JP7007049B2 - Obstacle detection device - Google Patents
Obstacle detection device Download PDFInfo
- Publication number
- JP7007049B2 JP7007049B2 JP2016251120A JP2016251120A JP7007049B2 JP 7007049 B2 JP7007049 B2 JP 7007049B2 JP 2016251120 A JP2016251120 A JP 2016251120A JP 2016251120 A JP2016251120 A JP 2016251120A JP 7007049 B2 JP7007049 B2 JP 7007049B2
- Authority
- JP
- Japan
- Prior art keywords
- obstacle
- sensor
- time
- triangulation
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Description
本発明は、自車両周辺を複数の直接検知センサおよび間接検知センサにより所定の計測時間ごとに探査して障害物までの距離を計測し前記障害物の位置を検知する障害物検知装置に関する。 The present invention relates to an obstacle detection device that detects the position of an obstacle by exploring the vicinity of the own vehicle with a plurality of direct detection sensors and indirect detection sensors at predetermined measurement time intervals and measuring the distance to the obstacle.
従来、自車両周辺を少なくとも複数のセンサにより所定の計測時間ごとに探査して障害物までの距離を計測し、一方のセンサを直接検知センサとし他方を間接検知センサとして直接検知センサが送信した超音波により当該直接検知センサが受信した反射波と、間接検知センサが受信した反射波と、これらセンサの間隔とに基づき、三角測量法の原理を利用して障害物の横位置を算出し、次に一方のセンサを間接検知センサとし他方を直接検知センサとして、同様にして障害物の横位置を算出し、得られた2つの横位置が一致していないときに、2つの横位置のうち両センサの中間一付近に検知された横位置を虚像によるものと判断して無効とする障害物検知装置が提案されている(特許文献1)。 Conventionally, the area around the own vehicle is explored by at least a plurality of sensors at predetermined measurement times to measure the distance to an obstacle, and one sensor is used as a direct detection sensor and the other is used as an indirect detection sensor, which is transmitted by the direct detection sensor. Based on the reflected wave received by the direct detection sensor, the reflected wave received by the indirect detection sensor, and the distance between these sensors, the lateral position of the obstacle is calculated using the principle of the triangulation method, and then the lateral position of the obstacle is calculated. Using one sensor as an indirect detection sensor and the other as a direct detection sensor, the horizontal positions of obstacles are calculated in the same manner, and when the two obtained horizontal positions do not match, both of the two horizontal positions An obstacle detection device has been proposed in which the lateral position detected in the vicinity of the middle one of the sensors is determined to be due to a virtual image and is invalidated (Patent Document 1).
しかし、上記した特許文献1に記載の装置では、1つの同一障害物を検知する場合には有効であるが、自車両の周辺に存在する例えば2つの障害物を検知する場合に、一方の障害物の位置を検知できても、他方の障害物の位置を検知できないことがあり、信頼性に欠けるという問題がある。
However, the device described in
本発明は、自車両の周辺に存在する2つの障害物の位置を確実に検知して信頼性を向上できるようにすることを目的とする。 An object of the present invention is to reliably detect the positions of two obstacles existing in the vicinity of the own vehicle and improve the reliability.
上記した目的を達成するために、本発明の障害物検知装置は、自車両周辺を複数の直接検知センサおよび間接検知センサにより所定の計測時間ごとに探査して障害物までの距離を計測し前記障害物の位置を検知する障害物検知装置において、前記各センサによる測距データに基づき三角測量法により前記障害物の位置を推定して三角測量推定位置を導出する三角測量推定位置導出手段と、前記各センサごとに、現在時刻における当該センサの位置を中心とし、現在時刻における当該センサで計測した前記障害物までの第1計測距離を半径とする円弧と、現在時刻よりも1回の前記計測時間前における当該センサの位置を中心とし、現在時刻よりも1回の前記計測時間前における当該センサで計測した前記障害物までの第2計測距離を半径とする円弧とが重なる点を前記障害物の時系列推定位置として導出する時系列推定位置導出手段と、前記三角測量推定位置導出手段により導出される前記三角測量推定位置と、前記各センサごとに前記時系列推定位置導出手段により導出される前記時系列推定位置との距離がそれぞれ所定の閾値よりも大きいか小さいかを比較する比較手段と、前記比較手段により、前記距離が前記所定の閾値よりも小さければ当該三角測量推定位置と当該時系列推定位置とは同一障害物と判断し、大きければ当該三角測量推定位置は虚像で当該時系列推定位置が障害物であると判断する判断手段とを備えることを特徴としている。 In order to achieve the above object, the obstacle detection device of the present invention explores the vicinity of the own vehicle by a plurality of direct detection sensors and indirect detection sensors at predetermined measurement time intervals, measures the distance to the obstacle, and measures the distance to the obstacle. In the obstacle detection device that detects the position of the obstacle, the triangulation estimation position derivation means that estimates the position of the obstacle by the triangulation method based on the distance measurement data by each sensor and derives the triangulation estimation position. For each of the sensors, an arc centered on the position of the sensor at the current time and a radius of the first measurement distance to the obstacle measured by the sensor at the current time, and the measurement once from the current time. The point where the arc overlaps with the arc centered on the position of the sensor before the time and whose radius is the second measurement distance to the obstacle measured by the sensor one time before the current time before the measurement time is the obstacle. The time-series estimation position derivation means derived as the time-series estimation position, the triangulation estimation position derived by the triangulation estimation position derivation means, and the time-series estimation position derivation means for each sensor. A comparison means for comparing whether the distance to the time-series estimated position is larger or smaller than a predetermined threshold, and the triangulation estimated position and the time when the distance is smaller than the predetermined threshold by the comparison means. It is characterized in that the series estimation position is determined to be the same obstacle, and if it is large, the triangulation estimation position is a virtual image and the time series estimation position is determined to be an obstacle.
本発明によれば、直接検知センサおよび間接検知センサごとに三角測量推定位置導出手段により導出される三角測量推定位置と、直接検知センサおよび間接検知センサごとに時系列推定位置導出手段により導出される時系列推定位置との距離が、それぞれ所定の閾値よりも大きいか小さいかが比較手段により比較され、比較の結果、所定の閾値よりも小さければ当該三角測量推定位置と当該時系列推定位置とは同一障害物と判断され、大きければ当該三角測量推定位置は虚像で当該時系列推定位置が障害物であると判断手段により判断されるため、従来、三角測量法のみでは検知できなかった複数の障害物を確実に検知することができ、障害物検知の信頼性を向上することができる。 According to the present invention, the triangulation estimation position derived by the triangulation estimation position derivation means for each of the direct detection sensor and the indirect detection sensor, and the time series estimation position derivation means for each of the direct detection sensor and the indirect detection sensor are derived. The comparison means compares whether the distance from the time-series estimated position is larger or smaller than the predetermined threshold, and if the result of the comparison is smaller than the predetermined threshold, the triangulation estimated position and the time-series estimated position are If it is judged to be the same obstacle, and if it is large, the estimated position of the triangulation is a phantom image and the estimated position of the time series is judged to be an obstacle by the judgment means. Objects can be reliably detected, and the reliability of obstacle detection can be improved.
本発明に係る障害物検知装置の一実施形態について、図1ないし図4を参照して詳細に説明する。 An embodiment of the obstacle detection device according to the present invention will be described in detail with reference to FIGS. 1 to 4.
本実施形態における障害物検知装置は、図1に示すように構成されている。すなわち、例えば自車両の前部に搭載された超音波センサから成る直接検知センサ(以下、これをPセンサと称する)1aおよび間接検知センサ(以下、これをQセンサと称する)1bと、これら両センサ1a,1bを制御して所定の計測時間Δt(例えば、100ms)ごとに自車両の前方を探査して障害物までの距離を算出するECU(Electronic Control Unit)から成るの制御手段2と、各センサ1a,1bおよび制御手段2による測距データに基づき三角測量法により障害物の位置を推定して三角測量推定位置を導出する三角測量推定位置導出手段3と、各センサ1a,1bごとに、現在の計測時刻tにおける障害物までの測距エリアと、現在よりも1回前の計測時刻t-1における障害物までの測距エリアを重ねることで障害物の時系列推定位置を導出する時系列推定位置導出手段4と、三角測量推定位置導出手段3により導出される三角測量推定位置と、各センサ1a,1bごとに時系列推定位置導出手段4により導出される時系列推定位置との距離がそれぞれ所定の閾値よりも大きいか小さいかを比較する比較手段5と、比較手段5により、距離が所定の閾値よりも小さければ当該三角測量推定位置と当該時系列推定位置とは同一障害物と判断し、大きければ当該三角測量推定位置は虚像で当該時系列推定位置が障害物と判断する判断手段6とを備える。
The obstacle detection device in this embodiment is configured as shown in FIG. That is, for example, a direct detection sensor (hereinafter referred to as a P sensor) 1a and an indirect detection sensor (hereinafter referred to as a Q sensor) 1b composed of an ultrasonic sensor mounted on the front portion of the own vehicle, and both of these. A control means 2 including an ECU (Electronic Control Unit) that controls
ところで、三角測量推定位置導出手段3の動作は、上記した特許文献1(特開2015-4562号公報)にも記載のように公知技術であり、詳細な説明は省略することとして、原理について簡単に説明する。 By the way, the operation of the triangulation estimation position derivation means 3 is a known technique as described in Patent Document 1 (Japanese Unexamined Patent Publication No. 2015-4562) described above, and detailed description thereof will be omitted, and the principle will be simplified. To explain to.
いま、図2(a)に示すように、自車両Cの前部に前後方向の中心線Lに対して左右対称位置にPセンサ1a、Qセンサ1bが取り付けられ、両センサ1a,1bにより自車両Cの前方に超音波を所定の計測時間ごとに送信して、自車両Cの前方に存在する2つの第1、第2障害物B1,B2までの距離を検知する場合に、制御手段2により、その超音波によりPセンサ1aが受信する障害物B1,B2それぞれからの反射波に基づき、Pセンサ1aから第1、第2障害物B1,B2それぞれまでの距離が算出され、Qセンサ1bが受信する第1、第2障害物B1,B2それぞれからの反射波に基づき、Qセンサ1bから第1、第2障害物B1,B2それぞれまでの距離が算出される。このとき、Pセンサ1aは、超音波の送信と反射波の受信の両方を行う直接検知センサとされ、Qセンサ1bは、反射波の受信のみを行う間接検知センサとされる。
Now, as shown in FIG. 2A, the P sensor 1a and the
次に、制御手段2により、Qセンサ1bを直接検知センサ、Pセンサ1aを間接検知センサとしたときに、同様にして、Pセンサ1aおよびQセンサ1bそれぞれから第1、第2障害物B1,B2それぞれまでの距離が算出される。
Next, when the
そして、三角測量推定位置導出手段3により、両センサ1a,1bそれぞれにより反射波を受信するまでの時間、算出された距離、両センサ1a,1bの設置間隔、音速に基づき第1障害物B1の中心線Lに対する横位置である三角測量推定位置αが算出されるが、図2(b)に示すように、Pセンサ1aと第1障害物B1との間の往復経路長が、Pセンサ1aと第2障害物B2との間の往復経路長よりも小さいときには、Pセンサ1aは最初に第1障害物B1からの反射波を受信し、続いて第2障害物B2からの反射波を受信する。
Then, the time until the reflected wave is received by both
一方、Pセンサ1aから第1障害物B1を経てQセンサ1bに至る経路長が、Pセンサ1aから障害物B2を経てQセンサ1bに至る経路長よりも小さいときには、Qセンサ1bは最初に第1障害物B1からの反射波を受信し、続いて第2障害物B2からの反射波を受信するため、図2(b)に示すように、両センサ1a,1bは最初に第1障害物B1からの反射波を受信するので、三角測量の原理により、第1障害物B1の横位置つまり三角測量推定位置αを検知できる。
On the other hand, when the path length from the P sensor 1a to the
ところが、Qセンサ1bを直接検知センサ、Pセンサ1aを間接検知センサとしたときに、Qセンサ1bと第2障害物B2との間の往復経路長が、Qセンサ1bと第1障害物B1との間の往復経路長よりも小さいときには、Qセンサ1bは最初に第2障害物B2からの反射波を受信し、続いて第1障害物B1からの反射波を受信する。また、Qセンサ1bから第1障害物B1を経てPセンサ1aに至る経路長が、Qセンサ1bから第2障害物B2を経てPセンサ1aに至る経路長よりも小さいときには、Pセンサ1aは最初に第1障害物B1からの反射波を受信し、続いて第2障害物B2からの反射波を受信するが、このときQセンサ1bと第2障害物B2との間の往復経路長が、Qセンサ1bと第1障害物B1との間の往復経路長よりも小さいときには、Qセンサ1bは最初に第2障害物B2からの反射波を受信し、続いて第1障害物B1からの反射波を受信することになり、図2(c)に示すように、両センサ1a,1bが最初に反射波を受信する障害物が一致しないことになり、両センサ1a,1bの中間位置付近に第2障害物B2の三角測量推定位置βが検知され、この推定位置βは虚像を検知したことになって実際の第2障害物B2の位置を検知したことにはならない。
However, when the
このように、三角測量法の原理のみによる障害物検知では、図2(d)に示すように、第1障害物B1を三角測量推定位置αであると検知できても、第2障害物B2は虚像の三角測量推定位置βであると検知して実際の第2障害物B2を検知することができない。そこで、上記した時系列推定位置導出手段4による時系列推定位置を、三角測量推定位置導出手段3による三角測量推定位置とを比較手段5により比較し、両位置の距離が所定の閾値よりも大きいか小さいかを判断手段6により判断するようにした。 As described above, in the obstacle detection based only on the principle of the triangulation method, as shown in FIG. 2D, even if the first obstacle B1 can be detected as the estimated triangulation position α, the second obstacle B2 Cannot detect the actual second obstacle B2 by detecting that it is the estimated triangulation position β of the virtual image. Therefore, the time-series estimated position by the time-series estimation position deriving means 4 described above is compared with the triangulation estimation position by the triangulation estimation position deriving means 3 by the comparison means 5, and the distance between the two positions is larger than a predetermined threshold value. Whether it is small or small is determined by the determination means 6.
すなわち、図3(a)に示すように、制御手段2により、現在の計測時刻tに計測されたPセンサ1aから第1障害物B1までの距離で円弧S1a(図3(a)中の1点鎖線)が形成されるとともに、制御手段2により、現在の計測時刻tに計測されたQセンサ1bから第2障害物B2までの距離で円弧S1b(図3(a)中の1点鎖線)が形成され、1回の計測時間Δt(例えば100ms)前の計測時刻t-1に計測されたPセンサ1aから第1障害物B1までの距離で円弧S2a(図3(b)中の2点鎖線)が形成されるとともに、1回の計測時間前の計測時刻t-1に計測されたQセンサ1bから第2障害物B2までの距離で円弧S2b(図3(b)中の2点鎖線)が形成される。
That is, as shown in FIG. 3A, the distance from the P sensor 1a measured at the current measurement time t to the first obstacle B1 by the control means 2 is the arc S1a (1 in FIG. 3A). A dotted chain line) is formed, and the arc S1b (one-dot chain line in FIG. 3A) is formed at the distance from the
そして、図3(b)に示すように、計測時刻tおよび計測時刻t-1それぞれでの円弧S1aおよび円弧S2aが重なる点が第1障害物B1の時系列推定位置Ωとして導出されるとともに、計測時刻tおよび計測時刻t-1それぞれでの円弧S1bおよび円弧S2bが重なる点が第2障害物B2の時系列推定位置θとして導出され、比較手段5により、三角測量推定位置導出手段3により導出された第1障害物B1の三角測量推定位置αと時系列推定位置導出手段4による時系列推定位置Ωとの距離(ずれ)が予め設定された閾値Daより大きいか小さいかの比較がなされるとともに、同様にして、三角測量推定位置導出手段3により導出された第2障害物B2の三角測量推定位置βと時系列推定位置導出手段4による時系列推定位置θとの距離(ずれ)が予め設定された閾値Dbより大きいか小さいかの比較がなされる。ここで、閾値Da,Dbは同じ値であってよく、異なる値であってもよい。 Then, as shown in FIG. 3B, the point where the arcs S1a and the arcs S2a overlap at the measurement time t and the measurement time t-1 is derived as the time-series estimated position Ω of the first obstacle B1 and is also derived. The point where the arcs S1b and S2b overlap at the measurement time t and the measurement time t-1 is derived as the time series estimation position θ of the second obstacle B2, and is derived by the triangulation estimation position derivation means 3 by the comparison means 5. A comparison is made as to whether the distance (deviation) between the triangulation estimated position α of the first obstacle B1 and the time-series estimated position Ω by the time-series estimated position deriving means 4 is larger or smaller than the preset threshold value Da. Similarly, the distance (deviation) between the triangulation estimation position β of the second obstacle B2 derived by the triangulation estimation position derivation means 3 and the time series estimation position θ by the time series estimation position derivation means 4 is predetermined. A comparison is made as to whether it is larger or smaller than the set threshold Db. Here, the threshold values Da and Db may be the same value or may be different values.
さらに、比較の結果、三角測量推定位置αと時系列推定位置Ωとの距離(ずれ)が予め設定された閾値Daより小さいときには、判断手段6により、三角測量推定位置αおよび時系列推定位置Ωは共に同一の第1障害物B1と判断される。一方、三角測量推定位置βと時系列推定位置θについては、三角測量推定位置βが虚像であって実際の第2障害物B2ものではないため、三角測量推定位置βと時系列推定位置θとの距離(ずれ)が予め設定された閾値Dbよりも大きくなり、判断手段6により、三角測量推定位置βおよび時系列推定位置θは同一の第2障害物B2ではないと判断され、その結果、三角測量推定位置βは虚像として排除され、時系列推定位置θが第2障害物B2ものと判断される。こうして、第1、第2障害物B1,B2のいずれもが検知される。 Further, as a result of comparison, when the distance (deviation) between the triangulation estimation position α and the time series estimation position Ω is smaller than the preset threshold value Da, the determination means 6 is used to determine the triangulation estimation position α and the time series estimation position Ω. Are both determined to be the same first obstacle B1. On the other hand, regarding the triangulation estimation position β and the time series estimation position θ, since the triangulation estimation position β is a virtual image and not the actual second obstacle B2, the triangulation estimation position β and the time series estimation position θ The distance (deviation) of is larger than the preset threshold value Db, and the determination means 6 determines that the triangulation estimation position β and the time series estimation position θ are not the same second obstacle B2, and as a result The estimated triangulation position β is excluded as a phantom image, and the time-series estimated position θ is determined to be the second obstacle B2. In this way, both the first and second obstacles B1 and B2 are detected.
上記したP,Qセンサ1a,1bによる第1、第2障害物B1,B2の検知処理について図4のフローチャートを参照して説明する。いま、図4に示すように、Pセンサ1aから超音波が送信されて、三角測量推定位置導出手段3により第1障害物B1の三角測量推定位置αが導出され(ステップS1)、Qセンサ1bから超音波が送信されて、三角測量推定位置導出手段3により第2障害物B2の三角測量推定位置βが導出され(ステップS2)、続いてPセンサ1aからの超音波に基づき、時系列推定位置導出手段4により第1障害物B1の時系列推定位置Ωが導出され(ステップS3)、Qセンサ1bからの超音波に基づき、時系列推定位置導出手段4により第2障害物B2の時系列推定位置θが導出される(ステップS3)。
The detection processing of the first and second obstacles B1 and B2 by the P and
次に、比較手段5により、三角測量推定位置αと時系列推定位置Ωとの距離(ずれ)が予め設定された閾値Daより小さいか否かの判定がなされ(ステップS5)、この判定結果がYESであれば、三角測量推定位置αと時系列推定位置Ωは同一の第1障害物B1と判断され(ステップS6)、ステップS5の判定結果がNOであれば、虚像排除処理、つまり三角測量推定位置αと時系列推定位置Ωは同一の第1障害物B1ではなく、三角測量推定位置αは虚像と判断されて時系列推定位置Ωが第1障害物B1であると検知される(ステップS7)。 Next, the comparison means 5 determines whether or not the distance (deviation) between the triangulation estimation position α and the time series estimation position Ω is smaller than the preset threshold value Da (step S5), and this determination result is obtained. If YES, the estimated triangulation position α and the time series estimated position Ω are determined to be the same first obstacle B1 (step S6), and if the determination result in step S5 is NO, the triangulation exclusion process, that is, triangulation is performed. The estimated position α and the time-series estimated position Ω are not the same first obstacle B1, but the triangulation estimated position α is determined to be a phantom image, and the time-series estimated position Ω is detected as the first obstacle B1 (step). S7).
また、ステップS6,S7の処理を経た後、比較手段5により、三角測量推定位置βと時系列推定位置θとの距離(ずれ)が予め設定された閾値Dbより小さいか否かの判定がなされ(ステップS8)、この判定結果がYESであれば、三角測量推定位置βと時系列推定位置θは同一の第2障害物B2と判断され(ステップS9)、ステップS8の判定結果がNOであれば上記したステップS7と同様の虚像排除処理、つまり三角測量推定位置βと時系列推定位置θは同一の第2障害物B2ではなく、三角測量推定位置βは虚像と判断されて時系列推定位置θが第2障害物B2であると検知され(ステップS10)、その後、上記したステップS9の処理を経た場合とともに動作は終了する。 Further, after the processing of steps S6 and S7, the comparison means 5 determines whether or not the distance (deviation) between the triangulation estimation position β and the time series estimation position θ is smaller than the preset threshold value Db. (Step S8) If this determination result is YES, it is determined that the triangulation estimation position β and the time series estimation position θ are the same second obstacle B2 (step S9), and the determination result in step S8 is NO. For example, the same imaginary image exclusion process as in step S7 described above, that is, the triangulation estimation position β and the time series estimation position θ are not the same second obstacle B2, and the triangulation estimation position β is determined to be a phantom image and the time series estimation position. It is detected that θ is the second obstacle B2 (step S10), and then the operation ends with the process of step S9 described above.
したがって、上記した実施形態によれば、直接検知センサ、間接検知センサとして使用するPセンサ1aおよびQセンサ1bの測距データに基づき三角測量推定位置導出手段3より導出される三角測量推定位置と、センサ1a,1bごとに時系列推定位置導出手段4により導出される時系列推定位置との距離が、それぞれ所定の閾値よりも大きいか小さいかが比較手段5により比較され、比較の結果、所定の閾値よりも小さければ当該三角測量推定位置と当該時系列推定位置とは同一障害物と判断され、大きければ当該三角測量推定位置は虚像で当該時系列推定位置が障害物であると判断手段6により判断されるため、従来、三角測量法のみでは検知できなかった複数の障害物を確実に検知することができ、障害物検知の信頼性を向上することができる。
Therefore, according to the above-described embodiment, the triangulation estimation position derived from the triangulation estimation position derivation means 3 based on the distance measurement data of the P sensor 1a and the
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行なうことが可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made other than those described above as long as the present invention is not deviated from the gist thereof.
例えば、上記した実施形態では、直接検知センサおよび間接検知センサとして、2つのPセンサ1a、Qセンサ1bのうち一方を直接検知センサ、他方を間接検知センサとして計測し、次に直接検知センサと間接検知センサを入れ替えて計測する場合について説明したが、センサは2個に限定されるものではなく、3個以上のセンサ構成かのうち2個の組み合わせにより適応してもよい。
For example, in the above-described embodiment, as the direct detection sensor and the indirect detection sensor, one of the two P sensors 1a and the
また、上記した実施形態では、自車両Cの前部にセンサ1a,1bを設けた場合について説明したが、自車両Cの後部に設けた場合であっても本発明を同様に実施することができる。
Further, in the above-described embodiment, the case where the
1a …Pセンサ
1b …Qセンサ
3 …三角測量推定位置導出手段
4 …時系列推定位置導出手段
5 …比較手段
6 …判断手段
C …自車両
α,β …三角測量推定位置
Ω,θ …時系列推定位置
1a ...
Claims (1)
前記各センサによる測距データに基づき三角測量法により前記障害物の位置を推定して三角測量推定位置を導出する三角測量推定位置導出手段と、
前記各センサごとに、現在時刻における当該センサの位置を中心とし、現在時刻における当該センサで計測した前記障害物までの第1計測距離を半径とする円弧と、現在時刻よりも1回の前記計測時間前における当該センサの位置を中心とし、現在時刻よりも1回の前記計測時間前における当該センサで計測した前記障害物までの第2計測距離を半径とする円弧とが重なる点を前記障害物の時系列推定位置として導出する時系列推定位置導出手段と、
前記三角測量推定位置導出手段により導出される前記三角測量推定位置と、前記各センサごとに前記時系列推定位置導出手段により導出される前記時系列推定位置との距離がそれぞれ所定の閾値よりも大きいか小さいかを比較する比較手段と、
前記比較手段により、前記距離が前記所定の閾値よりも小さければ当該三角測量推定位置と当該時系列推定位置とは同一障害物と判断し、大きければ当該三角測量推定位置は虚像で当該時系列推定位置が障害物であると判断する判断手段と
を備えることを特徴とする障害物検知装置。 In an obstacle detection device that detects the position of an obstacle by exploring the area around the vehicle with a plurality of direct detection sensors and indirect detection sensors at predetermined measurement time intervals and measuring the distance to the obstacle.
Triangulation estimation position derivation means that estimates the position of the obstacle by the triangulation method based on the distance measurement data by each sensor and derives the triangulation estimation position.
For each of the sensors, an arc centered on the position of the sensor at the current time and a radius of the first measurement distance to the obstacle measured by the sensor at the current time, and the measurement once from the current time. The point where the arc overlaps with the arc centered on the position of the sensor before the time and whose radius is the second measurement distance to the obstacle measured by the sensor one time before the current time is the obstacle. Time-series estimated position derivation means to be derived as the time-series estimated position of
The distance between the triangulation estimation position derived by the triangulation estimation position derivation means and the time series estimation position derived by the time series estimation position derivation means for each sensor is larger than a predetermined threshold value, respectively. A comparison method to compare whether it is small or small,
By the comparison means, if the distance is smaller than the predetermined threshold value, the triangulation estimation position and the time series estimation position are determined to be the same obstacle, and if the distance is larger, the triangulation estimation position is a virtual image and the time series estimation is performed. An obstacle detection device including a means for determining that a position is an obstacle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016251120A JP7007049B2 (en) | 2016-12-26 | 2016-12-26 | Obstacle detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016251120A JP7007049B2 (en) | 2016-12-26 | 2016-12-26 | Obstacle detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018105688A JP2018105688A (en) | 2018-07-05 |
JP7007049B2 true JP7007049B2 (en) | 2022-02-10 |
Family
ID=62787015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016251120A Active JP7007049B2 (en) | 2016-12-26 | 2016-12-26 | Obstacle detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7007049B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018216790A1 (en) * | 2018-09-28 | 2020-04-02 | Robert Bosch Gmbh | Method for evaluating an impact of an object in the environment of a means of transportation on a driving maneuver of the means of transportation |
JP7235241B2 (en) * | 2019-03-29 | 2023-03-08 | 株式会社村田製作所 | Object detection device |
JP2021135155A (en) * | 2020-02-27 | 2021-09-13 | 株式会社東芝 | System and method |
JP2023117749A (en) * | 2022-02-14 | 2023-08-24 | パナソニックIpマネジメント株式会社 | Object detection device and object detection method |
CN115755060A (en) * | 2022-05-06 | 2023-03-07 | 惠州市德赛西威汽车电子股份有限公司 | Obstacle positioning method and device based on vehicle, vehicle and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006125947A (en) | 2004-10-27 | 2006-05-18 | Tdk Corp | Radar system |
US20140029385A1 (en) | 2012-07-24 | 2014-01-30 | Robert Bosch Gmbh | Method for operating a surroundings detection system of a vehicle having at least two transceiver units and surroundings detection system |
JP2015004562A (en) | 2013-06-20 | 2015-01-08 | 株式会社デンソー | Obstacle detection device |
JP2016080644A (en) | 2014-10-22 | 2016-05-16 | 株式会社デンソー | Object detector |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4293865B2 (en) * | 2003-09-02 | 2009-07-08 | 富士通テン株式会社 | Object detection device |
JP6474228B2 (en) * | 2014-10-22 | 2019-02-27 | 株式会社デンソー | Object detection device |
-
2016
- 2016-12-26 JP JP2016251120A patent/JP7007049B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006125947A (en) | 2004-10-27 | 2006-05-18 | Tdk Corp | Radar system |
US20140029385A1 (en) | 2012-07-24 | 2014-01-30 | Robert Bosch Gmbh | Method for operating a surroundings detection system of a vehicle having at least two transceiver units and surroundings detection system |
JP2015004562A (en) | 2013-06-20 | 2015-01-08 | 株式会社デンソー | Obstacle detection device |
JP2016080644A (en) | 2014-10-22 | 2016-05-16 | 株式会社デンソー | Object detector |
Also Published As
Publication number | Publication date |
---|---|
JP2018105688A (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7007049B2 (en) | Obstacle detection device | |
JP6474228B2 (en) | Object detection device | |
US9880278B2 (en) | Object determination using a radar sensor | |
JP6404679B2 (en) | Object detection device | |
US9594166B2 (en) | Object detecting apparatus | |
CN109581389B (en) | Method and device for identifying parking space boundary | |
US11150333B2 (en) | Object sensing apparatus and object sensing method | |
JP2016080641A (en) | Object detector | |
CN107923977B (en) | Method for determining the parking area of a road section | |
JP7167675B2 (en) | Object detection device and object detection method | |
US10578736B2 (en) | Object detection apparatus | |
KR101712399B1 (en) | Obstacle display method of vehicle | |
KR20160082309A (en) | System and method for correcting vehicle tracing-position of radar sensor using laser scanner | |
KR20160066757A (en) | Apparatus and Method for Identifing Position Coordinate | |
JP6720757B2 (en) | Road shoulder detection method and road shoulder detection device | |
KR102545582B1 (en) | System for avoiding collision in crossroad and method for control thereof | |
JP2021511507A (en) | Methods and devices for checking the validity of lateral movement | |
JP2013036837A (en) | Object shape recognition apparatus for vehicle | |
KR101704635B1 (en) | Method and apparatus for detecting target using radar and image raster data | |
JP2014080111A (en) | Parking support system | |
JP5679909B2 (en) | Obstacle detection device | |
KR20150108632A (en) | Device for correcting the obstacle detection on the curve road and method thereof | |
JP7132861B2 (en) | Object detection device and object detection method | |
KR102045286B1 (en) | Device and method for detecting ultrasonic-sensor attack | |
US9587950B2 (en) | Carrier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7007049 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |