JP7011845B2 - How to collect fuel debris - Google Patents

How to collect fuel debris Download PDF

Info

Publication number
JP7011845B2
JP7011845B2 JP2019204419A JP2019204419A JP7011845B2 JP 7011845 B2 JP7011845 B2 JP 7011845B2 JP 2019204419 A JP2019204419 A JP 2019204419A JP 2019204419 A JP2019204419 A JP 2019204419A JP 7011845 B2 JP7011845 B2 JP 7011845B2
Authority
JP
Japan
Prior art keywords
barium sulfate
sedimentation
muddy water
fuel debris
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019204419A
Other languages
Japanese (ja)
Other versions
JP2021076505A (en
Inventor
誠一 成島
泰史 長江
Original Assignee
一般社団法人Nb研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般社団法人Nb研究所 filed Critical 一般社団法人Nb研究所
Priority to JP2019204419A priority Critical patent/JP7011845B2/en
Publication of JP2021076505A publication Critical patent/JP2021076505A/en
Application granted granted Critical
Publication of JP7011845B2 publication Critical patent/JP7011845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は原子炉格納容器(PCV)内に残留する燃料デブリを回収する燃料デブリの回収方法に関する。 The present invention relates to a method for recovering fuel debris for recovering fuel debris remaining in a reactor containment vessel (PCV).

水素爆発事故を起こした福島第一原子力発電所1号機から3号機におけるデブリ回収作業は、上部アクセス方法、下部横アクセス方法等の各方法について具体的な取り出し方法が検討されている。その取り出し手順についても、(1)高放射線遮蔽方法(作業被爆の防止)、(2)α各種飛散防止、(3)原子炉圧力容器(RPV)内及び原子炉圧力容器内の何れのデブリから回収するか、等の様々な課題があり、これらについて検討が重ねられている。 For the debris recovery work at Units 1 to 3 of the Fukushima Daiichi Nuclear Power Station, which caused the hydrogen explosion accident, specific extraction methods are being studied for each method such as the upper access method and the lower lateral access method. Regarding the removal procedure, (1) high radiation shielding method (prevention of work exposure), (2) prevention of various α scattering, (3) from any debris in the reactor pressure vessel (RPV) or in the reactor pressure vessel. There are various issues such as whether to collect them, and these are being studied repeatedly.

その中で強度を有する材料で一時的に原子炉格納容器(PCV)内をバライト等で覆い、放射線を遮蔽しながらデブリを回収する方法が一般的に知られている。
例えば、バライトとベントナイトを混合した沈降型泥水を用いてバライト沈降層を形成してデブリを回収する方法がある。
Among them, a method of temporarily covering the inside of the reactor containment vessel (PCV) with a strong material with barite or the like and collecting debris while shielding radiation is generally known.
For example, there is a method of collecting debris by forming a barite sedimentation layer using sedimentation type muddy water in which barite and bentonite are mixed.

しかしながら、ベントナイトを含む沈降型泥水は、80℃の比較的高温度条件下では、ベントナイトの熱により水和が進み膨潤したため粘度が上昇すること及び分散剤の加水分解が進行して分散力が低下したことにより、ゲル化が生じバライトの沈降が全く生じないという問題があった。 However, in the sedimented muddy water containing bentonite, under relatively high temperature conditions of 80 ° C., the heat of bentonite promotes hydration and swells, resulting in an increase in viscosity and hydrolysis of the dispersant, resulting in a decrease in dispersion force. As a result, there was a problem that gelation occurred and the sedimentation of barite did not occur at all.

また、特許文献1には、例えば燃料デブリを簸性硫酸バリウム(バライト)に有機ポリマを混合した沈降型泥水を用いてデブリを回収する技術が開示されている。 Further, Patent Document 1 discloses, for example, a technique for recovering debris using sedimented muddy water in which fuel debris is mixed with barium sulfate (barite) and an organic polymer.

しかしながら、有機ポリマを用いた場合、高放射線下では性能劣化が進むので線量の強さにより劣化変化するおそれがあるとともに、有機ポリマ投入後ミキシングし均一に進めるが時間を要し、要求フロー値までハンドリングに時間がかかる欠点があった。 However, when an organic polymer is used, the performance deteriorates under high radiation, so there is a risk that the deterioration will change depending on the strength of the dose. There was a drawback that it took a long time to handle.

特許第6542780号公報Japanese Patent No. 6542780

本発明は以上のような従来の欠点に鑑み、高温度環境下においても放射線を遮蔽することができ、かつ、α核種の飛散の問題を生じずに燃料デブリの取り出し作業ができる沈降型泥水を用いた燃料デブリの回収方法を提供することを目的としている。 In view of the above-mentioned conventional drawbacks, the present invention provides settling muddy water that can shield radiation even in a high temperature environment and can take out fuel debris without causing the problem of scattering of α-nuclide. It is an object of the present invention to provide a method for recovering the fuel debris used .

請求項1に記載の燃料デブリの回収方法は、沈降性硫酸バリウム及び簸性硫酸バリウムを含有する沈降型泥水を製造する沈降型泥水製造工程と、前記沈降型泥水製造工程で製造した前記沈降型泥水を、燃料デブリを内部に有する原子炉格納容器内に充填して、前記沈降型泥水の前記沈降性硫酸バリウムを前記原子炉格納容器内で沈降させ、前記原子炉格納容器内の燃料デブリを硫酸バリウム沈降層で覆う硫酸バリウム沈降工程と、前記硫酸バリウム沈降層に覆われた前記燃料デブリを回収する燃料デブリ回収工程とで構成され、前記沈降型泥水製造工程は、水に沈降性硫酸バリウム添加して撹拌する沈降性硫酸バリウム添加工程と、前記沈降性硫酸バリウム添加工程で得られた水に、さらに簸性硫酸バリウムを添加して撹拌する簸性硫酸バリウム添加工程とで構成されることを特徴とする。 The method for recovering fuel debris according to claim 1 is a settling type muddy water manufacturing step for producing a settling type muddy water containing a settling barium sulfate and an effervescent barium sulfate, and the settling type manufactured in the settling type muddy water manufacturing step. The muddy water is filled in a reactor containment vessel having fuel debris inside, the sedimentation barium sulfate of the sedimentation type muddy water is settled in the reactor containment vessel, and the fuel debris in the reactor containment vessel is settled. It is composed of a barium sulfate sedimentation step covered with a barium sulfate sedimentation layer and a fuel debris recovery step for recovering the fuel debris covered with the barium sulfate sedimentation layer. It is composed of a precipitating barium sulfate addition step of adding and stirring, and an effervescent barium sulfate addition step of further adding and stirring barium sulphate to the water obtained in the barium sulphate addition step. It is characterized by.

請求項2に記載の燃料デブリの回収方法の前記沈降性硫酸バリウム添加工程では、前記沈降性硫酸バリウムを水に対して重量比で2%~80%添加し、前記簸性硫酸バリウム添加工程では、前記簸性硫酸バリウムと前記沈降性硫酸バリウムを合わせて水に対して重量比で400%となるように前記簸性硫酸バリウムを添加することを特徴とする。 In the settling barium sulfate addition step of the method for recovering fuel debris according to claim 2 , 2% to 80% by weight of the settling barium sulfate is added to water, and in the inferior barium sulfate addition step. It is characterized in that the barium sulfate is added so that the barium sulfate and the sedimentary barium sulfate are combined and the weight ratio is 400% with respect to water.

請求項3に記載の燃料デブリの回収方法の前記沈降型泥水製造工程は、前記沈降性硫酸バリウム添加工程後に、前記沈降性硫酸バリウムを添加した水に分散剤を添加して撹拌する分散剤添加工程を更に行い、その後に前記簸性硫酸バリウム添加工程を行うことを特徴とする。 In the sedimentation type muddy water production step of the method for recovering fuel debris according to claim 3 , after the sedimentation barium sulfate addition step, a dispersant is added to the water to which the sedimentation barium sulfate is added and the mixture is stirred. It is characterized in that the step is further carried out, and then the above-mentioned barium sulfate addition step is carried out.

請求項4に記載の燃料デブリの回収方法の前記分散剤添加工程では、水に対して重量比で0.1%~0.5%の分散剤を添加することを特徴とする。 The dispersant addition step of the method for recovering fuel debris according to claim 4 is characterized in that a dispersant of 0.1% to 0.5% by weight is added to water.

請求項5に記載の燃料デブリの回収方法は、沈降性硫酸バリウムを含有する沈降型泥水を製造する沈降型泥水製造工程と、該沈降型泥水製造工程で製造した前記沈降型泥水を、燃料デブリを内部に有する原子炉格納容器内に充填して、前記沈降型泥水の硫酸バリウムを前記原子炉格納容器内で沈降させ、前記原子炉格納容器内の燃料デブリを硫酸バリウム沈降層で覆う硫酸バリウム沈降工程と、前記硫酸バリウム沈降層に覆われた前記燃料デブリを回収する燃料デブリ回収工程とで構成され、前記沈降型泥水製造工程は、水に前記沈降性硫酸バリウム添加し、撹拌する沈降性硫酸バリウム添加工程と、前記沈降性硫酸バリウム添加工程後に、前記沈降性硫酸バリウムを添加した水に分散剤を添加して撹拌する分散剤添加工程とで構成されることを特徴とする。 The method for recovering fuel debris according to claim 5 is a method for producing sedimented muddy water containing barium sulfate, which is a settling type muddy water, and the settling type muddy water produced in the settling type muddy water manufacturing step. Barium sulfate in the settling muddy water is settled in the reactor storage container, and the fuel debris in the reactor storage container is covered with the barium sulfate settling layer. It is composed of a settling step and a fuel debris recovery step of recovering the fuel debris covered with the barium sulfate settling layer. It is characterized by comprising a barium sulfate addition step and a dispersant addition step of adding a dispersant to the water to which the precipitated barium sulfate is added and stirring after the precipitating barium sulfate addition step.

請求項6に記載の燃料デブリの回収方法の前記沈降性硫酸バリウム添加工程では、前記沈降性硫酸バリウムを水に対して重量比で80%~400%添加し、前記分散剤添加工程では、水に対して重量比で0.2%~1.5%の分散剤を添加することを特徴とする。 In the settling barium sulfate addition step of the method for recovering fuel debris according to claim 6 , 80% to 400% by weight of the settling barium sulfate is added to water, and in the dispersant adding step, water is added. It is characterized in that a dispersant having a weight ratio of 0.2% to 1.5% is added.

以上の説明から明らかなように、本発明にあっては次に列挙する効果が得られる。
(1)請求項1及び請求項2に記載された各発明においては、粒子の細かい沈降性硫酸バリウムを増粘剤として用いているので、高放射線下であっても泥水の劣化を防止することができる。
(2)また、沈降性硫酸バリウムは、比表面積が大きいため馴染みやすくミキシング効率が向上しハンドリング良く製造ができる。
(3)ベントナイトを含まないので、高温度環境下でも泥水がゲル化せず、バライト沈降層を形成することができる。
(4)請求項3及び請求項4に記載された各発明も、前記(1)~(3)と同様な効果が得られるとともに、分散剤として例えばピロリン酸ナトリウムを添加することにより沈降型泥水の流動性を適宜調節することができる。
(5)請求項5及び請求項6に記載された各発明は、単純な組成で、適切な流動性を有するとともに、高放射線下かつ高温下でも劣化しない泥水を得ることができる。
As is clear from the above description, the following effects can be obtained in the present invention.
(1) In each of the inventions according to claim 1 and claim 2 , since barium sulfate having fine particles is used as a thickener, deterioration of muddy water is prevented even under high radiation. Can be done.
(2) Further, since the sedimentation barium sulfate has a large specific surface area, it is easy to get used to, the mixing efficiency is improved, and it can be manufactured with good handling.
(3) Since it does not contain bentonite, muddy water does not gel even in a high temperature environment, and a barite subsidence layer can be formed.
(4) Each of the inventions according to claims 3 and 4 also has the same effects as those of (1) to (3) above, and is settled muddy water by adding, for example, sodium pyrophosphate as a dispersant. The fluidity of the above can be adjusted as appropriate.
(5) Each of the inventions according to claims 5 and 6 can obtain muddy water having a simple composition, having appropriate fluidity, and not deteriorating even under high radiation and high temperature.

図1乃至図9は本発明の第1の実施形態を示す説明図である。
図10乃至図13は本発明の第2の実施形態を示す説明図である。
第1実施形態の沈降型泥水の製造方法の工程図。 本発明の沈降型泥水の製造方法で製造した沈降型泥水の流動特性を示す表。 本発明の沈降型泥水の製造方法で製造した沈降型泥水及び比較例の泥水の組成を示す表。 図3の組成の沈降型泥水及び比較例の泥水の高温時(80℃)における時間の経過と硫酸バリウムの沈降高さの実験結果を示す表。 図3の組成の沈降型泥水及び比較例の泥水の高温時(80℃)における時間の経過と硫酸バリウムの対容積沈降率の実験結果を示す表。 図3の組成の沈降型泥水及び比較例の泥水(一部)の高温時(80℃)における硫酸バリウム沈降層の密度等を示す表。 コーン貫入試験の実験結果を示す表。(a)コーン貫入試験に用いた沈降型泥水の組成。(b)コーン貫入試験の実験結果。 第1実施形態の燃料デブリの回収方法の工程図。 燃料デブリ回収工程の概略説明図。 第2実施形態の沈降型泥水の製造方法の工程図。 本発明の沈降型泥水の製造方法で製造した沈降型泥水のせん断速度と粘度の関係を示す表。 本発明の沈降型泥水の製造方法で製造した沈降型泥水の流動特性を示す表。 第2実施形態の燃料デブリの回収方法の工程図。
1 to 9 are explanatory views showing a first embodiment of the present invention.
10 to 13 are explanatory views showing a second embodiment of the present invention.
The process drawing of the manufacturing method of the sedimentation type muddy water of 1st Embodiment. The table which shows the flow characteristic of the sedimentation type muddy water produced by the method for producing the sedimentation type muddy water of this invention. The table which shows the composition of the sedimentation type muddy water produced by the method for producing the sedimentation type muddy water of this invention, and the muddy water of a comparative example. The table which shows the experimental result of the time passage and the sedimentation height of barium sulfate at a high temperature (80 ° C.) of the sedimentation type muddy water of the composition of FIG. 3 and the muddy water of a comparative example. The table which shows the time passage and the experimental result of the erythrocyte sedimentation rate of barium sulfate at a high temperature (80 ° C.) of the sedimentation type muddy water and the muddy water of the comparative example of the composition of FIG. The table which shows the density of the barium sulfate sedimentation layer at a high temperature (80 ℃) of the sedimentation type muddy water of the composition of FIG. 3 and the muddy water (part) of a comparative example. A table showing the experimental results of the cone penetration test. (A) Composition of sedimentation type muddy water used in the cone penetration test. (B) Experimental results of cone penetration test. The process chart of the fuel debris recovery method of 1st Embodiment. Schematic diagram of the fuel debris recovery process. The process drawing of the manufacturing method of the sedimentation type muddy water of 2nd Embodiment. The table which shows the relationship between the shear rate and the viscosity of the sedimentation type muddy water produced by the method of producing the sedimentation type muddy water of this invention. The table which shows the flow characteristic of the sedimentation type muddy water produced by the method for producing the sedimentation type muddy water of this invention. The process chart of the fuel debris recovery method of 2nd Embodiment.

以下、図面に示す本発明を実施するための形態により、本発明を詳細に説明する。
図1乃至図9に示す本発明を実施するための第1の形態において、1は原子炉格納容器(PCV)2内に残留する燃料デブリ3を回収する燃料デブリの回収方法4に用いられる沈降型泥水5を製造する沈降型泥水の製造方法である。
Hereinafter, the present invention will be described in detail in accordance with the embodiments shown in the drawings for carrying out the present invention.
In the first embodiment for carrying out the present invention shown in FIGS. 1 to 9, 1 is settling used in the fuel debris recovery method 4 for recovering the fuel debris 3 remaining in the reactor containment vessel (PCV) 2. This is a method for producing a sedimentation type muddy water for producing the type muddy water 5.

沈降型泥水の製造方法1は、水に沈降性硫酸バリウム添加して撹拌する沈降性硫酸バリウム添加工程6と、前記沈降性硫酸バリウム添加工程6で得られた沈降性硫酸バリウムを添加した水に、さらに簸性硫酸バリウムを添加して撹拌する簸性硫酸バリウム添加工程7とで構成されている。 The method 1 for producing settling barium is added to the settling barium sulfate addition step 6 in which the settling barium sulfate is added to the water and stirred, and the water to which the settling barium sulfate obtained in the settling barium sulfate addition step 6 is added. Further, it is composed of a barium sulfate addition step 7 in which barium sulfate is added and stirred.

沈降性硫酸バリウム添加工程6では、容器に所定量の水(主に水道水)を入れ、ミキサー等で水を撹拌しながら沈降性硫酸バリウムを添加し、さらに10分程度撹拌する工程である。この添加される沈降性硫酸バリウムは、科学的製造された硫酸バリウムで、粒子が非常に細かく、50%径(メディアン径D50)0.01~0.1μmとなっている。
沈降性硫酸バリウムは、水に対して重量比で2%~300%程度添加されて撹拌され、沈降性を考慮すると水に対して重量比で2%~80%、さらに好適には5%~20%程度添加することが望ましい。
In the precipitating barium sulfate addition step 6, a predetermined amount of water (mainly tap water) is put into a container, the precipitating barium sulfate is added while stirring the water with a mixer or the like, and the mixture is further stirred for about 10 minutes. The added precipitate barium sulfate is a scientifically produced barium sulfate having very fine particles and a diameter of 50% (median diameter D50) of 0.01 to 0.1 μm.
The precipitating barium sulfate is added in a weight ratio of about 2% to 300% with respect to water and stirred, and considering the sedimentation property, the weight ratio is 2% to 80% with respect to water, and more preferably 5% to 5%. It is desirable to add about 20%.

本実施形態においては、簸性硫酸バリウム添加工程7を行う前、すなわち、沈降性硫酸バリウム添加工程6後に、沈降性硫酸バリウムを添加した水に分散剤としてピロリン酸ナトリウムを添加して撹拌する分散剤添加工程8を更に行い、その後に前記簸性硫酸バリウム添加工程7を行う。 In the present embodiment, before performing the barium sulfate addition step 7, that is, after the precipitation barium sulfate addition step 6, dispersion in which sodium pyrophosphate is added as a dispersant to water to which precipitated barium sulfate is added and stirred. The agent addition step 8 is further performed, and then the above-mentioned barium sulfate addition step 7 is performed.

沈降性硫酸バリウムを添加した水に例えばピロリン酸ナトリウムを分散剤として加えることにより、沈降型泥水5のフロー値(流動性)を適宜調節することができる。 The flow value (fluidity) of the sedimentation type muddy water 5 can be appropriately adjusted by adding, for example, sodium pyrophosphate as a dispersant to the water to which the precipitating barium sulfate is added.

分散剤添加工程8では、沈降性硫酸バリウム添加工程6において沈降性硫酸バリウムを添加した水に所定量のピロリン酸ナトリウムを加え、ダマがなくなるまで約10分程度ミキサー等を用いて撹拌する。 In the dispersant addition step 8, a predetermined amount of sodium pyrophosphate is added to the water to which the precipitate barium sulfate is added in the precipitate barium sulfate addition step 6, and the mixture is stirred for about 10 minutes using a mixer or the like until the lumps disappear.

この分散剤としてのピロリン酸ナトリウムは、水に対して重量比で0.1~0.5%程度添加することが望ましい。このような添加量とすることにより、図4乃至図6に示すように、良好な沈降特性を得ることができる。 It is desirable to add sodium pyrophosphate as this dispersant in an amount of about 0.1 to 0.5% by weight with respect to water. With such an addition amount, good sedimentation characteristics can be obtained as shown in FIGS. 4 to 6.

簸性硫酸バリウム添加工程7では、沈降性硫酸バリウムを添加した水(本実施形態においては、さらに分散剤を添加した水)に簸性硫酸バリウム(いわゆるバライト)を添加する工程である。この工程で添加される簸性硫酸バリウムは、成分としては沈降性硫酸バリウムと同じであるが、その粒径が大きく異なり、簸性硫酸バリウムの粒径は数μm~数十μm程度、通常10~20μmと沈降性硫酸バリウムに比べて非常に大きいものである。 The barium sulfate addition step 7 is a step of adding barium sulfate (so-called barite) to water containing barium sulfate (in this embodiment, water further added with a dispersant). The barium sulfate added in this step has the same composition as the sedimentary barium sulfate, but its particle size is significantly different, and the particle size of the barium sulfate is several μm to several tens of μm, usually 10 It is ~ 20 μm, which is much larger than that of barium sulfate that precipitates.

簸性硫酸バリウム添加工程7では、沈降性硫酸バリウムを添加した水に簸性硫酸バリウムを加えてミキサー等で10分程度撹拌して沈降型泥水5を製造する。簸性硫酸バリウム及び沈降性硫酸バリウムは比重2.00(g/cc)以上となるように添加することが望ましく、より好適には、比重2.5(g/cc)以上となるように添加することが望ましい。簸性硫酸バリウムと沈降性硫酸バリウムを合わせて水に対して好ましくは400%程度となるように添加することで、このような比重の沈降型泥水5を得ることができる。例えば、沈降性硫酸バリウム添加工程6で水100gに対して沈降性硫酸バリウムを50g添加した場合には、簸性硫酸バリウム添加工程7において簸性硫酸バリウムを350g添加する。 In the step 7 of adding barium sulfate, sedimentation type muddy water 5 is produced by adding barium sulfate to water containing barium sulfate and stirring with a mixer or the like for about 10 minutes. It is desirable to add barium sulfate and barium precipitate sulfate so as to have a specific gravity of 2.00 (g / cc) or more, and more preferably, add them so as to have a specific gravity of 2.5 (g / cc) or more. It is desirable to do. By adding barium sulfate and barium sedimentation sulfate together so as to be preferably about 400% with respect to water, the sedimentation type muddy water 5 having such a specific gravity can be obtained. For example, when 50 g of precipitating barium sulfate is added to 100 g of water in the precipitating barium sulfate addition step 6, 350 g of effervescent barium sulfate is added in the effervescent barium sulfate addition step 7.

この沈降性硫酸バリウムと簸性硫酸バリウムを混合して製作した沈降型泥水5は、沈降性硫酸バリウムを増粘剤として使用し、加重剤の不足量を簸性硫酸バリウムで補うという考えで泥水を設計すれば、図2に示すように、沈降型泥水5の目標比重:2.56(バライト400%)においても良好な流動特性を有した高比重の泥水を短時間で得ることができる。 The settling type muddy water 5 produced by mixing this settling barium sulfate and barium sulfate is muddy water with the idea that the settling barium sulfate is used as a thickener and the shortage of the weighting agent is supplemented with barium sulfate. As shown in FIG. 2, a high specific density muddy water having good flow characteristics can be obtained in a short time even at a target specific gravity of the subsidence type muddy water 5: 2.56 (barium 400%).

沈降性硫酸バリウム配合量が100%未満であれば分散剤を使用しなくてもフロー値を200mm以上に維持できるため、このような配合であれば分散剤添加工程8を省略することができる。分散剤を用いない沈降型泥水5のフローの特徴としては、ゲルストレングスが高い事から時間と共にフローが広がり続ける現象は生じない。 If the amount of precipitating barium sulfate blended is less than 100%, the flow value can be maintained at 200 mm or more without using a dispersant. Therefore, in such a blending, the dispersant addition step 8 can be omitted. As a characteristic of the flow of the sedimentation type muddy water 5 without using a dispersant, the phenomenon that the flow continues to spread with time does not occur because the gel strength is high.

この沈降型泥水の製造方法1で製造した沈降型泥水5と、ベントナイトを含有する泥水及び有機ポリマーを含有する泥水との比較実験結果を図3乃至図6に基づいて説明する。
まず、図3に沈降型泥水5や前記比較例の組成を示す。
The results of comparative experiments between the sedimented muddy water 5 produced by the method 1 for producing the sedimented muddy water and the muddy water containing bentonite and the muddy water containing an organic polymer will be described with reference to FIGS. 3 to 6.
First, FIG. 3 shows the composition of the sedimentation type muddy water 5 and the comparative example.

沈降型泥水5としては、図2で流動特性を示したものの中から、No.1~No.4にピロリン酸ナトリウムをそれぞれ1.05g混合したものを実施例1~実施例4とし、水300gに沈降性硫酸バリウム30gと簸性硫酸バリウム1170gを混合し、さらにピロリン酸ナトリウムを0.9g混合したものを実施例5、水300gに沈降性硫酸バリウム60gと簸性硫酸バリウム1140gを混合し、さらにピロリン酸ナトリウムを0.9g混合したものを実施例6とした。 As the settling type muddy water 5, among those showing the flow characteristics in FIG. 2, No. 1 to No. Examples 1 to 4 were obtained by mixing 1.05 g of sodium pyrophosphate with each of 4, and 30 g of precipitated barium sulfate and 1170 g of barium sulfate were mixed with 300 g of water, and 0.9 g of sodium pyrophosphate was further mixed. In Example 5, 60 g of precipitated barium sulfate and 1140 g of barium sulfate were mixed with 300 g of water, and 0.9 g of sodium pyrophosphate was further mixed in Example 6.

一方、比較用の泥水としてベントナイトを添加したものを比較例1、比較例3~比較例9とし、有機ポリマーを添加したものをそれぞれ比較例2とした。 On the other hand, those to which bentonite was added as comparative muddy water were designated as Comparative Example 1 and Comparative Examples 3 to 9, and those to which an organic polymer was added were designated as Comparative Example 2, respectively.

まず、高温下(80℃)における時間の経過と硫酸バリウムの沈降深さの実験結果を図4に、時間の経過と硫酸バリウムの対容積沈降率の実験結果を図5に示す。 First, FIG. 4 shows the experimental results of the passage of time and the sedimentation depth of barium sulfate under high temperature (80 ° C.), and FIG. 5 shows the experimental results of the passage of time and the settling ratio of barium sulfate to volume.

これらの図から明らかなように、ベントナイトを含有する泥水は、ベントナイトの含有量が少なければある程度の沈降高さは得られるものの、本願発明の沈降型泥水と比較すると、その沈降高さは半分以下であり、対容積沈降率では最大でも1/4程度であることがわかる。このように高温下ではベントナイトを含有する泥水は、沈降性が悪いものであり、一方、本願発明の沈降型泥水5は、高温下であっても良好な沈降性を保持できるものである。 As is clear from these figures, the muddy water containing bentonite can obtain a certain sedimentation height if the content of bentonite is low, but the sedimentation height is less than half as compared with the sedimentation type muddy water of the present invention. It can be seen that the erythrocyte sedimentation rate is about 1/4 at the maximum. As described above, the muddy water containing bentonite has poor sedimentation property under high temperature, while the sedimentation type muddy water 5 of the present invention can maintain good sedimentation property even at high temperature.

なお、有機ポリマーを使用した泥水については、高温下であってもバライト沈降層が形成されるものの、高放射線下では性能劣化が進むので線量の強さにより劣化変化するおそれがある。 In muddy water using an organic polymer, a barite sedimentation layer is formed even at high temperatures, but performance deterioration progresses under high radiation conditions, so there is a risk that deterioration will change depending on the intensity of the dose.

これに対し、本願の沈降型泥水の製造方法1で製造した沈降型泥水5は、有機ポリマーを用いていないため、高放射線科であっても性能劣化するおそれがなく、図4乃至図6に示すように、良好な沈降性等を得ることができる。 On the other hand, since the sedimentation type muddy water 5 produced by the sedimentation type muddy water production method 1 of the present application does not use an organic polymer, there is no risk of performance deterioration even in a high radiology department, and FIGS. 4 to 6 show. As shown, good sedimentation property can be obtained.

また、本願の沈降型泥水5で形成した硫酸バリウム沈降層9は、図7に示すように、コーン指数(qc)が1400(kN/m2)以上の強度を持つ非常に緻密な沈降層を形成する為、小型の重機などを原子炉格納容器2内に投入して作業することも可能になる。
なお、このコーン貫入試験で用いた沈降型泥水5は、図7(a)で示す組成の沈降型泥水5を10×10cmモールド内で3日間沈降させ、コーン貫入試験を実施した。
Further, as shown in FIG. 7, the barium sulfate sedimentation layer 9 formed by the sedimentation type muddy water 5 of the present application forms a very dense sedimentation layer having a cone index (qc) of 1400 (kN / m2) or more. Therefore, it is possible to put a small heavy machine or the like into the reactor containment vessel 2 for work.
As for the sedimentation type muddy water 5 used in this cone penetration test, the sedimentation type muddy water 5 having the composition shown in FIG. 7A was settled in a 10 × 10 cm mold for 3 days, and the cone penetration test was carried out.

この燃料デブリの回収方法4は、図8に示すように、沈降型泥水の製造方法1を用いて沈降型泥水5を製造する沈降型泥水製造工程10で製造した前記沈降型泥水5を、燃料デブリ3を内部に有する前記原子炉格納容器2内に充填して、前記沈降型泥水5の硫酸バリウムを前記原子炉格納容器2内で沈降させ、前記原子炉格納容器2内の燃料デブリ3を硫酸バリウム沈降層9で覆う硫酸バリウム沈降工程11と、前記硫酸バリウム沈降層9に覆われた前記燃料デブリ3を回収する燃料デブリ回収工程12とで構成されている。 As shown in FIG. 8, the fuel debris recovery method 4 uses the settling muddy water 5 manufactured in the settling muddy water manufacturing step 10 for manufacturing the settling muddy water 5 using the settling muddy water manufacturing method 1 as fuel. The reactor containment vessel 2 having the debris 3 inside is filled, the barium sulfate of the sedimentation type muddy water 5 is settled in the reactor containment vessel 2, and the fuel debris 3 in the reactor containment vessel 2 is settled. It is composed of a barium sulfate sedimentation step 11 covered with a barium sulfate sedimentation layer 9 and a fuel debris recovery step 12 for recovering the fuel debris 3 covered with the barium sulfate sedimentation layer 9.

硫酸バリウム沈降工程11では、沈降型泥水5を原子炉格納容器2内に充填して、硫酸バリウム沈降層9を形成する工程である。この硫酸バリウム沈降層9は、沈降性硫酸バリウム及び簸性硫酸バリウムのどちらか一方又は両方を用いて形成されていればよく、特にこれらを区別して硫酸バリウム沈降層9を形成するものではない。ただし、沈降性硫酸バリウムは、その粒径が小さいため、簸性硫酸バリウムに比べて沈降速度が遅く、沈降時間が短い場合には、主に簸性硫酸バリウムが硫酸バリウム沈降層9を形成する。
なお、充填時間を長時間に設定することにより、適切な硫酸バリウム沈降層9を形成することができる。
The barium sulfate sedimentation step 11 is a step of filling the reactor containment vessel 2 with the sedimentation type muddy water 5 to form the barium sulfate sedimentation layer 9. The barium sulfate sedimentation layer 9 may be formed by using either or both of the sedimentation barium sulfate and the barium sulfate, and does not particularly distinguish between them to form the barium sulfate sedimentation layer 9. However, since the sedimentation barium sulfate has a small particle size, the sedimentation rate is slower than that of barium sulfate, and when the sedimentation time is short, the barium sulfate sedimentate mainly forms the barium sulfate sedimentation layer 9. ..
By setting the filling time to a long time, an appropriate barium sulfate sedimentation layer 9 can be formed.

具体的には、硫酸バリウム沈降工程11では、沈降型泥水5を充填した後、数時間、望ましくは24時間程度から数日間放置して硫酸バリウムを沈降させ、原子炉格納容器2内に飛散している燃料デブリ3を硫酸バリウム沈降層9で被覆する。 Specifically, in the barium sulfate sedimentation step 11, after the sedimentation type muddy water 5 is filled, the barium sulfate is settled by leaving it for several hours, preferably about 24 hours to several days, and scattered in the reactor containment vessel 2. The fuel debris 3 is covered with the barium sulfate sedimentation layer 9.

この硫酸バリウム沈降層9は、前述したように、コーン指数(qc)が1000(kN/m2)以上の強度を持つ非常に緻密な沈降層を形成する為、小型の重機などを原子炉格納容器2内に投入して作業することも可能になる。例えばコーン指数1200(kN /m2)以上の反力を有した硫酸バリウム沈降層9は、作業基盤や上部にある圧力容器破損部の落下などの緩衝層、自走キャタピラ作業装置などの重機が走行可能な作業基盤として適用する。 As described above, this barium sulfate subsidence layer 9 forms a very dense subsidence layer having a cone index (qc) of 1000 (kN / m2) or more, so that a small heavy machine or the like can be used as a reactor containment vessel. It is also possible to put it in 2 and work. For example, the barium sulfate sedimentation layer 9 having a reaction force with a cone index of 1200 (kN / m2) or more is used by heavy machinery such as a work base, a buffer layer for dropping a damaged pressure vessel at the top, and a self-propelled caterpillar work device. Apply as a possible work platform.

燃料デブリ回収工程12は、図9に示すように、ボーリングマシンやガイド付き掘削機等の掘削装置13を用いて硫酸バリウム沈降層9を掘削し、燃料デブリ3を回収する工程である。 As shown in FIG. 9, the fuel debris recovery step 12 is a step of excavating the barium sulfate subsidence layer 9 using an excavator 13 such as a boring machine or a guided excavator to recover the fuel debris 3.

本実施形態においては、掘削装置13によって燃料デブリ3を回収するが、小型の重機等を用いて燃料デブリ回収工程12を行ってもよい。 In the present embodiment, the fuel debris 3 is recovered by the excavator 13, but the fuel debris recovery step 12 may be performed by using a small heavy machine or the like.

燃料デブリ回収工程12で、燃料デブリ3に到達するまで硫酸バリウム沈降層9(遮へい層)を掘削することになるが、硫酸バリウム沈降層9は、高せん断速度では高いせん断応力を示すが、低せん断速度では低いせん断応力となるダイラタンシー流体に近い特性を示すことから、例えば図9に示すように、燃料デブリ3回収作業で掘削装置13の掘削具14を備えるロッド15等を振動させながら掘削することで容易に硫酸バリウム沈降層9を掘削し燃料デブリ3方向に掘削具14を向かわせる事ができる。 In the fuel debris recovery step 12, the barium sulfate settling layer 9 (shielding layer) is excavated until the fuel debris 3 is reached. The barium sulfate settling layer 9 shows high shear stress at a high shear rate, but is low. Since it exhibits characteristics similar to those of a dilatancy fluid, which has a low shear stress at a shear rate, for example, as shown in FIG. 9, excavation is performed while vibrating a rod 15 or the like provided with an excavator 14 of an excavator 13 in a fuel debris 3 recovery operation. This makes it possible to easily excavate the barium sulfate sedimentation layer 9 and direct the excavator 14 in the direction of the fuel debris 3.

硫酸バリウム沈降層9は、燃料デブリ3を回収する際に掘削具14等に密着し空隙がないため、作業中において放射線を遮へいでき、また、掘削具14を抜き出した後の穴については自己修復性があるフロー値を保っているため、即時的に塞ぐことで燃料デブリ3からの高線量放射線を遮へいすることができる。 Since the barium sulfate sedimentation layer 9 is in close contact with the excavator 14 and the like when recovering the fuel debris 3 and has no voids, radiation can be shielded during the work, and the hole after the excavator 14 is extracted is self-repaired. Since the flow value is maintained, it is possible to shield the high-dose radiation from the fuel debris 3 by blocking it immediately.

また、燃料デブリ3を回収する時に飛散する細かい破片等は、硫酸バリウム沈降層9が燃料デブリ3を覆った状態での作業のため、硫酸バリウム沈降層9を越えての飛散は全くなく、これらの破片は硫酸バリウム沈降層9へ取り込まれ、硫酸バリウム沈降層9を吸引すれば安全に回収できる。 In addition, fine debris and the like scattered when the fuel debris 3 is recovered are not scattered beyond the barium sulfate settling layer 9 because the work is performed with the barium sulfate settling layer 9 covering the fuel debris 3. The debris is taken into the barium sulfate sedimentation layer 9 and can be safely recovered by sucking the barium sulfate sedimentation layer 9.

硫酸バリウム沈降層9は、比重が高いためサイクロン分級工程で容易に燃料デブリ3部位と分けることができ、分級されたバライトなどは再利用することもできるため、廃棄物の低減ができる。 Since the barium sulfate sedimentation layer 9 has a high specific gravity, it can be easily separated from the fuel debris 3 sites in the cyclone classification step, and the classified barium and the like can be reused, so that waste can be reduced.

[発明を実施するための異なる形態]
次に、図10乃至図13に示す本発明を実施するための異なる形態につき説明する。なお、本発明を実施するための異なる形態の説明に当って、前記本発明を実施するための第1の形態と同一構成部分には同一符号を付して重複する説明を省略する。
[Different forms for carrying out the invention]
Next, different embodiments for carrying out the present invention shown in FIGS. 10 to 13 will be described. In the description of the different embodiments for carrying out the present invention, the same components as those of the first embodiment for carrying out the present invention are designated by the same reference numerals, and duplicate description will be omitted.

図10乃至図13に示す本発明を実施するための第2の形態において、前記本発明を実施するための第1の形態と主に異なる点は、水に沈降性硫酸バリウム添加し、撹拌する沈降性硫酸バリウム添加工程と、前記沈降性硫酸バリウム添加工程後に、前記沈降性硫酸バリウムを添加した水に分散剤を添加して撹拌する分散剤添加工程とで構成された沈降型泥水の製造方法1Aにするとともに、この沈降型泥水の製造方法1Aを用いて沈降型泥水5を製造する沈降型泥水製造工程10Aを用いた燃料デブリの回収方法4Aとした点で、このような沈降型泥水の製造方法1A及び燃料デブリの回収方法4Aにしても前記本発明を実施するための第1の形態と同様な作用効果が得られる。 In the second embodiment for carrying out the present invention shown in FIGS. 10 to 13, the main difference from the first embodiment for carrying out the present invention is that sedimentation barium sulfate is added to water and stirred. A method for producing sedimented muddy water, which comprises a step of adding a settling barium sulfate and a step of adding a dispersant in which a dispersant is added to the water to which the settling barium sulfate is added and stirred after the step of adding the settling barium sulfate. Such settling type muddy water is set to 1A and the fuel debris recovery method 4A using the settling type muddy water manufacturing step 10A for producing the settling type muddy water 5 by using the settling type muddy water manufacturing method 1A. Even in the production method 1A and the fuel debris recovery method 4A, the same action and effect as in the first embodiment for carrying out the present invention can be obtained.

図10に示すように、沈降性硫酸バリウム単独使用の泥水配合組成は、流動特性(主にゲル値の影響)及びフロー値の広がり状況の点からみて80%~400%、より好適には300%~350%の範囲で、分散剤を0.2%~1.5%、より好適には0.3%程度併用した配合組成が適していると思われる。 As shown in FIG. 10, the composition of the muddy water using only the sedimentary barium sulfate is 80% to 400%, more preferably 300, in view of the flow characteristics (mainly the influence of the gel value) and the spread of the flow value. It seems that a compounding composition in which a dispersant is used in combination of 0.2% to 1.5%, more preferably about 0.3% in the range of% to 350% is suitable.

また、図11に示すように、沈降性硫酸バリウムは添加量の増加に伴い粘度が上昇する。特にYV値及びゲルストレングス値が高くなることからベントナイトの様な増粘性を有している。したがって、沈降型高比重泥水の様な高い遮水性を必要としない重泥水においてはベントナイトを用いない非常に単純な組成の沈降型泥水5を構築できる。 Further, as shown in FIG. 11, the viscosity of the precipitating barium sulfate increases as the amount added increases. In particular, since the YV value and the gel strength value are high, the viscosity is increased like bentonite. Therefore, it is possible to construct a sedimentation type muddy water 5 having a very simple composition without using bentonite in a heavy muddy water that does not require high water impermeability such as a sedimentation type high specific density muddy water.

沈降性硫酸バリウム単独で製作した沈降型泥水5は、構成する粒子径が非常に小さいため沈降時間が長時間かかる結果となる。また、配合組成を標準的な簸性硫酸バリウムの様な高濃度の配合組成(400%)にするとゲルストレングス値が非常高くなり、分散剤を併用しても効果が小さく、沈降しなくなる現象が生じるため、24時間以内に硫酸バリウム沈降層9を形成させたい場合、単独での使用は適していおらず、短時間で硫酸バリウム沈降層9を形成させたい場合には、前記第1の実施形態のように簸性硫酸バリウムを混合したものを用いるとよい。 The sedimentation type muddy water 5 produced by the sedimentation barium sulfate alone has a very small particle size, so that the sedimentation time is long. In addition, if the compounding composition is a high-concentration compounding composition (400%) such as standard barium sulfate, the gel strength value becomes very high, and even if a dispersant is used in combination, the effect is small and the phenomenon of not precipitating occurs. Therefore, when it is desired to form the barium sulfate sedimentation layer 9 within 24 hours, it is not suitable to be used alone, and when it is desired to form the barium sulfate sedimentation layer 9 in a short time, the first embodiment is described above. It is advisable to use a mixture of barium sulfate and barium sulfate.

本発明は原子炉格納容器(PCV)内に残留する燃料デブリを回収する燃料デブリの回収方法を使用する産業で利用される。 The present invention is utilized in an industry that uses a fuel debris recovery method for recovering fuel debris remaining in a reactor containment vessel (PCV).

1、1A:沈降型泥水の製造方法、 2:原子炉格納容器、
3:燃料デブリ、 4、4A:燃料デブリの回収方法、
5:沈降型泥水、 6:沈降性硫酸バリウム添加工程、
7:簸性硫酸バリウム添加工程、 8:分散剤添加工程、
9:硫酸バリウム沈降層、 10、10A:沈降型泥水製造工程、
11:硫酸バリウム沈降工程、 12:燃料デブリ回収工程、
13:掘削装置、 14:掘削具、
15:ロッド。
1, 1A: Method for producing sedimented muddy water, 2: Reactor containment vessel,
3: Fuel debris, 4, 4A: Fuel debris recovery method,
5: Precipitated muddy water, 6: Precipitating barium sulfate addition step,
7: Barium sulfate addition step, 8: Dispersant addition step,
9: Barium sulfate sedimentation layer, 10, 10A: Subsidence type muddy water production process,
11: Barium sulfate sedimentation process, 12: Fuel debris recovery process,
13: Excavator, 14: Excavator,
15: Rod.

Claims (6)

沈降性硫酸バリウム及び簸性硫酸バリウムを含有する沈降型泥水を製造する沈降型泥水製造工程と、前記沈降型泥水製造工程で製造した前記沈降型泥水を、燃料デブリを内部に有する原子炉格納容器内に充填して、前記沈降型泥水の前記沈降性硫酸バリウムを前記原子炉格納容器内で沈降させ、前記原子炉格納容器内の前記燃料デブリを硫酸バリウム沈降層で覆う硫酸バリウム沈降工程と、前記硫酸バリウム沈降層に覆われた前記燃料デブリを回収する燃料デブリ回収工程とで構成され、
前記沈降型泥水製造工程は、水に前記沈降性硫酸バリウム添加し、撹拌する沈降性硫酸バリウム添加工程と、前記沈降性硫酸バリウム添加工程で得られた水に、さらに前記簸性硫酸バリウムを添加して撹拌する簸性硫酸バリウム添加工程とで構成される燃料デブリの回収方法。
A reactor containment vessel having fuel debris inside a settling muddy water manufacturing process for producing settling barium sulfate and barium sulfate containing effervescent barium sulfate and the settling muddy water produced in the settling type muddy water manufacturing step. A barium sulfate settling step of filling the inside to settle the settling barium sulfate in the settling muddy water in the reactor containment vessel and covering the fuel debris in the reactor containment vessel with a barium sulfate settling layer. It is composed of a fuel debris recovery step for recovering the fuel debris covered with the barium sulfate sedimentation layer.
In the sedimentation type muddy water production step, the precipitate barium sulfate addition step of adding the sedimentation barium sulfate to water and stirring, and the water obtained by the sedimentation barium sulfate addition step, further adding the effervescent barium sulfate. A method for recovering fuel debris, which comprises a step of adding barium sulfate and stirring.
前記沈降性硫酸バリウム添加工程では、前記沈降性硫酸バリウムを水に対して重量比で2%~80%添加し、前記簸性硫酸バリウム添加工程では、前記簸性硫酸バリウムと前記沈降性硫酸バリウムを合わせて水に対して重量比で400%となるように前記簸性硫酸バリウムを添加することを特徴とする請求項1に記載の燃料デブリの回収方法。 In the precipitating barium sulfate addition step, the precipitating barium sulfate is added in a weight ratio of 2% to 80% with respect to water, and in the effervescent barium sulfate addition step, the effervescent barium sulfate and the precipitated barium sulfate are added. The method for recovering fuel debris according to claim 1 , wherein the barium sulfate is added so as to have a weight ratio of 400% with respect to water. 前記沈降型泥水製造工程は、前記沈降性硫酸バリウム添加工程後に、前記沈降性硫酸バリウムを添加した水に分散剤を添加して撹拌する分散剤添加工程を更に行い、その後に前記簸性硫酸バリウム添加工程を行うことを特徴とする請求項1又は請求項2のいずれかに記載の燃料デブリの回収方法。 In the sedimentation type muddy water production step, after the sedimentation barium sulfate addition step, a dispersant addition step of adding a dispersant to the water to which the sedimentation barium sulfate is added and stirring the mixture is further performed, and then the effervescent barium sulfate addition step is performed. The method for recovering fuel debris according to any one of claim 1 or 2 , wherein the addition step is performed. 前記分散剤添加工程では、水に対して重量比で0.1%~0.5%の前記分散剤を添加することを特徴とする請求項3に記載の燃料デブリの回収方法。 The method for recovering fuel debris according to claim 3 , wherein in the dispersant addition step, the dispersant is added in a weight ratio of 0.1% to 0.5% with respect to water. 沈降性硫酸バリウムを含有する沈降型泥水を製造する沈降型泥水製造工程と、該沈降型泥水製造工程で製造した前記沈降型泥水を、燃料デブリを内部に有する原子炉格納容器内に充填して、前記沈降型泥水の硫酸バリウムを前記原子炉格納容器内で沈降させ、前記原子炉格納容器内の前記燃料デブリを硫酸バリウム沈降層で覆う硫酸バリウム沈降工程と、前記硫酸バリウム沈降層に覆われた前記燃料デブリを回収する燃料デブリ回収工程とで構成され、
前記沈降型泥水製造工程は、水に前記沈降性硫酸バリウム添加し、撹拌する沈降性硫酸バリウム添加工程と、前記沈降性硫酸バリウム添加工程後に、前記沈降性硫酸バリウムを添加した水に分散剤を添加して撹拌する分散剤添加工程とで構成される燃料デブリの回収方法。
The reactor containment vessel having fuel debris inside is filled with the sedimentation type muddy water manufacturing process for producing sedimentation type muddy water containing barium sulfate and the sedimentation type muddy water produced in the sedimentation type muddy water production process. , The barium sulfate sedimentation step of precipitating the barium sulfate of the sedimentation type muddy water in the reactor containment vessel and covering the fuel debris in the reactor containment vessel with the barium sulfate sedimentation layer, and being covered with the barium sulfate sedimentation layer. It consists of a fuel debris recovery process that recovers the fuel debris.
In the sedimentation type muddy water production step, the sedimentation barium sulfate addition step of adding the sedimentation barium sulfate to water and stirring the mixture, and the dispersant added to the water to which the sedimentation barium sulfate is added after the sedimentation barium sulfate addition step. A method for recovering fuel debris, which comprises a dispersant addition step of adding and stirring.
前記沈降性硫酸バリウム添加工程では、前記沈降性硫酸バリウムを水に対して重量比で80%~400%添加し、前記分散剤添加工程では、水に対して重量比で0.2%~1.5%の前記分散剤を添加することを特徴とする請求項5に記載の燃料デブリの回収方法。 In the precipitating barium sulfate addition step, 80% to 400% by weight of the precipitating barium sulfate is added to water, and in the dispersant addition step, 0.2% to 1% by weight is added to water. The method for recovering fuel debris according to claim 5 , wherein the dispersant is added in an amount of 5.5%.
JP2019204419A 2019-11-12 2019-11-12 How to collect fuel debris Active JP7011845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019204419A JP7011845B2 (en) 2019-11-12 2019-11-12 How to collect fuel debris

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019204419A JP7011845B2 (en) 2019-11-12 2019-11-12 How to collect fuel debris

Publications (2)

Publication Number Publication Date
JP2021076505A JP2021076505A (en) 2021-05-20
JP7011845B2 true JP7011845B2 (en) 2022-01-27

Family

ID=75897384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019204419A Active JP7011845B2 (en) 2019-11-12 2019-11-12 How to collect fuel debris

Country Status (1)

Country Link
JP (1) JP7011845B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029289A (en) 2012-07-31 2014-02-13 Kawai Kaken Kogyo:Kk Processing method for reducing radiation amount in waste including radioactive substances
JP2016090542A (en) 2014-11-11 2016-05-23 三洋工業株式会社 Radiation shield sealant
US20170217802A1 (en) 2014-03-07 2017-08-03 General Electric Company Method for barium and norm removal from produced water
JP2019074325A (en) 2017-10-12 2019-05-16 一般社団法人Nb研究所 Collection method of fuel debris

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029289A (en) 2012-07-31 2014-02-13 Kawai Kaken Kogyo:Kk Processing method for reducing radiation amount in waste including radioactive substances
US20170217802A1 (en) 2014-03-07 2017-08-03 General Electric Company Method for barium and norm removal from produced water
JP2016090542A (en) 2014-11-11 2016-05-23 三洋工業株式会社 Radiation shield sealant
JP2019074325A (en) 2017-10-12 2019-05-16 一般社団法人Nb研究所 Collection method of fuel debris

Also Published As

Publication number Publication date
JP2021076505A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
AU2020201675B2 (en) Tailings deposition
CN107459336B (en) A method of fired brick is prepared using water-based drilling drilling cuttings
JP7011845B2 (en) How to collect fuel debris
CN104420844B (en) The solid-liquid separating method that a kind of circulating fluid does not land
US3763041A (en) Process of removing water from slimes
JP6452780B1 (en) Method for collecting fuel debris
Mohd Isha et al. Geochemical and mineralogical assessment of sedimentary limestone mine waste and potential for mineral carbonation
Liu et al. Multistage enrichment of the Sawafuqi Uranium Deposit: New insights into sandstone‐hosted uranium deposits in the intramontane basins of Tian Shan, China
JP2018030958A (en) Modifier for soft soil or the like and solidification treatment method of remaining soil
JP6376943B2 (en) Rubble treatment composition and rubble treatment method
US5463172A (en) Waste disposal process
Quille et al. Geotechnical properties of zinc/lead mine tailings from Tara Mines, Ireland
Gawu et al. The proposed alumina industry and how to mitigate against the red mud footprint in Ghana
JP6960170B2 (en) How to dispose of fuel debris
JP2014156546A (en) Swellable high-water-absorption polymer stabilizing liquid composition for shielding method and execution method using the same
Sivakugan Drainage issues and stress developments within hydraulic fill mine stopes
Walawalkar Extraction of rare earth elements from phosphogypsum (fertilizer production by-product)
Williams Placing soil covers on soft mine tailings
EP4353371A1 (en) Heap leach liner
Griffiths et al. Environmental geochemistry of the Round Mountain gold mine, Nevada, and mineralogical controls on acid generation
CN113431576A (en) Control process for reducing stoping filling mixing rate of two-step stope
Somogyi Dewatering and drainage of red mud tailings
Adajar et al. Compressibility and hydrocompression settlement of mine tailings
Bourabah et al. Geotechnical characterization of waste dredged sediments for Algerian dams
Weiksnar et al. Influence of Blending Phosphogypsum to Mitigate Radium Leaching and Enhance Reuse As Road Base Material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220107

R150 Certificate of patent or registration of utility model

Ref document number: 7011845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150