JP7006052B2 - Steel material for soaking treatment - Google Patents
Steel material for soaking treatment Download PDFInfo
- Publication number
- JP7006052B2 JP7006052B2 JP2017173715A JP2017173715A JP7006052B2 JP 7006052 B2 JP7006052 B2 JP 7006052B2 JP 2017173715 A JP2017173715 A JP 2017173715A JP 2017173715 A JP2017173715 A JP 2017173715A JP 7006052 B2 JP7006052 B2 JP 7006052B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- treatment
- less
- content
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は鋼材、浸窒処理用鋼材に関する。 The present invention relates to a steel material and a steel material for poking treatment.
リングギアを代表とする自動車のトランスミッションの中の遊星ギヤの一部品である薄物部品の表面硬化処理法として、高炭素マルテンサイトの形成を利用した浸炭処理や合金窒化物による析出強化を利用した窒化処理が広く用いられている。ここで、浸炭処理では処理ひずみの大きさが、窒化処理では処理時間が長い事や硬化層が浅い事が問題となっており改善が求められている。そのため浸炭処理に比べ処理ひずみが小さく、窒化処理より短時間で比較的厚い硬化層が得られる新たな表面硬化処理法として浸窒焼入れ処理法が開発され、工業的に利用され始めている。 Nitriding using carburizing treatment using the formation of high carbon martensite and precipitation strengthening by alloy nitride as a surface hardening treatment method for thin parts that are one part of planetary gears in automobile transmissions such as ring gears. Processing is widely used. Here, the carburizing treatment has a problem of the magnitude of the treatment strain, and the nitriding treatment has a problem that the treatment time is long and the hardened layer is shallow, and improvement is required. Therefore, a distillation-quenching treatment method has been developed as a new surface hardening treatment method in which the treatment strain is smaller than that of the carburizing treatment and a relatively thick hardened layer can be obtained in a shorter time than the nitriding treatment, and it has begun to be used industrially.
浸窒焼入れ処理法はA1点(863K)以上の温度域で鋼表面から窒素を拡散浸透させて高窒素オーステナイトを表層部で得た後に、焼入れて硬質な高窒素マルテンサイトを生成させる表面硬化法である。浸窒焼入れ処理法は浸炭処理に比べ低温で処理を行うため熱ひずみが小さく、母材がオーステナイト化しない温度域では変態ひずみも小さい。また窒化に比べて高温で処理を行うため処理時間が短くなることが期待される。
このような浸窒処理に関する従来法として、例えば特許文献1~6に記載の方法が提案されている。
The immersion quenching treatment method is a surface hardening method in which nitrogen is diffused and permeated from the steel surface in a temperature range of A1 point (863K) or higher to obtain high nitrogen austenite on the surface layer, and then quenched to generate hard high nitrogen martensite. Is. Since the carburizing and quenching treatment method is performed at a lower temperature than the carburizing treatment, the thermal strain is small, and the transformation strain is also small in the temperature range where the base metal does not become austenite. In addition, it is expected that the processing time will be shorter because the processing is performed at a higher temperature than that of nitriding.
As a conventional method for such an immersion treatment, for example, the methods described in Patent Documents 1 to 6 have been proposed.
しかしながら、従来の浸窒処理は、浸炭に比べると温度が低いため、有効硬化層を深くすることが困難であった。 However, in the conventional carburizing treatment, the temperature is lower than that in carburizing, so that it is difficult to deepen the effective hardened layer.
本発明は上記のような課題を解決することを目的とする。
すなわち、本発明の目的は、低歪かつ有効硬化層を深くでき、かつ、浸窒処理時に発生する窒化物の制御を考慮することで、浸炭材同等の曲げ疲労強度を有することが可能な浸窒処理に適した鋼材を提供することである。
An object of the present invention is to solve the above problems.
That is, an object of the present invention is to have a low strain and a deep effective cured layer, and by considering the control of the nitride generated during the carburizing treatment, it is possible to have a bending fatigue strength equivalent to that of the carburized material. It is to provide a steel material suitable for nitrogen treatment.
本発明者は上記課題を解決するため鋭意検討し、本発明の鋼材を完成させた。
本発明の鋼材は、
C:0.05~0.25質量%、
Si:0.30質量%以下、
Mn:0.61~2.0質量%、
P:0.1質量%以下、
S:0.1質量%以下、
Cr:0.7質量%以下、
Al:10~800ppm、
N:10~300ppm、
で含有し、残部はFeおよび不可避的不純物からなり、
式1=-0.225×Si+0.083×Mn+0.091×Cr+0.035×Cu+0.047×Ni+0.092×Mo
と定義した場合に、式1≧0.04を満たし、
式2=-20+74×C+7×Si+15×Mn+26×Cr+10×Cu+12Ni+30×Mo
と定義した場合に、式2≦(60×C+31)/2を満たし、
式3=25.4×Si+20.3×Cr+32.8×Si×Mn
と定義した場合に、式3≦22を満たす、浸窒処理用鋼材である。
The present inventor has made diligent studies to solve the above problems and completed the steel material of the present invention.
The steel material of the present invention is
C: 0.05 to 0.25% by mass,
Si: 0.30% by mass or less,
Mn: 0.61 to 2.0% by mass,
P: 0.1% by mass or less,
S: 0.1% by mass or less,
Cr: 0.7% by mass or less,
Al: 10-800ppm,
N: 10-300ppm,
Contained in, the balance consists of Fe and unavoidable impurities,
Equation 1 = -0.225 x Si + 0.083 x Mn + 0.091 x Cr + 0.035 x Cu + 0.047 x Ni + 0.092 x Mo
When it is defined as, the equation 1 ≧ 0.04 is satisfied, and
Equation 2 = -20 + 74 x C + 7 x Si + 15 x Mn + 26 x Cr + 10 x Cu + 12Ni + 30 x Mo
When it is defined as, the equation 2 ≦ (60 × C + 31) / 2 is satisfied, and
Equation 3 = 25.4 × Si + 20.3 × Cr + 32.8 × Si × Mn
It is a steel material for poking treatment that satisfies the formula 3 ≦ 22 when defined as.
本発明の鋼材は、
C:0.05~0.25質量%、
Si:0.30質量%以下、
Mn:0.61~2.0質量%、
P:0.1質量%以下、
S:0.1質量%以下、
Cr:0.7質量%以下、
Al:10~800ppm、
N:10~300ppm、
で含有し、
さらに、
Cu:0.3質量%以下、および/または、
Ni:0.5質量%以下、および/または、
Mo:0.6質量%以下、および/または、
V:0.3質量%以下、および/または、
Nb:0.1質量%以下
含有し、残部はFeおよび不可避的不純物からなり、
式1≧0.04を満たし、
式2≦(60×C+31)/2を満たし、
式3≦22を満たす、浸窒処理用鋼材であることが好ましい。
The steel material of the present invention is
C: 0.05 to 0.25% by mass,
Si: 0.30% by mass or less,
Mn: 0.61 to 2.0% by mass,
P: 0.1% by mass or less,
S: 0.1% by mass or less,
Cr: 0.7% by mass or less,
Al: 10-800ppm,
N: 10-300ppm,
Contained in
Moreover,
Cu: 0.3% by mass or less and / or
Ni: 0.5% by mass or less and / or
Mo: 0.6% by mass or less and / or
V: 0.3% by mass or less and / or
Nb: Contains 0.1% by mass or less, and the balance consists of Fe and unavoidable impurities.
Equation 1 ≧ 0.04 is satisfied,
Equation 2 ≦ (60 × C + 31) / 2 is satisfied,
It is preferable that the steel material for poking treatment satisfies the formula 3 ≦ 22.
本発明によれば、低歪かつ有効硬化層を深くでき、浸炭材同等の曲げ疲労強度を有することが可能な浸窒処理に適した鋼材を提供することができる。 According to the present invention, it is possible to provide a steel material suitable for a carburizing treatment, which can have a low strain and a deep effective hardened layer and can have a bending fatigue strength equivalent to that of a carburized material.
本発明の発明者は、(1)有効硬化層深さ、(2)焼入れ性、(3)窒化物生成量に関して、低歪かつ有効硬化層を深くでき、浸炭材同等の曲げ疲労強度を有することが可能な浸窒処理に適した鋼材の成分について調査した。 The inventor of the present invention can make the effective hardened layer deep with low strain in terms of (1) effective hardened layer depth, (2) hardenability, and (3) nitride formation amount, and has bending fatigue strength equivalent to that of carburized material. We investigated the composition of steel materials suitable for quenching treatment that is possible.
(1)有効硬化層
実用部品への負荷応力を想定した場合、内部でも破損しない程度に硬化層の深さが必要となってくる。よって、内部起点で破損する部位にとって有効硬化深さの増加は、そのまま高強度化につながる。
有効硬化層を深くするための手段として、I.処理温度を高くする、II.処理時間を長くする、III.鋼材の焼入れ性を上げる、の三種類が挙げられる。
ここでI.は温度上昇により歪が増大するため、なるべく低温で処理を実施したい。
II.生産性の観点からなるべく短時間で処理を実施したい。
III.について、これまで有効硬化深さの増加に対する鋼材成分の影響についての検討は、ほぼされていない。
(1) Effective hardened layer When assuming the load stress on practical parts, the depth of the hardened layer is required to the extent that it is not damaged even inside. Therefore, the increase in the effective curing depth for the portion damaged at the internal origin directly leads to the increase in strength.
As a means for deepening the effective cured layer, I. Raise the processing temperature, II. Prolong the processing time, III. There are three types to improve the hardenability of steel materials.
Here I. Since the strain increases as the temperature rises, we would like to carry out the treatment at as low a temperature as possible.
II. From the viewpoint of productivity, we want to carry out the processing in the shortest possible time.
III. So far, almost no studies have been conducted on the effect of steel components on the increase in effective hardening depth.
(2)焼入れ性
焼入れ性は有効硬化層の深さを増大するために必要に応じて高くする必要がある。一般的に焼入れ性を向上させるためにはSi、Cr、Mn、Cu、Ni、Moなどの元素を添加する。また、添加元素の量を増やせば増やすほど焼入れ性は向上するといわれている。一方で、焼入れ性が高すぎるとマルテンサイト変態量が多くなり、歪が増大する。そのため歪軽減の観点から言えば、焼入れ性は低い方がよい。ここで、焼入れ性のジョミニー試験で測定される各水冷端からの距離はそれぞれ違う冷却速度を持っており、水冷端から遠くなるほど冷却速度は遅くなる。
(2) Hardenability Hardenability needs to be increased as necessary in order to increase the depth of the effective hardened layer. Generally, in order to improve hardenability, elements such as Si, Cr, Mn, Cu, Ni and Mo are added. Further, it is said that the hardenability is improved as the amount of added elements is increased. On the other hand, if the hardenability is too high, the amount of martensitic transformation increases and the strain increases. Therefore, from the viewpoint of strain reduction, it is better that the hardenability is low. Here, the distance from each water-cooled end measured in the hardenability jominy test has a different cooling rate, and the farther from the water-cooled end, the slower the cooling rate.
(3)窒化物割合
浸窒処理中に窒化物が生成すると、焼入れ性を担保するために添加していた元素が母相から奪われるため、不完全焼入れ組織が形成されたり、Nの固溶による焼入れ性の向上効果が十分に得られなかったりするため、疲労強度が低下するものと予想される。そのため、窒化物量は少ない方がよい。しかし、添加元素量と窒化物の生成量の関係および、それが疲労強度に与える影響についてはこれまでに明らかにされていない。
(3) Nitride ratio When nitrides are formed during the nitrification treatment, the elements added to ensure hardenability are deprived of the matrix, resulting in the formation of an incompletely hardened structure or solid solution of N. It is expected that the fatigue strength will decrease because the effect of improving the hardenability is not sufficiently obtained. Therefore, it is better that the amount of nitride is small. However, the relationship between the amount of added elements and the amount of nitride produced and its effect on fatigue strength have not been clarified so far.
<式1について>
本発明の発明者は、JISのS15Cの中央成分対比1.4倍の有効硬化層を得る成分系を検討した。NやCの拡散深さは、処理時間に対して平方根でしか増えない。つまり、処理時間を2倍に増やすと有効硬化深さは1.4倍となる。鋼成分を制御し有効硬化深さを1.4倍に増加させるとS15C対比処理時間が半分になることに対応する。
本発明の発明者が検討したところ、I.合金元素添加量により、Nの侵入深さが変化することを明らかにした。具体的にはSiとCrは窒化物を生成するため、侵入N深さが減少する。MnはNの活量を低下させ、鋼材中のNの安定度が上がるため、侵入N深さが増加する。II.さらに同一N濃度の場合でも鋼材の焼入れ性の変化により、硬さは変化する。I.、II.の影響を考慮し、鋼材成分が有効硬化深さに与える影響を検討した。そして、式1=-0.225×Si+0.083×Mn+0.091×Cr+0.035×Cu+0.047×Ni+0.092×Moと定義した場合に、式1≧0.04を満たすと、JIS S15C対比1.4倍となる鋼材が得られることがわかった。
なお、Si、Mn、Cr、Cu、Ni、Moは、Si含有率(質量%)、Mn含有率(質量%)、Cr含有率(質量%)、Cu含有率(質量%)、Ni含有率(質量%)、Mo含有率(質量%)を意味する。また、後述するように、Si、Cr、Cu、Ni、Moは含有率がゼロである場合がある。この場合は、式1の該当する項にゼロを代入すればよい。後述する式2、式3においても同様である。
<About Equation 1>
The inventor of the present invention investigated a component system for obtaining an effective cured layer 1.4 times as much as the central component of JIS S15C. The diffusion depth of N and C increases only by the square root with respect to the processing time. That is, if the treatment time is doubled, the effective curing depth becomes 1.4 times. Controlling the steel composition and increasing the effective hardening depth by 1.4 times corresponds to halving the processing time compared to S15C.
As a result of examination by the inventor of the present invention, I. It was clarified that the penetration depth of N changes depending on the amount of alloying element added. Specifically, since Si and Cr generate nitrides, the penetration N depth is reduced. Mn reduces the activity of N and increases the stability of N in the steel material, so that the intrusion N depth increases. II. Further, even when the concentration is the same, the hardness changes due to the change in the hardenability of the steel material. I. , II. The effect of the steel component on the effective hardening depth was examined in consideration of the effect of. Then, when equation 1 = −0.225 × Si + 0.083 × Mn + 0.091 × Cr + 0.035 × Cu + 0.047 × Ni + 0.092 × Mo is defined and equation 1 ≧ 0.04 is satisfied, it is compared with JIS S15C. It was found that 1.4 times as much steel material could be obtained.
In addition, Si, Mn, Cr, Cu, Ni, Mo have Si content (mass%), Mn content (mass%), Cr content (mass%), Cu content (mass%), Ni content. (Mass%), Mo content (mass%). Further, as will be described later, the content of Si, Cr, Cu, Ni, and Mo may be zero. In this case, zero may be substituted for the corresponding term in Equation 1. The same applies to Equations 2 and 3 described later.
<式2について>
薄肉部品を想定した場合、薄物部品の芯部の冷却速度はおよそジョミニー値のJ3~J5程度であり、本発明の鋼材はこれらの冷却速度でのマルテンサイト量を減らすことで歪が大きく低減できる。
フルマルテンサイトの硬さは炭素量で整理でき、0.05~0.3%の範囲では(60C+31)HRCと表わせる。J5値がフルマルテンサイトとなる硬さの半分(60C+31)/2以下となれば、歪に影響が大きいマルテンサイト組織が発生せず、フェライト+パーライト+少量のベイナイト組織となり、歪を十分に小さくすることができる。
このような知見に基づき、鋼材のジョミニー値J5に対する合金元素の影響を検討し、後述する式2が、式2≦(60×C+31)/2を満たす場合に、歪を小さくできることを見出した。
<About Equation 2>
Assuming thin-walled parts, the cooling rate of the core of the thin part is about J3 to J5, which is a jominy value, and the steel material of the present invention can greatly reduce strain by reducing the amount of martensite at these cooling rates. ..
The hardness of fulmartensite can be arranged by the amount of carbon, and can be expressed as (60C + 31) HRC in the range of 0.05 to 0.3%. When the J5 value is less than half (60C + 31) / 2 of the hardness at which full martensite is obtained, the martensite structure that greatly affects strain is not generated, and ferrite + pearlite + a small amount of bainite structure is formed, and the strain is sufficiently small. can do.
Based on such findings, the influence of the alloying element on the jominy value J5 of the steel material was examined, and it was found that the strain can be reduced when the formula 2 described later satisfies the formula 2 ≦ (60 × C + 31) / 2.
<式3について>
曲げ疲労強度に対して、侵入した表層Nのうち窒化物となるN量が一定割合(22%以上)を超えると不完全焼入れ組織が形成されたり、Nの固溶による焼入れ性の向上効果が十分に得られなかったりするため、疲労強度が大きくばらつくことを明らかにし、合金成分添加量を規定した。また、SiとMnを同時添加すると、Mnも窒化物として生成することを明らかにした。
そして、式3=25.4×Si+20.3×Cr+32.8×Si×Mnとすると、式3≦22を満たす必要があることを見出した。
<About Equation 3>
If the amount of N that becomes a nitride in the invaded surface layer N exceeds a certain ratio (22% or more) with respect to the bending fatigue strength, an incompletely hardened structure is formed, and the effect of improving the hardenability by solid melting of N is obtained. It was clarified that the fatigue strength varied greatly because it could not be obtained sufficiently, and the amount of alloy component added was specified. It was also clarified that when Si and Mn are added at the same time, Mn is also produced as a nitride.
Then, it was found that it is necessary to satisfy the formula 3 ≦ 22 when the formula 3 = 25.4 × Si + 20.3 × Cr + 32.8 × Si × Mn.
本発明の鋼材の組成について説明する。 The composition of the steel material of the present invention will be described.
C成分の含有率は0.05~0.25質量%であり、0.07~0.20質量%であることが好ましい。
C成分の含有率が低すぎると、浸窒焼入後の芯部硬さが低下する傾向がある。
また、逆にC成分の含有率が高すぎると、冷間鍛造性、芯部の靭性、加工性が低下する傾向がある。また、C成分の含有率が高くなると、焼入時の膨張量が増え、歪が増加する傾向がある。
The content of the C component is 0.05 to 0.25% by mass, preferably 0.07 to 0.20% by mass.
If the content of the C component is too low, the hardness of the core after quenching and quenching tends to decrease.
On the contrary, if the content of the C component is too high, the cold forging property, the toughness of the core portion, and the processability tend to decrease. Further, when the content of the C component is high, the amount of expansion during quenching tends to increase, and the strain tends to increase.
Si成分の含有率は0.30質量%以下であり、0.01~0.15質量%であることが好ましい。
Siは微量でも窒化物が生成するため、Si成分の含有率が高すぎると、窒化物が形成され、疲労強度を低下する傾向があるからである。
The content of the Si component is 0.30% by mass or less, preferably 0.01 to 0.15% by mass.
This is because nitrides are produced even in a small amount of Si, and if the content of the Si component is too high, nitrides are formed and the fatigue strength tends to decrease.
Mn成分の含有率は0.61~2.0質量%であり、0.65~1.5質量%であることが好ましい。
Mnは浸窒処理時の有効硬化深さを向上させるために有効である。Mn成分の含有率が低すぎると、浸窒焼入時の芯部の焼入れ性が低下する傾向がある。
また、逆にMn成分の含有率が高すぎると、被削性や加工性が低下し、焼入性が上昇しすぎる傾向がある。
The content of the Mn component is 0.61 to 2.0% by mass, preferably 0.65 to 1.5% by mass.
Mn is effective for improving the effective curing depth during the immersion treatment. If the content of the Mn component is too low, the hardenability of the core portion at the time of immersion quenching tends to decrease.
On the contrary, if the content of the Mn component is too high, the machinability and workability tend to decrease, and the hardenability tends to increase too much.
P成分の含有率は0.1質量%以下であり、0.05質量%以下であることが好ましい。
P成分の含有率が高すぎると、粒界割れが生じやすくなる傾向があるからである。
The content of the P component is 0.1% by mass or less, preferably 0.05% by mass or less.
This is because if the content of the P component is too high, grain boundary cracks tend to occur easily.
S成分の含有率は0.1質量%以下であり、0.05質量%以下であることが好ましい。
S成分の含有率が高すぎると、MnS系介在物が生成し、疲労強度が低下する傾向があるからである。
The content of the S component is 0.1% by mass or less, preferably 0.05% by mass or less.
This is because if the content of the S component is too high, MnS-based inclusions are generated and the fatigue strength tends to decrease.
Cr成分の含有率は0.7質量%以下であり、0.01~0.5質量%であることが好ましい。
Crは、浸窒処理後の有効硬化深さを増加させるのに有効な元素である。Cr成分の含有率が高すぎると、窒化物が形成されやすくなり、疲労強度がばらつきが多くなる。
The content of the Cr component is 0.7% by mass or less, preferably 0.01 to 0.5% by mass.
Cr is an element effective for increasing the effective curing depth after the immersion treatment. If the content of the Cr component is too high, nitrides are likely to be formed, and the fatigue strength varies widely.
Al成分の含有率は10~800ppmであり、50~500ppmであることが好ましい。
Al成分の含有率が低すぎると結晶粒粗大化を防止するAlNが十分な量が析出せず、結晶粒粗大化を発生しやすくなるからである。
逆にAl成分の含有率が高すぎると、粗大なAl2O3系介在物が生じて強度低下を招く傾向があるからである。
The content of the Al component is 10 to 800 ppm, preferably 50 to 500 ppm.
This is because if the content of the Al component is too low, a sufficient amount of AlN that prevents the grain coarsening is not deposited, and the crystal grain coarsening is likely to occur.
On the contrary, if the content of the Al component is too high, coarse Al 2 O 3 inclusions tend to occur and the strength tends to decrease.
N成分の含有率は10~300ppmであり、10~250ppmであることが好ましい。
N成分の含有率が低すぎると結晶粒粗大化を防止するAlNが十分な量が析出せず、結晶粒粗大化を発生しやすくなるからである。
逆にN成分の含有率が高すぎると、鋳造時に空隙(密に埋まっていない部分)が発生する傾向があるからである。
The content of the N component is 10 to 300 ppm, preferably 10 to 250 ppm.
This is because if the content of the N component is too low, a sufficient amount of AlN that prevents grain coarsening does not precipitate, and crystal grain coarsening is likely to occur.
On the contrary, if the content of the N component is too high, voids (parts that are not densely filled) tend to be generated during casting.
Cu成分の含有率は0.3質量%以下であり、0.01~0.25質量%であることが好ましい。
Cu成分の含有率が高すぎると、熱間鍛造性が低下する傾向があるからである。
The content of the Cu component is 0.3% by mass or less, preferably 0.01 to 0.25% by mass.
This is because if the content of the Cu component is too high, the hot forging property tends to decrease.
Ni成分の含有率は0.5質量%以下であり、0.4質量%以下であることが好ましい。
Ni成分の含有率が高すぎると、加工性が低下する傾向があるからである。
The content of the Ni component is 0.5% by mass or less, preferably 0.4% by mass or less.
This is because if the content of the Ni component is too high, the processability tends to decrease.
Mo成分の含有率は0.6質量%以下であり、0.5質量%以下であることが好ましい。
Mo成分の含有率が高すぎると、加工性および切削性が低下し、焼入性が上昇しすぎる傾向があるからである。
The content of the Mo component is 0.6% by mass or less, preferably 0.5% by mass or less.
This is because if the content of the Mo component is too high, the workability and machinability tend to decrease, and the hardenability tends to increase too much.
V成分の含有率は0.3質量%以下であり、0.25質量%以下であることが好ましい。
V成分の含有率が高すぎると、被削性が低下する傾向があるからである。
The content of the V component is 0.3% by mass or less, preferably 0.25% by mass or less.
This is because if the content of the V component is too high, the machinability tends to decrease.
Nb成分の含有率は0.1質量%以下であり、0.05質量%以下であることが好ましい。
Nb成分の含有率が高すぎると、加工性が低下する傾向があるからである。
The content of the Nb component is 0.1% by mass or less, preferably 0.05% by mass or less.
This is because if the content of the Nb component is too high, the processability tends to decrease.
本発明の鋼材は、上記のような特定比率でC、Si、Mn、P、S、Cr、Al、N、Cu、Ni、Mo、V、Nbを含む鋼材であり(ただし、Si、P、S、Cr、Cu、Ni、Mo、V、Nbは含まない場合がある)、残部は、Feおよび不可避的不純物である。 The steel material of the present invention is a steel material containing C, Si, Mn, P, S, Cr, Al, N, Cu, Ni, Mo, V, and Nb in a specific ratio as described above (however, Si, P, S, Cr, Cu, Ni, Mo, V, Nb may not be included), the balance is Fe and unavoidable impurities.
本発明の鋼材は、浸窒処理を施すことで、薄肉部品として好ましく利用できる。
ここで薄肉とは、概ね、最も薄い部位の厚みが1~15mmの厚さの部品をいう。また、薄肉部品としては、例えばオートマチックトランスミッションに組み込まれているプラネタリギア中のリングギアなどが挙げられる。
The steel material of the present invention can be preferably used as a thin-walled part by subjecting it to a distillation treatment.
Here, the thin wall means a part having a thickness of 1 to 15 mm at the thinnest part. Further, examples of the thin-walled component include a ring gear in a planetary gear incorporated in an automatic transmission.
<試験片の製造>
以下、本発明の実施例について説明する。
第1表に示す実施例1~38および比較例1~15の各々について、第1表に示す組成(残部はFe及び不可避不純物)となるように原料を混合し、150kg高周波誘導炉を用いて溶製し、鋳造して鋼塊Aを得た。
<Manufacturing of test pieces>
Hereinafter, examples of the present invention will be described.
For each of Examples 1 to 38 and Comparative Examples 1 to 15 shown in Table 1, raw materials were mixed so as to have the composition shown in Table 1 (the balance is Fe and unavoidable impurities), and a 150 kg high frequency induction furnace was used. It was melted and cast to obtain a steel ingot A.
<疲労強度の測定>
鋼塊Aを熱間圧延または熱間鍛造し、断面直径が105mmの丸棒を得た後、さらに熱間鍛造して、断面直径が22mmの丸棒を得た。そして、焼きならし処理後(925℃×1HrAC)、この丸棒から、断面直径15mmの丸棒(長さ210mm)を切り出し、さらに加工して、図1に示すような、平行部の径がφ12mmであり、切欠部の径が8mmであり、ノッチ底が0.5R(半径0.5mm)である鋼片を得た。
次に、鋼片に浸窒処理Xを施して、試験片Bを得た。
<Measurement of fatigue strength>
The ingot A was hot-rolled or hot-forged to obtain a round bar having a cross-sectional diameter of 105 mm, and then hot-forged to obtain a round bar having a cross-sectional diameter of 22 mm. Then, after the baking treatment (925 ° C. × 1 HrAC), a round bar (length 210 mm) having a cross-sectional diameter of 15 mm is cut out from this round bar and further processed to obtain a diameter of a parallel portion as shown in FIG. A steel piece having a diameter of 12 mm, a notch diameter of 8 mm, and a notch bottom of 0.5 R (radius 0.5 mm) was obtained.
Next, the steel piece was subjected to the distillation treatment X to obtain a test piece B.
なお、以下において浸窒処理Xとは、次のような処理を意味するものとする。
ガス浸炭窒化炉へ鋼片を載置し、浸窒ガスとしてアンモニアを供給し、浸炭ガスとしてプロパンガスを供給し、800℃で180分間の浸窒処理を施した。この時、一酸化炭素と二酸化炭素の分圧を調整することでCPを0.3に制御した。このような浸窒処理を施すことで、最表面のC濃度を0.3質量%とし、母材に含まれているC量の変化が有効硬化深さに影響しない様にした。
このような浸窒処理を施した後、試験片を150℃のホット油内へ浸漬することで焼入れし、その後、加熱炉を用いて180℃で120分間の焼戻し処理を施して、試験片を得る。
ただし、比較例14および比較例15の場合は、CPを0.7とし、880℃で60分間のガス浸炭処理を施した。
実施例および比較例(ただし比較例14、15は除く)における浸窒処理の概要を図2に示す。比較例14、15における浸炭処理の概要を図3に示す。
In the following, the immersion treatment X means the following treatment.
Steel pieces were placed in a gas carburizing nitriding furnace, ammonia was supplied as a carburizing gas, propane gas was supplied as a carburizing gas, and the carburizing treatment was performed at 800 ° C. for 180 minutes. At this time, the CP was controlled to 0.3 by adjusting the partial pressures of carbon monoxide and carbon dioxide. By performing such an immersion treatment, the C concentration on the outermost surface was set to 0.3% by mass so that the change in the amount of C contained in the base metal did not affect the effective curing depth.
After such soaking treatment, the test piece is quenched by immersing it in hot oil at 150 ° C., and then tempered at 180 ° C. for 120 minutes using a heating furnace to obtain the test piece. obtain.
However, in the case of Comparative Example 14 and Comparative Example 15, the CP was set to 0.7, and the gas carburizing treatment was performed at 880 ° C. for 60 minutes.
FIG. 2 shows an outline of the infiltration treatment in Examples and Comparative Examples (however, Comparative Examples 14 and 15 are excluded). The outline of the carburizing treatment in Comparative Examples 14 and 15 is shown in FIG.
このようにして得た試験片Bを用いてJIS Z 2274に準拠した方法で小野式回転曲げ疲労試験を行い、疲労強度を調査した。試験条件は回転数3500rpm、試験温度は室温の条件である。また、疲労強度の値は、繰返し数107回で破断しない最大応力である疲労限度を意味している。
結果を第2表に示す。
Using the test piece B thus obtained, an Ono-type rotary bending fatigue test was conducted by a method conforming to JIS Z 2274, and the fatigue strength was investigated. The test conditions are a rotation speed of 3500 rpm and the test temperature is room temperature. Further, the value of fatigue strength means the fatigue limit, which is the maximum stress that does not break after the number of repetitions of 107 times.
The results are shown in Table 2.
<ジョミニー試験>
鋼塊Aを熱間圧延または熱間鍛造し、断面直径が105mmの丸棒を得た後、さらに熱間鍛造して、断面直径が30mmの丸棒を得た。そして、焼きならし処理(925℃×1HrAC)を実施した。この丸棒から断面直径が25mm、長さ100mmの試験片Cを得た。
そして、このような試験片Cを、JIS G0561に規定されるジョミニー式一端焼入れ試験(925℃、30分)に供した。そして、焼入れ端から5mmにおけるロックウェル硬さ(J5)を測定した。
結果を第2表に示す。
<Jominy test>
The ingot A was hot-rolled or hot-forged to obtain a round bar having a cross-sectional diameter of 105 mm, and then hot-forged to obtain a round bar having a cross-sectional diameter of 30 mm. Then, a normalizing treatment (925 ° C. × 1 HrAC) was carried out. A test piece C having a cross-sectional diameter of 25 mm and a length of 100 mm was obtained from this round bar.
Then, such a test piece C was subjected to a Jominy type one-sided quenching test (925 ° C., 30 minutes) specified in JIS G0561. Then, the Rockwell hardness (J5) at 5 mm from the hardened end was measured.
The results are shown in Table 2.
<歪み(真円からの変形量)の測定>
鋼塊Aを熱間圧延または熱間鍛造し、断面直径が105mmの丸棒を得て、焼きならし処理後(925℃×1HrAC)、この丸棒を加工して、図4に示すような外径100mm、内径90mm、厚さ20mmのリング状の試験片素材を得た。
次に、このリング状の試験片素材に浸窒処理Xを施して、試験片Dを得た。そして、浸窒前および後の各々において試験片Dの内径部分の長さを3点測定し、その平均値を算出し、その平均値から内周長さを求め、浸窒前後の内径長さの平均値の差を計算することで真円からの変形量(歪み)を測定した。
結果を第2表に示す。
<Measurement of strain (deformation from a perfect circle)>
The steel ingot A is hot-rolled or hot-forged to obtain a round bar having a cross-sectional diameter of 105 mm, and after normalizing (925 ° C. × 1 HrAC), the round bar is processed and as shown in FIG. A ring-shaped test piece material having an outer diameter of 100 mm, an inner diameter of 90 mm, and a thickness of 20 mm was obtained.
Next, the ring-shaped test piece material was subjected to a distillation treatment X to obtain a test piece D. Then, the length of the inner diameter portion of the test piece D is measured at three points before and after immersion, the average value is calculated, the inner circumference length is obtained from the average value, and the inner diameter length before and after immersion is obtained. The amount of deformation (strain) from a perfect circle was measured by calculating the difference between the average values of.
The results are shown in Table 2.
<表面C濃度>
鋼塊Aを熱間圧延により断面直径が105mmの丸棒を得た後、熱間鍛造により断面直径を30mmとし、さらに焼きならし処理(925℃×1HrAC)を施した後、この丸棒から断面直径25mmの丸棒(長さ100mm)を切り出して得た試験片素材に浸窒処理Xを施し、試験片Eを得た。
そして、試験片Eについて、その表面から0.05mmの位置までを削り、得られた切り屑(ダライ粉)におけるC濃度を測定した。測定には燃焼-赤外線吸収法を用いた。
結果を第2表に示す。
<Surface C concentration>
After hot rolling the steel ingot A to obtain a round bar having a cross-sectional diameter of 105 mm, the steel ingot A has a cross-sectional diameter of 30 mm by hot forging, and further subjected to normalizing treatment (925 ° C. × 1 HrAC). A test piece material obtained by cutting out a round bar (length 100 mm) having a cross-sectional diameter of 25 mm was subjected to a normalizing treatment X to obtain a test piece E.
Then, the test piece E was scraped to a position of 0.05 mm from the surface thereof, and the C concentration in the obtained chips (Dalai powder) was measured. The combustion-infrared absorption method was used for the measurement.
The results are shown in Table 2.
<表面N濃度>
試験片Eの表面から0.05mmの位置までを削って得られた切り屑(ダライ粉)におけるN濃度を測定した。測定には融解-熱伝導度測定を用いた。
結果を第2表に示す。
<Surface N concentration>
The N concentration in the chips (Dalai powder) obtained by scraping from the surface of the test piece E to a position of 0.05 mm was measured. Melt-thermal conductivity measurement was used for the measurement.
The results are shown in Table 2.
<窒化物析出量>
試験片Eの表面から0.05mmの位置までを削って得られた切り屑(ダライ粉)を臭化メタノールによって溶解し、0.2μmのフィルターを使い析出物を抽出し、窒化物析出量を測定した。測定には蒸留分離-窒素分析法を用いた。
結果を第2表に示す。
<Nitride precipitation amount>
Chips (Dalai powder) obtained by scraping from the surface of the test piece E to a position of 0.05 mm are dissolved with methanol bromide, and the precipitate is extracted using a 0.2 μm filter to determine the amount of nitride precipitate. It was measured. The distillation separation-nitrogen analysis method was used for the measurement.
The results are shown in Table 2.
<有効硬化層深さ測定>
鋼塊Aを熱間圧延または熱間鍛造し、断面直径が105mmの丸棒を得た後、さらに熱間鍛造して、断面直径が30mmの丸棒を得て、焼きならし処理後(925℃×1HrAC)、この丸棒から、断面直径25mmの丸棒(長さ10mm)を切り出して得た鋼片に浸窒処理Xを施し、試験片Fを得た。
そして、試験片Fについて、その一方端面から厚さ方向へ表層からビッカース硬さ測定を試験力2.94Nで試験を実施した。ここで表層から0.5mmまでは0.025mmピッチで進み、それ以降は0.1mmピッチで1mm位置まで硬さを求めた。そして、得られた各位置での硬さを連続的に結び、有効硬化層深さを求めた。なお、表層硬さとは0.05mmの位置の硬さとし、有効硬化層深さは513HVとなる表面からの深さとする。具体的には513HVに最も近く、513HVの前後の2点の硬さから計算し、513HVにおける有効硬化層深さを算出した。
結果を第2表に示す。
<Measurement of effective cured layer depth>
The steel ingot A is hot-rolled or hot-forged to obtain a round bar having a cross-sectional diameter of 105 mm, and then hot-forged to obtain a round bar having a cross-sectional diameter of 30 mm, and after normalizing (925). (° C. × 1 HrAC), a steel piece obtained by cutting out a round bar (
Then, the Vickers hardness of the test piece F was measured from the surface layer in the thickness direction from one end face thereof with a test force of 2.94 N. Here, the hardness was determined from the surface layer to 0.5 mm at a pitch of 0.025 mm, and thereafter at a pitch of 0.1 mm to a position of 1 mm. Then, the hardness at each obtained position was continuously combined to determine the effective hardened layer depth. The surface layer hardness is defined as a hardness at a position of 0.05 mm, and the effective cured layer depth is defined as a depth from the surface of 513 HV. Specifically, it was calculated from the hardness of two points before and after 513HV, which is the closest to 513HV, and the effective cured layer depth at 513HV was calculated.
The results are shown in Table 2.
<ミクロ組織観察>
試験片Fについてミクロ組織観察を行った。試験片を半円状に二等分に割り、切断面を被検面となるように樹脂埋めし、鏡面研磨した。研磨された面をナイタールで腐食し、倍率100~400倍で光学顕微鏡および倍率2000倍でSEMを用い組織観察をした。また、鏡面研磨後の試料を使ってFE-EPMAを用い、倍率2,000倍で表層の窒化物の析出状態を確認した。
<Microstructure observation>
Microstructure observation was performed on the test piece F. The test piece was divided into two equal parts in a semicircular shape, the cut surface was filled with resin so as to be the surface to be inspected, and the surface was mirror-polished. The polished surface was corroded with nital, and the structure was observed using an optical microscope at a magnification of 100 to 400 times and an SEM at a magnification of 2000 times. In addition, using FE-EPMA using the sample after mirror polishing, the precipitation state of the nitride on the surface layer was confirmed at a magnification of 2,000 times.
第2表に示した有効硬化深さと式1の計算結果との関係を図5に示す。
図5から、式1の値が0.04以上であると、S15Cの1.4倍の有効硬化深さとなることが理解される。なお、1.4倍は処理時間にすると、同一有効硬化深さを得るためにJIS 15C対比処理時間が半分になることに相当する。
したがって本発明の鋼材は、短時間(3~4h程度)で、必要な有効硬化深さを得ることができる鋼材といえる。
FIG. 5 shows the relationship between the effective curing depth shown in Table 2 and the calculation result of Equation 1.
From FIG. 5, it is understood that when the value of Equation 1 is 0.04 or more, the effective curing depth is 1.4 times that of S15C. If the treatment time is set to 1.4 times, it corresponds to the
Therefore, it can be said that the steel material of the present invention is a steel material capable of obtaining the required effective hardening depth in a short time (about 3 to 4 hours).
第1表に示したロックウェル硬さ(J5)と真円からの変形量(歪み)との関係を、図6に示す。
図6からロックウェル硬さ(J5)がおよそ20HRC以下であると変形量が少ないことが分かる。フルマルテンサイトの硬さは炭素量で整理でき、0.05~0.3%の範囲では(60C+31)HRCと表すことができる。一般的に、ロックウェル硬さ(J5)がフルマルテンサイトとなる半分((60C+31)/2)以下(0.15%の場合は20HRC)であれば歪(変形量)に影響が大きいマルテンサイト組織が生成せず、フェライト+パーライト+少量のベイナイト組織となる。すなわち、式2≦((60C+31)/2)を満たすのであれば、マルテンサイト量を減らすことができ、歪を大幅に低下させることができる。また、比較例14と15は、それぞれ汎用肌焼鋼であるSCR415とSCR420であるが、それらに対して大幅に歪が低下していることがわかる。
実機の薄肉部品を想定した場合、薄物部品の芯部の冷却速度はおよそジョミニー値のJ3~J5程度であり、本発明の鋼材はこれらの冷却速度でのマルテンサイト量を減らすことで歪が大きく低減できる。
The relationship between the Rockwell hardness (J5) shown in Table 1 and the amount of deformation (strain) from a perfect circle is shown in FIG.
From FIG. 6, it can be seen that the amount of deformation is small when the Rockwell hardness (J5) is about 20 HRC or less. The hardness of fulmartensite can be arranged by the amount of carbon, and can be expressed as (60C + 31) HRC in the range of 0.05 to 0.3%. Generally, if the Rockwell hardness (J5) is half ((60C + 31) / 2) or less (20HRC in the case of 0.15%), which is the full martensite, the strain (deformation amount) is greatly affected. No structure is formed, and ferrite + pearlite + a small amount of bainite structure is formed. That is, if the equation 2 ≦ ((60C + 31) / 2) is satisfied, the amount of martensite can be reduced and the strain can be significantly reduced. Further, Comparative Examples 14 and 15 are SCR415 and SCR420, which are general-purpose hardened steels, respectively, and it can be seen that the strain is significantly reduced with respect to them.
Assuming thin-walled parts of an actual machine, the cooling rate of the core of the thin parts is about J3 to J5, which is a jominy value, and the steel material of the present invention has large distortion by reducing the amount of martensite at these cooling rates. Can be reduced.
第2表に示した表面N濃度および窒化物析出量から、窒化物析出割合(=窒化物析出量/表面N濃度×100(%))を求めた。求められた窒化物析出割合と疲労強度との関係を、図7に示す。
図7から、表層Nのうち窒化物となったNの割合が22%以上となると、疲労強度のばらつきが大きくなっていることが分かる。組織写真(SEM2000倍、図8)から、窒化物の生成により、焼入れ性を担保するために添加していた元素が母相から奪われ、固溶Nの低減により形成された不完全焼入れ組織が確認される。さらにFE-EPMA(2000倍、図9)から窒化物の生成を見てとることができる。疲労強度が低下した試験片は、すべてはこの様な不完全焼入組織と多量の窒化物生成が確認され、疲労強度との因果関係が明らかになった。
本発明の鋼材は、窒化物析出量を抑制しているため、疲労強度のばらつきや低下が起こらない鋼材であるといえる。
From the surface N concentration and the nitride precipitation amount shown in Table 2, the nitride precipitation ratio (= nitride precipitation amount / surface N concentration × 100 (%)) was determined. The relationship between the obtained nitride precipitation ratio and the fatigue strength is shown in FIG.
From FIG. 7, it can be seen that when the ratio of N that has become a nitride in the surface layer N is 22% or more, the variation in fatigue strength becomes large. From the microstructure photograph (SEM 2000 times, Fig. 8), the element added to ensure hardenability was deprived from the matrix due to the formation of nitride, and the incompletely hardened structure formed by the reduction of solid solution N was formed. It is confirmed. Furthermore, the formation of nitrides can be seen from FE-EPMA (2000 times, FIG. 9). In all the test pieces with reduced fatigue strength, such incompletely hardened structure and a large amount of nitride formation were confirmed, and a causal relationship with fatigue strength was clarified.
It can be said that the steel material of the present invention is a steel material in which the fatigue strength does not vary or decrease because the amount of nitride precipitates is suppressed.
Claims (2)
Si:0.30質量%以下、
Mn:0.61~2.0質量%、
P:0.1質量%以下、
S:0.1質量%以下、
Cr:0.02~0.7質量%、
Cu:0.01~0.3質量%、
Al:10~800ppm、
N:10~300ppm、
で含有し、残部はFeおよび不可避的不純物からなり、
式1=-0.225×Si+0.083×Mn+0.091×Cr+0.035×Cu+0.047×Ni+0.092×Mo
と定義した場合に、式1≧0.04を満たし、
式2=-20+74×C+7×Si+15×Mn+26×Cr+10×Cu+12Ni+30×Mo
と定義した場合に、式2≦(60×C+31)/2を満たし、
式3=25.4×Si+20.3×Cr+32.8×Si×Mn
と定義した場合に、式3≦22を満たす、浸窒処理用鋼材。 C: 0.09 to 0.25% by mass,
Si: 0.30% by mass or less,
Mn: 0.61 to 2.0% by mass,
P: 0.1% by mass or less,
S: 0.1% by mass or less,
Cr: 0.02 to 0.7 % by mass,
Cu: 0.01-0.3% by mass,
Al: 10-800ppm,
N: 10-300ppm,
Contained in, the balance consists of Fe and unavoidable impurities,
Equation 1 = -0.225 x Si + 0.083 x Mn + 0.091 x Cr + 0.035 x Cu + 0.047 x Ni + 0.092 x Mo
When it is defined as, the equation 1 ≧ 0.04 is satisfied, and
Equation 2 = -20 + 74 x C + 7 x Si + 15 x Mn + 26 x Cr + 10 x Cu + 12Ni + 30 x Mo
When it is defined as, the equation 2 ≦ (60 × C + 31) / 2 is satisfied, and
Equation 3 = 25.4 × Si + 20.3 × Cr + 32.8 × Si × Mn
A steel material for poking treatment that satisfies the formula 3 ≦ 22 when defined as.
Mo:0.6質量%以下、
V:0.3質量%以下、
Nb:0.1質量%以下、
からなる群から選ばれる一種または二種以上をさらに含有する、請求項1に記載の浸窒処理用鋼材。 Ni : 0.5% by mass or less,
Mo: 0.6% by mass or less,
V: 0.3% by mass or less,
Nb: 0.1% by mass or less,
The steel material for poking treatment according to claim 1, further comprising one or more kinds selected from the group consisting of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017173715A JP7006052B2 (en) | 2017-09-11 | 2017-09-11 | Steel material for soaking treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017173715A JP7006052B2 (en) | 2017-09-11 | 2017-09-11 | Steel material for soaking treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019049032A JP2019049032A (en) | 2019-03-28 |
JP7006052B2 true JP7006052B2 (en) | 2022-02-10 |
Family
ID=65905467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017173715A Active JP7006052B2 (en) | 2017-09-11 | 2017-09-11 | Steel material for soaking treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7006052B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020255303A1 (en) * | 2019-06-19 | 2020-12-24 | 日本製鉄株式会社 | Steel for nitriding quenching treatment, nitrided quenched component and method for producing same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012036495A (en) | 2010-07-16 | 2012-02-23 | Sumitomo Metal Ind Ltd | Method for manufacturing nitrided machine part |
JP2015010250A (en) | 2013-06-27 | 2015-01-19 | 愛知製鋼株式会社 | Vacuum carbonitriding method |
JP2017171970A (en) | 2016-03-22 | 2017-09-28 | 新日鐵住金株式会社 | Carbonitrided component |
JP2018141218A (en) | 2017-02-28 | 2018-09-13 | Jfeスチール株式会社 | Component and manufacturing method thereof |
JP2018141216A (en) | 2017-02-28 | 2018-09-13 | Jfeスチール株式会社 | Component and manufacturing method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0860236A (en) * | 1994-08-17 | 1996-03-05 | Kobe Steel Ltd | Production of highly accurate parts |
-
2017
- 2017-09-11 JP JP2017173715A patent/JP7006052B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012036495A (en) | 2010-07-16 | 2012-02-23 | Sumitomo Metal Ind Ltd | Method for manufacturing nitrided machine part |
JP2015010250A (en) | 2013-06-27 | 2015-01-19 | 愛知製鋼株式会社 | Vacuum carbonitriding method |
JP2017171970A (en) | 2016-03-22 | 2017-09-28 | 新日鐵住金株式会社 | Carbonitrided component |
JP2018141218A (en) | 2017-02-28 | 2018-09-13 | Jfeスチール株式会社 | Component and manufacturing method thereof |
JP2018141216A (en) | 2017-02-28 | 2018-09-13 | Jfeスチール株式会社 | Component and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2019049032A (en) | 2019-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2966189B1 (en) | Semi-finished material for induction hardened component and method for producing same | |
US10196720B2 (en) | Steel for nitrocarburizing, nitrocarburized steel part, and producing method of nitrocarburized steel part | |
JP5958652B2 (en) | Soft nitrided induction hardened steel parts with excellent surface fatigue strength | |
KR101401130B1 (en) | Steel for nitriding and nitrided steel components | |
US9200354B2 (en) | Rolled steel bar or wire for hot forging | |
JP6589708B2 (en) | Carbonitriding parts | |
JP6772499B2 (en) | Steel parts and their manufacturing methods | |
JP2006348321A (en) | Steel for nitriding treatment | |
JP7006052B2 (en) | Steel material for soaking treatment | |
JP7013833B2 (en) | Carburized parts | |
JP6447064B2 (en) | Steel parts | |
JP7263796B2 (en) | RING GEAR FOR AUTOMOBILE TRANSMISSION AND MANUFACTURING METHOD THEREOF | |
JP7063070B2 (en) | Carburized parts | |
JP2018199838A (en) | Carburized part | |
JP7275665B2 (en) | Steel for carbo-nitriding | |
JP6477614B2 (en) | Steel for soft nitriding and parts and method for manufacturing them | |
JP7063071B2 (en) | Carburized parts | |
JP6881497B2 (en) | Parts and their manufacturing methods | |
JP6881496B2 (en) | Parts and their manufacturing methods | |
JP7436826B2 (en) | Nitrided parts and manufacturing method of nitrided parts | |
JP6881498B2 (en) | Parts and their manufacturing methods | |
JP2023163967A (en) | Bar steel and carburized component | |
JP2023163968A (en) | Bar steel and carburized component | |
JP2024127804A (en) | Nitrided steel parts and their manufacturing method | |
JP2023069388A (en) | Steel and carburized component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200721 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210316 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7006052 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |