provided in the displacement direction conversion mechanism comes into contact with the displacement detection element depending on the direction of the external force acting on the receiving portion. There is a risk that it will end up.

ここで、剛体に対して所定の方向に荷重を印加したときに、その荷重をその方向への変位量で除した値を剛性値と定義する。剛体は、剛性値が高いほど変形し難い。よって、変位方向変換機構に設けられた検出対象体の変位検出素子への接触を防止するためには、変位変換機構を変形し難くする、つまり、剛性値を高くする必要がある。また、力覚センサには、センサ全体の薄型化や小型化も強く求められている。剛性の高い材料を用いれば、センサ全体の薄型化(小型化)を実現しながら、検出対象体の変位検出素子への接触を防止することが可能になると考えられる。 Here, when a load is applied to a rigid body in a predetermined direction, the value obtained by dividing the load by the amount of displacement in that direction is defined as the rigidity value. A rigid body is less likely to be deformed as the rigidity value is higher. Therefore, in order to prevent the detection target body provided in the displacement direction conversion mechanism from coming into contact with the displacement detecting element, it is necessary to make the displacement conversion mechanism difficult to deform, that is, to increase the rigidity value. Further, the force sensor is strongly required to be thinner and smaller as a whole. It is considered that if a material having high rigidity is used, it is possible to prevent the detection object from coming into contact with the displacement detection element while realizing the thinning (miniaturization) of the entire sensor.

しかし、剛性の高い材料を用いることは、コストの上昇につながってしまう。また、変位方向変換機構が弾性連結部に組み込まれた力覚センサの感度(検出感度)は、一般的に、変位変換機構の高さと正の相関があるため、感度を高めようとすると変位変換機構の高さを高くする必要が生じ、センサ全体の薄型化が妨げられてしまう。つまり、力覚センサについては、剛性を高め且つ感度を高めることが求められているが、一般的に、剛性を高めようとすると感度が低下し、逆に感度を高めようとすると剛性を低下させる必要が生じてしまう。同様に、センサ全体を薄型化させようとすると感度が低下してしまい、感度を高めようとするとセンサ全体の薄型化が困難になる。 However, using a highly rigid material leads to an increase in cost. In addition, the sensitivity (detection sensitivity) of the force sensor with the displacement direction conversion mechanism incorporated in the elastic connection generally has a positive correlation with the height of the displacement conversion mechanism. It becomes necessary to increase the height of the mechanism, which hinders the thinning of the entire sensor. That is, the force sensor is required to increase the rigidity and the sensitivity, but in general, the sensitivity decreases when the rigidity is increased, and conversely, the rigidity decreases when the sensitivity is increased. There will be a need. Similarly, if an attempt is made to make the entire sensor thinner, the sensitivity is lowered, and if an attempt is made to increase the sensitivity, it becomes difficult to make the entire sensor thinner.

本発明は、センサ全体を薄型化させると共に感度を高めることが可能な力覚センサを提供することを目的とする。 An object of the present invention is to provide a force sensor capable of reducing the thickness of the entire sensor and increasing the sensitivity.

本発明に係る力覚センサは、支持部と、外力の作用により前記支持部に対して変位する受力部と、前記支持部と前記受力部とを連結する弾性連結部と、前記弾性連結部に接合され、前記受力部へ入力された負荷に応じて変位する変位変換部と、前記変位変換部に設けられた検出対象体と、前記支持部に固定されたセンサ基板と、前記センサ基板に実装され、前記検出対象体の変位量を検出する変位検出素子と、を備える力覚センサであって、前記検出対象体は、前記変位変換部と前記弾性連結部との接合部の中心を通り、前記支持部と前記受力部を連結する方向と直交する直線よりも前記弾性連結部と前記受力部との接合部がある側に配置され、前記検出対象体の法線と前記直線は0度より大きい角度を成し、前記支持部と前記受力部とを連結する方向における前記検出対象体と前記支持部との間の距離が前記直線と平行な方向での前記変位変換部の高さよりも長いこと特徴とする。 The force sensor according to the present invention has a support portion, a force receiving portion that is displaced with respect to the support portion due to the action of an external force, an elastic connecting portion that connects the support portion and the force receiving portion, and the elastic connection portion. A displacement conversion unit joined to the unit and displaced according to a load input to the force receiving unit, a detection target provided in the displacement conversion unit, a sensor substrate fixed to the support unit, and the sensor. A force sensor equipped with a displacement detecting element mounted on a substrate and detecting a displacement amount of the detection target body, wherein the detection target body is the center of a joint portion between the displacement conversion portion and the elastic connection portion. Is arranged on the side where the joint portion between the elastic connecting portion and the receiving portion is located, rather than a straight line orthogonal to the direction in which the supporting portion and the receiving portion are connected. The straight line forms an angle larger than 0 degrees, and the displacement conversion in the direction in which the distance between the detection target and the support portion in the direction connecting the support portion and the receiving portion is parallel to the straight line. It is characterized by being longer than the height of the part.

本発明によれば、力覚センサ全体の薄型化と感度の向上を両立させることができる。 According to the present invention, it is possible to achieve both a thinning of the entire force sensor and an improvement in sensitivity.

力覚センサの外観斜視図である。It is an external perspective view of a force sensor. 力覚センサの構造を説明する断面図及び平面図である。It is sectional drawing and the plan view explaining the structure of a force sensor. 力覚センサでの弾性連結部の変形の一例を説明する図である。It is a figure explaining an example of the deformation of the elastic connection part in a force sensor. 力覚センサのセンサ基板の平面図である。It is a top view of the sensor board of a force sensor. 実施例1に係る力覚センサ及びその変形例の構造を示す部分断面図である。It is a partial cross-sectional view which shows the structure of the force sensor which concerns on Example 1 and the modified example thereof. 実施例2に係る力覚センサ及びその変形例の構造を示す部分断面図である。It is a partial cross-sectional view which shows the structure of the force sensor which concerns on Example 2 and the modified example thereof. 実施例3に係る力覚センサの構造と、検出対象体の反射面と変位検出素子の受光面の関係を説明する図である。It is a figure explaining the relationship between the structure of the force sensor which concerns on Example 3, the reflection surface of a detection object, and the light-receiving surface of a displacement detection element. 比較例1,2に係る力覚センサの構造を示す部分断面図である。It is a partial cross-sectional view which shows the structure of the force sensor which concerns on Comparative Examples 1 and 2. 比較例3,4,5に係る力覚センサの構造を示す部分断面図である。It is a partial cross-sectional view which shows the structure of the force sensor which concerns on Comparative Examples 3, 4 and 5. 比較例6,7に係る力覚センサの構造を示す部分断面図である。It is a partial cross-sectional view which shows the structure of the force sensor which concerns on Comparative Examples 6 and 7. 実施例及び比較例についての感度及び剛性の測定結果を示す図である。It is a figure which shows the measurement result of the sensitivity and rigidity about an Example and a comparative example. 力覚センサの感度増大効果を説明する図である。It is a figure explaining the sensitivity increase effect of a force sensor. 力覚センサでの感度増大率と変位検出素子の位置・姿勢との関係を説明するグラフである。It is a graph explaining the relationship between the sensitivity increase rate in a force sensor and the position / posture of a displacement detection element.

以下、本発明の実施形態について、添付図面を参照して詳細に説明する。最初に、実施例及び比較例に共通する力覚センサの基本的な構成について説明する。図1は、力覚センサ100の外観斜視図である。力覚センサ100は、略円柱状の本体部2と、本体部2の下部を覆う円盤形状の下蓋1とを備える。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, the basic configuration of the force sensor common to the examples and the comparative examples will be described. FIG. 1 is an external perspective view of the force sensor 100. The force sensor 100 includes a substantially cylindrical main body portion 2 and a disk-shaped lower lid 1 that covers the lower portion of the main body portion 2.

説明の便宜上、図1に示すように、互いに直交するx軸、y軸及びz軸を定める。力覚センサ100は、略円板状或いは略円柱状の形状を有しており、その厚み方向をz方向とする。x方向とy方向は、図2を参照して後述するように、z方向から力覚センサ100を見たときにxy平面において力覚センサ100を4つの象限に分けるように設定される。なお、図1に示す中心軸Lは、z軸と平行であり、力覚センサ100におけるxy平面の中心を通る軸である。 For convenience of explanation, as shown in FIG. 1, x-axis, y-axis and z-axis orthogonal to each other are defined. The force sensor 100 has a substantially disk-like or substantially columnar shape, and the thickness direction thereof is the z direction. The x-direction and the y-direction are set so as to divide the force sensor 100 into four quadrants in the xy plane when the force sensor 100 is viewed from the z direction, as will be described later with reference to FIG. The central axis L shown in FIG. 1 is parallel to the z-axis and passes through the center of the xy plane in the force sensor 100.

図2(a)は、力覚センサ100のzx断面図である。図2(b)は、力覚センサ100の受力部4の上部を透視して力覚センサ100を上面側から見た平面図である。図2(c)は、下蓋1を取り外して力覚センサ100を底面側から見た平面図である。 FIG. 2A is a zx cross-sectional view of the force sensor 100. FIG. 2B is a plan view of the force sensor 100 viewed from the upper surface side by seeing through the upper part of the force receiving portion 4 of the force sensor 100. FIG. 2C is a plan view of the force sensor 100 as viewed from the bottom surface side with the lower lid 1 removed.

本体部2は、円筒形状を有する支持部6と、略円盤形状を有する受力部4と、支持部6と受力部4を連結する弾性連結部5とを有する。下蓋1は支持部6の下面に固定されており、支持部6と下蓋1により固定部が構成されている。受力部4は、弾性連結部5が変形することによって固定部に対してz方向に変位可能であり、また、xy平面に対して傾斜可能な可動部である。固定部は不図示の基台等に取り付けられ、受力部4は不図示のロボットアームやマニピュレータ等に取り付けられる。 The main body portion 2 has a support portion 6 having a cylindrical shape, a receiving portion 4 having a substantially disk shape, and an elastic connecting portion 5 connecting the support portion 6 and the receiving portion 4. The lower lid 1 is fixed to the lower surface of the support portion 6, and the fixing portion is composed of the support portion 6 and the lower lid 1. The receiving portion 4 is a movable portion that can be displaced in the z direction with respect to the fixed portion by deforming the elastic connecting portion 5 and can be inclined with respect to the xy plane. The fixed portion is attached to a base (not shown) or the like, and the receiving portion 4 is attached to a robot arm, a manipulator or the like (not shown).

弾性連結部5は、xy平面内において中心軸Lまわりに90°間隔で4箇所の配置されている。換言すれば、弾性連結部5は、支持部6と受力部4との間においてz方向での高さが同じとなるように、xy平面内で十字型に配置されている。4箇所の弾性連結部5のそれぞれに、y方向又はx方向から見たときに略U字型となっている変位方向変換部3(以下「変位変換部3」という)が設けられている。よって、力覚センサ100では、より正確には、弾性連結部5は変位変換部3を挟んで支持部6と受力部4とを連結している。変位変換部3の先端の外側の面には、検出対象体が取り付けられている。以下、4箇所の変位変換部3のそれぞれに取り付けられている4つの検出対象体を検出対象体8a,8b,8c,8dと記す。 The elastic connecting portions 5 are arranged at four positions in the xy plane around the central axis L at intervals of 90 °. In other words, the elastic connecting portion 5 is arranged in a cross shape in the xy plane so that the heights in the z direction are the same between the supporting portion 6 and the receiving portion 4. Each of the four elastic connecting portions 5 is provided with a displacement direction conversion unit 3 (hereinafter referred to as “displacement conversion unit 3”) which is substantially U-shaped when viewed from the y direction or the x direction. Therefore, in the force sensor 100, more accurately, the elastic connecting portion 5 connects the supporting portion 6 and the receiving portion 4 with the displacement conversion portion 3 interposed therebetween. A detection target is attached to the outer surface of the tip of the displacement conversion unit 3. Hereinafter, the four detection target bodies attached to each of the four displacement conversion units 3 are referred to as detection target bodies 8a, 8b, 8c, and 8d.

なお、受力部4の4箇所から下蓋1側(-z方向)へ向けて柱状部が突出しており、それぞれの柱状部の先端にも検出対象体が取り付けられている。以下、4箇所の柱状部のそれぞれの先端に取り付けられている4つの検出対象体を検出対象体8e,8f,8g,8hと記す。検出対象体8a~8hは、同一方向(-z方向)を向くように、且つ、z方向において同じ高さに位置するように、変位変換部3又は柱状部に取り付けられている。支持部6にはセンサ基板7が固定されており、センサ基板7上には、z方向において検出対象体8a~8hと所定の間隔を隔てて正対するように、変位検出素子9a~9hが実装されている。 The columnar portions project from the four locations of the receiving portion 4 toward the lower lid 1 side (-z direction), and the detection target body is also attached to the tip of each columnar portion. Hereinafter, the four detection target bodies attached to the tips of the four columnar portions are referred to as detection target bodies 8e, 8f, 8g, and 8h. The detection target bodies 8a to 8h are attached to the displacement conversion unit 3 or the columnar portion so as to face the same direction (−z direction) and to be located at the same height in the z direction. A sensor substrate 7 is fixed to the support portion 6, and displacement detection elements 9a to 9h are mounted on the sensor substrate 7 so as to face the detection target bodies 8a to 8h at predetermined intervals in the z direction. Has been done.

受力部4に負荷(外力又はモーメント)が作用すると、可動部である受力部4が固定部に対して変位することにより、弾性連結部5の受力部4側の端部が変位することで、変位変換部3に取り付けられている検出対象体8a~8dに変位が生じる。受力部4に-z方向(下蓋1側へ向かう方向)の外力Fzが作用したときの検出対象体8a~8dの変位について、図3を参照して説明する。 When a load (external force or moment) acts on the receiving portion 4, the receiving portion 4 which is a movable portion is displaced with respect to the fixed portion, so that the end portion of the elastic connecting portion 5 on the receiving portion 4 side is displaced. As a result, the detection target bodies 8a to 8d attached to the displacement conversion unit 3 are displaced. The displacement of the detection target bodies 8a to 8d when an external force Fz in the −z direction (direction toward the lower lid 1 side) acts on the force receiving portion 4 will be described with reference to FIG.

図3は、受力部4に下蓋1側へ向かう外力Fzが入力された場合の、検出対象体8dが設けられている変位変換部3の変形前後の様子をy方向から見て表した図である。受力部4に-z方向の外力Fzが入力されると、不図示の検出対象体8aはy方向へ、不図示の検出対象体8bはx方向へ、不図示の検出対象体8cは-y方向へ、検出対象体8dは-x方向へそれぞれ変位する。このとき、受力部4のz方向での変位量Δzは、弾性連結部5の剛性が高いほど小さくなる。 FIG. 3 shows the state before and after the deformation of the displacement conversion unit 3 provided with the detection target body 8d when the external force Fz toward the lower lid 1 side is input to the force receiving unit 4 from the y direction. It is a figure. When an external force Fz in the -z direction is input to the receiving unit 4, the detection target body 8a (not shown) is in the y direction, the detection target body 8b (not shown) is in the x direction, and the detection target body 8c (not shown) is-. The detection target body 8d is displaced in the y direction and in the −x direction, respectively. At this time, the displacement amount Δz of the receiving portion 4 in the z direction becomes smaller as the rigidity of the elastic connecting portion 5 increases.

ここで、変位検出素子9d(不図示)の受光面の法線と直交する方向における検出対象体8dの変位検出素子9d(不図示)に対する相対的な変位量を「感度」と定義する。力覚センサ100では、変位検出素子9d(不図示)の受光面はz方向と直交しているため、検出対象体8dの感度はx方向の変位量Δxで与えられる。図3から、変位変換部3の高さhが低くなると、感度は低下することがわかる。また、変位量Δxは、検出対象体8dの表面の中心を通り、x方向と直交する線23,24間の距離(間隔)として定められる。なお、略U字型の形状を有する変位変換部3の高さhは、弾性連結部5のz方向厚みを2等分する線21と変位変換部3の先端部のz方向厚みを2等分する線22の間の距離(間隔)で規定する。 Here, the relative displacement amount of the detection target body 8d with respect to the displacement detection element 9d (not shown) in the direction orthogonal to the normal of the light receiving surface of the displacement detection element 9d (not shown) is defined as “sensitivity”. In the force sensor 100, since the light receiving surface of the displacement detection element 9d (not shown) is orthogonal to the z direction, the sensitivity of the detection target body 8d is given by the displacement amount Δx in the x direction. From FIG. 3, it can be seen that the sensitivity decreases as the height h of the displacement conversion unit 3 decreases. Further, the displacement amount Δx is determined as a distance (interval) between the lines 23 and 24 passing through the center of the surface of the detection target body 8d and orthogonal to the x direction. The height h of the displacement conversion unit 3 having a substantially U-shape is such that the line 21 that bisects the z-direction thickness of the elastic connecting portion 5 and the z-direction thickness of the tip portion of the displacement conversion unit 3 are bisected. It is specified by the distance (interval) between the dividing lines 22.

なお、受力部4にx方向の外力Fxが入力されると、検出対象体8e~8hはx方向に変位し、受力部4にy方向の外力Fyが入力されると検出対象体8e~8hはy方向に変位する。受力部4にx軸まわりのモーメントMxが入力されると検出対象体8a,8cが-y方向に変位し、受力部4にy軸まわりのモーメントMyが入力されると検出対象体8b,8dがx方向に変位する。受力部4にz軸まわりのモーメントMzが入力された場合には、検出対象体8e,8fはy方向及び-x方向へ変位し、検出対象体8g,8hは-y方向及びx方向に変位する。このように、変位変換部3及び弾性連結部5は、受力部4に作用する力の方向を変換する変位方向変換機構として機能する。 When the external force Fx in the x direction is input to the receiving unit 4, the detection target bodies 8e to 8h are displaced in the x direction, and when the external force Fy in the y direction is input to the receiving unit 4, the detection target body 8e ~ 8h is displaced in the y direction. When the moment Mx around the x-axis is input to the receiving unit 4, the detection target bodies 8a and 8c are displaced in the −y direction, and when the moment My around the y-axis is input to the receiving unit 4, the detection target body 8b , 8d are displaced in the x direction. When the moment Mz around the z-axis is input to the receiving unit 4, the detection target bodies 8e and 8f are displaced in the y direction and the −x direction, and the detection target bodies 8g and 8h are displaced in the −y direction and the x direction. Displace. In this way, the displacement conversion unit 3 and the elastic connecting unit 5 function as a displacement direction conversion mechanism that converts the direction of the force acting on the receiving unit 4.

次に、力覚センサ100における外力及びモーメントの検出方法について説明する。図4は、センサ基板7の平面図である。センサ基板7には、光源10a~10hと変位検出素子9a~9hが、1個の光源と1個の変位検出素子を1組として実装されている。各組の1個の光源と1個の変位検出素子は、一体的に構成されていてもよいし別体であってもよい。光源10a~10hは、例えばLEDであり、変位検出素子9a~9hはフォトダイオード(PD)であるが、これらに限定されるものではない。変位検出素子9a~9hは、光検出面である複数の受光面がストライプ状に配列された構造を有する。不図示であるが、検出対象体8a~8hはそれぞれ、ガラス等の基板の表面又は裏面に形成された金属反射膜等によって回折格子が形成された反射面を有する。 Next, a method of detecting an external force and a moment in the force sensor 100 will be described. FIG. 4 is a plan view of the sensor substrate 7. The light sources 10a to 10h and the displacement detection elements 9a to 9h are mounted on the sensor substrate 7 as a set of one light source and one displacement detection element. One light source and one displacement detection element of each set may be integrally configured or may be separate bodies. The light sources 10a to 10h are, for example, LEDs, and the displacement detection elements 9a to 9h are photodiodes (PD), but the light sources are not limited thereto. The displacement detecting elements 9a to 9h have a structure in which a plurality of light receiving surfaces, which are light detection surfaces, are arranged in a stripe shape. Although not shown, each of the detection objects 8a to 8h has a reflection surface on which a diffraction grating is formed by a metal reflection film or the like formed on the front surface or the back surface of a substrate such as glass.

変位検出素子9a~9hと検出対象体8a~8hは1対1で、検出対象体の反射面と変位検出素子の受光面とがz方向において正対するように配置されている。光源10a~10hから検出対象体8a~8hへ照射される発散光束は、検出対象体8a~8hで反射し、検出対象体8a~8hからの反射光は変位検出素子9a~9hの受光面に明暗の縞である回折光パターンを形成する。変位検出素子9a~9hの受光面の配列ピッチは、回折光パターンの1/4周期に一致している。したがって、検出対象体8a~8hが変位検出素子9a~9hの受光面の配列方向に変位すると、変位に伴って回折光パターンが移動する。こうして、複数の受光面からは90°の位相差を持った2相の正弦波状信号(sin,cos)が得られる。 The displacement detection elements 9a to 9h and the detection target bodies 8a to 8h are one-to-one, and the reflection surface of the detection target body and the light receiving surface of the displacement detection element are arranged so as to face each other in the z direction. The divergent luminous flux emitted from the light sources 10a to 10h to the detection target bodies 8a to 8h is reflected by the detection target bodies 8a to 8h, and the reflected light from the detection target bodies 8a to 8h is reflected on the light receiving surface of the displacement detection elements 9a to 9h. It forms a diffracted light pattern that is a fringe of light and dark. The arrangement pitch of the light receiving surfaces of the displacement detection elements 9a to 9h corresponds to the quarter period of the diffracted light pattern. Therefore, when the detection target bodies 8a to 8h are displaced in the arrangement direction of the light receiving surfaces of the displacement detection elements 9a to 9h, the diffracted light pattern moves with the displacement. In this way, a two-phase sinusoidal signal (sin, cos) having a phase difference of 90 ° can be obtained from the plurality of light receiving surfaces.

不図示の演算回路は、得られた2相の正弦波状信号の逆正接演算(tan-1)を行って、検出対象体8a~8hの変位量を算出する。演算回路は更に、算出した変位量から外力Fx,Fy,Fz及びモーメントMx,My,Mzの6つの成分(6軸方向の力)を算出する。変位変換部3に検出対象体8a~8dを設置することにより、別途に変位方向変換機構を設ける必要がなくなることで、部品点数の削減による低コスト化を図ることができると共に力覚センサ100の小型化を図ることができる。 The calculation circuit (not shown) performs an inverse tangent calculation (tan -1 ) of the obtained two-phase sinusoidal signal to calculate the displacement amount of the detection target bodies 8a to 8h. The arithmetic circuit further calculates six components (forces in the six-axis direction) of external forces Fx, Fy, Fz and moments Mx, My, Mz from the calculated displacement amount. By installing the detection target bodies 8a to 8d in the displacement conversion unit 3, it is not necessary to separately provide a displacement direction conversion mechanism, so that the cost can be reduced by reducing the number of parts and the force sensor 100 can be used. It is possible to reduce the size.

次に、力覚センサ100をベースとした本発明の実施例に係る力覚センサについて説明する。以下に説明する実施例1~3に係る力覚センサは、概略、上述した力覚センサ100の変位変換部3の構造等を改良し、これに伴って検出対象体8a~8dと変位検出素子9a~9dの配置を工夫したものである。 Next, the force sensor according to the embodiment of the present invention based on the force sensor 100 will be described. The force sensor according to the first to third embodiments described below is generally an improvement in the structure of the displacement conversion unit 3 of the force sensor 100 described above, and accordingly, the detection target bodies 8a to 8d and the displacement detection element. The arrangement of 9a to 9d is devised.

図5(a)は、実施例1に係る力覚センサ100Aの部分断面図であり、検出対象体8dが取り付けられている変位変換部3とその近傍が示されている。力覚センサ100Aにおいて長さ方向がx方向と平行になっている他方の弾性連結部の構造と、長さ方向がy方向と平行になっている2箇所の弾性連結部の構造はそれぞれ図5(a)に示す構造と同等であるため、図示と説明を省略する。なお、図5(a)中の座標軸は図2に示した座標軸に対応しており、よって、図5(a)に示されている部分の右側が不図示の中心軸L側となっている。説明の便宜上、図5(a)の状態で、z方向は鉛直方向と平行であり、x方向及びy方向は共に水平方向と平行であるものとし、このことは後述する力覚センサ100B,100C,100p~100vについても同様とする。 FIG. 5A is a partial cross-sectional view of the force sensor 100A according to the first embodiment, showing the displacement conversion unit 3 to which the detection target body 8d is attached and its vicinity. In the force sensor 100A, the structure of the other elastic connecting portion whose length direction is parallel to the x direction and the structure of the two elastic connecting portions whose length direction is parallel to the y direction are shown in FIG. 5, respectively. Since it is equivalent to the structure shown in (a), the illustration and description will be omitted. The coordinate axes in FIG. 5A correspond to the coordinate axes shown in FIG. 2, so that the right side of the portion shown in FIG. 5A is the central axis L side (not shown). .. For convenience of explanation, in the state of FIG. 5A, it is assumed that the z direction is parallel to the vertical direction and both the x direction and the y direction are parallel to the horizontal direction, which will be described later with the force sense sensors 100B and 100C. The same applies to 100p to 100v.

力覚センサ100Aにおいて支持部6と受力部4(不図示)を連結する弾性連結部5と変位変換部3とが接合されている部分を接合部11と称呼し、後述する力覚センサ100B,100C,100p~100vについても同様の称呼を用いる。また、支持部6と受力部4を連結する方向と直交し、且つ、接合部11の中心を通る線、つまり、接合部11のx方向中心を通り、z方向と平行な直線、を「接合部鉛直線12」と規定する。力覚センサ100Aでは、接合部11は弾性連結部5の長さ方向中央(x方向中央)に設けられている。つまり、x方向において、支持部6の内周面から接合部鉛直線12までの距離Eは、弾性連結部5と受力部4との境界から接合部鉛直線12までの距離Fと同じ距離に設定されている。なお、詳細は後述するが、接合部11の位置は、弾性連結部5の長さ方向中央部に限られるものではなく、支持部6側(外周寄り)又は不図示の中心軸L側(中心寄り)に設けることもできる。 In the force sensor 100A, the portion where the elastic connecting portion 5 connecting the support portion 6 and the receiving portion 4 (not shown) and the displacement conversion portion 3 are joined is referred to as a joining portion 11, and the force sensor 100B described later is referred to. , 100C, 100p-100v, the same designation is used. Further, a line orthogonal to the direction connecting the support portion 6 and the receiving portion 4 and passing through the center of the joint portion 11, that is, a straight line passing through the x-direction center of the joint portion 11 and parallel to the z-direction is defined as ". It is defined as "joint vertical straight line 12". In the force sensor 100A, the joint portion 11 is provided at the center in the length direction (center in the x direction) of the elastic connecting portion 5. That is, in the x direction, the distance E from the inner peripheral surface of the support portion 6 to the joint portion vertical line 12 is the same as the distance F from the boundary between the elastic connecting portion 5 and the receiving portion 4 to the joint portion vertical line 12. Is set to. Although the details will be described later, the position of the joint portion 11 is not limited to the central portion in the length direction of the elastic connecting portion 5, and is not limited to the support portion 6 side (closer to the outer circumference) or the central axis L side (center) (not shown). It can also be installed near).

変位変換部3には、センサ基板7側の先端部から不図示の中心軸Lへ向けて突出した張り出し部15が設けられている。検出対象体8dは、不図示の光源10dから照射された光を反射する反射面がz方向と平行となるように、張り出し部15の先端面に取り付けられている。なお、張り出し部15は、変位変換部3と一体的に形成されていてもよいし、別部品として準備されて変位変換部3に接合されていてもよい。力覚センサ100Aでは検出対象体8dは、接合部鉛直線12よりも弾性連結部5と受力部4との接合部がある側、つまり、中心軸L側に配置されている。変位検出素子9dは、検出対象体8dと正対するようにセンサ基板7に実装されている。 The displacement conversion unit 3 is provided with an overhanging portion 15 protruding from the tip end portion on the sensor substrate 7 side toward the central axis L (not shown). The detection target body 8d is attached to the tip surface of the overhanging portion 15 so that the reflection surface that reflects the light emitted from the light source 10d (not shown) is parallel to the z direction. The overhanging portion 15 may be integrally formed with the displacement conversion portion 3, or may be prepared as a separate component and joined to the displacement conversion portion 3. In the force sensor 100A, the detection target body 8d is arranged on the side where the joint portion between the elastic connecting portion 5 and the receiving portion 4 is located, that is, on the central axis L side, rather than the joint portion vertical line 12. The displacement detection element 9d is mounted on the sensor substrate 7 so as to face the detection target body 8d.

なお、力覚センサ100Aでは、変位変換部3の高さhは、図3に示した力覚センサ100と同様に規定される。ここで、図5(a)に示すように、検出対象体8dの弾性連結部5に対する垂直距離Gを、検出対象体8dの表面の中心から弾性連結部5のz方向厚みを2等分する線21に下ろした垂線の長さであると定義する。また、検出対象体8dの表面中心から接合部鉛直線12に下ろした垂線の長さを、検出対象体8dの接合部鉛直線12に対する水平距離Jと定義する。変位変換部3の高さh、垂直距離G、水平距離Jは、後述する力覚センサ100B,100C,100p~100vについても同様に定義される。 In the force sensor 100A, the height h of the displacement conversion unit 3 is defined in the same manner as the force sensor 100 shown in FIG. Here, as shown in FIG. 5A, the vertical distance G of the detection target body 8d with respect to the elastic connection portion 5 is bisected with the z-direction thickness of the elastic connection portion 5 from the center of the surface of the detection target body 8d. It is defined as the length of the perpendicular line drawn on the line 21. Further, the length of the perpendicular line drawn from the surface center of the detection target body 8d to the joint vertical line 12 is defined as the horizontal distance J with respect to the joint vertical line 12 of the detection target body 8d. The height h, vertical distance G, and horizontal distance J of the displacement conversion unit 3 are similarly defined for the force sensor 100B, 100C, 100p to 100v, which will be described later.

図5(b),(c)はそれぞれ、力覚センサ100Aの第1の変形例と第2の変形例の部分断面図であり、図5(a)に示した部位に対応する部位が表されている。力覚センサ100Aは、変位変換部3が略U字型となっているため、検出対象体8b(不図示),8dは受力部4に加わったx方向の力を検出することができ、検出対象体8a,8c(共に不図示)は受力部4に加わったy方向の力を検出することができる。これに対して、図5(b),(c)にそれぞれ示す第1の変形例と第2の変形例は、力覚センサ100Aを水平方向に作用する力を検出しない構成へと変更したものである。 5 (b) and 5 (c) are partial cross-sectional views of a first modified example and a second modified example of the force sensor 100A, respectively, and the portions corresponding to the portions shown in FIG. 5 (a) are shown in the table. Has been done. Since the displacement conversion unit 3 of the force sensor 100A has a substantially U-shape, the detection target bodies 8b (not shown) and 8d can detect the force applied to the force receiving unit 4 in the x direction. The detection target bodies 8a and 8c (both not shown) can detect the force applied to the receiving unit 4 in the y direction. On the other hand, in the first modification and the second modification shown in FIGS. 5 (b) and 5 (c), the force sensor 100A is changed to a configuration that does not detect the force acting in the horizontal direction. Is.

力覚センサ100Aの第1の変形例は、接合部11からz方向と所定の角度θで交わり、且つ、中心軸L(不図示)とセンサ基板7へ近付く方向へ直線的に延びる変位変換部3Aを有する。力覚センサ100Aの第2の変形例は、接合部11からセンサ基板7(不図示)へz方向に延びた後に中心軸L(不図示)へ向かう方向へ延びる変位変換部3Bを有する。第1の変形例と第2の変形例の双方で、検出対象体8dは、接合部鉛直線12よりも中心軸L側において、反射面がz方向と平行となるように変位変換部に配置される。変位検出素子9d(不図示)は図5(a)に示した状態と同様に、検出対象体8dと正対するように配置される。 The first modification of the force sensor 100A is a displacement conversion unit that intersects the z-direction from the joint portion 11 at a predetermined angle θ and extends linearly in a direction approaching the central axis L (not shown) and the sensor substrate 7. Has 3A. The second modification of the force sensor 100A has a displacement conversion unit 3B extending in the z direction from the joint portion 11 to the sensor substrate 7 (not shown) and then extending in the direction toward the central axis L (not shown). In both the first modification and the second modification, the detection target body 8d is arranged in the displacement conversion unit so that the reflection surface is parallel to the z direction on the central axis L side of the joint portion vertical line 12. Will be done. The displacement detection element 9d (not shown) is arranged so as to face the detection target body 8d in the same manner as in the state shown in FIG. 5A.

図6(a)は、実施例2に係る力覚センサ100Bの部分断面図であり、図5(a)に示した部位に対応する部位が示されている。なお、力覚センサ100Bにおいて長さ方向がx方向と平行になっている他方の弾性連結部の構造と、長さ方向がy方向と平行になっている2箇所の弾性連結部の構造はそれぞれ図6(a)に示す構造と同等であるため、図示と説明を省略する。 FIG. 6A is a partial cross-sectional view of the force sensor 100B according to the second embodiment, and shows a portion corresponding to the portion shown in FIG. 5A. In the force sensor 100B, the structure of the other elastic connecting portion whose length direction is parallel to the x direction and the structure of the two elastic connecting portions whose length direction is parallel to the y direction are respectively. Since it is equivalent to the structure shown in FIG. 6 (a), the illustration and description will be omitted.

力覚センサ100Aでは、検出対象体8dの反射面がz方向と平行となっている。これに対して、力覚センサ100Bでは、検出対象体8dの反射面が所定の角度でz方向と交差してセンサ基板7側を向くように、張り出し部15の先端面がz方向に対して傾斜した面となっている。変位検出素子9dは、検出対象体8dと正対するようにセンサ基板7に実装されている。力覚センサ100Bのその他の構成は、力覚センサ100Aと同じであるので、重複する説明を省略する。なお、力覚センサ100Bでの垂直距離G、水平距離Jは、図5(a)を参照して説明した定義に従い、図6(a)に示す通りとなる。 In the force sensor 100A, the reflection surface of the detection target body 8d is parallel to the z direction. On the other hand, in the force sensor 100B, the tip surface of the overhanging portion 15 is directed with respect to the z direction so that the reflective surface of the detection target body 8d intersects the z direction at a predetermined angle and faces the sensor substrate 7. It is an inclined surface. The displacement detection element 9d is mounted on the sensor substrate 7 so as to face the detection target body 8d. Since the other configurations of the force sensor 100B are the same as those of the force sensor 100A, overlapping description will be omitted. The vertical distance G and the horizontal distance J in the force sensor 100B are as shown in FIG. 6A according to the definitions described with reference to FIG. 5A.

図6(b),(c)はそれぞれ、力覚センサ100Bの第1の変形例と第2の変形例の部分断面図であり、図6(a)に示した部位に対応する部位が表されている。力覚センサ100Bは、力覚センサ100Aと同様に、受力部4に加わったx方向とy方向の力を検出することができる。これに対して、図6(b),(c)にそれぞれ示す第1の変形例と第2の変形例は、力覚センサ100Bを水平方向に作用する力を検出しない構成へと変更したものである。 6 (b) and 6 (c) are partial cross-sectional views of a first modified example and a second modified example of the force sensor 100B, respectively, and the portions corresponding to the portions shown in FIG. 6 (a) are shown in the table. Has been done. Similar to the force sensor 100A, the force sensor 100B can detect the force applied to the force receiving unit 4 in the x-direction and the y-direction. On the other hand, in the first modification and the second modification shown in FIGS. 6 (b) and 6 (c), the force sensor 100B is changed to a configuration that does not detect the force acting in the horizontal direction. Is.

力覚センサ100Bの第1の変形例は、力覚センサ100Aの第1の変形例(図5(b))と比較すると、検出対象体8dの受光面の角度が力覚センサ100Bと同様にz方向と所定の角度で交わるように変更されている点で異なるが、その他の構成は同じである。力覚センサ100Bの第2の変形例は、力覚センサ100Aの第2の変形例(図5(c))と比較すると、検出対象体8dの受光面の角度が力覚センサ100Bと同様にz方向と所定の角度で交差するように変更されている点で異なるが、その他の構成は同じである。変位検出素子9d(不図示)は図6(a)に示した状態と同様に、検出対象体8dと正対するように配置される。 In the first modification of the force sensor 100B, the angle of the light receiving surface of the detection target body 8d is the same as that of the force sensor 100B as compared with the first modification of the force sensor 100A (FIG. 5B). The other configurations are the same, except that they are changed to intersect the z direction at a predetermined angle. In the second modification of the force sensor 100B, the angle of the light receiving surface of the detection target body 8d is the same as that of the force sensor 100B as compared with the second modification of the force sensor 100A (FIG. 5 (c)). The other configurations are the same, except that they are changed to intersect the z direction at a predetermined angle. The displacement detection element 9d (not shown) is arranged so as to face the detection target body 8d in the same manner as in the state shown in FIG. 6A.

図7(a)は、実施例3に係る力覚センサ100Cの部分断面図であり、図5(a)に示した部位に対応する部位が示されている。なお、力覚センサ100Cにおいて長さ方向がx方向と平行になっている他方の弾性連結部の構造と、長さ方向がy方向と平行になっている2箇所の弾性連結部の構造はそれぞれ図7(a)に示す構造と同等であるため、図示と説明を省略する。 FIG. 7A is a partial cross-sectional view of the force sensor 100C according to the third embodiment, and shows a portion corresponding to the portion shown in FIG. 5A. In the force sensor 100C, the structure of the other elastic connecting portion whose length direction is parallel to the x direction and the structure of the two elastic connecting portions whose length direction is parallel to the y direction are respectively. Since it is equivalent to the structure shown in FIG. 7 (a), the illustration and description will be omitted.

力覚センサ100Cは、実施例2に係る力覚センサ100Bと比較すると、変位検出素子9dの受光面が検出対象体8dの反射面に対して正対していない点で異なるが、その他の構成は同じであるので、共通する説明は省略する。力覚センサ100Cでは、変位検出素子9dは、受光面の法線がz方向と平行になるようにセンサ基板7に実装されている。 The force sensor 100C differs from the force sensor 100B according to the second embodiment in that the light receiving surface of the displacement detection element 9d does not face the reflection surface of the detection target body 8d, but the other configurations are different. Since they are the same, common explanations will be omitted. In the force sensor 100C, the displacement detection element 9d is mounted on the sensor substrate 7 so that the normal of the light receiving surface is parallel to the z direction.

図7(b)は、検出対象体8dと変位検出素子9dの間の光路を説明する図である。検出対象体8dの反射面と直交する線は、変位検出素子9dの受光面と角度ηで交わる。図7(c)は、変位検出素子9dの拡大図である。力覚センサ100Cでは、検出対象体8dの反射面と平行となるように角度ηの傾斜を有する受光面が形成された回折格子13が変位検出素子9dの表面(受光面上)に配置されている。よって、検出対象体8dからの入射光は、回折格子13によって図7(c)に破線で示すように屈折し、変位検出素子9dの受光面に対して垂直に入射する。その結果、力覚センサ100Cでの検出対象体8dと変位検出素子9dとの光学的な関係は、力覚センサ100Bでの検出対象体8dと変位検出素子9dとの光学的な関係と同等になる。なお、力覚センサ100Cは、力覚センサ100Bの第1の変形例及び第2の変形例と同様にして、x方向とy方向に作用する力を検出しない構成へと変更することができる。 FIG. 7B is a diagram illustrating an optical path between the detection target body 8d and the displacement detection element 9d. The line orthogonal to the reflection surface of the detection target body 8d intersects the light receiving surface of the displacement detection element 9d at an angle η. FIG. 7C is an enlarged view of the displacement detection element 9d. In the force sensor 100C, a diffraction grating 13 having a light receiving surface having an inclination of an angle η formed so as to be parallel to the reflecting surface of the detection target body 8d is arranged on the surface (on the light receiving surface) of the displacement detection element 9d. There is. Therefore, the incident light from the detection target body 8d is refracted by the diffraction grating 13 as shown by the broken line in FIG. 7C, and is vertically incident on the light receiving surface of the displacement detection element 9d. As a result, the optical relationship between the detection target body 8d and the displacement detection element 9d on the force sensor 100C is equivalent to the optical relationship between the detection target body 8d and the displacement detection element 9d on the force sensor 100B. Become. The force sensor 100C can be changed to a configuration that does not detect the force acting in the x direction and the y direction in the same manner as in the first modification and the second modification of the force sensor 100B.

次に、上述した実施例1~3に係る力覚センサ100A~100Cとの比較対象となる比較例1~7に係る力覚センサ100p~100vについて説明する。図8(a),(b)はそれぞれ、比較例1,2に係る力覚センサ100p,100qの部分断面図であり、図5(a)に示した部位に対応する部位が示されている。 Next, the force sensor 100p to 100v according to Comparative Examples 1 to 7 to be compared with the force sensors 100A to 100C according to the above-mentioned Examples 1 to 3 will be described. 8 (a) and 8 (b) are partial cross-sectional views of the force sensors 100p and 100q according to Comparative Examples 1 and 2, respectively, and the parts corresponding to the parts shown in FIG. 5A are shown. ..

比較例1に係る力覚センサ100pは、実質的に図2を参照して説明した力覚センサ100と同等である。つまり、検出対象体8dと変位検出素子9dは、それぞれの中心が接合部鉛直線12上に位置するよう配置され、且つ、z方向で正対している。なお、図5(a)を参照して説明した定義に従い、力覚センサ100pでは、検出対象体8dの接合部鉛直線12に対する水平距離Jはゼロ(0)となる。また、力覚センサ100pでの検出対象体8dの弾性連結部5に対する垂直距離Gは、厳密には、変位変換部3の高さhに検出対象体8dの厚みを加えた長さとなる。但し、変位変換部3の高さhに比べて検出対象体8dの厚みは十分に小さいと見なして、力覚センサ100pでは、垂直距離Gは変位変換部3の高さhと同じであるとする。 The force sensor 100p according to Comparative Example 1 is substantially the same as the force sensor 100 described with reference to FIG. That is, the detection target body 8d and the displacement detection element 9d are arranged so that their respective centers are located on the joint vertical straight line 12, and face each other in the z direction. In the force sensor 100p, the horizontal distance J with respect to the joint vertical line 12 of the detection target body 8d is zero (0) according to the definition described with reference to FIG. 5A. Further, the vertical distance G of the detection target body 8d by the force sensor 100p with respect to the elastic connecting portion 5 is, strictly speaking, a length obtained by adding the thickness of the detection target body 8d to the height h of the displacement conversion unit 3. However, it is considered that the thickness of the detection target body 8d is sufficiently smaller than the height h of the displacement conversion unit 3, and the vertical distance G is the same as the height h of the displacement conversion unit 3 in the force sensor 100p. do.

比較例2に係る力覚センサ100qでは、検出対象体8dが接合部鉛直線12よりも支持部6側に配置されるように、変位変換部3にはセンサ基板7側の先端部から支持部6側へ突出した張り出し部15が設けられている。検出対象体8dは、反射面がz方向と平行になるように張り出し部15の先端面に取り付けられている。また、変位検出素子9dは、検出対象体8dと正対するようにセンサ基板7に実装されている。 In the force sensor 100q according to Comparative Example 2, the displacement conversion unit 3 has a support portion from the tip portion on the sensor substrate 7 side so that the detection target body 8d is arranged on the support portion 6 side of the joint portion vertical line 12. An overhanging portion 15 projecting to the 6 side is provided. The detection target body 8d is attached to the tip surface of the overhanging portion 15 so that the reflection surface is parallel to the z direction. Further, the displacement detection element 9d is mounted on the sensor substrate 7 so as to face the detection target body 8d.

図9(a)~(c)はそれぞれ、比較例3,4,5に係る力覚センサ100r,100s,100tの部分断面図であり、図5(a)に示した部位に対応する部位で示されている。比較例3に係る力覚センサ100rは、実施例1に係る力覚センサ100Aが備える変位変換部3及び張り出し部15と同じ変位変換部を備えている。よって、力覚センサ100rにおいて検出対象体8dは接合部鉛直線12よりも中心軸L側に配置されている。但し、力覚センサ100rでは、検出対象体8dは、張り出し部15の先端部においてセンサ基板7と対面する面に取り付けられ、センサ基板7に実装された変位検出素子9dとz方向で正対しており、この点で力覚センサ100Aと異なっている。なお、図5(a)を参照して説明した定義に従い、力覚センサ100rにおいて検出対象体8dの接合部鉛直線12に対する水平距離Jは、検出対象体8dの表面の中心から接合部鉛直線12へ下ろした垂線の長さとなる。また、比較例1に係る力覚センサ100pと同様に、力覚センサ100rでは、垂直距離Gは変位変換部3の高さhと同じであるとする。 9 (a) to 9 (c) are partial cross-sectional views of the force sensor 100r, 100s, 100t according to Comparative Examples 3, 4 and 5, respectively, and are the parts corresponding to the parts shown in FIG. 5A. It is shown. The force sensor 100r according to Comparative Example 3 includes the same displacement conversion unit as the displacement conversion unit 3 and the overhanging unit 15 included in the force sensor 100A according to the first embodiment. Therefore, in the force sensor 100r, the detection target body 8d is arranged on the central axis L side of the joint vertical line 12. However, in the force sensor 100r, the detection target body 8d is attached to the surface facing the sensor substrate 7 at the tip of the overhanging portion 15, and faces the displacement detection element 9d mounted on the sensor substrate 7 in the z direction. In this respect, it differs from the force sensor 100A. In accordance with the definition described with reference to FIG. 5A, the horizontal distance J with respect to the joint vertical line 12 of the detection target body 8d in the force sensor 100r is the joint vertical line from the center of the surface of the detection target body 8d. It is the length of the vertical line drawn to 12. Further, similarly to the force sensor 100p according to Comparative Example 1, in the force sensor 100r, the vertical distance G is assumed to be the same as the height h of the displacement conversion unit 3.

比較例4に係る力覚センサ100sは、比較例2に係る力覚センサ100qと比較すると、検出対象体8dと変位検出素子9dの配置が異なるが、その他の構成は力覚センサ100qと同等である。力覚センサ100sでは、検出対象体8dは、張り出し部15の先端部においてセンサ基板7と対面する面に取り付けられ、接合部鉛直線12よりも支持部6側に配置されている。また、検出対象体8dは、センサ基板7に実装された変位検出素子9dとz方向で正対している。なお、比較例1に係る力覚センサ100pと同様に、力覚センサ100rでは、垂直距離Gは変位変換部3の高さhと同じであるとする。 The force sensor 100s according to Comparative Example 4 has a different arrangement of the detection target body 8d and the displacement detection element 9d as compared with the force sensor 100q according to Comparative Example 2, but the other configurations are the same as those of the force sensor 100q. be. In the force sensor 100s, the detection target body 8d is attached to the surface facing the sensor substrate 7 at the tip of the overhanging portion 15, and is arranged on the support portion 6 side of the joint portion vertical line 12. Further, the detection target body 8d faces the displacement detection element 9d mounted on the sensor substrate 7 in the z direction. Similar to the force sensor 100p according to Comparative Example 1, in the force sensor 100r, the vertical distance G is assumed to be the same as the height h of the displacement conversion unit 3.

比較例5に係る力覚センサ100tでは、検出対象体8dが接合部鉛直線12よりも支持部6側に配置されるように、変位変換部3にはセンサ基板7側の先端部から支持部6側へ突出した張り出し部15が設けられている。力覚センサ100tは、張り出し部15の先端面が所定の角度でz方向と交わるように設計されている点で、力覚センサ100q,100sと異なる。検出対象体8dは張り出し部15tの先端面に取り付けられており、よって、検出対象体8dの反射面はz方向と所定の角度で交差している。また、変位検出素子9dは、検出対象体8と正対するようにセンサ基板7に実装されている。 In the force sensor 100t according to Comparative Example 5, the displacement conversion unit 3 has a support portion from the tip portion on the sensor substrate 7 side so that the detection target body 8d is arranged on the support portion 6 side with respect to the joint portion vertical line 12. An overhanging portion 15 projecting to the 6 side is provided. The force sensor 100t differs from the force sensors 100q and 100s in that the tip surface of the overhanging portion 15 is designed to intersect the z direction at a predetermined angle. The detection target body 8d is attached to the tip surface of the overhanging portion 15t, so that the reflection surface of the detection target body 8d intersects the z direction at a predetermined angle. Further, the displacement detection element 9d is mounted on the sensor substrate 7 so as to face the detection target body 8.

図10(a),(b)はそれぞれ、比較例6,7に係る力覚センサ100u,100vの部分断面図であり、図5(a)に示した部位に対応する部位で示されている。比較例6に係る力覚センサ100uでは、検出対象体8dと変位検出素子9dの位置関係は実施例1に係る力覚センサ100Aと同様であり、検出対象体8dは接合部鉛直線12よりも中心軸L側に配置されている。但し、変位変換部3の高さhが、後述する各部の寸法の通り、力覚センサ100uでは実施例1に係る力覚センサ100Aよりも高くなっている。具体的には、力覚センサ100uでは、図5(a)を参照して説明した距離Eと水平距離Jの和が変位変換部3の高さhよりも短い構造となっている。 10 (a) and 10 (b) are partial cross-sectional views of the force sensors 100u and 100v according to Comparative Examples 6 and 7, respectively, and are shown by the portions corresponding to the portions shown in FIG. 5 (a). .. In the force sensor 100u according to Comparative Example 6, the positional relationship between the detection target body 8d and the displacement detection element 9d is the same as that of the force sensor 100A according to the first embodiment, and the detection target body 8d is more than the joint vertical line 12. It is arranged on the L side of the central axis. However, the height h of the displacement conversion unit 3 is higher in the force sensor 100u than in the force sensor 100A according to the first embodiment, as shown in the dimensions of each unit described later. Specifically, the force sensor 100u has a structure in which the sum of the distance E and the horizontal distance J described with reference to FIG. 5A is shorter than the height h of the displacement conversion unit 3.

比較例7に係る力覚センサ100vは、比較例6に係る力覚センサ100uの変位変換部3と同じ変位変換部3を備えている。但し、力覚センサ100vでは、検出対象体8dの反射面がz方向と直交し、且つ、検出対象体8の中心が接合部鉛直線12上に位置するように配置されており、この点で力覚センサ100uと異なる。 The force sensor 100v according to Comparative Example 7 includes the same displacement conversion unit 3 as the displacement conversion unit 3 of the force sensor 100u according to Comparative Example 6. However, in the force sensor 100v, the reflection surface of the detection target body 8d is orthogonal to the z direction, and the center of the detection target body 8 is arranged so as to be located on the joint vertical line 12. It is different from the force sensor 100u.

次に、実施例1~3(力覚センサ100A~100C)と比較例1~7(力覚センサ100p~100v)の感度等について説明する。なお、力覚センサが備える4箇所の変位変換部3のそれぞれに取り付けられた検出対象体は等価であり、各検出対象体に対面する各変位検出素子も等価であるため、以下では「検出対象体8」及び「変位検出素子9」と記して説明を行う。 Next, the sensitivities of Examples 1 to 3 (force sensor 100A to 100C) and Comparative Examples 1 to 7 (force sensor 100p to 100v) will be described. It should be noted that the detection target bodies attached to each of the four displacement conversion units 3 provided in the force sensor are equivalent, and the displacement detection elements facing each detection target body are also equivalent. The description will be described with the description of "body 8" and "displacement detection element 9".

実施例1~3と比較例1~7のそれぞれの力覚センサに対して以下の通りに形状(寸法)を設定する。実施例1~3及び比較例1~7に共通して、距離Eと距離Fは共に14.75mmである。弾性連結部5をyz平面で切断して現れる断面の断面積は、19.2mmである。また、変位変換部3においてz方向と平行な2本の直線部をxy平面で切断して現れる2つの断面のそれぞれの断面積も19.2mmである。実施例1~3及び比較例1~5に共通して、変位変換部3の高さhは9.1mmである。比較例6,7では、変位変換部3の高さは36mmである。実施例1~3及び比較例1~5に共通して、垂直距離Gは9.1mmである。比較例6,7では、垂直距離Gは36mmである。実施例1~3及び比較例2~5に共通して、水平距離Jは9.1mmである。比較例6では、水平距離Jは14.75mmである。なお、比較例1,7では、前述した通り、水平距離Jはゼロ(0)である。また、ここに規定した寸法は一例であり、実施例1~3に係る力覚センサ100A~100Cの各部の寸法を限定するものではない。 Shapes (dimensions) are set for each of the force sensors of Examples 1 to 3 and Comparative Examples 1 to 7 as follows. Common to Examples 1 to 3 and Comparative Examples 1 to 7, the distance E and the distance F are both 14.75 mm. The cross-sectional area of the cross section that appears when the elastic connecting portion 5 is cut in the yz plane is 19.2 mm 2 . Further, the cross-sectional area of each of the two cross sections appearing by cutting the two straight line portions parallel to the z direction in the displacement conversion unit 3 on the xy plane is also 19.2 mm 2 . Common to Examples 1 to 3 and Comparative Examples 1 to 5, the height h of the displacement conversion unit 3 is 9.1 mm. In Comparative Examples 6 and 7, the height of the displacement conversion unit 3 is 36 mm. Common to Examples 1 to 3 and Comparative Examples 1 to 5, the vertical distance G is 9.1 mm. In Comparative Examples 6 and 7, the vertical distance G is 36 mm. Common to Examples 1 to 3 and Comparative Examples 2 to 5, the horizontal distance J is 9.1 mm. In Comparative Example 6, the horizontal distance J is 14.75 mm. In Comparative Examples 1 and 7, as described above, the horizontal distance J is zero (0). Further, the dimensions specified here are examples, and do not limit the dimensions of each part of the force sensor 100A to 100C according to the first to third embodiments.

実施例1~3と比較例1~7に係る力覚センサ100の受力部4に-z方向に40Nの負荷を印加し、変位検出素子9により検知された感度(変位検出素子9に対する検出対象体8の相対移動距離)を計測した。なお、実施例3を除き、全ての力覚センサで変位検出素子9と検出対象体8とは正対しており、よって、変位検出素子9の受光面の法線と検出対象体8dの受光面の法線とは平行であるとする。 A load of 40 N is applied in the −z direction to the receiving unit 4 of the force sensor 100 according to Examples 1 to 3 and Comparative Examples 1 to 7, and the sensitivity detected by the displacement detecting element 9 (detection for the displacement detecting element 9). The relative movement distance of the object 8) was measured. In all force sensors except Example 3, the displacement detection element 9 and the detection target body 8 face each other, so that the normal of the light receiving surface of the displacement detection element 9 and the light receiving surface of the detection target body 8d are facing each other. It is assumed that it is parallel to the normal of.

実施例1、比較例1,2の感度及び剛性の測定値を図11(a)に示す。なお、図11(a)中の「観測方向」とは、実施例3を除き検出対象体8と変位検出素子9とが正対している方向であり、図11(b),(c)でも同様である。実施例3では検出対象体9の受光面の法線方向である。例えば、実施例1では、検出対象体8と変位検出素子9とはxy平面(水平面)と平行な方向で正対しているため、観測方向を水平方向と定める。 The measured values of sensitivity and rigidity of Examples 1 and Comparative Examples 1 and 2 are shown in FIG. 11 (a). The "observation direction" in FIG. 11 (a) is the direction in which the detection target body 8 and the displacement detection element 9 face each other except for the third embodiment, and also in FIGS. 11 (b) and 11 (c). The same is true. In the third embodiment, it is the normal direction of the light receiving surface of the detection target body 9. For example, in the first embodiment, since the detection target body 8 and the displacement detection element 9 face each other in a direction parallel to the xy plane (horizontal plane), the observation direction is defined as the horizontal direction.

実施例1、比較例1,2の力覚センサでは、検出対象体8の弾性連結部5に対する垂直距離Gは等しい。検出対象体8が接合部鉛直線12よりも中心軸L側にある実施例1では、検出対象体8が支持部6側にある比較例2よりも感度が高くなっていることがわかる。また、検出対象体8が接合部鉛直線12上にある比較例1の感度は、比較例2よりも高いが、実施例1よりも低いことがわかる。これらのことから、検出対象体8の弾性連結部5に対する垂直距離Gが等しく、観測方向が水平方向である場合には、検出対象体8を接合部鉛直線12よりも中心軸L側に配置することで、感度を高めることが可能なことがわかる。なお、剛性に関しては、変位変換部3の形状に依存するため、各力覚センサで同等となっている。 In the force sensors of Examples 1 and Comparative Examples 1 and 2, the vertical distance G of the detection target body 8 with respect to the elastic connecting portion 5 is the same. It can be seen that in Example 1 in which the detection target body 8 is on the central axis L side of the joint portion vertical line 12, the sensitivity is higher than in Comparative Example 2 in which the detection target body 8 is on the support portion 6 side. Further, it can be seen that the sensitivity of Comparative Example 1 in which the detection target 8 is on the joint vertical line 12 is higher than that of Comparative Example 2, but lower than that of Example 1. From these facts, when the vertical distance G of the detection target body 8 with respect to the elastic connecting portion 5 is equal and the observation direction is the horizontal direction, the detection target body 8 is arranged on the central axis L side of the joint vertical line 12. By doing so, it can be seen that the sensitivity can be increased. Since the rigidity depends on the shape of the displacement conversion unit 3, it is the same for each force sensor.

実施例2,3及び比較例2,5の感度及び剛性の測定値を図11(b)に示す。これらの力覚センサでは、検出対象体8の弾性連結部5に対する垂直距離Gは等しい。実施例2と比較例5では、検出対象体8の表面(反射面)の法線と接合部鉛直線12とが成す角は0度より大きい。検出対象体8が接合部鉛直線12より中心軸L側にある実施例2,3の感度は、検出対象体8が支持部6側にある比較例2,5の感度よりも高い。なお、剛性に関しては、変位変換部3の形状に依存するため、各力覚センサで同等となっている。 The measured values of sensitivity and rigidity of Examples 2 and 3 and Comparative Examples 2 and 5 are shown in FIG. 11 (b). In these force sensors, the vertical distance G of the detection target body 8 with respect to the elastic connecting portion 5 is equal. In Example 2 and Comparative Example 5, the angle formed by the normal of the surface (reflecting surface) of the detection object 8 and the joint vertical line 12 is larger than 0 degrees. The sensitivity of Examples 2 and 3 in which the detection target body 8 is on the central axis L side of the joint portion vertical line 12 is higher than the sensitivity of Comparative Examples 2 and 5 in which the detection target body 8 is on the support portion 6 side. Since the rigidity depends on the shape of the displacement conversion unit 3, it is the same for each force sensor.

比較例3,1,4の感度及び剛性の測定値を図11(c)に示す。これらの力覚センサでは、検出対象体8の弾性連結部5に対する垂直距離Gは等しい。検出対象体8の向きがz方向(鉛直方向)である場合、検出対象体8が接合部鉛直線12よりも中心軸L側か、接合部鉛直線12上か、支持部6側かは、感度に影響を与えないことがわかる。剛性に関しては、変位変換部3の形状に依存するため、各力覚センサで同等となっている。以上の比較から、検出対象体8を接合部鉛直線12よりも中心軸L側に配置し、且つ、検出対象体8の表面の法線と接合部鉛直線12との成す角を0度より大きい角度とすることで、感度を高めることができることがわかる。 The measured values of sensitivity and rigidity of Comparative Examples 3, 1 and 4 are shown in FIG. 11 (c). In these force sensors, the vertical distance G of the detection target body 8 with respect to the elastic connecting portion 5 is equal. When the direction of the detection target body 8 is the z direction (vertical direction), whether the detection target body 8 is on the central axis L side of the joint vertical line 12, on the joint vertical line 12, or on the support 6 side is determined. It can be seen that it does not affect the sensitivity. Since the rigidity depends on the shape of the displacement conversion unit 3, it is the same for each force sensor. From the above comparison, the detection target body 8 is arranged on the central axis L side of the joint vertical line 12, and the angle formed by the normal surface of the surface of the detection target 8 and the joint vertical line 12 is from 0 degrees. It can be seen that the sensitivity can be increased by setting a large angle.

比較例6,7の感度及び剛性の測定値を図11(d)に示す。これらの力覚センサでは、検出対象体8の弾性連結部5に対する垂直距離Gは等しい。比較例6では、検出対象体8は中心軸L側にあるが、比較例6の感度は検出対象体8が接合部鉛直線12上にある比較例7の感度よりも低くなっていることがわかる。そして、比較例6,7では、実施例1~3及び比較例1~5と比較して、剛性が低下しており、これは、変位変換部3の高さの違いに起因するものと考えられる。更に比較例6では、検出対象体8の支持部6からの水平距離(距離E(14.75mm)と水平距離J(14.75mm)の和)が変位変換部3の高さh(36mm)よりも短い。このような条件が揃った場合、検出対象体8を接合部鉛直線12より中心軸L側に配置しても、検出対象体8が接合部鉛直線12上にあるものに比較して、感度を高める効果が得られないことがわかる。 The measured values of sensitivity and rigidity of Comparative Examples 6 and 7 are shown in FIG. 11 (d). In these force sensors, the vertical distance G of the detection target body 8 with respect to the elastic connecting portion 5 is equal. In Comparative Example 6, the detection target body 8 is on the central axis L side, but the sensitivity of Comparative Example 6 is lower than that of Comparative Example 7 in which the detection target body 8 is on the joint vertical line 12. Recognize. Further, in Comparative Examples 6 and 7, the rigidity is lowered as compared with Examples 1 to 3 and Comparative Examples 1 to 5, and it is considered that this is due to the difference in the height of the displacement conversion unit 3. Be done. Further, in Comparative Example 6, the horizontal distance (the sum of the distance E (14.75 mm) and the horizontal distance J (14.75 mm)) from the support portion 6 of the detection target body 8 is the height h (36 mm) of the displacement conversion unit 3. Shorter than. When such conditions are met, even if the detection target body 8 is arranged on the central axis L side of the joint vertical line 12, the sensitivity is higher than that of the detection target body 8 on the joint vertical line 12. It can be seen that the effect of increasing is not obtained.

上述した実施例1~3及び比較例1~7の比較から、以下の第1乃至第3の条件が満たされることで、力覚センサの感度を高めることが可能になることがわかる。第1の条件は「検出対象体8が接合部鉛直線12よりも中心軸L側に配置されること」である。第2の条件は「変位変換部3が無変位の状態で検出対象体8の表面の法線方向(反射面と直交する方向)がz方向(鉛直方向)を向いていないこと」である。第3の条件は「支持部6の内周面から検出対象体8までの距離が変位変換部3の高さよりも長いこと」である。 From the comparison of Examples 1 to 3 and Comparative Examples 1 to 7 described above, it can be seen that the sensitivity of the force sensor can be increased by satisfying the following first to third conditions. The first condition is that the detection target body 8 is arranged on the central axis L side of the joint vertical line 12. The second condition is that "the displacement conversion unit 3 is in a non-displacement state and the normal direction (direction orthogonal to the reflection surface) of the surface of the detection object 8 does not face the z direction (vertical direction)". The third condition is "the distance from the inner peripheral surface of the support portion 6 to the detection target body 8 is longer than the height of the displacement conversion portion 3".

なお、上記実施例1~3及び比較例1~7の比較は、各例に対応する各力覚センサにおいて、検出対象体8の弾性連結部5に対する垂直距離Gは変位変換部3の高さhと等しいという条件の下で行っている。よって、上記第1乃至第3の条件は、力覚センサ全体の厚み(力覚センサのz方向で高さ)が等しい場合に感度を高める条件を示している。変位変換部3の高さhと感度とは正の相関関係にある。よって、設計上、比較例1で変位変換部3の高さを高くしたもの(力覚センサ全体の厚みが厚いもの)と、実施例1~3で変位変換部3の高さを低くしたもの(力覚センサ全体の厚みが薄いもの)とで、同等の感度を出すことが可能である。また、上記比較結果からわかるように、力覚センサの剛性は変位変換部3の高さが低いと向上する傾向がある。よって、実施例1~3に係る力覚センサでは、感度を維持したままセンサを薄型化、剛性を向上させることが可能になる。逆に、力覚センサの高さを従来からの高さと変えることなく検出対象体8の配置を実施例1~3の通りに変更することにより、感度を高めることができる。 In the comparison of Examples 1 to 3 and Comparative Examples 1 to 7, in each force sensor corresponding to each example, the vertical distance G with respect to the elastic connecting portion 5 of the detection target body 8 is the height of the displacement conversion portion 3. It is performed under the condition that it is equal to h. Therefore, the first to third conditions indicate the conditions for increasing the sensitivity when the thickness of the entire force sensor (height in the z direction of the force sensor) is the same. The height h of the displacement conversion unit 3 and the sensitivity have a positive correlation. Therefore, in terms of design, the height of the displacement conversion unit 3 is increased in Comparative Example 1 (the thickness of the entire force sensor is thick), and the height of the displacement conversion unit 3 is decreased in Examples 1 to 3. (The thickness of the entire force sensor is thin), and it is possible to obtain the same sensitivity. Further, as can be seen from the above comparison results, the rigidity of the force sensor tends to improve when the height of the displacement conversion unit 3 is low. Therefore, in the force sensor according to the first to third embodiments, it is possible to make the sensor thinner and improve the rigidity while maintaining the sensitivity. On the contrary, the sensitivity can be increased by changing the arrangement of the detection target body 8 as in Examples 1 to 3 without changing the height of the force sensor from the conventional height.

次に、上記第1乃至第3の条件が力覚センサの感度増大に寄与する理由について、図12を参照して説明する。図12(a)は、感度増大効果を奏する力覚センサの部分断面図である。ここでは、第2実施形態に係る力覚センサ100Bの第1の変形例を取り上げる。図12(b)は、図12(a)の弾性連結部5の右側にある不図示の受力部4に-z方向に外力が作用した後の弾性連結部5及び変位変換部3の変形後の状態を示す断面図である。なお、図12(a),(b)では、各部の寸法等を明記するために、各部でのハッチングを省略している。 Next, the reason why the first to third conditions contribute to the increase in the sensitivity of the force sensor will be described with reference to FIG. FIG. 12A is a partial cross-sectional view of a force sensor that has an effect of increasing sensitivity. Here, the first modification of the force sensor 100B according to the second embodiment will be taken up. 12 (b) shows the deformation of the elastic connecting portion 5 and the displacement conversion portion 3 after an external force is applied in the −z direction to the receiving portion 4 (not shown) on the right side of the elastic connecting portion 5 of FIG. 12 (a). It is sectional drawing which shows the later state. In FIGS. 12 (a) and 12 (b), hatching in each part is omitted in order to specify the dimensions and the like of each part.

図12(a)に示す変位変換部3の高さh、距離E、垂直距離G及び水平距離Jは、図5(a)及び図6(a)を参照して説明した定義に従う。ここでは、検出対象体8は、変位変換部3の高さhと垂直距離Gとが等しくなるように配置されている。線21と接合部鉛直線12との交点を接合部中心点14aとし、接合部中心点14aから検出対象体8の表面中心までの距離を“w”とする。また、接合部中心点14aと検出対象体8の表面中心とを結ぶ直線が接合部鉛直線12と成す角を“β”とし、検出対象体8における反射面の法線がz方向(接合部鉛直線12)と成す角を“γ”とする。なお、角度β,γについては、検出対象体8が接合部鉛直線12よりも不図示の中心軸L側(図12(a)において右側)にある場合に正の値をとり、支持部6側にある場合に負の値を取るものとする。また、力覚センサに外力が作用していない状態では、検出対象体8と変位検出素子9は正対しているものとする。図12(b)に示すように、変形後の弾性連結部5が水平面と成す角度を“dα”とする。接合部中心点14aは変形後に接合部中心点14bへ移動し、接合部鉛直線12は変形後に接合部鉛直線12´の通りに傾斜するものとする。 The height h, the distance E, the vertical distance G, and the horizontal distance J of the displacement conversion unit 3 shown in FIG. 12 (a) follow the definitions described with reference to FIGS. 5 (a) and 6 (a). Here, the detection target body 8 is arranged so that the height h of the displacement conversion unit 3 and the vertical distance G are equal to each other. The intersection of the line 21 and the joint vertical straight line 12 is defined as the junction center point 14a, and the distance from the junction center point 14a to the surface center of the detection target body 8 is defined as “w”. Further, the angle formed by the straight line connecting the joint portion center point 14a and the surface center of the detection target body 8 with the joint portion vertical straight line 12 is defined as “β”, and the normal of the reflection surface in the detection target body 8 is in the z direction (joint portion). The angle formed by the vertical line 12) is defined as "γ". The angles β and γ take positive values when the detection target body 8 is on the central axis L side (right side in FIG. 12A) of the joint portion vertical line 12 (not shown), and the support portion 6 It shall take a negative value if it is on the side. Further, it is assumed that the detection target body 8 and the displacement detection element 9 face each other in a state where no external force is applied to the force sensor. As shown in FIG. 12B, the angle formed by the deformed elastic connecting portion 5 with the horizontal plane is defined as “dα”. It is assumed that the joint center point 14a moves to the joint center point 14b after deformation, and the joint vertical line 12 is inclined according to the joint vertical line 12'after deformation.

変形時の検出対象体8の軌跡は、以下の第1の運動と第2の運動からなると考えることができる。第1の運動は、接合部中心点14aが支持部6と弾性連結部5との境界点を中心にdαだけ回転することによる-z方向(鉛直方向下向き)の運動である。第2の運動は、変形後の接合部中心点14bを中心にdαだけ回転する運動である。これらの運動を変位検出素子9による観測方向であるz方向(鉛直方向)に対して角度βを成す方向に射影するので、第1の運動と第2の運動によって検出対象体8はそれぞれ、zx平面上を下記式1,2のベクトルで表される分だけ移動する。以下の計算では、変位変換部3の高さh(=wcosβ)は一定として計算を行う。 The locus of the detection target body 8 at the time of deformation can be considered to consist of the following first movement and second movement. The first movement is a movement in the −z direction (downward in the vertical direction) due to the rotation of the joint portion center point 14a by dα about the boundary point between the support portion 6 and the elastic connecting portion 5. The second motion is a motion that rotates by dα around the joint center point 14b after deformation. Since these motions are projected in the direction forming an angle β with respect to the z direction (vertical direction) which is the observation direction by the displacement detection element 9, the detection target body 8 is zx by the first motion and the second motion, respectively. It moves on the plane by the amount represented by the vectors of the following equations 1 and 2. In the following calculation, the height h (= wcosβ) of the displacement conversion unit 3 is assumed to be constant.

下記式1,2で表される変位の和のベクトルを検出対象体8上に射影したものが感度である。zx平面上での検出対象体8の設置方向は、下記式3で表される。よって下記3で表される方向に下記式1,2の変位を足し合わせたものの射影成分の絶対値を取り、J=wsinβ、及び、h=wcosβであることに注意すると、感度は下記式4で表される。 The sensitivity is the vector of the sum of the displacements represented by the following equations 1 and 2 projected onto the detection target body 8. The installation direction of the detection target body 8 on the zx plane is represented by the following equation 3. Therefore, if the absolute value of the projection component is taken by adding the displacements of the following equations 1 and 2 to the direction represented by 3 below, and note that J = wsinβ and h = wcosβ, the sensitivity is the following equation 4 It is represented by.

Figure 0007013303000001
Figure 0007013303000001

接合部鉛直線12上に検出対象体8がある場合(例えば、比較例1に係る力覚センサ100pの場合)、β=0度、γ=0度、w=hとなるため、感度はhdαとなる。以下感度hdαを基準値として力覚センサの感度を評価する。 When the detection target body 8 is on the joint vertical line 12 (for example, in the case of the force sensor 100p according to Comparative Example 1), β = 0 degrees, γ = 0 degrees, and w = h, so that the sensitivity is hdα. Will be. Hereinafter, the sensitivity of the force sensor is evaluated using the sensitivity hdα as a reference value.

所定の角度γに対して、角度βと感度の関係をグラフにしたものを図13(a),(b)に示す。図13(a),(b)中、縦軸の感度増大率とは、上記式4により計算した感度の値を基準値(=hdα)で除したものである。図13からわかるように、変位変換部3の高さhが一定の条件の下、角度γが正の値を取る場合には、角度βが正の値を取ると感度増大率が1以上となり、感度増大効果が顕著に現れることがわかる。また、角度βが大きいほど(水平距離Jが長い)、感度増大効果は大きいことがわかる。一方、角度γが負の値を取る場合でも、角度βが正の値を取って値が大きくなることで感度増大効果が得られる傾向は見られるが、感度増大効果が得られる角度βの範囲が限定されていることがわかる。 13 (a) and 13 (b) show a graph of the relationship between the angle β and the sensitivity with respect to a predetermined angle γ. In FIGS. 13 (a) and 13 (b), the sensitivity increase rate on the vertical axis is the value of the sensitivity calculated by the above equation 4 divided by the reference value (= hdα). As can be seen from FIG. 13, when the angle γ takes a positive value under the condition that the height h of the displacement conversion unit 3 takes a positive value, the sensitivity increase rate becomes 1 or more when the angle β takes a positive value. It can be seen that the effect of increasing sensitivity appears remarkably. Further, it can be seen that the larger the angle β (the longer the horizontal distance J), the greater the effect of increasing the sensitivity. On the other hand, even when the angle γ takes a negative value, there is a tendency that the sensitivity increasing effect can be obtained by taking a positive value and increasing the value, but the range of the angle β where the sensitivity increasing effect can be obtained. It can be seen that is limited.

β>0、γ=90度の場合(検出対象体8と変位検出素子9が水平方向で正対しており、接合部鉛直線12より中心軸L側にあり、反射面がxy平面と平行な場合)、上記式4は下記式5の通りに変形することができる。これより、感度増大条件は、下記式6で表される。これにより、検出対象体8から支持部6までの水平距離(=E+J)が変位変換部3の高さhより長い場合、感度増大効果があることがわかる。つまり、本実施形態に係る力覚センサの感度は、検出対象体8から支持部6までの水平距離(E+J)の関数で表され、よって、弾性連結部5に対して変位変換部3を設ける接合部中心点14aの位置に依存しないことがわかる。変位変換部3の高さhが、下記式6を満たしていない上述の比較例6では感度増大効果が得られず、また、比較例7よりも感度が劣る結果となっている。 When β> 0, γ = 90 degrees (the detection object 8 and the displacement detection element 9 face each other in the horizontal direction, are on the central axis L side of the joint vertical line 12, and the reflection surface is parallel to the xy plane. Case), the above equation 4 can be modified as the following equation 5. From this, the sensitivity increase condition is expressed by the following equation 6. From this, it can be seen that when the horizontal distance (= E + J) from the detection target body 8 to the support portion 6 is longer than the height h of the displacement conversion unit 3, there is an effect of increasing the sensitivity. That is, the sensitivity of the force sensor according to the present embodiment is expressed by a function of the horizontal distance (E + J) from the detection target body 8 to the support portion 6, and thus the displacement conversion unit 3 is provided with respect to the elastic connecting portion 5. It can be seen that it does not depend on the position of the joint center point 14a. In the above-mentioned Comparative Example 6 in which the height h of the displacement conversion unit 3 does not satisfy the following equation 6, the sensitivity increasing effect cannot be obtained, and the sensitivity is inferior to that of the Comparative Example 7.

γ=0度、つまり、受力部4(不図示)に外力が印加されていない状態で検出対象体8と変位検出素子9がz方向で正対している構成の場合、上記式4は下記式7の通りに変形することができる。下記式7より、角度βの値に依らず、γ=0度の場合には感度増大率は1となることがわかる。このことは、変位変換部3の高さhが一定であるとの条件の下、検出対象体8と変位検出素子9とがz方向で正対している構成(比較例1,3,4)では、どの位置に検出対象体8があっても感度は角度βによらず一定となり、感度増大効果は得られないことがわかる。この結果は、図11に示した結果と一致している。 When γ = 0 degrees, that is, when the detection target body 8 and the displacement detection element 9 face each other in the z direction in a state where no external force is applied to the receiving unit 4 (not shown), the above equation 4 is as follows. It can be transformed according to Equation 7. From the following equation 7, it can be seen that the sensitivity increase rate is 1 when γ = 0 degrees, regardless of the value of the angle β. This means that the detection target body 8 and the displacement detection element 9 face each other in the z direction under the condition that the height h of the displacement conversion unit 3 is constant (Comparative Examples 1, 3 and 4). Then, it can be seen that the sensitivity is constant regardless of the angle β regardless of the position of the detection target body 8, and the effect of increasing the sensitivity cannot be obtained. This result is in agreement with the result shown in FIG.

Figure 0007013303000002
Figure 0007013303000002

ところで、力覚センサを備える各種の装置では、受力部に作用する力によって受力部が大きく変形してしまうと、弾性連結部が自重で大きく振動してしまうおそれがある。例えば、ロボットアーム等の先端に取り付ける等、動作が大きい場所での力を検出する用途では、弾性連結部の振動が測定値にノイズとなって現れてしまう。また、ロボットハンドの所定の部位に掛かる力を検知するために力覚センサを用いる場合、ハンド取付部からハンド先端部までのストロークを短くしたいという要望があり、この要望に応えるために力覚センサの薄型化が求められている。更に、医療ロボットの一例であるマニピュレータ等のヒューマンインタラクティブなエンドエフェクタには、非常に小さな力を高精度で検知できる性能、つまり、感度の向上が求められている。 By the way, in various devices provided with a force sensor, if the receiving portion is greatly deformed by the force acting on the receiving portion, the elastic connecting portion may vibrate greatly due to its own weight. For example, in an application for detecting a force in a place where the movement is large, such as attaching to the tip of a robot arm or the like, the vibration of the elastic connecting portion appears as noise in the measured value. In addition, when a force sensor is used to detect the force applied to a predetermined part of the robot hand, there is a request to shorten the stroke from the hand mounting portion to the tip of the hand, and the force sensor is used to meet this demand. Is required to be thinner. Further, a human interactive end effector such as a manipulator, which is an example of a medical robot, is required to have a performance capable of detecting a very small force with high accuracy, that is, an improvement in sensitivity.

このような要求に対して上記第1乃至第3の条件を満たすように力覚センサを構成することにより、剛性を維持しながら、力覚センサ全体の厚みを増すことなく、感度を高めることが可能になる。逆に言えば、感度特性を維持しながら、力覚センサ全体の薄型化を実現することができる。これにより、力覚センサを装備する各種機器の性能向上を図ることが可能になる。 By configuring the force sensor so as to satisfy the first to third conditions in response to such a requirement, it is possible to increase the sensitivity without increasing the thickness of the entire force sensor while maintaining the rigidity. It will be possible. Conversely, it is possible to reduce the thickness of the entire force sensor while maintaining the sensitivity characteristics. This makes it possible to improve the performance of various devices equipped with a force sensor.

以上、本発明をその好適な実施形態に基づいて詳述してきたが、本発明はこれら特定の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も本発明に含まれる。更に、上述した各実施形態は本発明の一実施形態を示すものにすぎず、各実施形態を適宜組み合わせることも可能である。例えば、上記実施形態では、検出対象体8と変位検出素子9との組み合わせに関して、光学的に変位を検出する手段を用いたが、静電容量や磁束密度を検出する手段を用いてもよい。 Although the present invention has been described in detail based on the preferred embodiments thereof, the present invention is not limited to these specific embodiments, and various embodiments within the range not deviating from the gist of the present invention are also included in the present invention. included. Further, each of the above-described embodiments is merely an embodiment of the present invention, and each embodiment can be appropriately combined. For example, in the above embodiment, with respect to the combination of the detection target body 8 and the displacement detection element 9, the means for optically detecting the displacement is used, but the means for detecting the capacitance and the magnetic flux density may be used.

3 変位変換部(変位方向変換部)
4 受力部
5 弾性連結部
6 支持部
7 センサ基板
8,8a~8h 検出対象体
9,9a~9h 変位検出素子
11 接合部
12 接合部鉛直線
100A,100B,100C 力覚センサ
3 Displacement conversion unit (displacement direction conversion unit)
4 Receiving part 5 Elastic connection part 6 Support part 7 Sensor board 8,8a to 8h Detection target 9,9a to 9h Displacement detection element 11 Joint part 12 Joint part Vertical line 100A, 100B, 100C Force sensor

Claims (6)

支持部と、
外力の作用により前記支持部に対して変位する受力部と、
前記支持部と前記受力部とを連結する弾性連結部と、
前記弾性連結部に接合され、前記受力部へ入力された負荷に応じて変位する変位変換部と、
前記変位変換部に設けられた検出対象体と、
前記支持部に固定されたセンサ基板と、
前記センサ基板に実装され、前記検出対象体の変位量を検出する変位検出素子と、を備える力覚センサであって、
前記検出対象体は、前記変位変換部と前記弾性連結部との接合部の中心を通り、前記支持部と前記受力部を連結する方向と直交する直線よりも前記弾性連結部と前記受力部との接合部がある側に配置され、
前記検出対象体の法線と前記直線は0度より大きい角度を成し、
前記支持部と前記受力部とを連結する方向における前記検出対象体と前記支持部との間の距離が前記直線と平行な方向での前記変位変換部の高さよりも長いこと特徴とする力覚センサ。
Support part and
A receiving part that is displaced with respect to the support part due to the action of an external force,
An elastic connecting portion that connects the supporting portion and the receiving portion,
A displacement conversion unit that is joined to the elastic connection unit and displaces according to the load input to the force receiving unit.
The detection target provided in the displacement conversion unit and
The sensor board fixed to the support and
A force sensor that is mounted on the sensor board and includes a displacement detection element that detects the amount of displacement of the detection target.
The detection target passes through the center of the joint portion between the displacement conversion portion and the elastic connecting portion, and the elastic connecting portion and the receiving force are more than a straight line orthogonal to the direction in which the supporting portion and the receiving portion are connected. It is placed on the side where the joint with the part is located,
The normal of the detection target and the straight line form an angle larger than 0 degrees.
A force characterized in that the distance between the detection target body and the support portion in the direction connecting the support portion and the receiving portion is longer than the height of the displacement conversion portion in the direction parallel to the straight line. Sensory sensor.
支持部と、
外力の作用により前記支持部に対して変位する受力部と、
前記支持部と前記受力部とを連結する弾性連結部と、
前記弾性連結部に接合され、前記受力部へ入力された負荷に応じて変位する変位変換部と、
前記変位変換部に設けられた検出対象体と、
前記支持部に固定されたセンサ基板と、
前記センサ基板に実装され、前記検出対象体の変位量を検出する変位検出素子と、を備える力覚センサであって、
前記検出対象体は、前記変位変換部と前記弾性連結部との接合部の中心を通り、前記支持部と前記受力部を連結する方向と直交する直線よりも前記弾性連結部と前記受力部との接合部がある側に配置され、
前記検出対象体の法線と前記直線は0度より大きい角度を成し、
前記支持部と前記受力部とを連結する方向における前記検出対象体と前記支持部との間の距離が、前記直線と平行な方向での前記検出対象体から前記弾性連結部までの垂直距離よりも長いこと特徴とする力覚センサ。
Support part and
A receiving part that is displaced with respect to the support part due to the action of an external force,
An elastic connecting portion that connects the supporting portion and the receiving portion,
A displacement conversion unit that is joined to the elastic connection unit and displaces according to the load input to the force receiving unit.
The detection target provided in the displacement conversion unit and
The sensor board fixed to the support and
A force sensor that is mounted on the sensor board and includes a displacement detection element that detects the amount of displacement of the detection target.
The detection target passes through the center of the joint portion between the displacement conversion portion and the elastic connecting portion, and the elastic connecting portion and the receiving force are more than a straight line orthogonal to the direction in which the supporting portion and the receiving portion are connected. It is placed on the side where the joint with the part is located,
The normal of the detection target and the straight line form an angle larger than 0 degrees.
The distance between the detection target and the support in the direction of connecting the support and the receiving portion is the vertical distance from the detection target to the elastic connection in the direction parallel to the straight line. A force sensor characterized by being longer than.
前記変位検出素子と前記検出対象体は正対していることを特徴とする請求項1又は2に記載の力覚センサ。 The force sensor according to claim 1 or 2, wherein the displacement detecting element and the detection target body face each other. 前記検出対象体の法線と前記直線が成す角度は90度であることを特徴とする請求項1乃至3のいずれか1項に記載の力覚センサ。 The force sensor according to any one of claims 1 to 3, wherein the angle formed by the normal line of the detection target and the straight line is 90 degrees. 前記検出対象体へ光を照射する光源を備え、
前記変位検出素子は、前記光源から前記検出対象体へ照射された光の前記検出対象体からの反射光を受光して前記検出対象体の変位量を検出することを特徴とする請求項1乃至4のいずれか1項に記載の力覚センサ。
A light source for irradiating the detection target with light is provided.
The displacement detecting element is characterized in that it receives the reflected light from the detection target body of the light emitted from the light source to the detection target body and detects the displacement amount of the detection target body. The force sensor according to any one of 4.
前記検出対象体へ光を照射する光源を備え、
前記検出対象体は前記光源から照射された光を反射する反射面を有し、
前記変位検出素子は、前記検出対象体からの反射光を受光する受光面と、前記受光面の表面に設けられた回折格子と、を有し、
前記検出対象体と前記変位検出素子とは、前記反射面の法線と前記受光面の法線とが所定の角度で交差するように配置され、
前記回折格子は、前記検出対象体からの反射光を前記所定の角度で屈折させて前記受光面に垂直に入射させることを特徴とする請求項1、2、4、5のいずれか1項に記載の力覚センサ。
A light source for irradiating the detection target with light is provided.
The detection object has a reflecting surface that reflects the light emitted from the light source.
The displacement detecting element has a light receiving surface that receives the reflected light from the detection target body and a diffraction grating provided on the surface of the light receiving surface.
The detection target and the displacement detection element are arranged so that the normal of the reflection surface and the normal of the light receiving surface intersect at a predetermined angle.
According to any one of claims 1, 2, 4, and 5, the diffraction grating is characterized in that the reflected light from the detection target is refracted at the predetermined angle and vertically incident on the light receiving surface. The described force sensor.
JP2018064905A 2018-03-29 2018-03-29 Force sensor Active JP7013303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018064905A JP7013303B2 (en) 2018-03-29 2018-03-29 Force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018064905A JP7013303B2 (en) 2018-03-29 2018-03-29 Force sensor

Publications (2)

Publication Number Publication Date
JP2019174367A JP2019174367A (en) 2019-10-10
JP7013303B2 true JP7013303B2 (en) 2022-01-31

Family

ID=68170225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018064905A Active JP7013303B2 (en) 2018-03-29 2018-03-29 Force sensor

Country Status (1)

Country Link
JP (1) JP7013303B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3177790B2 (en) 1992-05-14 2001-06-18 ニッタ株式会社 Flexure element for detecting force and moment
JP3914210B2 (en) 2004-02-25 2007-05-16 ミネベア株式会社 Optical displacement sensor and external force detection device
US20100027033A1 (en) 2006-12-13 2010-02-04 Frank Becker Device for detecting movement and forces
JP4955286B2 (en) 2006-03-07 2012-06-20 ミネベア株式会社 External force detection device
JP5602582B2 (en) 2010-10-27 2014-10-08 キヤノン株式会社 Force sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177790A (en) * 2001-09-13 2003-06-27 Matsushita Electric Ind Co Ltd Terminal device, server device, and voice recognition method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3177790B2 (en) 1992-05-14 2001-06-18 ニッタ株式会社 Flexure element for detecting force and moment
JP3914210B2 (en) 2004-02-25 2007-05-16 ミネベア株式会社 Optical displacement sensor and external force detection device
JP4955286B2 (en) 2006-03-07 2012-06-20 ミネベア株式会社 External force detection device
US20100027033A1 (en) 2006-12-13 2010-02-04 Frank Becker Device for detecting movement and forces
JP5602582B2 (en) 2010-10-27 2014-10-08 キヤノン株式会社 Force sensor

Also Published As

Publication number Publication date
JP2019174367A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
US9200969B2 (en) Force sensor
JP5489538B2 (en) Force sensor
JP7059426B2 (en) Force sensor
JP6402719B2 (en) Force sensor
US9366587B2 (en) Optical force sensor and apparatus using optical force sensor
JP6673979B2 (en) Displacement detection type force sensor
US20220283047A1 (en) Force sensor
US20170261311A1 (en) Position detection apparatus, force sensor, and apparatus
KR20210043731A (en) Strain gauge and multiple axis force sensor
JP2019078561A5 (en) Force sensor and device
JP5602582B2 (en) Force sensor
JP7013303B2 (en) Force sensor
JP5606270B2 (en) Force sensor
US20220364938A1 (en) Force sensor and robot including same
JP2011033607A (en) Force or motion sensor and manufacturing method thereof
JP6635811B2 (en) measuring device
JP2017026337A (en) Force detection device and robot
JP2022154477A (en) Measuring instrument attaching structure
JP2012047713A (en) Force sense or motion sensor
JP2003270266A (en) Elastic direct motion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210322

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220119