JP7012347B2 - Laminate of two-dimensional layered material - Google Patents

Laminate of two-dimensional layered material Download PDF

Info

Publication number
JP7012347B2
JP7012347B2 JP2017212150A JP2017212150A JP7012347B2 JP 7012347 B2 JP7012347 B2 JP 7012347B2 JP 2017212150 A JP2017212150 A JP 2017212150A JP 2017212150 A JP2017212150 A JP 2017212150A JP 7012347 B2 JP7012347 B2 JP 7012347B2
Authority
JP
Japan
Prior art keywords
laminate
layered material
laminated
laminated body
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017212150A
Other languages
Japanese (ja)
Other versions
JP2019084688A (en
Inventor
利隆 久保
淳 宮脇
淳 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017212150A priority Critical patent/JP7012347B2/en
Publication of JP2019084688A publication Critical patent/JP2019084688A/en
Application granted granted Critical
Publication of JP7012347B2 publication Critical patent/JP7012347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、電子部品として有用な二次元層状材料の積層体に関するものである。 The present invention relates to a laminate of two-dimensional layered materials useful as electronic components.

グラフェンをはじめとする二次元物質が、平面または曲面に積層した層状材料は、次世代フレキシブル機能材料として、近年大きな注目を集めている。この層状材料の積層体の層間は、弱いファンデアワールス力で結合されている。このため、この積層体では、電気や熱などの物理量の積層方向の伝達が面方向の伝達と比べて非常に弱い。例えば、グラフェンの積層体であるグラファイトの面内方向の電気伝導度は25000S/cmであるのに対して、積層方向の電気伝導度は5S/cmである。 Layered materials in which two-dimensional materials such as graphene are laminated on a flat surface or a curved surface have attracted a great deal of attention in recent years as next-generation flexible functional materials. The layers of the laminated body of this layered material are bonded by a weak van der Waals force. Therefore, in this laminated body, the transmission of physical quantities such as electricity and heat in the stacking direction is much weaker than the transmission in the plane direction. For example, graphite, which is a laminate of graphene, has an in-plane electrical conductivity of 25,000 S / cm, whereas the graphite has an electrical conductivity of 5 S / cm.

物理量が均質に拡散する材料では、この材料の上面の両端に一対の電極を設け、これらの電極間に電圧を加えると、この材料全体に電流が流れる。つまり、電極と材料の接触が適切であれば、材料の性能が適切に発揮される。一方、物理量が面方向に伝達しやすく、積層方向に伝達しにくい積層体では、上面の両端に一対の電極を設け、これらの電極間に電圧を加えても、最上層では電流が面方向に流れるものの、上から二層目以下では電流があまり流れない。したがって、この積層体のほとんどの部分で、材料の性能が発揮できない。 In a material in which a physical quantity is uniformly diffused, a pair of electrodes are provided at both ends of the upper surface of the material, and when a voltage is applied between these electrodes, a current flows through the entire material. That is, if the contact between the electrode and the material is appropriate, the performance of the material is appropriately exhibited. On the other hand, in a laminated body in which physical quantities are easily transmitted in the plane direction and difficult to be transmitted in the stacking direction, a pair of electrodes are provided at both ends of the upper surface, and even if a voltage is applied between these electrodes, a current is transmitted in the plane direction in the uppermost layer. Although it flows, not much current flows in the second and lower layers from the top. Therefore, the performance of the material cannot be exhibited in most parts of this laminate.

本発明は、このような事情に鑑みてなされたものであり、内部の性能が適切に発揮できる層状材料の積層体を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a laminated body of layered materials capable of appropriately exhibiting internal performance.

本発明の積層体は、面方向に電気伝導性を有する導電層を含有する層状材料が、段を有するように積層され、段によって、それぞれの層状材料の導電層の上面および側面の少なくとも一部が露出している。本発明の電子部品は、面方向の両端部に段を有する本発明の積層体と、両端部の段に設けられた導電体とを有する。本発明の積層体の製造方法は、積層された層状材料の表面に処理ガスのプラズマを接触させながら、プラズマを表面から遠ざける方向に誘導して、層状材料に段を形成する工程を有する。 In the laminated body of the present invention, layered materials containing a conductive layer having electrical conductivity in the plane direction are laminated so as to have a step, and at least a part of the upper surface and the side surface of the conductive layer of each layered material by the step. Is exposed. The electronic component of the present invention has a laminate of the present invention having steps at both ends in the plane direction, and a conductor provided at the steps at both ends. The method for producing a laminated body of the present invention includes a step of inducing plasma in a direction away from the surface while bringing plasma of a processing gas into contact with the surface of the laminated layered material to form a step in the layered material.

本発明の積層体は、層状材料の導電層の上面および側面の少なくとも一方が露出するような段を有している。このため、例えば、積層体の両端部に形成された段に導電体を設け、これらの導電体間に電圧を加えれば、積層体の各層状材料の導電層に電圧が加わり、積層体全体の面方向に電流を流せる。 The laminate of the present invention has a step in which at least one of the upper surface and the side surface of the conductive layer of the layered material is exposed. For this reason, for example, if conductors are provided on the stages formed at both ends of the laminate and a voltage is applied between these conductors, a voltage is applied to the conductive layer of each layered material of the laminate, and the entire laminate Current can flow in the plane direction.

面方向に電気伝導性を有する導電層を含有する層状材料が積層された積層構造体を示す断面模式図。FIG. 6 is a schematic cross-sectional view showing a laminated structure in which a layered material containing a conductive layer having electrical conductivity in the plane direction is laminated. 積層構造体の電流の異方性を説明するための断面模式図。Schematic diagram of a cross section for explaining the anisotropy of current in a laminated structure. 実施形態の積層体の断面模式図。The sectional drawing of the laminated body of an embodiment. 実施形態の積層体に導電体を設けた電子部品の断面模式図。The cross-sectional schematic diagram of the electronic component which provided the conductor in the laminated body of an embodiment. 他の実施形態の積層体に導電体を設けた電子部品の断面模式図。The cross-sectional schematic diagram of the electronic component which provided the conductor in the laminated body of another embodiment. 積層体を製造するプラズマエッチング装置の断面模式図。Schematic diagram of a cross section of a plasma etching apparatus for manufacturing a laminate. 実施例1で得られた積層体の走査トンネル顕微鏡画像と積層体の厚さを示すグラフ。The scanning tunneling microscope image of the laminated body obtained in Example 1 and the graph which shows the thickness of a laminated body. 実施例2で得られた積層体の走査トンネル顕微鏡画像と積層体の厚さを示すグラフ。The scanning tunneling microscope image of the laminated body obtained in Example 2 and the graph which shows the thickness of a laminated body. 実施例3で得られた積層体の走査トンネル顕微鏡画像と積層体の厚さを示すグラフ。The scanning tunneling microscope image of the laminated body obtained in Example 3 and the graph which shows the thickness of a laminated body. 実施例4で得られた積層体の走査トンネル顕微鏡画像と積層体の厚さを示すグラフ。The scanning tunneling microscope image of the laminated body obtained in Example 4 and the graph which shows the thickness of a laminated body. 実施例5で得られた積層体の走査トンネル顕微鏡画像。Scanning tunneling microscope image of the laminate obtained in Example 5. 実施例6で得られた積層体の電流-電圧特性を示すグラフ。The graph which shows the current-voltage characteristic of the laminated body obtained in Example 6.

以下、本発明の積層体、電子部品、および積層体の製造方法について、図面を参照しながら、実施形態および実施例に基づいて説明する。なお、図面は、積層体、積層体の構成部材、積層体の周辺部材、および積層体の製造装置等を模式的に示したものである。図面上の寸法および寸法比は、積層体等の実物と必ずしも一致していない。また、重複説明は適宜省略する。 Hereinafter, the laminate, the electronic component, and the method for manufacturing the laminate of the present invention will be described with reference to the drawings, based on the embodiments and examples. The drawings schematically show the laminated body, the constituent members of the laminated body, the peripheral members of the laminated body, the manufacturing apparatus of the laminated body, and the like. The dimensions and dimensional ratios on the drawings do not always match the actual products such as laminated bodies. In addition, duplicate explanations will be omitted as appropriate.

図1は、面方向に電気伝導性を有する導電層10を含有する層状材料12が積層された積層構造体14を示している。積層構造体14では、層状物質12の面方向には電気が流れやすく、積層方向には電流がほとんど流れない。積層構造体14としては、グラファイトやMoS等の遷移金属カルコゲナイドなどが挙げられる。例えば、積層構造体14がMoSの場合、導電層10がMoで、導電層10を挟む絶縁層16がSおよび層間の空間である。また、積層構造体14がグラファイトの場合、導電層10がグラフェンで、グラフェンの層間の空間が絶縁層16に相当する。なお、本実施形態では、積層体構造14が面方向に電気伝導性を有する導電層10を含有する層状材料12が積層されているが、積層体は、面方向に熱、磁気、光、電磁波、振動、音響などのエネルギーを伝達する層を含有する層状材料が積層されていてもよい。 FIG. 1 shows a laminated structure 14 in which a layered material 12 containing a conductive layer 10 having electrical conductivity in the plane direction is laminated. In the laminated structure 14, electricity easily flows in the surface direction of the layered substance 12, and almost no current flows in the laminated direction. Examples of the laminated structure 14 include transition metal chalcogenides such as graphite and MoS 2 . For example, when the laminated structure 14 is MoS 2 , the conductive layer 10 is Mo, and the insulating layer 16 sandwiching the conductive layer 10 is the space between S and the layers. When the laminated structure 14 is graphite, the conductive layer 10 is graphene, and the space between the layers of graphene corresponds to the insulating layer 16. In the present embodiment, the layered material 12 in which the laminated body structure 14 contains the conductive layer 10 having electrical conductivity in the surface direction is laminated, but the laminated body has heat, magnetism, light, and electromagnetic waves in the surface direction. A layered material containing a layer that transmits energy such as vibration and sound may be laminated.

積層構造体14としては、グラファイトやMoS等の遷移金属カルコゲナイド以外にも、黒鉛、多層カーボンナノチューブ(MW-CNT)、多層カーボンナノホーン、炭素繊維、非晶質炭素材料、カーボンブラック、および活性炭等の炭素系材料、ボロンナイトライド、無機ナノシート、有機ナノシート、低次元エレクトライド材料、低次元熱拡散材料、低次元磁気拡散材料、ならびに低次元光拡散材料が挙げられる。積層構造体14は平面形状であっても曲面形状であってもよい。積層構造体14の最上の層状材料12の導電層10部に一対の電極18を設けて、この電極18間に電圧を加えると、図2に示すように、最上の層状物質12の面方向には電流が流れる。しかし、積層方向および上から二層目以下の層状物質12の面方向には、電流がほとんど流れない。 The laminated structure 14 includes graphite, multi-walled carbon nanotubes (MW-CNT), multi-walled carbon nanohorns, carbon fibers, amorphous carbon materials, carbon black, activated carbon, etc., in addition to transition metal chalcogenides such as graphite and MoS 2 . Carbon-based materials, boron nitride, inorganic nanosheets, organic nanosheets, low-dimensional electride materials, low-dimensional heat-diffusing materials, low-dimensional magnetic-diffusing materials, and low-dimensional light-diffusing materials. The laminated structure 14 may have a planar shape or a curved surface shape. When a pair of electrodes 18 are provided on the conductive layer 10 portion of the uppermost layered material 12 of the laminated structure 14 and a voltage is applied between the electrodes 18, as shown in FIG. 2, in the plane direction of the uppermost layered material 12. Current flows. However, almost no current flows in the stacking direction and the surface direction of the layered substance 12 which is the second layer or less from the top.

図3は、本発明の実施形態に係る積層体20の断面を示している。積層体20は、面方向に電気伝導性を有する導電層10を含有する層状材料12が、段22を有するように積層され、段22によって、それぞれの層状材料12の導電層10の上面10aおよび側面10bの少なくとも一部が露出している。なお、図面上では導電層10の上面10aおよび側面10bが平坦だが、上面10aおよび側面10bが斜面、曲面、または凹凸面となるように露出していてもよいし、上面10aの一部に絶縁層16が残存していてもよい。また、上面10aと側面10bの境界が必ずしも明確でなくてもよい。 FIG. 3 shows a cross section of the laminated body 20 according to the embodiment of the present invention. In the laminated body 20, the layered material 12 containing the conductive layer 10 having electrical conductivity in the plane direction is laminated so as to have the step 22, and the upper surface 10a of the conductive layer 10 of each layered material 12 and the laminated body 20 are laminated by the step 22. At least a part of the side surface 10b is exposed. Although the upper surface 10a and the side surface 10b of the conductive layer 10 are flat on the drawing, the upper surface 10a and the side surface 10b may be exposed so as to be a slope, a curved surface, or an uneven surface, and may be partially insulated from the upper surface 10a. The layer 16 may remain. Further, the boundary between the upper surface 10a and the side surface 10b does not necessarily have to be clear.

積層体20の面方向の両端部に段22を有し、この両端部の段22に導電体24,26を設けると、図4に示すように、積層体20の各層状材料12の導電層10の上面10aおよび側面10bが導電体24または導電体26を介して導通される。このため、各層状材料12の導電層10の面方向に電流が流れる。すなわち、積層体20全体の面方向に電流を流せる。したがって、積層体20に導電体24,26を設けると電子部品として使用できる。各層状材料12の導電層10同士の導通を確実にするため、段22によって、導電層10の上面10aの一部と側面10bが露出していることが好ましい。また、本実施形態の段22を有する構造は、積層方向の電気伝導度が層状材料12の面方向の電気伝導度より小さい積層体20に有効である。 When the laminated body 20 has steps 22 at both ends in the plane direction and the conductors 24 and 26 are provided at both ends of the steps 22, as shown in FIG. 4, the conductive layer of each layered material 12 of the laminated body 20 is provided. The upper surface 10a and the side surface 10b of 10 are conducted via the conductor 24 or the conductor 26. Therefore, a current flows in the surface direction of the conductive layer 10 of each layered material 12. That is, a current can flow in the plane direction of the entire laminated body 20. Therefore, if the conductors 24 and 26 are provided on the laminated body 20, they can be used as electronic components. In order to ensure the conduction between the conductive layers 10 of each layered material 12, it is preferable that a part of the upper surface 10a and the side surface 10b of the conductive layer 10 are exposed by the step 22. Further, the structure having the stage 22 of the present embodiment is effective for the laminated body 20 in which the electric conductivity in the stacking direction is smaller than the electric conductivity in the surface direction of the layered material 12.

図5は、本発明の他の実施形態に係る積層体30に導電体24が設けられた電子部品の断面を示している。積層体30は、孔32を備え、孔32の側面が段34を備えている。導電体24は孔32に充填されている。このため、積層体30の各層状材料12の導電層10が導電体24を介して導通される。なお、積層体20と積層体30の構造を組み合わせ、端部の段22および孔32に導電体を設けて電子部品としてもよい。 FIG. 5 shows a cross section of an electronic component in which a conductor 24 is provided on a laminated body 30 according to another embodiment of the present invention. The laminate 30 is provided with a hole 32, and the side surface of the hole 32 is provided with a step 34. The conductor 24 is filled in the hole 32. Therefore, the conductive layer 10 of each layered material 12 of the laminated body 30 is conducted through the conductor 24. The structures of the laminated body 20 and the laminated body 30 may be combined, and a conductor may be provided in the step 22 and the hole 32 at the end to form an electronic component.

積層体20,30の製造方法は、積層された層状材料12の表面に処理ガスのプラズマを接触させながら、プラズマを表面から遠ざける方向に誘導して、層状材料12に段22,34を形成する工程を備えている。この工程によって、各層状材料12の絶縁層16が取り除かれる。そして、各層状材料12の導電層10の上面10aまたは側面10bが露出するように絶縁層16と導電層10がさらに取り除かれ、段構造が形成される。 In the method for manufacturing the laminated bodies 20 and 30, the plasma of the processing gas is brought into contact with the surface of the laminated layered material 12 and the plasma is guided in a direction away from the surface to form the stages 22 and 34 on the layered material 12. It has a process. By this step, the insulating layer 16 of each layered material 12 is removed. Then, the insulating layer 16 and the conductive layer 10 are further removed so that the upper surface 10a or the side surface 10b of the conductive layer 10 of each layered material 12 is exposed, and a step structure is formed.

図6に示すようなプラズマエッチング装置(三友製作所、吸引型プラズマ装置)を用いて本発明の積層体を製造した。まず、積層構造体である試料を試料台に載置し、マスフローコントローラ(MFC)を通して7~16sccmに流量調節したエッチングガスをエッチングチェンバーに導入した。エッチングガスとしては、CF単独、またはCF4とArの混合ガスを用いた。なお、導入されたエッチングガスは、先端が内径1mmに絞られたアルミナ製の吸引管(内径4mmのキャピラリ管)を通して排気される。 The laminate of the present invention was manufactured using a plasma etching apparatus (Sanyu Seisakusho, suction type plasma apparatus) as shown in FIG. First, a sample as a laminated structure was placed on a sample table, and an etching gas whose flow rate was adjusted to 7 to 16 sccm through a mass flow controller (MFC) was introduced into the etching chamber. As the etching gas, CF 4 alone or a mixed gas of CF 4 and Ar was used. The introduced etching gas is exhausted through an alumina suction tube (capillary tube having an inner diameter of 4 mm) whose tip is narrowed to an inner diameter of 1 mm.

つぎに、吸引管の周囲に配置した円筒状の電極に、電力30~40W、周波数13.56MHzの高周波エネルギーを印加して、エッチングガスを吸引管内でプラズマ化した。プラズマの一部はガス流に逆らって吸引管の先端部から浸み出す。吸引管の先端から0.1mm程度の距離に試料を設置することにより、吸引管の先端と試料との間で、吸引管の先端の内径1mmと同程度の径範囲でプラズマが局在化し、試料の局所エッチングが可能となる。 Next, high-frequency energy having a power of 30 to 40 W and a frequency of 13.56 MHz was applied to the cylindrical electrodes arranged around the suction tube to turn the etching gas into plasma in the suction tube. A part of the plasma seeps out from the tip of the suction tube against the gas flow. By placing the sample at a distance of about 0.1 mm from the tip of the suction tube, plasma is localized between the tip of the suction tube and the sample within a diameter range similar to the inner diameter of 1 mm at the tip of the suction tube. Local etching of the sample is possible.

(実施例1)
試料である積層構造体MoSを試料台に設置し、真空チャンバー内にCFガスを10SCCM導入し、出力30WでRF電源から電力を供給してCFガスをプラズマ化し、圧力932Paで30秒間プラズマエッチングして積層体を得た。図7は、この積層体の走査トンネル顕微鏡画像と、この画像の白線部の積層体の厚さを示している。なお、積層体の厚さは走査トンネル顕微鏡のプローブで直接断面高さ解析を行うことにより測定した(以下同様)。走査トンネル顕微鏡の観測位置は、エッチング中心から数mm外側の位置である。図7に示すように、浅い孔を備え、孔の側面が段を有する積層体が得られた。
(Example 1)
The laminated structure MoS 2 which is a sample is installed on the sample table, 10 SCCM of CF 4 gas is introduced into the vacuum chamber, power is supplied from the RF power supply at an output of 30 W to plasma the CF 4 gas, and the pressure is 932 Pa for 30 seconds. A laminate was obtained by plasma etching. FIG. 7 shows a scanning tunneling microscope image of this laminate and the thickness of the laminate in the white line portion of this image. The thickness of the laminate was measured by directly analyzing the cross-sectional height with a probe of a scanning tunneling microscope (the same applies hereinafter). The observation position of the scanning tunneling microscope is a position several mm outside the etching center. As shown in FIG. 7, a laminate having a shallow hole and having a step on the side surface of the hole was obtained.

(実施例2)
試料である積層構造体MoSを試料台に設置し、真空チャンバー内にCFガスを10SCCM導入し、出力30WでRF電源から電力を供給してCFガスをプラズマ化し、圧力932Paで30秒間プラズマエッチングして積層体を得た。図8は、この積層体の走査トンネル顕微鏡画像と、この画像の白線部の積層体の厚さを示している。走査トンネル顕微鏡の観測位置は、エッチング中心付近である。図8に示すように、深い孔を備え、孔の側面が段を有する積層体が得られた。
(Example 2)
The laminated structure MoS 2 which is a sample is installed on the sample table, 10 SCCM of CF 4 gas is introduced into the vacuum chamber, power is supplied from the RF power supply at an output of 30 W to plasma the CF 4 gas, and the pressure is 932 Pa for 30 seconds. A laminate was obtained by plasma etching. FIG. 8 shows a scanning tunneling microscope image of this laminate and the thickness of the laminate in the white line portion of this image. The observation position of the scanning tunneling microscope is near the etching center. As shown in FIG. 8, a laminate having a deep hole and having a step on the side surface of the hole was obtained.

(実施例3)
試料である積層構造体WSeを試料台に設置し、真空チャンバー内にCFガスを10SCCM導入し、出力30WでRF電源から電力を供給してCFガスをプラズマ化し、圧力1300Paで30秒間プラズマエッチングして積層体を得た。図9は、この積層体の走査トンネル顕微鏡画像と、この画像の白線部の積層体の厚さを示している。走査トンネル顕微鏡の観測位置は、エッチング中心付近である。図9に示すように、段を有する積層体が得られた。
(Example 3)
The laminated structure WSe 2 which is a sample is installed on the sample table, 10SCCM of CF 4 gas is introduced into the vacuum chamber, power is supplied from the RF power supply at an output of 30 W to plasma the CF 4 gas, and the pressure is 1300 Pa for 30 seconds. A laminate was obtained by plasma etching. FIG. 9 shows a scanning tunneling microscope image of this laminate and the thickness of the laminate in the white line portion of this image. The observation position of the scanning tunneling microscope is near the etching center. As shown in FIG. 9, a laminated body having steps was obtained.

(実施例4)
試料である積層構造体MoSを試料台に設置し、真空チャンバー内にCFガスを7.5SCCM導入し、出力30WでRF電源から電力を供給してCFガスをプラズマ化し、圧力200Paで0.7秒間プラズマエッチングして積層体を得た。図10は、この積層体の走査トンネル顕微鏡画像と、この画像の白線部の積層体の厚さと、積層体の構造モデルを示している。走査トンネル顕微鏡の観測位置は、エッチング中心付近である。図10に示すように、層状材料(一層のMoS)の厚さに相当する0.65nmの段差を有する積層体が得られた。この段差部分によって、Moの側面から導通可能である。また、この段差の上段にはSの欠損が多数観測された。このSの欠損部によって、Moの上面から導通可能である。
(Example 4)
The laminated structure MoS 2 which is a sample is installed on the sample table, CF 4 gas is introduced into the vacuum chamber by 7.5 SCCM, power is supplied from the RF power supply at an output of 30 W, and the CF 4 gas is turned into plasma at a pressure of 200 Pa. A laminated body was obtained by plasma etching for 0.7 seconds. FIG. 10 shows a scanning tunneling microscope image of this laminate, the thickness of the laminate in the white line portion of this image, and a structural model of the laminate. The observation position of the scanning tunneling microscope is near the etching center. As shown in FIG. 10, a laminate having a step of 0.65 nm corresponding to the thickness of the layered material (one layer of MoS 2 ) was obtained. It is possible to conduct from the side surface of Mo by this stepped portion. In addition, many S defects were observed in the upper part of this step. It is possible to conduct from the upper surface of Mo by the defective portion of S.

(実施例5)
試料であるHOPG(多層グラフェン・グラファイト)を試料台に設置し、真空チャンバー内にCFガスを7.5SCCM導入し、出力30WでRF電源から電力を供給してCFガスをプラズマ化し、圧力149.6Paで0.5秒間プラズマエッチングして積層体を得た。図11は、この積層体の走査トンネル顕微鏡画像を示している。走査トンネル顕微鏡の観測位置は、エッチング中心付近である。図11(a)に示すような広い段を備える積層体と、図11(b)に示すような深い孔を備える積層体が得られた。すなわち、エッチング条件の設定によって、必要な段構造が得られることがわかった。
(Example 5)
The sample HOPG (multilayer graphite graphite) is installed on the sample table, CF 4 gas is introduced into the vacuum chamber by 7.5 SCCM, and power is supplied from the RF power supply at an output of 30 W to plasma the CF 4 gas and pressurize it. A laminate was obtained by plasma etching at 149.6 Pa for 0.5 seconds. FIG. 11 shows a scanning tunneling microscope image of this laminate. The observation position of the scanning tunneling microscope is near the etching center. A laminated body having a wide step as shown in FIG. 11 (a) and a laminated body having a deep hole as shown in FIG. 11 (b) were obtained. That is, it was found that the required step structure can be obtained by setting the etching conditions.

(実施例6)
厚さ285nmの酸化膜層を表面に有する高濃度p型シリコン(001)基板上に、機械的剥離法によって作製したWSeを転写した。つぎに、WSe上にレジスト(Clariant社製、イメージ・リバーサルAZ5214E型)をスピンコートした。そして、密着型露光機を用いて、レジスト指定の条件で露光・現像処理を行い、電極形成部分のみレジストを除去して開口部を形成したエッチング試料を得た。つぎに、エッチング試料を試料台に設置し、真空チャンバー内にOガスを100SCCM導入し、出力300WでRF電源から電力を供給してOガスをプラズマ化し、圧力140Paで120秒間プラズマエッチングした。
(Example 6)
WSe 2 produced by a mechanical peeling method was transferred onto a high-concentration p-type silicon (001) substrate having an oxide film layer having a thickness of 285 nm on the surface. Next, a resist (image reversal AZ5214E type manufactured by Clariant) was spin-coated on WSe 2 . Then, an exposure / development process was performed using a contact-type exposure machine under the conditions specified by the resist, and the resist was removed only from the electrode-forming portion to obtain an etching sample in which an opening was formed. Next, the etching sample was placed on the sample table, 100 SCCM of O 2 gas was introduced into the vacuum chamber, power was supplied from the RF power supply at an output of 300 W to plasmaize the O 2 gas, and plasma etching was performed at a pressure of 140 Pa for 120 seconds. ..

その後、電子線蒸着装置によって、電極金属ニッケル(厚さ10nm)および金(厚さ50nm)を所定の位置に蒸着し、リフトオフ法により電極をパターニング化してバックゲート型FETである電気特性評価試料を作製した。また、エッチング試料をプラズマエッチングしなかった点を除いて、電気特性評価試料と同様の方法で比較試料を作製した。マニュアルプローバ(ルフト有限会社製、LP4D)と半導体パラメータ・アナライザ(Keithley社製、4200SCS)用いて、大気雰囲気下でゲート電圧を0Vに固定して、ドレイン電流とドレイン電圧を測定した。 After that, electrode metal nickel (thickness 10 nm) and gold (thickness 50 nm) are vapor-deposited at predetermined positions by an electron beam vapor deposition device, and the electrodes are patterned by a lift-off method to obtain an electrical characteristic evaluation sample that is a backgate type FET. Made. Further, a comparative sample was prepared by the same method as the electrical characteristic evaluation sample except that the etched sample was not plasma-etched. Using a manual prober (LP4D manufactured by Luft Co., Ltd.) and a semiconductor parameter analyzer (4200SCS manufactured by Keithley), the gate voltage was fixed at 0 V in an atmospheric atmosphere, and the drain current and drain voltage were measured.

図12は、比較試料(プラズマ処理なし)と、電気特性評価試料(プラズマ処理あり)のドレイン電流とドレイン電圧の測定結果を示している。図12に示すように、比較試料は、電圧の変化に対して多くの電流が流れなかった。一方、電気特性評価試料は、比較試料と比べて、電圧の変化に応じて多くの電流が流れた。すなわち、積層構造体をエッチングすることにより、電流が流れる層が、表面近傍だけでなく、深い位置まで現れることがわかった。 FIG. 12 shows the measurement results of the drain current and the drain voltage of the comparative sample (without plasma treatment) and the electrical characteristic evaluation sample (with plasma treatment). As shown in FIG. 12, the comparative sample did not carry much current with respect to the change in voltage. On the other hand, in the electrical characteristic evaluation sample, a larger current flowed in response to the change in voltage than in the comparative sample. That is, it was found that by etching the laminated structure, the layer through which the current flows appears not only near the surface but also at a deep position.

本発明の積層体は、電子部品のみならず、二次元熱拡散材料、二次元磁性材料、二次元光材料、二次元電磁波材料、二次元振動(フォノン)材料、二次元音響材料、二次元のエネルギー輸送材料として利用される可能性がある。 The laminate of the present invention is not limited to electronic parts, but also has two-dimensional heat diffusion materials, two-dimensional magnetic materials, two-dimensional optical materials, two-dimensional electromagnetic wave materials, two-dimensional vibration (phonon) materials, two-dimensional acoustic materials, and two-dimensional materials. It may be used as an energy transport material.

10 導電層
10a 上面
10b 側面
12 層状材料
14 積層構造体
16 絶縁層
18 電極
20 積層体
22 段
24,26 導電体
30 積層体
32 孔
10 Conductive layer 10a Top surface 10b Side surface 12 Layered material 14 Laminated structure 16 Insulation layer 18 Electrode 20 Laminated 22 steps 24,26 Conductor 30 Laminated 32 holes

Claims (8)

面方向に電気伝導性を有する導電層を含有する平面または曲面の層状材料が、段を有するように積層され、
前記段によって、それぞれの前記層状材料の前記導電層の上面および側面の少なくとも一部が露出しており、
遷移金属カルコゲナイドからなる積層体。
A flat or curved layered material containing a conductive layer having electrical conductivity in the plane direction is laminated so as to have a step.
The steps expose at least a portion of the top and sides of the conductive layer of each layered material.
A laminate of transition metal chalcogenides.
請求項において、
前記遷移金属カルコゲナイドがMoSである積層体。
In claim 1 ,
A laminate in which the transition metal chalcogenide is MoS 2 .
請求項において、
前記遷移金属カルコゲナイドがWSeである積層体。
In claim 1 ,
A laminate in which the transition metal chalcogenide is WSe 2 .
請求項1からのいずれかにおいて、
前記段によって、前記導電層の上面の一部および側面が露出している積層体。
In any of claims 1 to 3 ,
A laminate in which a part of the upper surface and the side surface of the conductive layer are exposed by the step.
請求項1からのいずれかにおいて、
前記積層方向の電気伝導度が、前記層状材料の面方向の電気伝導度より小さい積層体。
In any of claims 1 to 4 ,
A laminate in which the electrical conductivity in the stacking direction is smaller than the electrical conductivity in the plane direction of the layered material.
請求項1からのいずれかにおいて、
孔を備え、前記孔の側面が前記段を有する積層体。
In any of claims 1 to 5 ,
A laminate having holes and having the steps on the sides of the holes.
面方向の両端部に前記段を有する請求項1からのいずれかの積層体と、
前記両端部の段に設けられた導電体と、
を有する部品。
The laminate according to any one of claims 1 to 6 , which has the steps at both ends in the plane direction.
Conductors provided on the steps at both ends and
Parts with.
請求項1からのいずれかの積層体の製造方法であって、
積層された前記層状材料の表面に処理ガスのプラズマを接触させながら、前記プラズマを前記表面から遠ざける方向に誘導して、前記層状材料に前記段を形成する工程を有する積層体の製造方法。
A method for manufacturing a laminate according to any one of claims 1 to 6 .
A method for producing a laminated body, which comprises a step of inducing the plasma in a direction away from the surface while bringing a plasma of a processing gas into contact with the surface of the laminated material to form the step on the layered material.
JP2017212150A 2017-11-01 2017-11-01 Laminate of two-dimensional layered material Active JP7012347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017212150A JP7012347B2 (en) 2017-11-01 2017-11-01 Laminate of two-dimensional layered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017212150A JP7012347B2 (en) 2017-11-01 2017-11-01 Laminate of two-dimensional layered material

Publications (2)

Publication Number Publication Date
JP2019084688A JP2019084688A (en) 2019-06-06
JP7012347B2 true JP7012347B2 (en) 2022-02-14

Family

ID=66763774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017212150A Active JP7012347B2 (en) 2017-11-01 2017-11-01 Laminate of two-dimensional layered material

Country Status (1)

Country Link
JP (1) JP7012347B2 (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228818A (en) 2005-02-15 2006-08-31 Fujitsu Ltd Method of forming carbon nanotube, and method of manufacturing electronic device
EP2682368A1 (en) 2012-07-06 2014-01-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Binary and ternary alkali metal chalcogenide metallates with diamond topology and their use as intercalation materials, in particular in secondary batteries
US8664642B1 (en) 2013-03-15 2014-03-04 Solan, LLC Nonplanar graphite-based devices having multiple bandgaps
US20140206192A1 (en) 2011-07-22 2014-07-24 Research & Business Foundation Sungkyunkwan University Method for etching atomic layer of graphine
JP2014239158A (en) 2013-06-07 2014-12-18 日本電気株式会社 Thermoelectric transducer
JP2015019064A (en) 2013-07-08 2015-01-29 ラム リサーチ コーポレーションLam Research Corporation Ion beam etching system
US20150155287A1 (en) 2013-11-29 2015-06-04 Samsung Electronics Co., Ltd. Memory devices including two-dimensional material, methods of manufacturing the same, and methods of operating the same
US20150332920A1 (en) 2014-05-19 2015-11-19 Research & Business Foundation Sungkyunkwan University Electronic device having graphene-semiconductor multi-junction and method of manufacturing the electronic device
WO2016042309A1 (en) 2014-09-18 2016-03-24 The University Of Manchester Proton conducting membrane comprising monolithic 2d material and ionomer, a process for preparing same and use of same in fuel cell and hydrogen gas sensor
JP2016097599A (en) 2014-11-21 2016-05-30 富士通株式会社 Laminated structure of layered material and method for manufacturing the same
WO2016100538A1 (en) 2014-12-16 2016-06-23 University Of Southern California Bulk direct gap mos2 by plasma induced layer decoupling
CN106129241A (en) 2016-08-29 2016-11-16 四川大学 Solid reaction process prepares the method for stacking faults chalcogenide thermoelectric material
US20170025505A1 (en) 2015-07-21 2017-01-26 Ut-Battelle, Llc Two-dimensional heterostructure materials
WO2017060497A1 (en) 2015-10-07 2017-04-13 Cambridge Enterprise Limited Layered materials and methods for their processing
US20170292187A1 (en) 2016-04-12 2017-10-12 Industry-Academic Cooperation Foundation, Yonsei University Apparatus for layer control-based synthesis and method of using the same
KR101853588B1 (en) 2017-08-01 2018-04-30 성균관대학교산학협력단 Semiconductor device, photoelectronic device, and method of manufacturing transition metal dichalcogenide thin film
US20180269059A1 (en) 2017-03-17 2018-09-20 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming a semiconductor device using layered etching and repairing of damaged portions
JP2019079880A (en) 2017-10-23 2019-05-23 富士通オプティカルコンポーネンツ株式会社 Electronic device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998597A (en) * 1983-11-02 1984-06-06 松下電器産業株式会社 Multilayer printed circuit board
JP3753482B2 (en) * 1996-10-22 2006-03-08 三井化学株式会社 Transparent laminate and display filter using the same
JP6493003B2 (en) * 2015-06-17 2019-04-03 富士通株式会社 Electronic device and method of manufacturing electronic device

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228818A (en) 2005-02-15 2006-08-31 Fujitsu Ltd Method of forming carbon nanotube, and method of manufacturing electronic device
US20140206192A1 (en) 2011-07-22 2014-07-24 Research & Business Foundation Sungkyunkwan University Method for etching atomic layer of graphine
EP2682368A1 (en) 2012-07-06 2014-01-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Binary and ternary alkali metal chalcogenide metallates with diamond topology and their use as intercalation materials, in particular in secondary batteries
US8664642B1 (en) 2013-03-15 2014-03-04 Solan, LLC Nonplanar graphite-based devices having multiple bandgaps
JP2014239158A (en) 2013-06-07 2014-12-18 日本電気株式会社 Thermoelectric transducer
JP2015019064A (en) 2013-07-08 2015-01-29 ラム リサーチ コーポレーションLam Research Corporation Ion beam etching system
US20150155287A1 (en) 2013-11-29 2015-06-04 Samsung Electronics Co., Ltd. Memory devices including two-dimensional material, methods of manufacturing the same, and methods of operating the same
US20150332920A1 (en) 2014-05-19 2015-11-19 Research & Business Foundation Sungkyunkwan University Electronic device having graphene-semiconductor multi-junction and method of manufacturing the electronic device
WO2016042309A1 (en) 2014-09-18 2016-03-24 The University Of Manchester Proton conducting membrane comprising monolithic 2d material and ionomer, a process for preparing same and use of same in fuel cell and hydrogen gas sensor
JP2016097599A (en) 2014-11-21 2016-05-30 富士通株式会社 Laminated structure of layered material and method for manufacturing the same
WO2016100538A1 (en) 2014-12-16 2016-06-23 University Of Southern California Bulk direct gap mos2 by plasma induced layer decoupling
US20170025505A1 (en) 2015-07-21 2017-01-26 Ut-Battelle, Llc Two-dimensional heterostructure materials
WO2017060497A1 (en) 2015-10-07 2017-04-13 Cambridge Enterprise Limited Layered materials and methods for their processing
US20170292187A1 (en) 2016-04-12 2017-10-12 Industry-Academic Cooperation Foundation, Yonsei University Apparatus for layer control-based synthesis and method of using the same
CN106129241A (en) 2016-08-29 2016-11-16 四川大学 Solid reaction process prepares the method for stacking faults chalcogenide thermoelectric material
US20180269059A1 (en) 2017-03-17 2018-09-20 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming a semiconductor device using layered etching and repairing of damaged portions
KR101853588B1 (en) 2017-08-01 2018-04-30 성균관대학교산학협력단 Semiconductor device, photoelectronic device, and method of manufacturing transition metal dichalcogenide thin film
JP2019079880A (en) 2017-10-23 2019-05-23 富士通オプティカルコンポーネンツ株式会社 Electronic device

Also Published As

Publication number Publication date
JP2019084688A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
Liang et al. High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits
Wang et al. Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer
Di Bartolomeo et al. Leakage and field emission in side-gate graphene field effect transistors
Lee et al. High-performance current saturating graphene field-effect transistor with hexagonal boron nitride dielectric on flexible polymeric substrates
Sojoudi et al. Impact of post-growth thermal annealing and environmental exposure on the unintentional doping of CVD graphene films
Zhao et al. Graphene-nanodiamond heterostructures and their application to high current devices
US9502659B2 (en) Carbon nanotube field effect transistor
US20110291068A1 (en) Field effect transistor manufacturing method, field effect transistor, and semiconductor graphene oxide manufacturing method
US20040253820A1 (en) Patterned thin film graphite devices and method for making same
Klarskov et al. Fast and direct measurements of the electrical properties of graphene using micro four-point probes
US10008605B2 (en) Connecting structure and method for manufacturing the same, and semiconductor device
Basu et al. Graphene-based electrodes for enhanced organic thin film transistors based on pentacene
US9593014B2 (en) Methods of establishing low-resistance electrical contact to carbon nanostructures with graphitic interfacial layer
US9324804B2 (en) Graphene-on-semiconductor substrates for analog electronics
JP4461673B2 (en) Active electronic device and electronic device
JP7012347B2 (en) Laminate of two-dimensional layered material
Zhang et al. The electrochemical transfer of CVD-graphene using agarose gel as solid electrolyte and mechanical support layer
Yamamoto et al. Low-temperature direct synthesis of multilayered h-BN without catalysts by inductively coupled plasma-enhanced chemical vapor deposition
Singh et al. Reversible control of doping in graphene-on-SiO2 by cooling under gate-voltage
JP2008078081A (en) Field emission electron source and its manufacturing method
CN102593006A (en) Method for reducing contact resistance of metal and carbon-based material
Yang et al. Improving radio frequency transmission properties of graphene via carrier concentration control toward high frequency transmission line applications
Yu et al. High‐Frequency Flexible Graphene Field‐Effect Transistors with Short Gate Length of 50 nm and Record Extrinsic Cut‐Off Frequency
JP6666168B2 (en) Electronic device and method of manufacturing the same
JP5173087B1 (en) Manufacturing method of oxidized carbon thin film, element having oxidized carbon thin film, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220111

R150 Certificate of patent or registration of utility model

Ref document number: 7012347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150