JP7007856B2 - White line recognition device for vehicles - Google Patents

White line recognition device for vehicles Download PDF

Info

Publication number
JP7007856B2
JP7007856B2 JP2017208240A JP2017208240A JP7007856B2 JP 7007856 B2 JP7007856 B2 JP 7007856B2 JP 2017208240 A JP2017208240 A JP 2017208240A JP 2017208240 A JP2017208240 A JP 2017208240A JP 7007856 B2 JP7007856 B2 JP 7007856B2
Authority
JP
Japan
Prior art keywords
white line
point
vehicle
edge
start point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017208240A
Other languages
Japanese (ja)
Other versions
JP2019079470A (en
Inventor
礁太 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2017208240A priority Critical patent/JP7007856B2/en
Publication of JP2019079470A publication Critical patent/JP2019079470A/en
Application granted granted Critical
Publication of JP7007856B2 publication Critical patent/JP7007856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、車載カメラ等の撮像手段で撮像した画像に基づいて白線を認識する車両用白線認識装置に関する。 The present invention relates to a vehicle white line recognition device that recognizes a white line based on an image captured by an image pickup means such as an in-vehicle camera.

近年、車両の安全性向上や利便性向上等を図るため、積極的にドライバの運転操作を支援する運転支援装置が開発されている。この種の運転支援装置としては、例えば、車載カメラによって車外環境を撮像し、撮像した画像から、路面に敷設された白線や路面上の先行車等の立体物を認識し、これらの認識情報に基づいて、車速制御や操舵支援制御、さらには、自動運転等の各種運転支援制御を行うものが知られている。 In recent years, in order to improve the safety and convenience of vehicles, driving support devices that actively support the driving operation of drivers have been developed. As a driving support device of this type, for example, an in-vehicle camera is used to image the environment outside the vehicle, and from the captured image, a three-dimensional object such as a white line laid on the road surface or a preceding vehicle on the road surface is recognized, and these recognition information is used. Based on this, those that perform various driving support controls such as vehicle speed control, steering support control, and automatic driving are known.

このような運転支援装置に用いられる車両用白線認識装置として、例えば、特許文献1には、撮像画像上に設定された検索領域に対し、水平方向に延在する複数の検索ライン毎に、車幅方向内側から外側に向けて輝度変化を調べることにより、輝度が暗から明へと所定以上変化するエッジ点を白線候補点として検出し、検出した白線候補点群に対し最小二乗法等を用いて二次曲線等を算出することにより、白線を認識する技術が開示されている。 As a vehicle white line recognition device used for such a driving support device, for example, in Patent Document 1, a vehicle is provided for each of a plurality of search lines extending horizontally with respect to a search area set on a captured image. By investigating the change in brightness from the inside to the outside in the horizontal direction, edge points whose brightness changes from dark to light by a predetermined value or more are detected as white line candidate points, and the minimum square method is used for the detected white line candidate points. A technique for recognizing a white line by calculating a quadratic curve or the like is disclosed.

2012-22574号公報2012-22574 Gazette

しかしながら、上述の特許文献1に開示された技術のように、輝度が暗から明へと所定以上変化するエッジ点を白線候補点として検出するだけの処理では、路面に投射された光の像のエッジ点を白線候補点として誤検出する場合がある。 However, as in the technique disclosed in Patent Document 1 described above, in a process of only detecting an edge point whose brightness changes from dark to light by a predetermined value or more as a white line candidate point, an image of light projected on the road surface is obtained. An edge point may be erroneously detected as a white line candidate point.

例えば、道路脇に沿ってガードレールや柵等の構造物が設けられている場合、当該構造物の隙間から路面に投射された太陽光が高輝度な帯状の像を形成する場合がある。そして、このような光の像が白線に沿って検索領域内に延在した場合、当該像のエッジ点が白線候補点として誤認識される虞がある。 For example, when a structure such as a guardrail or a fence is provided along the side of the road, the sunlight projected on the road surface from the gap of the structure may form a high-intensity band-shaped image. When such an image of light extends along the white line in the search area, the edge point of the image may be erroneously recognized as a white line candidate point.

本発明は上記事情に鑑みてなされたもので、路面に投射された光の像の影響を排除して適切な白線認識を行うことができる車両用白線認識装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vehicle white line recognition device capable of performing appropriate white line recognition by eliminating the influence of an image of light projected on a road surface.

本発明の一態様による車両用白線認識装置は、自車前方の車外環境を撮像する撮像手段と、前記撮像手段で撮像した画像の水平方向に延在する検索ライン上において輝度が所定に変化するエッジ点を検出し、輝度が暗から明に変化する前記エッジ点を白線開始点として抽出すると共に、前記輝度が明から暗に変化する前記エッジ点を白線終了点として抽出するエッジ点検出手段と、前記白線開始点と前記白線終了点とに基づいて推定される白線推定区間と前記白線推定区間以外の路面との輝度差、及び、前記白線推定区間と前記路面との間で輝度が遷移する遷移区間の長さに基づいて前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点であるか否かの検証を行うエッジ点検証手段と、を備え、前記エッジ点検証手段は、自車両から前記白線開始点までの距離が長いほど、前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点である可能性が高いと評価するものである。 In the vehicle white line recognition device according to one aspect of the present invention, the brightness changes predeterminedly on the image pickup means for capturing the image of the vehicle exterior environment in front of the own vehicle and the search line extending in the horizontal direction of the image captured by the image pickup means. An edge point detecting means for detecting an edge point and extracting the edge point whose luminance changes from dark to bright as a white line start point and extracting the edge point whose luminance changes from bright to dark as a white line end point. , The luminance difference between the white line estimation section estimated based on the white line start point and the white line end point and the road surface other than the white line estimation section, and the luminance transition between the white line estimation section and the road surface. The edge point verification means includes an edge point verification means for verifying whether or not the white line start point and the white line end point are edge points corresponding to the actual white line based on the length of the transition section. It is evaluated that the longer the distance from the own vehicle to the white line start point, the higher the possibility that the white line start point and the white line end point are edge points corresponding to the actual white line .

また、本発明の他の態様による車両用白線認識装置は、自車前方の車外環境を撮像する撮像手段と、前記撮像手段で撮像した画像の水平方向に延在する検索ライン上において輝度が所定に変化するエッジ点を検出し、輝度が暗から明に変化する前記エッジ点を白線開始点として抽出すると共に、前記輝度が明から暗に変化する前記エッジ点を白線終了点として抽出するエッジ点検出手段と、前記白線開始点と前記白線終了点とに基づいて推定される白線推定区間と前記白線推定区間以外の路面との輝度差に基づいて前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点であるか否かの検証を行うエッジ点検証手段と、を備え、前記エッジ点検証手段は、自車両から前記白線開始点までの距離が長いほど、前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点である可能性が高いと評価するものである。 Further, in the vehicle white line recognition device according to another aspect of the present invention, the luminance is predetermined on the image pickup means for capturing the image of the vehicle exterior environment in front of the own vehicle and the search line extending in the horizontal direction of the image captured by the image pickup means. Edge inspection that detects the edge point that changes to and extracts the edge point whose brightness changes from dark to bright as the white line start point, and extracts the edge point whose brightness changes from bright to dark as the white line end point. The white line start point and the white line end point are the actual white line start point and the white line end point based on the luminance difference between the white line estimation section estimated based on the white line start point and the white line end point and the road surface other than the white line estimation section. The edge point verification means includes an edge point verification means for verifying whether or not the edge point corresponds to the white line, and the edge point verification means increases the longer the distance from the own vehicle to the white line start point, the more the white line start point and the white line start point. It is evaluated that there is a high possibility that the end point of the white line is an edge point corresponding to the actual white line .

また、本発明の他の態様による車両用白線認識装置は、自車前方の車外環境を撮像する撮像手段と、前記撮像手段で撮像した画像の水平方向に延在する検索ライン上において輝度が所定に変化するエッジ点を検出し、輝度が暗から明に変化する前記エッジ点を白線開始点として抽出すると共に、前記輝度が明から暗に変化する前記エッジ点を白線終了点として抽出するエッジ点検出手段と、前記白線開始点と前記白線終了点とに基づいて推定される白線推定区間と前記白線推定区間以外の路面との間で輝度が遷移する遷移区間の長さに基づいて前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点であるか否かの検証を行うエッジ点検証手段と、を備え、前記エッジ点検証手段は、自車両から前記白線開始点までの距離が長いほど、前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点である可能性が高いと評価するものである。 Further, in the vehicle white line recognition device according to another aspect of the present invention, the luminance is predetermined on the image pickup means for capturing the image of the vehicle exterior environment in front of the own vehicle and the search line extending in the horizontal direction of the image captured by the image pickup means. Edge inspection that detects the edge point that changes to and extracts the edge point whose brightness changes from dark to bright as the white line start point, and extracts the edge point whose brightness changes from bright to dark as the white line end point. The white line start is based on the length of the output means and the transition section in which the brightness transitions between the white line estimation section estimated based on the white line start point and the white line end point and the road surface other than the white line estimation section. The edge point verification means includes an edge point verification means for verifying whether or not the point and the white line end point are edge points corresponding to the actual white line, and the edge point verification means is a distance from the own vehicle to the white line start point. Is evaluated as having a higher possibility that the white line start point and the white line end point are edge points corresponding to the actual white line .

本発明の車両用白線認識装置によれば、路面に投射された光の像の影響を排除して適切な白線認識を行うことができる。 According to the vehicle white line recognition device of the present invention, it is possible to eliminate the influence of the image of the light projected on the road surface and perform appropriate white line recognition.

車両用運転支援装置の概略構成図Schematic configuration diagram of a vehicle driving support device 車外環境を撮像した基準画像の一例を模式的に示す説明図Explanatory drawing schematically showing an example of a reference image that captures the environment outside the vehicle 図2から検出される白線候補点を示す説明図Explanatory drawing which shows the white line candidate point detected from FIG. 画像検索方向における輝度の分布と輝度の微分値との関係を示す説明図Explanatory diagram showing the relationship between the distribution of luminance and the differential value of luminance in the image search direction. 自車両の近方及び遠方における白線及び光の像の輝度特性を示す説明図Explanatory drawing showing the luminance characteristics of the white line and the image of light in the near and far directions of the own vehicle. 実空間に投影される白線候補点を示す説明図Explanatory diagram showing white line candidate points projected in real space (a)は走行による自車の移動量を示す説明図であって(b)は前フレームで検出した白線候補点の自車に対する相対的な移動量を示す説明図(A) is an explanatory diagram showing the amount of movement of the own vehicle due to running, and (b) is an explanatory diagram showing the amount of movement of the white line candidate point detected in the front frame relative to the own vehicle. 白線候補点を用いて演算された白線近似線及び白線検索領域を示す説明図Explanatory diagram showing the white line approximation line and the white line search area calculated using the white line candidate points. 白線認識ルーチンを示すフローチャートFlowchart showing white line recognition routine 白線開始点検証サブルーチンを示すフローチャートWhite line Flowchart showing the start point verification subroutine 白線候補点までの距離と評価点数との関係を示すマップA map showing the relationship between the distance to the white line candidate point and the evaluation score 対象領域と路面との輝度差と評価点数との関係を示すマップA map showing the relationship between the brightness difference between the target area and the road surface and the evaluation score 内側遷移領域の長さと評価点数との関係を示すマップA map showing the relationship between the length of the inner transition region and the evaluation score 外側繊維領域の長さと評価点数との関係を示すマップA map showing the relationship between the length of the outer fiber region and the evaluation score 内側遷移領域の最大輝度と最小輝度の輝度差と評価点数との関係を示すマップA map showing the relationship between the brightness difference between the maximum brightness and the minimum brightness of the inner transition region and the evaluation score. 外側繊維領域の最大輝度と最小器との輝度差と評価点数との関係を示すマップA map showing the relationship between the maximum brightness of the outer fiber region, the brightness difference between the minimum device, and the evaluation score. 対象領域の輝度値と評価点数との関係を示すマップA map showing the relationship between the brightness value of the target area and the evaluation score

以下、図面を参照して本発明の形態を説明する。図面は本発明の一実施形態に係り、図1は車両用運転支援装置の概略構成図、図2は車外環境を撮像した基準画像の一例を模式的に示す説明図、図3は図2から検出される白線候補点を示す説明図、図4は画像検索方向における輝度の分布と輝度の微分値との関係を示す説明図、図5は自車両の近方及び遠方における白線及び光の像の輝度特性を示す説明図、図6は実空間に投影される白線候補点を示す説明図、図7(a)は走行による自車の移動量を示す説明図であって(b)は前フレームで検出した白線候補点の自車に対する相対的な移動量を示す説明図、図8は白線候補点を用いて演算された白線近似線及び白線検索領域を示す説明図、図9は白線認識ルーチンを示すフローチャート、図10は白線開始点検証サブルーチンを示すフローチャート、図11は白線候補点までの距離と評価点数との関係を示すマップ、図12は対象領域と路面との輝度差と評価点数との関係を示すマップ、図13は内側遷移領域の長さと評価点数との関係を示すマップ、図14は外側繊維領域の長さと評価点数との関係を示すマップ、図15は内側遷移領域の最大輝度と最小輝度の輝度差と評価点数との関係を示すマップ、図16は外側繊維領域の最大輝度と最小器との輝度差と評価点数との関係を示すマップ、図17は対象領域の輝度値と評価点数との関係を示すマップである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The drawings relate to one embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a vehicle driving support device, FIG. 2 is an explanatory diagram schematically showing an example of a reference image of an image of the environment outside the vehicle, and FIG. 3 is from FIG. An explanatory diagram showing the detected white line candidate points, FIG. 4 is an explanatory diagram showing the relationship between the distribution of luminance and the differential value of luminance in the image search direction, and FIG. 5 is an image of white lines and light in the near and far directions of the own vehicle. FIG. 6 is an explanatory diagram showing the luminance characteristics of the above, FIG. 6 is an explanatory diagram showing a white line candidate point projected in the real space, FIG. 7 (a) is an explanatory diagram showing the amount of movement of the own vehicle by traveling, and (b) is an explanatory diagram in front. An explanatory diagram showing the relative movement amount of the white line candidate points detected in the frame with respect to the own vehicle, FIG. 8 is an explanatory diagram showing a white line approximation line and a white line search area calculated using the white line candidate points, and FIG. 9 is a white line recognition. A flowchart showing the routine, FIG. 10 is a flowchart showing the white line start point verification subroutine, FIG. 11 is a map showing the relationship between the distance to the white line candidate point and the evaluation score, and FIG. 12 is the brightness difference between the target area and the road surface and the evaluation score. 13 is a map showing the relationship between the length of the inner transition region and the evaluation score, FIG. 14 is a map showing the relationship between the length of the outer fiber region and the evaluation score, and FIG. 15 is the map showing the relationship between the length of the inner transition region and the evaluation score. A map showing the relationship between the brightness difference between the maximum brightness and the minimum brightness and the evaluation score, FIG. 16 is a map showing the relationship between the maximum brightness in the outer fiber region and the brightness difference between the minimum device and the evaluation score, and FIG. 17 is a map showing the relationship between the evaluation score and the maximum brightness in the outer fiber region. It is a map showing the relationship between the luminance value and the evaluation score.

図1において、符号1は自動車等の車両(自車両)であり、この車両1には運転支援装置2が搭載されている。この運転支援装置2は、例えば、撮像手段としてのステレオカメラ3、ステレオ画像認識装置4、制御ユニット5等を有して構成されている。なお、これらの構成のうち、本実施形態においては、主としてステレオカメラ3及びステレオ画像認識装置4により、自車前方の車外環境を認識する車外監視装置が構成されている。 In FIG. 1, reference numeral 1 is a vehicle such as an automobile (own vehicle), and the vehicle 1 is equipped with a driving support device 2. The driving support device 2 includes, for example, a stereo camera 3 as an image pickup means, a stereo image recognition device 4, a control unit 5, and the like. Of these configurations, in the present embodiment, a vehicle exterior monitoring device that recognizes the vehicle exterior environment in front of the own vehicle is configured mainly by the stereo camera 3 and the stereo image recognition device 4.

また、自車両1には、自車速Vを検出する車速センサ11、ヨーレートγを検出するヨーレートセンサ12、運転支援制御の各機能のON-OFF切換等を行うメインスイッチ13、ステアリングホイールに連結するステアリング軸に対設されて舵角θstを検出する舵角センサ14、ドライバによるアクセルペダル踏込量(アクセル開度)θaccを検出するアクセル開度センサ15等が設けられている。 Further, the own vehicle 1 is connected to a vehicle speed sensor 11 that detects the own vehicle speed V, a yaw rate sensor 12 that detects the yaw rate γ, a main switch 13 that switches ON / OFF of each function of driving support control, and a steering wheel. A steering angle sensor 14 that is opposed to the steering shaft and detects the steering angle θst, an accelerator opening sensor 15 that detects the accelerator pedal depression amount (accelerator opening) θacc by the driver, and the like are provided.

ステレオカメラ3は、ステレオ光学系として、例えば電荷結合素子(CCD)等の固体撮像素子を用いた1組のCCDカメラで構成されている。これら左右のCCDカメラは、それぞれ車室内の天井前方に一定の間隔を持って取り付けられ、車外の対象を異なる視点からステレオ撮像し、画像データをステレオ画像認識装置4に出力する。なお、以下の説明において、ステレオ撮像された画像のうち一方の画像(例えば、右側の画像)を基準画像と称し、他方の画像(例えば、左側の画像)を比較画像と称す。 The stereo camera 3 is composed of a set of CCD cameras using a solid-state image pickup device such as a charge-coupled device (CCD) as a stereo optical system. These left and right CCD cameras are attached to the front of the ceiling in the vehicle interior at regular intervals, stereo-image an object outside the vehicle from different viewpoints, and output image data to the stereo image recognition device 4. In the following description, one of the stereo-captured images (for example, the image on the right side) is referred to as a reference image, and the other image (for example, the image on the left side) is referred to as a comparative image.

ステレオ画像認識装置4は、撮像された基準画像及び比較画像に対し、例えば、以下に示す各種画像処理等を行う。すなわち、ステレオ画像認識装置は、先ず、基準画像から例えば4×4画素の小領域を順次抽出し、それぞれの小領域の輝度或いは色のパターンを比較画像と比較して対応する領域を見つけ出し、基準画像全体に渡る距離分布を求める。さらに、ステレオ画像認識装置4は、基準画像上の各画素について隣接する画素との輝度差を調べ、これらの輝度差が閾値を超えているものをエッジ点として抽出するとともに、抽出した画素(エッジ点)に距離情報を付与することで、距離画像(距離情報を備えたエッジ点の分布画像)を生成する。そして、ステレオ画像認識装置4は、生成した距離画像に対して既知のグルーピング処理を行い、予め記憶しておいた3次元的な枠(ウインドウ)と比較することで、自車前方の白線、側壁、立体物等を認識する。 The stereo image recognition device 4 performs, for example, various image processings shown below on the captured reference image and comparative image. That is, the stereo image recognition device first sequentially extracts a small area of, for example, 4 × 4 pixels from the reference image, compares the luminance or color pattern of each small area with the comparison image, finds the corresponding area, and uses the reference. Find the distance distribution over the entire image. Further, the stereo image recognition device 4 examines the brightness difference between each pixel on the reference image and the adjacent pixel, extracts the pixel whose brightness difference exceeds the threshold value as an edge point, and extracts the extracted pixel (edge). By adding the distance information to the points), a distance image (a distribution image of edge points having the distance information) is generated. Then, the stereo image recognition device 4 performs a known grouping process on the generated distance image, and compares it with a three-dimensional frame (window) stored in advance, so that the white line and the side wall in front of the vehicle are used. , Recognize three-dimensional objects, etc.

ここで、本実施形態において認識対象となる白線とは、例えば、単一の車線区画線や車線区画線の内側に視線誘導線等が併設された多重線(二重線等)のように、道路上に延在して自車走行レーンを区画するレーンマーカを総称するものであり、各線の形態としては、実線、破線等を問わず、さらに、黄色線等をも含む。また、本実施形態の白線認識においては、道路上に実在する白線が二重白線等であっても、左右それぞれ単一の近似式(1次以上の直線或いは曲線近似式)によって近似して認識するものとする。 Here, the white line to be recognized in the present embodiment is, for example, a single lane marking line or a multiplex line (double line or the like) in which a line-of-sight guide line or the like is provided inside the lane marking line. It is a general term for lane markers that extend on the road and divide the own vehicle traveling lane, and the form of each line is not limited to a solid line, a broken line, or the like, and further includes a yellow line or the like. Further, in the white line recognition of the present embodiment, even if the white line actually existing on the road is a double white line or the like, it is recognized by approximating each of the left and right sides by a single approximation formula (a straight line or a curve approximation formula of a first order or higher). It shall be.

ところで、実際の道路上に敷設された白線には上述のように各種バリエーションが存在する他、白線の形態は走行路の分岐や合流等に伴って変化する。加えて、道路上には路面補修跡や、水溜まり、雪、光の像等の各種ノイズが存在する。従って、画一的な処理によって、全ての場面で精度良く白線を認識することは困難となる。そこで、ステレオ画像認識装置4は、上述のような距離画像に基づくパターンマッチングを用いた白線認識のみに頼ることなく、各種方式を用いた白線認識を行い、これらの認識結果を総合的に判断して最終的な白線を認識する。 By the way, there are various variations of the white line laid on the actual road as described above, and the shape of the white line changes with the branching or merging of the traveling path. In addition, there are various noises such as road surface repair marks, puddles, snow, and images of light on the road. Therefore, it is difficult to recognize the white line accurately in all the scenes by the uniform processing. Therefore, the stereo image recognition device 4 performs white line recognition using various methods without relying only on white line recognition using pattern matching based on the distance image as described above, and comprehensively determines these recognition results. And recognize the final white line.

このような白線認識の一つとして、ステレオ画像認識装置4は、自車前方を撮像した一方の画像(例えば、図2に示す基準画像)上の水平方向の輝度変化に基づいて左右の白線認識を行う。 As one of such white line recognition, the stereo image recognition device 4 recognizes the left and right white lines based on the horizontal luminance change on one of the images (for example, the reference image shown in FIG. 2) captured in front of the vehicle. I do.

具体的に説明すると、例えば、図3に示すように、ステレオ画像認識装置4は、画像上に左右の白線検索領域Ad(Adl,Adr)を設定し、各白線検索領域Ad内で水平方向に延在する複数の画素列からなる検索ラインl値列ごとに、車幅方向内側から外側に向けて輝度変化を調べる。そして、ステレオ画像認識装置4は、例えば、車幅方向外側の画素の輝度が内側の画素の輝度に対して相対的に高く、且つ、その変化量を示す輝度の微分値が+側の設定閾値(dBth)以上となるエッジ点と、車幅方向外側の画素の輝度が内側の画素の輝度に対して相対的に低く、且つ、その変化量を示し輝度の微分値が-側の設定閾値(-dBth)以下となるエッジ点とのペアを、白線開始点及び白線終了点として抽出する(図4(a),(b)参照)。 Specifically, for example, as shown in FIG. 3, the stereo image recognition device 4 sets left and right white line search areas Ad (Adl, Adr) on the image, and horizontally in each white line search area Ad. The brightness change is examined from the inside to the outside in the vehicle width direction for each search line l value string consisting of a plurality of extending pixel strings. Then, in the stereo image recognition device 4, for example, the luminance of the pixel outside in the vehicle width direction is relatively high with respect to the luminance of the inner pixel, and the differential value of the luminance indicating the amount of change is the setting threshold value on the + side. The brightness of the edge points equal to or higher than (dBth) and the brightness of the outer pixel in the vehicle width direction is relatively low with respect to the brightness of the inner pixel, and the amount of change is shown, and the differential value of the brightness is the set threshold value on the-side. -DBth) or less, the pair with the edge point is extracted as the white line start point and the white line end point (see FIGS. 4A and 4B).

そして、ステレオ画像認識装置4は、各白線検索領域Ad内の各検索ラインl上において、例えば、車幅方向最も外側に位置する白線開始点を白線候補点Pd(左側の白線候補点Pdl、右側の白線候補点Pdr)としてそれぞれ検出し、実空間上に投影する(図6参照)。 Then, the stereo image recognition device 4 sets the white line start point located on the outermost side in the vehicle width direction as the white line candidate point Pd (left side white line candidate point Pdl, right side) on each search line l in each white line search area Ad. It is detected as a white line candidate point Pdr) and projected onto the real space (see FIG. 6).

そして、ステレオ画像認識装置4は、左右の白線候補点Pdl,Pdrの各点列に基づき、左右の白線を表す白線近似線Ll,Lrを求める(図8参照)。 Then, the stereo image recognition device 4 obtains the white line approximation lines Ll and Lr representing the left and right white lines based on the respective point sequences of the left and right white line candidate points Pdl and Pdr (see FIG. 8).

ここで、上述のような白線認識において、路面に投影された光等のエッジ点を白線候補点Pdとして誤検出することを防止するため、ステレオ画像認識装置4は、検出した白線開始点及び白線終了点が実際の白線に対応するものであるか否かの検証を行う。 Here, in order to prevent erroneous detection of an edge point such as light projected on the road surface as a white line candidate point Pd in the white line recognition as described above, the stereo image recognition device 4 detects the white line start point and the white line. Verify whether the end point corresponds to the actual white line.

具体的には、ステレオ画像認識装置4は、検索領域Ad内において、検索ラインl上の白線開始点と白線終了点とに基づいて推定される白線推定区間と白線推定区間以外の路面との輝度差、及び、白線推定区間と路面との間で輝度が遷移する遷移区間の長さに基づいて白線開始点及び白線終了点が実際の白線に対応するエッジ点であるか否かの検証を行う。 Specifically, the stereo image recognition device 4 has the luminance of the white line estimation section estimated based on the white line start point and the white line end point on the search line l and the road surface other than the white line estimation section in the search area Ad. Verify whether the white line start point and white line end point are edge points corresponding to the actual white line based on the difference and the length of the transition section where the luminance transitions between the white line estimation section and the road surface. ..

より具体的には、ステレオ画像認識装置4は、例えば、自車両1から白線開始点までの距離、白線推定区間の平均輝度と白線推定区間以外の平均輝度との差、白線開始点の前後において輝度が暗から明に遷移する第1遷移区間の長さ、白線終了点の前後において輝度が明から暗に遷移する第2遷移区間の長さ、第1遷移区間における最大輝度と最小輝度との差、第2遷移区間における最大輝度と最小輝度との差、及び、白線推定区間の輝度値をパラメータとする評価値S1~S7をそれぞれ算出し、これら評価値S1~S7から算出された評価値S0が設定閾値Sth未満であるとき当該白線開始点及び白線終了点に対応する白線は実在する可能性が高いと判定し、評価値S0が設定閾値Sth以上であるとき当該白線開始点及び白線終了点に対応する白線は実在しない可能性が高い(光の像等である可能性が高い)と判断する。 More specifically, the stereo image recognition device 4 has, for example, the distance from the own vehicle 1 to the white line start point, the difference between the average brightness of the white line estimation section and the average brightness other than the white line estimation section, and before and after the white line start point. The length of the first transition section where the brightness transitions from dark to light, the length of the second transition section where the brightness changes from light to dark before and after the white line end point, and the maximum and minimum brightness in the first transition section. Evaluation values S1 to S7 are calculated using the difference, the difference between the maximum brightness and the minimum brightness in the second transition section, and the brightness value in the white line estimation section as parameters, respectively, and the evaluation values calculated from these evaluation values S1 to S7. When S0 is less than the set threshold Sth, it is determined that the white line corresponding to the white line start point and the white line end point is likely to exist, and when the evaluation value S0 is equal to or more than the set threshold Sth, the white line start point and the white line end point are determined. It is judged that there is a high possibility that the white line corresponding to the point does not actually exist (there is a high possibility that it is an image of light, etc.).

本実施形態において、評価値S1~S7、例えば、以下の(1)式~(7)式により算出される。すなわち、
S1=(自車両1から白線開始点までの距離)×k1 …(1)
S2=(白線推定区間の平均輝度と白線推定区間以外の平均輝度との差)×k2 …(2)
S3=(第1遷移区間の長さ)×k3 …(3)
S4=(第2遷移区間の長さ)×k4 …(4)
S5=(第1遷移区間における最大輝度と最小輝度との差)×k5 …(5)
S6=(第2遷移区間における最大輝度と最小輝度との差)×k6 …(6)
S7=(白線推定区間の輝度値)×k7 …(7)
In the present embodiment, the evaluation values S1 to S7, for example, are calculated by the following equations (1) to (7). That is,
S1 = (distance from own vehicle 1 to the start point of the white line) x k1 ... (1)
S2 = (difference between the average brightness of the white line estimation section and the average brightness other than the white line estimation section) × k2… (2)
S3 = (length of first transition section) x k3 ... (3)
S4 = (length of second transition section) x k4 ... (4)
S5 = (difference between maximum luminance and minimum luminance in the first transition section) × k5 ... (5)
S6 = (difference between maximum brightness and minimum brightness in the second transition section) × k6 ... (6)
S7 = (luminance value in the white line estimation section) × k7 ... (7)

また、評価値S0は、例えば、以下の(8)式により算出される。すなわち、
S0=S1+S2+S3+S4+S5+S6+S7 …(8)
Further, the evaluation value S0 is calculated by, for example, the following equation (8). That is,
S0 = S1 + S2 + S3 + S4 + S5 + S6 + S7 ... (8)

ここで、(1)式~(7)式において、k1~k7は予め設定された係数であり、例えば、「t検定」等の統計学手法を用いて設定されている。これらの係数k1~k8は、各シーンで撮像された白線、及び、光の像の特徴量等に基づく統計によって設定されることにより、白線推定領域が実際の白線に対応しているとき評価値S0を「0」に収束させ、白線推定領域が光の像等に対応しているとき評価値S0を「1」に収束させる値に設定されている。 Here, in the equations (1) to (7), k1 to k7 are preset coefficients, and are set by using, for example, a statistical method such as "t-test". These coefficients k1 to k8 are set by statistics based on the white lines captured in each scene and the feature amount of the light image, and are evaluated values when the white line estimation area corresponds to the actual white lines. S0 is set to a value that converges to "0", and the evaluation value S0 converges to "1" when the white line estimation region corresponds to an image of light or the like.

すなわち、例えば、図5に示すように、白線と光の像とを比較した場合、白線の方が、白線推定区間の平均輝度と白線推定区間以外の平均輝度との差が大きくなる傾向にある。そこで、例えば、白線推定区間の平均輝度と白線推定区間以外の平均輝度との差が大きくなるほど評価値S2が小さくなるよう(例えば、図12参照)、係数k2は設定されている。 That is, for example, when comparing the white line and the image of light as shown in FIG. 5, the difference between the average luminance in the white line estimation section and the average luminance in the non-white line estimation section tends to be larger in the white line. .. Therefore, for example, the coefficient k2 is set so that the evaluation value S2 becomes smaller as the difference between the average luminance in the white line estimation section and the average luminance other than the white line estimation section becomes larger (see, for example, FIG. 12).

また、例えば、図5に示すように、白線と光の像とを比較した場合、白線の方が、遷移領域の長さ(第1,第2遷移領域の長さ)が短くなる傾向にある。そこで、例えば、遷移領域の長さが短くなるほど評価値S3,S4が小さくなるよう(例えば、図13,14参照)、係数k3,k4は設定されている。 Further, for example, as shown in FIG. 5, when the white line and the image of light are compared, the length of the transition region (the length of the first and second transition regions) tends to be shorter in the white line. .. Therefore, for example, the coefficients k3 and k4 are set so that the evaluation values S3 and S4 become smaller as the length of the transition region becomes shorter (see, for example, FIGS. 13 and 14).

また、例えば、図5に示すように、白線と光の像とを比較した場合、白線の方が、遷移領域の最大輝度と最小輝度の輝度差が大きくなる傾向にある。そこで、例えば、遷移領域の最大輝度と最小輝度の差が大きくなるほど、評価値S5,S6が小さくなるよう(例えば、図15,16参照)、係数k5,k6は設定されている。 Further, for example, as shown in FIG. 5, when the white line and the image of light are compared, the difference in luminance between the maximum luminance and the minimum luminance in the transition region tends to be larger in the white line. Therefore, for example, the coefficients k5 and k6 are set so that the evaluation values S5 and S6 become smaller as the difference between the maximum luminance and the minimum luminance in the transition region increases (see, for example, FIGS. 15 and 16).

また、例えば、図5に示すように、白線と光の像とを比較した場合、白線の方が、白線推定領域の輝度が大きくなる傾向にある。そこで、例えば、白線推定領域の輝度が大きくなるほど、評価値S7が小さくなるよう(例えば、図17参照)、係数k7は設定されている。 Further, for example, as shown in FIG. 5, when the white line and the image of light are compared, the white line tends to have a higher luminance in the white line estimation region. Therefore, for example, the coefficient k7 is set so that the evaluation value S7 becomes smaller as the brightness of the white line estimation region increases (see, for example, FIG. 17).

なお、自車両1の遠方においては、光の像を白線と誤認識しても、走行制御等にさほど影響を与えないとの思想に基づき、自車両1から白線開始点までの距離が大きくなるほど、評価値S1が小さくなるよう(例えば、図11参照)、係数k1は設定されている。 It should be noted that, in the distance of the own vehicle 1, even if the image of light is mistakenly recognized as a white line, the distance from the own vehicle 1 to the start point of the white line increases as the distance from the own vehicle 1 increases, based on the idea that the traveling control and the like are not significantly affected. , The coefficient k1 is set so that the evaluation value S1 becomes smaller (see, for example, FIG. 11).

このように、本実施形態において、ステレオ画像認識装置4は、エッジ点検出手段、及び、エッジ点検証手段としての各機能を実現する。 As described above, in the present embodiment, the stereo image recognition device 4 realizes each function as an edge point detecting means and an edge point verification means.

制御ユニット5には、ステレオ画像認識装置4で認識された自車両1前方の走行環境情報が入力される。さらに、制御ユニット5には、自車両1の走行情報として、車速センサ11からの車速V、ヨーレートセンサ12からのヨーレートγ等が入力されると共に、ドライバによる操作入力情報として、メインスイッチ13からの操作信号、舵角センサ14からの舵角θst、アクセル開度センサ15からのアクセル開度θacc等が入力される。 The driving environment information in front of the own vehicle 1 recognized by the stereo image recognition device 4 is input to the control unit 5. Further, the control unit 5 is input with the vehicle speed V from the vehicle speed sensor 11, the yaw rate γ from the yaw rate sensor 12, etc. as the traveling information of the own vehicle 1, and is input from the main switch 13 as the operation input information by the driver. An operation signal, a steering angle θst from the steering angle sensor 14, an accelerator opening θacc from the accelerator opening sensor 15, and the like are input.

そして、例えば、ドライバによるメインスイッチ13の操作を通じて、運転支援制御の機能の1つであるACC(Adaptive Cruise Control)機能の実行が指示されると、制御ユニット5は、ステレオ画像認識装置4で認識した先行車方向を読み込み、自車走行路上に追従対象の先行車が走行しているか否かを識別する。 Then, for example, when the driver is instructed to execute the ACC (Adaptive Cruise Control) function, which is one of the driving support control functions, through the operation of the main switch 13, the control unit 5 recognizes the stereo image recognition device 4. The direction of the preceding vehicle is read, and whether or not the preceding vehicle to be followed is running on the own vehicle driving path is identified.

その結果、追従対象の先行車が検出されていない場合は、スロットル弁16の開閉制御(エンジンの出力制御)を通じて、ドライバが設定したセット車速に自車両1の車速Vを維持させる定速走行制御を実行する。 As a result, when the preceding vehicle to be followed is not detected, the constant speed running control that maintains the vehicle speed V of the own vehicle 1 at the set vehicle speed set by the driver through the open / close control of the throttle valve 16 (engine output control). To execute.

一方、追従対象車両である先行車が検出され、且つ、当該先行車の車速がセット車速以下の場合は、先行車との車間距離を目標車間距離に収束させた状態で追従する追従走行制御が実行される。この追従走行制御時において、制御ユニット5は、基本的にはスロットル弁16の開閉制御(エンジンの出力制御)を通じて、先行車との車間距離を目標車間距離に収束させる。さらに、先行車の急な減速等によりスロットル弁16の制御のみでは十分な減速度が得られないと判断した場合、制御ユニット5は、アクティブブースタ17からの出力液圧の制御(ブレーキの自動介入制御)を併用し、車間距離を目標車間距離に収束させる。 On the other hand, when the preceding vehicle which is the tracking target vehicle is detected and the vehicle speed of the preceding vehicle is equal to or less than the set vehicle speed, the following traveling control is performed in a state where the vehicle-to-vehicle distance to the preceding vehicle is converged to the target vehicle-to-vehicle distance. Will be executed. At the time of this follow-up travel control, the control unit 5 basically converges the inter-vehicle distance with the preceding vehicle to the target inter-vehicle distance through the open / close control (engine output control) of the throttle valve 16. Further, when it is determined that sufficient deceleration cannot be obtained only by controlling the throttle valve 16 due to sudden deceleration of the preceding vehicle or the like, the control unit 5 controls the output hydraulic pressure from the active booster 17 (automatic intervention of the brake). Control) is also used to converge the inter-vehicle distance to the target inter-vehicle distance.

また、ドライバによるメインスイッチ13の操作を通じて、運転支援制御の機能の1つである車線逸脱防止機能の実行が指示されると、制御ユニット5は、例えば、自車走行レーンを規定する左右の白線(ステレオ画像認識装置4で認識した白線の近似線)に基づいて警報判定用ラインを設定するとともに、自車両1の車速Vとヨーレートγとに基づいて自車進行経路を推定する。そして、制御ユニット5は、例えば、自車前方の設定距離(例えば、10~16[m])内において、自車進行経路が左右何れかの警報判定用ラインを横切っていると判定した場合、自車両1が現在の自車走行車線を逸脱する可能性が高いと判定し、車線逸脱警報を行う。 Further, when the driver is instructed to execute the lane departure prevention function, which is one of the driving support control functions, through the operation of the main switch 13, the control unit 5 is, for example, the left and right white lines defining the own vehicle traveling lane. The warning determination line is set based on (the approximate line of the white line recognized by the stereo image recognition device 4), and the own vehicle traveling route is estimated based on the vehicle speed V and the yaw rate γ of the own vehicle 1. Then, when the control unit 5 determines, for example, that the own vehicle traveling path crosses the warning determination line on either the left or right within the set distance in front of the own vehicle (for example, 10 to 16 [m]). It is determined that the own vehicle 1 is likely to deviate from the current own vehicle traveling lane, and a lane departure warning is issued.

次に、上述のステレオ画像認識装置4において行われる白線認識処理について、図10に示す白線認識ルーチンのフローチャートに従って説明する。 Next, the white line recognition process performed in the stereo image recognition device 4 described above will be described according to the flowchart of the white line recognition routine shown in FIG.

このルーチンは設定時間毎に繰り返し実行されるものであり、ルーチンがスタートすると、ステレオ画像認識装置4は、先ず、ステップS101において、基準画像上に、左右の白線検索領域Adl,Adrを設定する。これらの白線検索領域Adl,Adrは、例えば、前フレームで認識した左右の白線近似線Ll,Lrを、実空間上において車幅方向内側及び外側にそれぞれ予め設定されたオフセット量ΔEずつオフセットさせることにより形成される領域を(図8参照)、基準画像上の座標に変換することにより設定されるものである。 This routine is repeatedly executed every set time, and when the routine starts, the stereo image recognition device 4 first sets the left and right white line search areas Adl and Adr on the reference image in step S101. In these white line search areas Adl and Adr, for example, the left and right white line approximation lines Ll and Lr recognized in the previous frame are offset by preset offset amounts ΔE on the inside and outside in the vehicle width direction in the real space. It is set by converting the region formed by (see FIG. 8) into the coordinates on the reference image.

続くステップS102において、ステレオ画像認識装置4は、各白線検索領域Adl,Adr内の全ての検索ラインlについて、白線開始点(及び、白線終了点)の検索処置が行われたか否かを調べる。 In the following step S102, the stereo image recognition device 4 checks whether or not the search procedure for the white line start point (and the white line end point) has been performed for all the search lines l in the white line search areas Adl and Adr.

そして、ステップS102において、全ての検索ラインlについて白線開始点の検索処理が行われたと判断した場合、ステレオ画像認識装置4は、ステップS106に進む。 Then, when it is determined in step S102 that the search process for the white line start point has been performed for all the search lines l, the stereo image recognition device 4 proceeds to step S106.

一方、ステップS102において、全ての検索ラインlについて白線開始点の検索処理が行われていないと判断した場合、ステレオ画像認識装置4は、ステップS103に進み、白線検索領域Adl,Adr内における未処理の新たな検索ラインlを抽出する。 On the other hand, if it is determined in step S102 that the search process for the white line start point has not been performed for all the search lines l, the stereo image recognition device 4 proceeds to step S103 and unprocessed in the white line search areas Adl and Adr. The new search line l of is extracted.

そして、ステップS103からステップS104に進むと、ステレオ画像認識装置4は、抽出した検索ラインlに対し、白線開始点(及び、白線終了点)の検索処理を行う。 Then, when the process proceeds from step S103 to step S104, the stereo image recognition device 4 performs a search process for the white line start point (and the white line end point) with respect to the extracted search line l.

すなわち、ステレオ画像認識装置4は、検索ラインl上の画素について車幅方向内側から外側に向けて順次探索を行い、車幅方向外側の画素の輝度が内側の画素の輝度に対して相対的に高く、且つ、その変化量を示す輝度の微分値が+側の設定閾値(dBth)以上となるエッジ点と、車幅方向外側の画素の輝度が内側の画素の輝度に対して相対的に低く、且つ、その変化量を示す輝度の微分値が-側の設定閾値(-dBth)以下となるエッジ点とのペアを、白線開始点及び白線終了点として抽出する。 That is, the stereo image recognition device 4 sequentially searches the pixels on the search line l from the inside to the outside in the vehicle width direction, and the brightness of the pixels outside in the vehicle width direction is relative to the brightness of the inner pixels. The brightness of the edge points that are high and the differential value of the brightness indicating the amount of change is equal to or higher than the setting threshold value (dBth) on the + side, and the brightness of the pixels outside the vehicle width direction are relatively low with respect to the brightness of the inner pixels. And, the pair with the edge point where the differential value of the luminance indicating the change amount is equal to or less than the set threshold value (−dBth) on the − side is extracted as the white line start point and the white line end point.

そして、ステップS104からステップS105に進むと、ステレオ画像認識装置4は、検出した白線開始点(及び、白線終了点)の検証を行う。 Then, when the process proceeds from step S104 to step S105, the stereo image recognition device 4 verifies the detected white line start point (and white line end point).

この白線開始点の検証は、例えば、図10に示す白線開始点検証サブルーチンのフローチャートに従って実行されるものであり、サブルーチンがスタートすると、ステレオ画像認識装置4は、先ず、ステップS201において、未検証の白線開始点(及び、白線終了点)があるか否かを調べる。 The verification of the white line start point is executed, for example, according to the flowchart of the white line start point verification subroutine shown in FIG. 10. When the subroutine is started, the stereo image recognition device 4 first unverifies in step S201. Check if there is a white line start point (and white line end point).

そして、ステップS201において、未検証の白線開始点がないと判断した場合、ステレオ画像認識装置4は、サブルーチンを抜ける。 Then, when it is determined in step S201 that there is no unverified white line start point, the stereo image recognition device 4 exits the subroutine.

一方、ステップS201において、未検証の白線開始点があると判断した場合、ステレオ画像認識装置4は、ステップS202に進み、未検証の新たな白線開始点(より具体的には、白線開始点と白線終了点とのペア)を抽出する。 On the other hand, if it is determined in step S201 that there is an unverified white line start point, the stereo image recognition device 4 proceeds to step S202 and proceeds to step S202, where the unverified new white line start point (more specifically, the white line start point). The pair with the white line end point) is extracted.

そして、ステップS202からステップS203に進むと、ステレオ画像認識装置4は、上述の(1)式~(8)式に基づいて、白線開始点の評価値S0を算出する。 Then, when the process proceeds from step S202 to step S203, the stereo image recognition device 4 calculates the evaluation value S0 of the white line start point based on the above equations (1) to (8).

そして、ステップS204に進むと、ステレオ画像認識装置4は、ステップS203で算出した評価値S0が、予め設定された閾値Sth(例えば、Sth=0.5)未満であるか否かを調べる。 Then, when the process proceeds to step S204, the stereo image recognition device 4 checks whether or not the evaluation value S0 calculated in step S203 is less than the preset threshold value Sth (for example, Sth = 0.5).

そして、ステップS204において、評価値S0が閾値Sth未満であると判定した場合、ステレオ画像認識装置4は、そのままステップS201に戻る。 Then, when it is determined in step S204 that the evaluation value S0 is less than the threshold value Sth, the stereo image recognition device 4 returns to step S201 as it is.

一方、ステップS204において、評価値S0が閾値Sth以上であると判定した場合、ステレオ画像認識装置4は、現在選択されている白線開始点(及び、白線終了点)は、光の像等に起因して検出されたものである可能性が高いと判断し、当該白線開始点(及び、白線終了点)を除外した後、ステップS201に戻る。 On the other hand, when it is determined in step S204 that the evaluation value S0 is equal to or higher than the threshold value Sth, the stereo image recognition device 4 causes the currently selected white line start point (and white line end point) to be due to an image of light or the like. It is determined that there is a high possibility that the image was detected, and after excluding the white line start point (and the white line end point), the process returns to step S201.

このような白線開始点検索サブルーチンが終了すると、ステレオ画像認識装置4は、図9のメインルーチンにおいて、ステップS105からステップS102に戻る。 When such a white line start point search subroutine ends, the stereo image recognition device 4 returns from step S105 to step S102 in the main routine of FIG.

また、ステップS102からステップS106に進むと、ステレオ画像認識装置4は、各検索ラインlで検出した白線開始点(検証済みの白線開始点)に基づき白線近似線を算出した後、ルーチンを抜ける。 Further, when the process proceeds from step S102 to step S106, the stereo image recognition device 4 calculates the white line approximation line based on the white line start point (verified white line start point) detected by each search line l, and then exits the routine.

この白線近似線の算出処理において、ステレオ画像認識装置4は、先ず、各検索ラインl上において検出された所定の白線開始点を白線候補点Pdとして抽出する。すなわち、ステレオ画像認識装置4は、例えば、検索ラインl上に1の白線開始点が検出されている場合には当該白線開始点を白線候補点Pdとして抽出し、同一の検索ラインl上に2以上の白線開始点が検出されている場合には最も車幅方向外側に位置する白線開始点を白線候補点Pdとして抽出する。 In the calculation process of the white line approximation line, the stereo image recognition device 4 first extracts a predetermined white line start point detected on each search line l as a white line candidate point Pd. That is, for example, when the white line start point of 1 is detected on the search line l, the stereo image recognition device 4 extracts the white line start point as the white line candidate point Pd and 2 on the same search line l. When the above white line start point is detected, the white line start point located on the outermost side in the vehicle width direction is extracted as the white line candidate point Pd.

また、ステレオ画像認識装置4は、前フレーム以前に検出した白線候補点Poldを用いて自車両1の後方についても白線認識を行うべく、例えば、以下の処理を行う。 Further, the stereo image recognition device 4 performs, for example, the following processing in order to recognize the white line behind the own vehicle 1 by using the white line candidate point Pold detected before the previous frame.

すなわち、ステレオ画像認識装置4は、例えば、図7(a)に示す関係から、自車1の車速Vと、ヨーレートγから求まるヨー角θとに基づき、撮像画像の1フレームあたり(撮像画像が1フレーム更新されるまでの間t)の自車1の移動量Δx,Δzを、以下の(9)式及び(10)式を用いて演算する。
Δx=V×sinθ …(9)
Δz=V×cosθ …(10)
That is, the stereo image recognition device 4 is, for example, based on the vehicle speed V of the own vehicle 1 and the yaw angle θ obtained from the yaw rate γ from the relationship shown in FIG. 7A, per frame of the captured image (the captured image is The movement amounts Δx and Δz of the own vehicle 1 in t) until one frame is updated are calculated using the following equations (9) and (10).
Δx = V × sinθ… (9)
Δz = V × cosθ… (10)

そして、ステレオ画像認識装置4は、以下の(11)式及び(12)式に示すように、前フレーム以前に検出した白線候補点Pold(Xold,Yold)に対し、自車移動量Δx,Δzを減算した後、現在のフレームにおける車両固定座標系(X,Z)への座標変換を行うことにより、自車1の後方所定距離以内に存在する白線候補点Ppreの座標を演算する(図7(b)参照)。
Xpre=(Xold・Δx)×cosθ-(Zold・Δz)×sinθ …(11)
Zpre=(Xold・Δx)×sinθ+(Zold・Δz)×cosθ …(12)
Then, as shown in the following equations (11) and (12), the stereo image recognition device 4 has its own vehicle movement amount Δx, Δz with respect to the white line candidate points Pold (Xold, Yold) detected before the previous frame. After subtracting, the coordinates of the white line candidate point Ppre existing within a predetermined distance behind the own vehicle 1 are calculated by performing coordinate conversion to the vehicle fixed coordinate system (X, Z) in the current frame (FIG. 7). See (b)).
Xpre = (Xold ・ Δx) × cosθ- (Zold ・ Δz) × sinθ… (11)
Zpre = (Xold ・ Δx) × sinθ + (Zold ・ Δz) × cosθ… (12)

そして、ステレオ画像認識装置4は、現フレームにおいて検出した白線候補点Pdと、前フレーム以前の白線候補点Poldを座標変換して求めた白線候補点Ppreと、からなる点列に基づき、左右の白線近似線Ll,Lrを、最小二乗法を用いて、以下の(13)式及び(14)式に示す近似式で定義する(図8参照)。
Xl=Al・Z+Bl・Z+Cl …(13)
Xr=Ar・Z+Br・Z+Cr …(14)
Then, the stereo image recognition device 4 is based on a point sequence consisting of the white line candidate point Pd detected in the current frame and the white line candidate point Ppre obtained by performing coordinate conversion of the white line candidate point Pold before the previous frame. The white line approximation lines Ll and Lr are defined by the approximation equations shown in the following equations (13) and (14) using the least squares method (see FIG. 8).
Xl = Al ・ Z 2 + Bl ・ Z + Cl… (13)
Xr = Ar ・ Z 2 + Br ・ Z + Cr… (14)

なお、(13)、(14)式において、2次係数A(Al,Ar)は白線の曲率成分を示すパラメータであり、1次係数B(Bl,Br)は車線ヨー角成分(自車1に対する白線の傾き成分)を示すパラメータであり、C(Cl,Cr)は車線位置(自車1に対する白線の横位置)を示すパラメータである。 In the equations (13) and (14), the secondary coefficient A (Al, Ar) is a parameter indicating the curvature component of the white line, and the linear coefficient B (Bl, Br) is the lane yaw angle component (own vehicle 1). C (Cl, Cr) is a parameter indicating the lane position (horizontal position of the white line with respect to the own vehicle 1).

このような実施形態によれば、検索ラインl上において輝度が所定に変化するエッジ点を検出し、輝度が暗から明に変化するエッジ点を白線開始点として抽出すると共に、輝度が明から暗に変化するエッジ点を白線終了点として抽出し、白線開始点と白線終了点とに基づいて推定される白線推定区間と白線推定区間以外の路面との輝度差、及び、白線推定区間と路面との間で輝度が遷移する遷移区間の長さに基づいて白線開始点及び白線終了点が実際の白線に対応するエッジ点であるか否かの検証を行うことにより、路面に投射された光の像の影響を排除して適切な白線認識を行うことができる。 According to such an embodiment, an edge point where the luminance changes predeterminedly is detected on the search line l, an edge point where the luminance changes from dark to bright is extracted as a white line start point, and the luminance changes from bright to dark. The edge point that changes to is extracted as the white line end point, and the luminance difference between the white line estimation section estimated based on the white line start point and the white line end point and the road surface other than the white line estimation section, and the white line estimation section and the road surface By verifying whether the white line start point and white line end point are edge points corresponding to the actual white line based on the length of the transition section in which the luminance transitions between the two, the light projected on the road surface Appropriate white line recognition can be performed by eliminating the influence of the image.

なお、本発明は、以上説明した各実施形態に限定されることなく、種々の変形や変更が可能であり、それらも本発明の技術的範囲内である。 The present invention is not limited to the embodiments described above, and various modifications and changes can be made, which are also within the technical scope of the present invention.

例えば、上述の実施形態では、評価値S1~S7の全てを用いて評価値S0を算出する一例について説明したが、本発明はこれに限定されるものではなく、評価値S1~S7のうちの何れか1または2以上を用いて評価値S0を算出することも可能である。すなわち、例えば、白線推定区間と白線推定区間以外の路面との輝度差に関する評価値S2,S5,S6のみを用いて評価値S0の算出を行うことも可能であり、或いは、白線推定区間と路面との遷移区間の長さに関する評価値S3,S4を用いて評価値S0の算出を行うことも可能である。さらに、その他の評価値S1~S7の組合せをもちいて評価値S0を算出することも可能である。なお、この場合、各評価値S1~S7の係数k1~k7は、採用される評価値に応じ、「t検定」等の統計学手法を用いて設定されることは勿論である。 For example, in the above-described embodiment, an example of calculating the evaluation value S0 using all of the evaluation values S1 to S7 has been described, but the present invention is not limited to this, and the evaluation values S1 to S7 are not limited thereto. It is also possible to calculate the evaluation value S0 using any one or two or more. That is, for example, it is possible to calculate the evaluation value S0 using only the evaluation values S2, S5, and S6 relating to the brightness difference between the white line estimation section and the road surface other than the white line estimation section, or the white line estimation section and the road surface. It is also possible to calculate the evaluation value S0 using the evaluation values S3 and S4 relating to the length of the transition section with. Further, it is also possible to calculate the evaluation value S0 by using other combinations of the evaluation values S1 to S7. In this case, it goes without saying that the coefficients k1 to k7 of each evaluation value S1 to S7 are set by using a statistical method such as "t-test" according to the evaluation value to be adopted.

1 … 車両(自車両)
2 … 運転支援装置
3 … ステレオカメラ(撮像手段)
4 … ステレオ画像認識装置(エッジ点検出手段、エッジ点検証手段)
5 … 制御ユニット
11 … 車速センサ
12 … ヨーレートセンサ
13 … メインスイッチ
14 … 舵角センサ
15 … アクセル開度センサ
16 … スロットル弁
17 … アクティブブースタ
1 ... Vehicle (own vehicle)
2 ... Driving support device 3 ... Stereo camera (imaging means)
4 ... Stereo image recognition device (edge point detection means, edge point verification means)
5 ... Control unit 11 ... Vehicle speed sensor 12 ... Yaw rate sensor 13 ... Main switch 14 ... Steering angle sensor 15 ... Accelerator opening sensor 16 ... Throttle valve 17 ... Active booster

Claims (6)

自車前方の車外環境を撮像する撮像手段と、
前記撮像手段で撮像した画像の水平方向に延在する検索ライン上において輝度が所定に変化するエッジ点を検出し、輝度が暗から明に変化する前記エッジ点を白線開始点として抽出すると共に、前記輝度が明から暗に変化する前記エッジ点を白線終了点として抽出するエッジ点検出手段と、
前記白線開始点と前記白線終了点とに基づいて推定される白線推定区間と前記白線推定区間以外の路面との輝度差、及び、前記白線推定区間と前記路面との間で輝度が遷移する遷移区間の長さに基づいて前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点であるか否かの検証を行うエッジ点検証手段と、を備え
前記エッジ点検証手段は、自車両から前記白線開始点までの距離が長いほど、前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点である可能性が高いと評価することを特徴とする車両用白線認識装置。
An imaging means that captures the environment outside the vehicle in front of the vehicle,
An edge point whose luminance changes predeterminedly is detected on a search line extending in the horizontal direction of the image captured by the imaging means, and the edge point whose luminance changes from dark to bright is extracted as a white line start point and is also extracted. An edge point detecting means for extracting the edge point whose brightness changes from light to dark as a white line end point, and
The brightness difference between the white line estimation section estimated based on the white line start point and the white line end point and the road surface other than the white line estimation section, and the transition in which the brightness transitions between the white line estimation section and the road surface. It is provided with an edge point verification means for verifying whether or not the white line start point and the white line end point are edge points corresponding to the actual white line based on the length of the section .
The edge point verification means evaluates that the longer the distance from the own vehicle to the white line start point, the higher the possibility that the white line start point and the white line end point are edge points corresponding to the actual white line. A characteristic white line recognition device for vehicles.
自車前方の車外環境を撮像する撮像手段と、
前記撮像手段で撮像した画像の水平方向に延在する検索ライン上において輝度が所定に変化するエッジ点を検出し、輝度が暗から明に変化する前記エッジ点を白線開始点として抽出すると共に、前記輝度が明から暗に変化する前記エッジ点を白線終了点として抽出するエッジ点検出手段と、
前記白線開始点と前記白線終了点とに基づいて推定される白線推定区間と前記白線推定区間以外の路面との輝度差に基づいて前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点であるか否かの検証を行うエッジ点検証手段と、を備え
前記エッジ点検証手段は、自車両から前記白線開始点までの距離が長いほど、前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点である可能性が高いと評価することを特徴とする車両用白線認識装置。
An imaging means that captures the environment outside the vehicle in front of the vehicle,
An edge point whose luminance changes predeterminedly is detected on a search line extending in the horizontal direction of the image captured by the imaging means, and the edge point whose luminance changes from dark to bright is extracted as a white line start point and is also extracted. An edge point detecting means for extracting the edge point whose brightness changes from light to dark as a white line end point, and
The white line start point and the white line end point correspond to the actual white line based on the luminance difference between the white line estimation section estimated based on the white line start point and the white line end point and the road surface other than the white line estimation section. It is equipped with an edge point verification means for verifying whether or not it is an edge point .
The edge point verification means evaluates that the longer the distance from the own vehicle to the white line start point, the higher the possibility that the white line start point and the white line end point are edge points corresponding to the actual white line. A characteristic white line recognition device for vehicles.
自車前方の車外環境を撮像する撮像手段と、
前記撮像手段で撮像した画像の水平方向に延在する検索ライン上において輝度が所定に変化するエッジ点を検出し、輝度が暗から明に変化する前記エッジ点を白線開始点として抽出すると共に、前記輝度が明から暗に変化する前記エッジ点を白線終了点として抽出するエッジ点検出手段と、
前記白線開始点と前記白線終了点とに基づいて推定される白線推定区間と前記白線推定区間以外の路面との間で輝度が遷移する遷移区間の長さに基づいて前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点であるか否かの検証を行うエッジ点検証手段と、を備え
前記エッジ点検証手段は、自車両から前記白線開始点までの距離が長いほど、前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点である可能性が高いと評価することを特徴とする車両用白線認識装置。
An imaging means that captures the environment outside the vehicle in front of the vehicle,
An edge point whose luminance changes predeterminedly is detected on a search line extending in the horizontal direction of the image captured by the imaging means, and the edge point whose luminance changes from dark to bright is extracted as a white line start point and is also extracted. An edge point detecting means for extracting the edge point whose brightness changes from light to dark as a white line end point, and
The white line start point and the white line based on the length of the transition section in which the brightness transitions between the white line estimation section estimated based on the white line start point and the white line end point and the road surface other than the white line estimation section. It is equipped with an edge point verification means for verifying whether or not the end point is an edge point corresponding to the actual white line .
The edge point verification means evaluates that the longer the distance from the own vehicle to the white line start point, the higher the possibility that the white line start point and the white line end point are edge points corresponding to the actual white line. A characteristic white line recognition device for vehicles.
前記エッジ点検証手段は、前記白線推定区間と前記路面との前記輝度差が小さいほど、前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点である可能性が低いと評価することを特徴とする請求項1または請求項2に記載の車両用白線認識装置。 The edge point verification means evaluates that the smaller the luminance difference between the white line estimation section and the road surface, the lower the possibility that the white line start point and the white line end point are edge points corresponding to the actual white line. The white line recognition device for a vehicle according to claim 1 or 2, characterized in that. 前記エッジ点検証手段は、前記白線推定区間と前記路面との前記遷移区間が長いほど、前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点である可能性が低いと評価することを特徴とする請求項1または請求項3に記載の車両用白線認識装置。 The edge point verification means evaluates that the longer the transition section between the white line estimation section and the road surface, the lower the possibility that the white line start point and the white line end point are edge points corresponding to the actual white line. The white line recognition device for a vehicle according to claim 1 or 3, characterized in that. 前記エッジ点検証手段は、前記白線推定区間の輝度値が高いほど、前記白線開始点及び前記白線終了点が実際の白線に対応するエッジ点である可能性が高いと評価することを特徴とする請求項1乃至請求項5の何れか1項に記載の車両用白線認識装置。 The edge point verification means evaluates that the higher the luminance value of the white line estimation section, the higher the possibility that the white line start point and the white line end point are edge points corresponding to the actual white line. The vehicle white line recognition device according to any one of claims 1 to 5.
JP2017208240A 2017-10-27 2017-10-27 White line recognition device for vehicles Active JP7007856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017208240A JP7007856B2 (en) 2017-10-27 2017-10-27 White line recognition device for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017208240A JP7007856B2 (en) 2017-10-27 2017-10-27 White line recognition device for vehicles

Publications (2)

Publication Number Publication Date
JP2019079470A JP2019079470A (en) 2019-05-23
JP7007856B2 true JP7007856B2 (en) 2022-01-25

Family

ID=66627923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017208240A Active JP7007856B2 (en) 2017-10-27 2017-10-27 White line recognition device for vehicles

Country Status (1)

Country Link
JP (1) JP7007856B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151654B2 (en) 2019-07-26 2022-10-12 トヨタ自動車株式会社 Search device, learning device, search system, search program, and learning program
JP2022060074A (en) 2020-10-02 2022-04-14 株式会社Subaru Driving support device for vehicle
JP2022060079A (en) 2020-10-02 2022-04-14 株式会社Subaru Lane marking recognition device for vehicle
JP2022060118A (en) 2020-10-04 2022-04-14 株式会社Subaru Section line recognition device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001092970A (en) 1999-09-22 2001-04-06 Fuji Heavy Ind Ltd Lane recognizing device
JP2014127027A (en) 2012-12-26 2014-07-07 Nippon Soken Inc Boundary line recognition device
JP2017090955A (en) 2015-11-02 2017-05-25 アルパイン株式会社 Electronic device, white line detection program, and white line detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001092970A (en) 1999-09-22 2001-04-06 Fuji Heavy Ind Ltd Lane recognizing device
JP2014127027A (en) 2012-12-26 2014-07-07 Nippon Soken Inc Boundary line recognition device
JP2017090955A (en) 2015-11-02 2017-05-25 アルパイン株式会社 Electronic device, white line detection program, and white line detection method

Also Published As

Publication number Publication date
JP2019079470A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
JP5603687B2 (en) Vehicle white line recognition device
JP7007856B2 (en) White line recognition device for vehicles
US20200406897A1 (en) Method and Device for Recognizing and Evaluating Roadway Conditions and Weather-Related Environmental Influences
US10956757B2 (en) Image processing device, outside recognition device
US20110261168A1 (en) Camera Device
JP5863536B2 (en) Outside monitoring device
KR101891460B1 (en) Method and apparatus for detecting and assessing road reflections
JP5363921B2 (en) Vehicle white line recognition device
JP5363920B2 (en) Vehicle white line recognition device
JP4937933B2 (en) Outside monitoring device
CN111937002A (en) Obstacle detection device, automatic braking device using obstacle detection device, obstacle detection method, and automatic braking method using obstacle detection method
US8160300B2 (en) Pedestrian detecting apparatus
JP5538098B2 (en) Vehicle white line recognition device
JP6426512B2 (en) Driving lane recognition system
JP6322024B2 (en) Outside monitoring device
JP5444130B2 (en) Vehicle white line recognition device
JP2007310591A (en) Image processor and parking space determination method
JP6879881B2 (en) White line recognition device for vehicles
JP5452518B2 (en) Vehicle white line recognition device
JP6259239B2 (en) Vehicle white line recognition device
JP5568029B2 (en) Vehicle white line recognition device
JP6259238B2 (en) Vehicle white line recognition device
JP6014534B2 (en) Vehicle white line recognition device
WO2019013253A1 (en) Detection device
JP6082293B2 (en) Vehicle white line recognition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220107

R150 Certificate of patent or registration of utility model

Ref document number: 7007856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150