JP7005867B2 - High-strength ultra-high molecular weight polyethylene molded product and its manufacturing method - Google Patents

High-strength ultra-high molecular weight polyethylene molded product and its manufacturing method Download PDF

Info

Publication number
JP7005867B2
JP7005867B2 JP2016071119A JP2016071119A JP7005867B2 JP 7005867 B2 JP7005867 B2 JP 7005867B2 JP 2016071119 A JP2016071119 A JP 2016071119A JP 2016071119 A JP2016071119 A JP 2016071119A JP 7005867 B2 JP7005867 B2 JP 7005867B2
Authority
JP
Japan
Prior art keywords
film
molecular weight
orientation
weight polyethylene
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016071119A
Other languages
Japanese (ja)
Other versions
JP2017177673A (en
Inventor
和宏 大森
雅之 山畑
透 鈴木
宜哲 澤口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tochigi Prefecture
Araco Corp
Original Assignee
Tochigi Prefecture
Araco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Prefecture, Araco Corp filed Critical Tochigi Prefecture
Priority to JP2016071119A priority Critical patent/JP7005867B2/en
Publication of JP2017177673A publication Critical patent/JP2017177673A/en
Application granted granted Critical
Publication of JP7005867B2 publication Critical patent/JP7005867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

本発明は、超高分子量ポリエチレン延伸フィルムを積層させて得る高強度成形体の製造方法とその成形体に関する。 The present invention relates to a method for producing a high-strength molded body obtained by laminating an ultra-high molecular weight polyethylene stretched film and the molded body.

超高分子量ポリエチレンは、分子量100万以上のポリエチレンで、自己潤滑性、耐摩耗性、寸法安定性、耐薬品性等に優れた樹脂で、ギア、ガスケット、人工関節、フィルム、繊維等多岐に渡って利用されている。その中でも、延伸フィルムは近年バッテリーのセパレータフィルムとして利用されており、電気自動車やタブレット端末等の普及から今後も利用の増加が予想されている。一方、セパレータフィルムの製作過程において廃棄される端材や、使用済みのフィルム等に、再利用の途が求められている。
しかし、超高分子量ポリエチレンは流動性が悪く、射出成形や押出成形には不向きで、ペレット化することが困難な材料であり、これら超高分子量ポリエチレンのセパレータフィルムには、有効な再利用の途が見いだされていないのが現状である。また、一般的に、プラスチックはマテリアルリサイクルにより劣化し、物性が低下するため、リサイクル材の用途範囲はバージン材と比較し限定的である。
一方、プラスチックは、分子が配向することにより強度が高まることが知られており、超高分子量ポリエチレンにおいても同様である。
従来、超高分子量ポリエチレンの配向性を利用した技術として特許文献1が存在する。
特許文献1の技術は、超高分子量ポリエチレンを摺動部品に用いるもので、射出成形のせん断流動により分子配向させるものであるが、配向部分は樹脂成形体のせん断層に限定されるため、成形体の配向度は低く、分子配向は金型キャビテイの形状に左右されるものである。
Ultra-high molecular weight polyethylene is polyethylene with a molecular weight of 1 million or more, and is a resin with excellent self-lubricating properties, wear resistance, dimensional stability, chemical resistance, etc., and covers a wide range of gears, gaskets, artificial joints, films, fibers, etc. Is being used. Among them, the stretched film has been used as a separator film for batteries in recent years, and its use is expected to increase in the future due to the widespread use of electric vehicles and tablet terminals. On the other hand, there is a demand for reuse of scraps and used films that are discarded in the process of producing a separator film.
However, ultra-high molecular weight polyethylene has poor fluidity, is not suitable for injection molding and extrusion molding, and is a material that is difficult to pelletize. Is not found at present. Further, in general, plastic is deteriorated by material recycling and its physical properties are deteriorated, so that the range of use of recycled material is limited as compared with virgin material.
On the other hand, it is known that the strength of plastic is increased by the orientation of molecules, and the same is true for ultra-high molecular weight polyethylene.
Conventionally, Patent Document 1 exists as a technique utilizing the orientation of ultra-high molecular weight polyethylene.
The technique of Patent Document 1 uses ultra-high molecular weight polyethylene for sliding parts and aligns the molecules by the shear flow of injection molding. However, since the oriented portion is limited to the shear layer of the resin molded body, molding is performed. The degree of body orientation is low, and the molecular orientation depends on the shape of the mold cavity.

特開H06-218752号公報Japanese Unexamined Patent Publication No. H06-218752

上記延伸されたセパレータフィルムにおいても同様に分子が配向しており、優れた機械的特性を有するが、しかし、そのリサイクル過程において、超高分子量ポリエチレンの融点以上の温度で加熱すると、一体化された成形体が得られるが、配向性は失われてしまうという課題を抱えるものとなる。
そこで、本発明者は、超高分子量ポリエチレンのフィルム体についての再利用の方途を探って試行錯誤を重ねたところ、融点以上であっても一定温度範囲及び加圧等の諸要件を揃えた条件下では、配向性を保持しつつフィルム体相互の融着を促すことで、成形体が得られることを見いだした。成形体には配向性に基づく優れた物性及び低摩擦係数等の特性が得られ、その長所を活かした新たな用途開発の途を探り出したものである。
Molecules are similarly oriented in the stretched separator film and have excellent mechanical properties, but in the recycling process, when heated at a temperature higher than the melting point of ultra-high molecular weight polyethylene, they are integrated. Although a molded product can be obtained, it has a problem that the orientation is lost.
Therefore, the inventor of the present invention searched for a method of reusing the film body of ultra-high molecular weight polyethylene and repeated trial and error. Below, it was found that a molded body can be obtained by promoting fusion between the film bodies while maintaining the orientation. The molded product has excellent physical properties based on the orientation and characteristics such as a low coefficient of friction, and we have sought to develop a new application that makes the best use of its advantages.

請求項1記載の超高分子量ポリエチレン成形体の製造方法は、a)配向性を備えた超高分子量ポリエチレン延伸フィルム体を対象とし、b)配向を一の方向と隣り合うそれと異なる方向とに配向の組み合わされる角度を変えて順次フィルムを重ね合わせ、c)該一の方向のフィルムとそれと異なる方向のフィルムとの間にポリエチレンフィルムを挿入し、d)成形温度を140℃~163℃の範囲に加熱しつつ、e)成形圧力を1MPa~30MPaとして加圧し、f)加圧状態を維持しつつ70℃以下に冷却し、g)配向性を保持しつつ一体化した成形体を得ることを特徴とする。 The method for producing an ultra-high molecular weight polyethylene molded product according to claim 1 targets a) an ultra-high molecular weight polyethylene stretched film body having orientation, and b) orients the orientation in one direction and a direction different from that adjacent to the one. The films are sequentially laminated at different angles of combination, c) a polyethylene film is inserted between the film in one direction and the film in a different direction, and d) the molding temperature is in the range of 140 ° C to 163 ° C. It is characterized by e) pressurizing the molding pressure to 1 MPa to 30 MPa while heating, f) cooling to 70 ° C. or lower while maintaining the pressurized state, and g) obtaining an integrated molded body while maintaining the orientation. And.

請求項2記載の超高分子量ポリエチレン成形体の製造方法は、一の方向のフィルムと、それと異なる方向のフィルムとがなす角度が90度であることを特徴とする。 The method for producing an ultra-high molecular weight polyethylene molded body according to claim 2 is characterized in that an angle formed by a film in one direction and a film in a different direction is 90 degrees.

請求項3記載の超高分子量ポリエチレン成形体の製造方法は、一の方向のフィルムと、それと異なる方向のフィルムとがなす角度が45度であることを特徴とする。 The method for producing an ultra-high molecular weight polyethylene molded product according to claim 3 is characterized in that an angle formed by a film in one direction and a film in a different direction is 45 degrees.

請求項4記載の成形体は、配向性を備えた超高分子量ポリエチレン延伸フィルム体を、その配向を一の方向と隣り合うそれと異なる方向とに配向の組み合わされる角度を変えて順次フィルムを重ね合わせ、該一の方向のフィルムとそれと異なる方向のフィルムとの間にポリエチレンフィルムを挿入させて配向性を保持しつつ一体化して成ることを特徴とする。 In the molded product according to claim 4, the ultra-high molecular weight polyethylene stretched film body having orientation is sequentially laminated by changing the combined angle of the orientation in one direction and the adjacent and different directions. It is characterized in that a polyethylene film is inserted between the film in one direction and the film in a different direction to be integrated while maintaining the orientation.

本発明にあっては、重ね合わせた超高分子量ポリエチレン延伸フィルム間に融着が促され、相互が一体化される。それと共に、延伸フィルムが有する配向を保持する。このことは走査型電子顕微鏡(SEM)の画像及び引張試験における高い強度の発揮等からも確認される。
しかし、超高分子量ポリエチレン延伸フィルム間の融着は140℃以上で、高い引張強さの値は163℃以下で得られ、139℃以下及び164℃以上では配向性を有する一体化した成形体は得られない。これは、フィルム間の融着のためには分子運動をある程度促すだけの温度が必要であること、又、高い引張強さの要因に超高分子量ポリエチレンフィルムの配向性があり、この配向性を保持できる程度に低い温度である必要があることが要求され、これらが140℃~163℃の範囲で達成されるからと推察される。
又、上記配向性の保持は、成形圧力も関与し、1~30MPaの圧力で加圧したとき、配向性が得られるもので、示差走査熱量計(DSC)によっても確認される。
この配向性は、70℃以下への冷却工程によって固化が促され、保持される。
得られた成形体は、表面が超高分子量ポリエチレン本来の低摩擦性を有すると共に、内部では高い一体化が得られる。
これらの効果は、原則配向性を同一方向に揃えてフィルムを重ね合わせた場合に発揮されるが、配向を一の方向とそれと異なる方向とに角度を変えてフィルムを重ね合わせた場合には、そのフィルムの間に低分子量のポリエチレンフィルムを挿入することで、互いの融着と配向性の保持が確保される。
In the present invention, fusion is promoted between the laminated ultra-high molecular weight polyethylene stretched films, and they are integrated with each other. At the same time, the orientation of the stretched film is maintained. This is confirmed from the images of the scanning electron microscope (SEM) and the high strength exhibited in the tensile test.
However, the fusion between the ultra-high molecular weight polyethylene stretched films is 140 ° C. or higher, a high tensile strength value is obtained at 163 ° C. or lower, and the integrated molded body having orientation at 139 ° C. or lower and 164 ° C. or higher is available. I can't get it. This is because the temperature required to promote molecular motion to some extent is required for fusion between the films, and the orientation of the ultra-high molecular weight polyethylene film is a factor of the high tensile strength. It is required that the temperature should be low enough to be maintained, and it is presumed that these are achieved in the range of 140 ° C to 163 ° C.
Further, the retention of the orientation is related to the molding pressure, and the orientation is obtained when the pressure is applied at a pressure of 1 to 30 MPa, which is also confirmed by a differential scanning calorimeter (DSC).
This orientation is promoted and maintained by the cooling step to 70 ° C. or lower.
The obtained molded product has the low friction property inherent in ultra-high molecular weight polyethylene on the surface, and high integration is obtained inside.
In principle, these effects are exhibited when the films are stacked with the orientation aligned in the same direction, but when the films are stacked with the orientation changed from one direction to a different direction. By inserting a low molecular weight polyethylene film between the films, fusion and orientation retention with each other are ensured.

フィルムの配向を同一方向へ重ね合わせる場合を示す斜視図である。It is a perspective view which shows the case where the orientation of a film is superposed in the same direction. 成形体の断面をSEM観察した写真図で、(a)が一部断面図、(b)がその一部を拡大した状態の断面図である。It is a photographic view which observed the cross section of a molded body by SEM, (a) is a partial cross-sectional view, and (b) is a cross-sectional view in a state where a part thereof is enlarged. 成形温度150℃で成形した場合の成形体のX線回折図である。It is an X-ray-diffraction diagram of the molded product when it is molded at a molding temperature of 150 ° C. 成形圧力を無とした場合と加圧した場合とを比較したDSC曲線で、(a)が全体図で、(b)が一部拡大図である。It is a DSC curve comparing the case where the forming pressure is not applied and the case where the forming pressure is applied. (A) is an overall view and (b) is a partially enlarged view. 配向方向を変えてフィルムを重ね合わせる態様の斜視図で、(a)が90度回転させて重ね合わせた場合、(b)が45度回転させて重ね合わせた場合を示す。It is a perspective view of the aspect of laminating the films by changing the orientation direction, and shows the case where (a) is rotated 90 degrees and superposed, and (b) is rotated 45 degrees and superposed. 配向を90度回転させた場合の成形体のシャルピー破断面をSEM観察した写真図で、(a)が一部断面図、(b)がその一部を拡大した状態の断面図である。It is a photographic view of the Charpy fracture surface of the molded body when the orientation is rotated by 90 degrees, and (a) is a partial cross-sectional view, and (b) is a cross-sectional view in a state where a part thereof is enlarged.

超高分子量ポリエチレンは分子量100万以上のポリエチレンで、耐摩耗性、低摩擦性、寸法安定性等に優れた特性を有し、その延伸フィルムは高温下における孔の自己閉塞性の特性からバッテリーのセパレータフィルムとして利用されている。
このバッテリー用のセパレータフィルムとは、120℃~150℃程度の温度下で延伸してフィルム体としたもので、多数の孔を備え、例えば、その厚みが0.5~500μmで、幅500mm×長さ10mの形態を備えている。尚、本発明では、試料として厚み60μmのバッテリーセパレータフィルムを用いている。
超高分子量ポリエチレンは、流動性が著しく低く、射出成形や押出成形には向かず、押出成形によるペレット化等が困難なものであるが、圧縮成形にて成形体とするか、又はその成形体を切削等することで、ギア、ガスケット等への加工が可能なものとなる。
そこで、上記バッテリーセパレータフィルムの再利用に対して、フィルム体の圧縮成形による成形に着目した。
Ultra-high molecular weight polyethylene is polyethylene with a molecular weight of 1 million or more, and has excellent properties such as wear resistance, low friction resistance, and dimensional stability. It is used as a separator film.
The separator film for a battery is a film body stretched at a temperature of about 120 ° C. to 150 ° C., has a large number of holes, and has, for example, a thickness of 0.5 to 500 μm and a width of 500 mm ×. It has a form with a length of 10 m. In the present invention, a battery separator film having a thickness of 60 μm is used as a sample.
Ultra-high molecular weight polyethylene has extremely low fluidity and is not suitable for injection molding or extrusion molding, and it is difficult to pelletize it by extrusion molding. By cutting, etc., it becomes possible to process into gears, gaskets, etc.
Therefore, with respect to the reuse of the battery separator film, attention was paid to molding by compression molding of the film body.

該バッテリーセパレータフィルムとして利用される超高分子量ポリエチレンは、上記の如く延伸によりフィルム体とするが、その延伸により分子配向性を備えた特性を有する。
分子配向とは、フィルムの延伸方向に対してポリエチレン分子鎖がある程度同じ方向に向いて並んでいる状態をいい、分子配向性とはその性質のことをいう。超高分子量ポリエチレン延伸フィルムにおける結晶構造には、伸びきり鎖結晶と、折りたたみ鎖結晶(ラメラ)とが存在し、一部の折りたたみ鎖結晶を残して延伸により伸びきり鎖結晶が生じ、これが配向性を生むものと考えられる。
この分子配向性は、後述する如く、本発明の成形体を特徴づける重要な特性となる。
The ultra-high molecular weight polyethylene used as the battery separator film is stretched to form a film body as described above, and has the property of having molecular orientation due to the stretching.
Molecular orientation refers to a state in which polyethylene molecular chains are lined up in the same direction to some extent with respect to the stretching direction of the film, and molecular orientation refers to its properties. The crystal structure of the ultra-high molecular weight polyethylene stretched film includes a stretched chain crystal and a folded chain crystal (lamella), and the stretched chain crystal is generated by stretching while leaving a part of the folded chain crystal, and this is the orientation. Is thought to give birth to.
This molecular orientation is an important characteristic that characterizes the molded product of the present invention, as will be described later.

本発明では、この超高分子量ポリエチレンのフィルムを、配向が同一方向に揃えられた状態に所定枚数量を重ね合わせて並べ(図1参照)、これを圧縮成形機等で圧縮する。
配向が同一方向とは、上記の如く超高分子量ポリエチレンフィルムが製造される際に、フィルムの延伸される方向に配向が生まれるので、製造時のフィルムの延伸方向と一致する方向と言える。
In the present invention, the ultra-high molecular weight polyethylene films are arranged in a predetermined number of sheets in a state where the orientations are aligned in the same direction (see FIG. 1), and the films are compressed by a compression molding machine or the like.
It can be said that the orientation is the same as the direction in which the film is stretched when the ultra-high molecular weight polyethylene film is manufactured as described above.

上記並べ方で重ね合わせた超高分子量ポリエチレンのフィルム体について、その圧縮成形を可能とする諸条件を探索した。
先ず、温度条件について、130℃、140℃、150℃、160℃、170℃の各点で成形体を成形し、引張試験、X線回折測定、DSC測定、SEM観察を行った。
We searched for various conditions that enable compression molding of ultra-high molecular weight polyethylene films laminated in the above arrangement.
First, regarding the temperature conditions, the molded product was molded at each point of 130 ° C., 140 ° C., 150 ° C., 160 ° C., and 170 ° C., and a tensile test, an X-ray diffraction measurement, a DSC measurement, and an SEM observation were performed.

成形圧力を30MPaとした場合、成形温度を130℃~170℃としたときの引張強さの値を測定し、表1を得た。

Figure 0007005867000001
試験方法:成形した厚さ2mmの成形体から、打ち抜き型を用いてダンベル試験片を作成し、試験片はJIS K 6251のダンベル状5号形とした。引張試験はJIS K 7161-1に従い、島津製作所製オートグラフAG-M1により行い、引張速度は10mm/minで、引張方向は配向方向と平行とした。
この結果、140℃~160℃の間では、引張り強さが185MPa以上の高い値が得られたが、一方、170℃以上では20MPaと低い値となった。
なお、成形温度130℃では、試験片作製時に剥離が生じてしまい、引張試験実施不可であった。 When the molding pressure was 30 MPa, the values of the tensile strength when the molding temperature was 130 ° C. to 170 ° C. were measured, and Table 1 was obtained.
Figure 0007005867000001
Test method: A dumbbell test piece was prepared from a molded body having a thickness of 2 mm using a punching die, and the test piece was a dumbbell-shaped No. 5 type of JIS K 6251. The tensile test was carried out according to JIS K 7161-1 by Shimadzu Autograph AG-M1, the tensile speed was 10 mm / min, and the tensile direction was parallel to the orientation direction.
As a result, a high tensile strength of 185 MPa or more was obtained between 140 ° C. and 160 ° C., while a low value of 20 MPa or more was obtained at 170 ° C. or higher.
At a molding temperature of 130 ° C., peeling occurred when the test piece was produced, and the tensile test could not be performed.

下限値を探るべく、フィルム2枚を融着させ、その剥離強さを求めた。成形温度140℃以下の範囲で剥離時の引張荷重が如何に変化するかを測定し、表2の結果を得た。

Figure 0007005867000002
試験方法:40mm×150mmに切断した超高分子量ポリエチレンフィルムを2枚用意し、それらを重ね合わせた。鉄板2枚に重ね合わせたフィルムの40mm×40mm部分を挟み込み、その部分に対して加熱・加圧を行った。残りの40mm×110mm部分には熱が加わらないようにした。成形温度を134℃~140℃とし、成形圧力を30MPaで加圧時間を10分とした。試験片の40mm×110mm部分をチャックし、島津製作所製オートグラフAG-M1を用いて引張速度を10mm/minで剥離試験を行った。
この結果、140℃においては剥離に対し36Nという高い値を示したが、それ以下の138℃、136℃等では18N以下の低い値となり、実用化には不適であることが明らかとなった。
なお、配向方向に対して垂直方向の引張試験を40mm×150mmに切断した超高分子量ポリエチレンフィルムについて実施したところ、最大荷重は20Nであり、20N以上を実用化に適していると判断した。 In order to find the lower limit, two films were fused and the peeling strength was determined. How the tensile load at the time of peeling changed in the range of the molding temperature of 140 ° C. or less was measured, and the results shown in Table 2 were obtained.
Figure 0007005867000002
Test method: Two ultra-high molecular weight polyethylene films cut into 40 mm × 150 mm were prepared, and they were overlapped. A 40 mm × 40 mm portion of the film laminated on two iron plates was sandwiched, and the portion was heated and pressurized. Heat was not applied to the remaining 40 mm × 110 mm portion. The molding temperature was 134 ° C. to 140 ° C., the molding pressure was 30 MPa, and the pressurizing time was 10 minutes. A 40 mm × 110 mm portion of the test piece was chucked, and a peeling test was performed at a tensile speed of 10 mm / min using an autograph AG-M1 manufactured by Shimadzu Corporation.
As a result, it showed a high value of 36 N for peeling at 140 ° C., but a low value of 18 N or less at 138 ° C., 136 ° C. or the like, which was lower than that, and it became clear that it was not suitable for practical use.
When a tensile test in the direction perpendicular to the orientation direction was carried out on an ultra-high molecular weight polyethylene film cut into 40 mm × 150 mm, the maximum load was 20 N, and it was judged that 20 N or more was suitable for practical use.

次に、上限値を探るべく、成形温度を160℃以上の範囲で引張強さが如何に変化するかを測定し、表3の結果を得た。

Figure 0007005867000003
試験方法:表1と同じ試験方法によった。
この結果、161℃及び163℃では223MPa以上の強い引張強さが得られたが、164℃以上となると24MPa以下の低い値となり、成形時の温度は最高で163℃迄であり、それ以上では実用化に不適な値となった。
上記のことから、成形時の温度は、成形圧力を30MPaとしたとき、140~163℃の範囲で高い引張強さが得られることが確認された。 Next, in order to find the upper limit, how the tensile strength changes in the molding temperature range of 160 ° C. or higher was measured, and the results shown in Table 3 were obtained.
Figure 0007005867000003
Test method: The same test method as in Table 1 was used.
As a result, strong tensile strength of 223 MPa or more was obtained at 161 ° C and 163 ° C, but it became a low value of 24 MPa or less at 164 ° C or higher, and the temperature at the time of molding was up to 163 ° C at the maximum, and above that. The value was unsuitable for practical use.
From the above, it was confirmed that a high tensile strength can be obtained in the range of 140 to 163 ° C. when the molding pressure is 30 MPa.

上記と同趣旨の試験を、成形圧力を10MPaとした場合で検討した。
その結果表4を得た。

Figure 0007005867000004
試験方法:表2と同じ試験方法によった。
145℃以上では、剥離時の平均荷重が27N以上となり、融着の強さを示したが、140℃以下では13N以下となり実用化に不適な値となった。 A test to the same effect as above was examined when the molding pressure was 10 MPa.
As a result, Table 4 was obtained.
Figure 0007005867000004
Test method: The same test method as in Table 2 was used.
At 145 ° C or higher, the average load at the time of peeling was 27 N or higher, indicating the strength of fusion, but at 140 ° C or lower, it was 13 N or lower, which was unsuitable for practical use.

尚、上記成形温度140℃~163℃の範囲にあって、より望ましい温度を探ったところ、上記表4の剥離試験において、150℃が110Nという頗る高い値を示しており、150±3℃付近に最適値が存するものと捉えられる。 When a more desirable temperature was searched for in the range of the molding temperature of 140 ° C. to 163 ° C., 150 ° C. showed a very high value of 110N in the peeling test of Table 4 above, and was around 150 ± 3 ° C. It is considered that the optimum value exists in.

次に、成形圧力を10MPaとした場合の上限値を求めて表5の結果を得た。

Figure 0007005867000005
試験方法:表1と同じ試験方法によった。
この結果、155℃~157℃にあっては、126MPa以上の高い引張強さを示すが、158℃に至っては28MPa以下の低い値となった。
上記を総合すると、成形圧力を10MPa以上とした場合には、成形温度を145℃~157℃の範囲とすることが望ましいものとなった。 Next, the upper limit value when the molding pressure was set to 10 MPa was obtained, and the results shown in Table 5 were obtained.
Figure 0007005867000005
Test method: The same test method as in Table 1 was used.
As a result, it showed a high tensile strength of 126 MPa or more at 155 ° C to 157 ° C, but a low value of 28 MPa or less at 158 ° C.
Overall, when the molding pressure is 10 MPa or more, it is desirable that the molding temperature is in the range of 145 ° C to 157 ° C.

次に、加圧条件についての検討を行った。
成形圧力が30MPa及び10MPaについては、上記表1~5に示す如く、その範囲では成形温度を140℃~163℃とした場合には、126MPa以上の高い引張強さが得られることが確認できた。
そこで、成形温度を150℃とし、成形圧力を10MPa以下とした場合に引張強さが如何に変化するかを測定し、表6の結果を得た。

Figure 0007005867000006
試験方法:表1と同じ試験方法によった。
この結果、10MPa以下であっても1MPa以上とすることで197MPa以上の引張強さを得ることができ、実用化に適したものとなった。
なお、0.5MPaでは、成形時に配向方向に対して収縮が起こり、正常な成形体が得られなかった。
このことから、成形時の圧力条件は、1~30MPaの範囲で197MPa以上の高い引張強さが得られることが確認された。 Next, the pressurization conditions were examined.
As for the molding pressures of 30 MPa and 10 MPa, as shown in Tables 1 to 5 above, it was confirmed that a high tensile strength of 126 MPa or more can be obtained when the molding temperature is 140 ° C. to 163 ° C. in that range. ..
Therefore, how the tensile strength changes when the molding temperature is 150 ° C. and the molding pressure is 10 MPa or less is measured, and the results shown in Table 6 are obtained.
Figure 0007005867000006
Test method: The same test method as in Table 1 was used.
As a result, even if it is 10 MPa or less, a tensile strength of 197 MPa or more can be obtained by setting it to 1 MPa or more, which is suitable for practical use.
At 0.5 MPa, shrinkage occurred in the orientation direction during molding, and a normal molded product could not be obtained.
From this, it was confirmed that a high tensile strength of 197 MPa or more can be obtained in the range of 1 to 30 MPa under the pressure condition at the time of molding.

上記加熱及び加圧に要する時間は、目的とする成形体の厚みに合わせた超高分子量ポリエチレンフィルムの枚数によって異なってくるが、厚さ4mmとした場合に要する時間は10分であったが、厚さ10mmの場合には20分を要した。 The time required for heating and pressurizing varies depending on the number of ultra-high molecular weight polyethylene films according to the thickness of the target molded product, but when the thickness is 4 mm, the time required is 10 minutes. In the case of a thickness of 10 mm, it took 20 minutes.

次いで、加熱・加圧したものの冷却に移り、超高分子量ポリエチレンフィルムを挟んだ金型を冷却して、その温度を70℃以下とする。冷却速度は例えば、10℃/分とする。
溶融状態の結晶性高分子は冷却により結晶化を促すことができ、上記加熱、加圧した超高分子量ポリエチレンフィルムを冷却することで配向性を備えたものとすることができる。この冷却を十分にするため、冷却温度を結晶化温度より低温の70℃以下とする。
Next, the process proceeds to cooling the heated and pressurized film, and the mold sandwiching the ultra-high molecular weight polyethylene film is cooled to bring the temperature to 70 ° C. or lower. The cooling rate is, for example, 10 ° C./min.
The molten crystalline polymer can be cooled to promote crystallization, and the heated and pressurized ultra-high molecular weight polyethylene film can be cooled to have orientation. In order to ensure this cooling sufficiently, the cooling temperature is set to 70 ° C. or lower, which is lower than the crystallization temperature.

上記製法に基づいて、バッテリーのセパレータフィルムとして使用された超高分子量ポリエチレンフィルム体が、その配向の方向が同一となるよう重ね合わされて、融着されて一体化された成形体を得る。 Based on the above manufacturing method, the ultra-high molecular weight polyethylene film bodies used as the separator film of the battery are laminated so as to have the same orientation direction, and fused to obtain an integrated molded body.

上記は配向性を備えた超高分子量ポリエチレン延伸フィルム体を対象とし、該配向を同一方向に揃えてフィルムを重ね合わせた場合を説明したが(図1参照)、次いで、配向を一の方向と隣り合うそれと異なる方向とに配向の組み合わされる角度を変えて順次フィルムを重ね合わせた場合を検討した(図5参照)。
すると、この場合には、フィルム界面の融着力が弱く、容易に剥離してしまうものであった。
そこで、互いのフィルムの間に比較的低分量のポリエチレンフィルムを挿入し、それを上記と同様の条件下で融着することを検討した。
ここで、低分子量のポリエチレンとは、通常のフィルム形成が可能な分子量のポリエチレンをいい、数万~数十万の分子量を指すが、具体的にはMFR値で0.3~7g/10minのポリエチレンをいう。
具体的には、例えば、互いが直角の90度をなして、一のフィルムに対し直角と平行を繰り返して重ね合わせられる場合と(図5(A))、一の配向性を備えたフィルムに対し、90度以下の角度、例えば1/2直角の45度だけ回転させた角度とする場合(図5(B))等を検討した。
The above described the case where the ultra-high molecular weight polyethylene stretched film body having orientation is targeted and the films are overlapped with the orientation aligned in the same direction (see FIG. 1), but then the orientation is set to one direction. A case was examined in which the films were sequentially laminated by changing the angle at which the orientations were combined in adjacent and different directions (see FIG. 5).
Then, in this case, the fusion force at the film interface was weak and the film was easily peeled off.
Therefore, it was examined to insert a relatively low amount of polyethylene film between the films and to fuse it under the same conditions as described above.
Here, the low molecular weight polyethylene means a polyethylene having a molecular weight capable of forming a normal film, and refers to a molecular weight of tens of thousands to hundreds of thousands, but specifically, the MFR value is 0.3 to 7 g / 10 min. Refers to polyethylene.
Specifically, for example, a film having a right angle of 90 degrees to each other and being repeatedly overlapped at right angles and parallel to one film (FIG. 5A), and a film having one orientation. On the other hand, an angle of 90 degrees or less, for example, a case where the angle is rotated by 45 degrees, which is a 1/2 right angle (FIG. 5 (B)), is examined.

その結果、引張り試験において、表7に示す如き、強い引張強さを得た。

Figure 0007005867000007
試験方法:表1と同じ試験方法によった。
この結果、回転角度を90度とした場合には、引張強さは138MPaで、45度とした場合には、106MPaと共に高い引張強さが発揮された。
従って、配向を同一方向に揃えてフィルムを重ね合わせた場合に比べ、配向を異なる方向に組み合わせそこにより低分子量のポリエチレンフィルムを介在させた場合には、多角的であり、一方向の引張強さが若干落ちるものの、100MPa以上の引張強さを得ることができ、充分実用性に耐え得ることが確認された。 As a result, in the tensile test, a strong tensile strength was obtained as shown in Table 7.
Figure 0007005867000007
Test method: The same test method as in Table 1 was used.
As a result, when the rotation angle was 90 degrees, the tensile strength was 138 MPa, and when it was 45 degrees, a high tensile strength was exhibited together with 106 MPa.
Therefore, compared to the case where the orientations are aligned in the same direction and the films are overlapped, when the orientations are combined in different directions and a low molecular weight polyethylene film is interposed there, the orientation is diversified and the tensile strength in one direction is high. However, it was confirmed that a tensile strength of 100 MPa or more could be obtained and that it could sufficiently withstand practicality.

斯くして、配向性を備えた超高分子量ポリエチレン延伸フィルム体を、配向を一の方向と隣り合うそれと異なる方向とに配向の組み合わされる角度を変えて順次フィルムを重ね合わせ、該一の方向のフィルムとそれと異なる方向のフィルムとの間に低分子量のポリエチレンフィルムを挿入するものとする。そして、成形温度を140℃~163℃として加熱しつつ、成形圧力を1MPa~30MPaとして加圧し、加圧状態を維持しつつ70℃以下に冷却することは上記と同様である。 Thus, the ultra-high molecular weight polyethylene stretched film body having the orientation is sequentially laminated by changing the combined angle of the orientation in one direction and the direction different from that adjacent to the one direction, and the film is sequentially laminated in the one direction. A low molecular weight polyethylene film shall be inserted between the film and the film in a different direction. Then, while heating at a molding temperature of 140 ° C. to 163 ° C., the molding pressure is pressurized at 1 MPa to 30 MPa, and cooling is performed at 70 ° C. or lower while maintaining the pressurized state, which is the same as the above.

尚、上記フィルム体の配向を一の方向とそれと異なる方向とに角度を変えて重ね合わせる態様は、a)各フィルムを1枚毎に変える場合と、b)上記配向を同一方向に揃えたフィルムを10~100枚程度重ね合わせたものを一単位とし、それらを単位毎に変える場合とがあり、b)の場合には、その単位毎の間に低分子ポリエチレンフィルムを挿入するものとする。
この態様の違いは、求める成形体の形状や厚み等により決定される。
In addition, the mode of superimposing the film bodies by changing the angle between one direction and a different direction is as follows: a) when each film is changed one by one, and b) a film in which the above orientations are aligned in the same direction. In the case of b), a low-molecular-weight polyethylene film shall be inserted between each unit.
The difference in this aspect is determined by the shape and thickness of the desired molded product.

上記製造方法に基づいて、配向性を備えた超高分子量ポリエチレン延伸フィルム体を、その配向を同一方向に揃えて積層させ、融着にて一体化して成ることを特徴とする成形体が得られるものとなる。
又、配向性を備えた超高分子量ポリエチレン延伸フィルム体を、その配向を一の方向と隣り合うそれと異なる方向とに配向の組み合わされる角度を変えて順次フィルムを重ね合わせ、該一の方向のフィルムとそれと異なる方向のフィルムとの間に低分子量のポリエチレンフィルムを挿入させて成る成形体が得られるものとなる。
Based on the above manufacturing method, a molded product characterized by laminating ultra-high molecular weight polyethylene stretched films having orientation in the same direction and integrating them by fusion can be obtained. It becomes a thing.
Further, the ultra-high molecular weight polyethylene stretched film body having the orientation is sequentially laminated by changing the combined angle of the orientation in one direction and the direction different from that adjacent to the one direction, and the film in the one direction. A molded product is obtained by inserting a low molecular weight polyethylene film between the film and the film in a different direction.

本発明の作用効果を説明する。
本発明においては、重ね合わせた超高分子量ポリエチレンのフィルム間に融着が起こっていると推定される。
それは、走査型電子顕微鏡(SEM)観察画像からも窺える。
図2(a)、(b)に示した画像は、成形体の切断面を、日本電子(株)製JSM-6510LAにより観察したSEM像で、切断面は平滑で、剥離は見られず、フィルム同士が融着していることを示している。
The action and effect of the present invention will be described.
In the present invention, it is presumed that fusion occurs between the laminated ultra-high molecular weight polyethylene films.
It can also be seen from the scanning electron microscope (SEM) observation image.
The images shown in FIGS. 2A and 2B are SEM images obtained by observing the cut surface of the molded product with JSM-6510LA manufactured by JEOL Ltd., and the cut surface is smooth and no peeling is observed. It shows that the films are fused together.

上記図2(a)に示した画像中央のA部分は、成形体の切断面に切り込みを入れ、配向方向に引っ張って剥がした部分である。ここには、配向方向に平行して線状の構造が見られ、これを拡大した図2(b)には、この線状の構造に対し垂直に伸びるフィブリルが観察される。
即ち、この線状の構造から配向した分子構造の存在が窺える。また、これはシシカバブ構造と酷似しており、該フィブリルは配向した分子に対するトランスクリスタルと予想され、このトランスクリスタルがフィルム間の融着を促す一因となっていると予想される。
The portion A in the center of the image shown in FIG. 2A is a portion in which a cut is made in the cut surface of the molded body and pulled in the orientation direction to be peeled off. Here, a linear structure is seen parallel to the orientation direction, and in an enlarged view of FIG. 2 (b), a fibril extending perpendicular to the linear structure is observed.
That is, the existence of a molecular structure oriented from this linear structure can be seen. It also closely resembles the shish kebab structure, where the fibril is expected to be a transcrystal for oriented molecules, which is expected to contribute to facilitating fusion between films.

一方、一定条件を外れた場合、例えば成形温度が164℃を超えた場合には、引張強さが24MPa以下に低下してしまう現象が起こる。これは、本発明における融着が単なる熱による分子拡散のみにとどまらず、他の要因が働いてものと考えられ、これを本発明者は超高分子量ポリエチレンのフィルムに存在する配向性の有無ではないかと推察した。
尚、本発明における配向性とは、超高分子量ポリエチレン分子鎖又は結晶が延伸方向に対して配列する性質のことをいう。
そこで、上記SEM観察に加え、X線回折測定とDSC測定を試みた。
On the other hand, when certain conditions are not met, for example, when the molding temperature exceeds 164 ° C., a phenomenon occurs in which the tensile strength drops to 24 MPa or less. It is considered that the fusion in the present invention is not limited to mere molecular diffusion due to heat, but other factors also work, and this is due to the presence or absence of orientation existing in the film of ultra-high molecular weight polyethylene by the present invention. I guessed it wasn't.
The orientation in the present invention refers to the property that ultra-high molecular weight polyethylene molecular chains or crystals are arranged in the stretching direction.
Therefore, in addition to the above SEM observation, X-ray diffraction measurement and DSC measurement were attempted.

超高分子量ポリエチレンフィルムの成形温度を150℃、成形圧力を10MPaに設定した場合の成形体を、(株)リガク製RINT RAPID-SによりX線回折測定したところ、図3に示す如き像が得られた。デバイリングの赤道線上に回折斑点が観察され、配向性の存在を示唆している。 When the molding temperature of the ultra-high molecular weight polyethylene film was set to 150 ° C. and the molding pressure was set to 10 MPa, X-ray diffraction measurement was performed by RINT RAPID-S manufactured by Rigaku Co., Ltd., and an image as shown in FIG. 3 was obtained. Was done. Diffraction spots were observed on the equatorial line of the dividing, suggesting the existence of orientation.

次いで、DSCによる測定を行った。
DSCは、状態変化による吸熱、発熱を測定し、構造の相転移、結晶化等を把握するもので、(株)日立ハイテクサイエンス製DSC7020を用い、測定にはアルミ製容器を使用した。
その結果、図4(a)に示す如く、無加圧状態でフィルムを加熱した試料の場合は超高分子量ポリエチレンの折りたたみ鎖結晶の融解由来の吸熱ピークのみが見られたのに対し、成形温度150℃、成形圧力を10MPaとした試料では伸びきり鎖結晶の融解由来と思われる吸熱ピークが見られた。
即ち、その一部を拡大した図4(b)において、150℃で10MPaに加圧した成形体のグラフは矢印に示される2点において伸びきり鎖結晶の融解を示す吸熱ピークが見られるのに対し、加圧無しで加熱したものではこれが見られなかった。
このことから、超高分子量ポリエチレンフィルムを加圧条件下で成形したものには、一定の成形温度範囲内で配向性が見られることが裏付けられた。
Then, the measurement by DSC was performed.
The DSC measures heat absorption and heat generation due to state changes, and grasps the phase transition, crystallization, etc. of the structure. A DSC7020 manufactured by Hitachi High-Tech Science Co., Ltd. was used, and an aluminum container was used for the measurement.
As a result, as shown in FIG. 4A, in the case of the sample in which the film was heated in a non-pressurized state, only the endothermic peak derived from the melting of the folded chain crystals of the ultra-high molecular weight polyethylene was observed, whereas the molding temperature was formed. In the sample at 150 ° C. and the molding pressure of 10 MPa, an endothermic peak which seems to be derived from the melting of the stretched chain crystals was observed.
That is, in FIG. 4 (b), which is a part thereof enlarged, the graph of the molded product pressurized to 10 MPa at 150 ° C. shows endothermic peaks indicating melting of the stretched chain crystal at the two points indicated by the arrows. On the other hand, this was not seen in the one heated without pressurization.
From this, it was confirmed that the ultra-high molecular weight polyethylene film molded under pressure conditions showed orientation within a certain molding temperature range.

上記は配向を同一方向に揃えたフィルムの場合であったが、複数方向に対して高強度な成形体を成形することを目的に、配向を一の方向とそれと異なる方向とに角度を変えた成形体を成形した。この成形体の衝撃破断面のSEM観察において図6に示す如き像が得られた。図6(a)は、互いを90度違えた場合のもので、一の方向の部分(図中Aの部分)と直交方向(90度)に違えた部分(図中Bの部分)は、しっかり一体化している。又、図6(a)を拡大して捉えた図6(b)にあっては、A部とB部の間にポリエチレンフィルムとなるC部とD部が観察され、そのA部及びB部との界面は密着しており、良好な接着が確認された。 The above was the case of a film in which the orientations were aligned in the same direction, but the orientation was changed between one direction and a different direction for the purpose of forming a high-strength molded product in multiple directions. The molded body was molded. An image as shown in FIG. 6 was obtained by SEM observation of the impact fracture surface of this molded product. FIG. 6A shows a case where the parts are different from each other by 90 degrees, and the part in one direction (the part A in the figure) and the part different in the orthogonal direction (90 degrees) (the part B in the figure) are. It is firmly integrated. Further, in FIG. 6B, which is an enlarged view of FIG. 6A, parts C and D, which are polyethylene films, are observed between parts A and B, and parts A and B thereof are observed. The interface with and was in close contact, and good adhesion was confirmed.

次に、本発明で得られた成形体の摩擦特性、耐衝撃強度等を測定した。
即ち、超高分子量ポリエチレンは、低摩擦であることが大きな特徴の一つであり、用途展開にも影響を与えるものである。
そこで、超高分子量ポリエチレンフィルムを上記条件下で成形した後の成形体を、摩擦・摩耗試験機(往復式摩擦摩耗試験機(新東科学(株)製HEIDON-18L)により摩擦係数を測定し、表8の結果を得た。

Figure 0007005867000008
試験方法:圧子を3/8インチのアルミナとし、荷重を200gとして測定した。
この結果、成形後の超高分子量ポリエチレンにおいてもバージン材から成形した成形体と同等の低い摩擦係数であることが確認され、超高分子量ポリエチレンの特徴である低摩擦が求められる用途に広く展開が可能となる。 Next, the friction characteristics, impact resistance, and the like of the molded product obtained in the present invention were measured.
That is, one of the major features of ultra-high molecular weight polyethylene is its low friction, which also affects the development of applications.
Therefore, the friction coefficient of the molded body after molding the ultra-high molecular weight polyethylene film under the above conditions was measured by a friction / wear tester (reciprocating friction / wear tester (HEIDON-18L manufactured by Shinto Kagaku Co., Ltd.)). , The results shown in Table 8 were obtained.
Figure 0007005867000008
Test method: The indenter was 3/8 inch alumina, and the load was 200 g.
As a result, it was confirmed that the ultra-high molecular weight polyethylene after molding has a low friction coefficient equivalent to that of the molded product molded from the virgin material, and it is widely deployed in applications that require low friction, which is a characteristic of ultra high molecular weight polyethylene. It will be possible.

次に、超高分子量ポリエチレンは耐衝撃性に優れた材料である一方、配向した成形体には衝撃強さが劣ることが懸念される。そこで、シャルピー衝撃試験を行った。結果は表9に示す通りであった。

Figure 0007005867000009
試験方法:JIS K 7111-1により、シングルノッチ試験片に対し、エッジワイズ衝撃試験を行った。ハンマーは7.5J及び4Jを用いた。同一方向の成形体においては、配向方向に対して垂直方向の衝撃とした。
この結果、配向が同一方向の成形体の場合には、57.1kJ/m、配向を90度回転させた場合には49.0kJ/mの衝撃強さとなり、45度の場合には、破壊しなかった。
従って、配向の回転角度を制御することで、高い耐衝撃性を示すことが証明されたものである。 Next, while ultra-high molecular weight polyethylene is a material having excellent impact resistance, there is a concern that the impact strength is inferior to the oriented molded body. Therefore, a Charpy impact test was conducted. The results are as shown in Table 9.
Figure 0007005867000009
Test method: An edgewise impact test was performed on a single notch test piece according to JIS K 711-1. Hammers used were 7.5J and 4J. In the molded product in the same direction, the impact was applied in the direction perpendicular to the orientation direction.
As a result, the impact strength is 57.1 kJ / m 2 when the orientation is the same direction, 49.0 kJ / m 2 when the orientation is rotated 90 degrees, and 45 degrees. , Did not destroy.
Therefore, it has been proved that high impact resistance is exhibited by controlling the rotation angle of orientation.

上記はバッテリーのセパレータ用超高分子量ポリエチレンフィルムを例に説明したが、本発明はこれに限定されず、配向性を備えた超高分子量ポリエチレン延伸フィルム体を素材としたものを広く対象とすることができる。 The above has been described by taking an ultra-high molecular weight polyethylene film for a battery separator as an example, but the present invention is not limited to this, and a wide range of objects made of an ultra-high molecular weight polyethylene stretched film body having orientation are broadly targeted. Can be done.

上記本発明の優れた効果が得られる理由は未だ詳細には定かでないが、以下の如くに推察される。
超高分子量ポリエチレンフィルムを重ね合わせて加熱すると、融点以上になった場合結晶融解し互いが融着するが、一方で、延伸によって生まれた配向は消失してしまうのが原則である。
しかし、本発明者の検討によって、分子配向が同一方向であること、成形温度が140℃~163℃の範囲であること、成形圧力が1~30MPaであること、冷却を70℃以下とすること等の基では、例外が生まれることが確認された。
先ず、超高分子量ポリエチレンをフィルム状に延伸すると、その延伸方向と同じ方向に高分子鎖や結晶が配列したものとなる。
そして、超高分子量ポリエチレンを配向と同一の方向に積層させ、加圧下において融点以上に加熱すると、結晶は融解するが、超高分子量ポリエチレンは非晶質部分や結晶の折り返し部分に絡み合い点が多く、それにより分子運動が阻害されるため、融点に近い140℃~163℃の範囲では、一定範囲分子の相互位置に大きな変化が生じることなく、配向が保持されるものとなる。
更に、無加圧では配向が失われるものを、圧力を負荷することで、配向が保持されるものとなる。これは、成形過程に加圧を加えると、分子運動が抑制されて、配向緩和が抑制され、その結果、溶融状態においても、大きな分子の位置変化が起こらず、超高分子量ポリエチレンフィルムの分子配向等には大きな変化が生じないものとなる。
一方、超高分子量ポリエチレンフィルムを配向と同一の方向に積層させると、互いの界面に同じ配向の分子鎖や結晶が並ぶものとなり融着が容易となると共に、同一方向に強い引張強さ等の物性を発揮するものとなる。
そして、この状態の超高分子量ポリエチレンフィルムを冷却していくと、分子配向を保っていた状態の分子を結晶核として結晶化する。
一方、超高分子量ポリエチレンフィルムを配向と同一の方向には積層させずに、一の方向とそれと異なる方向とに配向の角度を変えて組み合わせた場合には、結晶方向にズレが生じてしまい、融着が不完全となってしまう。そこで、低分子量のポリエチレンフィルムを両者間に挟み込むと、結晶方向がズレた上下のフィルムの間に、より低分子量のポリエチレンが介在することとなる。この、低分子量のポリエチレンは、超高分子量ポリエチレンと比較し、分子に絡み合い点が少なく、融点以上で加熱した場合、分子運動が活発になり、分子は自由な形態をとることが可能となる。これが冷却されると、超高分子量ポリエチレンフィルム間で、それぞれの分子配向に合った形態の結晶を形成するか、低分子量のポリエチレン鎖は超高分子量ポリエチレン鎖とからみ合いを形成した状態で固化され、フィルム同士を結合させるものとなる。且つ、超高分子量ポリエチレンの配向性の保持を阻害することはなく、引張強さ等の機械的強度が発揮されることとなる。
斯くして、延伸超高分子量ポリエチレンフィルムの配向を保持しつつ融着によって一体化した成形体が得られるものと推察される。
The reason why the above-mentioned excellent effect of the present invention can be obtained is not yet clear in detail, but it is presumed as follows.
When ultra-high molecular weight polyethylene films are laminated and heated, the crystals melt and fuse with each other when the temperature exceeds the melting point, but in principle, the orientation created by stretching disappears.
However, according to the study of the present inventor, the molecular orientation should be in the same direction, the molding temperature should be in the range of 140 ° C to 163 ° C, the molding pressure should be 1 to 30 MPa, and the cooling should be 70 ° C or less. It was confirmed that an exception was made.
First, when ultra-high molecular weight polyethylene is stretched into a film, polymer chains and crystals are arranged in the same direction as the stretching direction.
When ultra-high molecular weight polyethylene is laminated in the same direction as the orientation and heated above the melting point under pressure, the crystals melt, but the ultra-high molecular weight polyethylene has many entanglement points in the amorphous part and the folded part of the crystal. As a result, the molecular motion is inhibited, so that the orientation is maintained in the range of 140 ° C. to 163 ° C., which is close to the melting point, without causing a large change in the mutual position of the molecules in a certain range.
Further, the orientation is maintained by applying pressure to the one that loses its orientation without pressurization. This is because when pressure is applied to the molding process, molecular motion is suppressed and orientation relaxation is suppressed, and as a result, the position of large molecules does not change even in the molten state, and the molecular orientation of the ultra-high molecular weight polyethylene film. Etc. will not change significantly.
On the other hand, when the ultra-high molecular weight polyethylene film is laminated in the same direction as the orientation, molecular chains and crystals having the same orientation are lined up at the interface with each other, facilitating fusion and facilitating fusion, and strong tensile strength in the same direction. It will demonstrate its physical properties.
Then, when the ultra-high molecular weight polyethylene film in this state is cooled, the molecules in the state where the molecular orientation is maintained are crystallized as crystal nuclei.
On the other hand, if the ultra-high molecular weight polyethylene film is not laminated in the same direction as the orientation and is combined by changing the orientation angle between one direction and a different direction, a deviation occurs in the crystal direction. The fusion becomes incomplete. Therefore, when a low molecular weight polyethylene film is sandwiched between the two films, the lower molecular weight polyethylene is interposed between the upper and lower films whose crystal directions are deviated. Compared with ultra-high molecular weight polyethylene, this low molecular weight polyethylene has fewer entanglement points with molecules, and when heated above the melting point, molecular motion becomes active and the molecules can take a free form. When this is cooled, crystals are formed between the ultra-high molecular weight polyethylene films in a form suitable for each molecular orientation, or the low molecular weight polyethylene chains are solidified in a state of being entangled with the ultra-high molecular weight polyethylene chains. , The films are bonded to each other. Moreover, it does not hinder the maintenance of the orientation of the ultra-high molecular weight polyethylene, and mechanical strength such as tensile strength is exhibited.
Thus, it is presumed that a molded body integrated by fusion while maintaining the orientation of the stretched ultra-high molecular weight polyethylene film can be obtained.

本発明成形体は、金型での圧縮成形にて成形体とするか、又は、必要に応じて金型での成形体を切削加工等して求められる形状に加工することができ、これを、ギア、ガスケット、人工関節、カップ、ライナー、ボール、ステム、車両床材等に広く応用することが可能である。
The molded product of the present invention can be made into a molded product by compression molding with a mold, or if necessary, the molded product with a mold can be processed into a required shape by cutting or the like. , Gears, gaskets, artificial joints, cups, liners, balls, stems, vehicle floor materials, etc.

Claims (4)

a)配向性を備えた超高分子量ポリエチレン延伸フィルム体を対象とし、
b)配向を一の方向と隣り合うそれと異なる方向とに配向の組み合わされる角度を変えて順次フィルムを重ね合わせ、
c)該一の方向のフィルムとそれと異なる方向のフィルムとの間にポリエチレンフィルムを挿入し、
d)成形温度を140℃~163℃の範囲に加熱しつつ、
e)成形圧力を1MPa~30MPaとして加圧し、
f)加圧状態を維持しつつ70℃以下に冷却し、
g)配向性を保持しつつ一体化した成形体を得る、
ことを特徴とする超高分子量ポリエチレン成形体の製造方法。
a) Targeting ultra-high molecular weight polyethylene stretched film with orientation
b) The films are sequentially laminated by changing the combined angle of the orientation in one direction and the adjacent and different directions.
c) Insert a polyethylene film between the film in one direction and the film in a different direction.
d) While heating the molding temperature to the range of 140 ° C to 163 ° C,
e) Pressurize with a molding pressure of 1 MPa to 30 MPa.
f) Cool to 70 ° C or lower while maintaining the pressurized state,
g) Obtain an integrated molded product while maintaining the orientation.
A method for producing an ultra-high molecular weight polyethylene molded product.
請求項1にあって、一の方向のフィルムと、それと異なる方向のフィルムとがなす角度が90度であることを特徴とする超高分子量ポリエチレン成形体の製造方法。 The method for producing an ultra-high molecular weight polyethylene molded product according to claim 1, wherein the angle formed by the film in one direction and the film in a different direction is 90 degrees. 請求項1にあって、一の方向のフィルムと、それと異なる方向のフィルムとがなす角度が45度であることを特徴とする超高分子量ポリエチレン成形体の製造方法。 The method for producing an ultra-high molecular weight polyethylene molded product according to claim 1, wherein the angle formed by the film in one direction and the film in a different direction is 45 degrees. 配向性を備えた超高分子量ポリエチレン延伸フィルム体を、その配向を一の方向と隣り合うそれと異なる方向とに配向の組み合わされる角度を変えて順次フィルムを重ね合わせ、該一の方向のフィルムとそれと異なる方向のフィルムとの間にポリエチレンフィルムを挿入させて配向性を保持しつつ一体化して成ることを特徴とする成形体。 The ultra-high molecular weight polyethylene stretched film body having orientation is sequentially laminated by changing the combined angle of the orientation in one direction and the direction different from that adjacent to it, and the film in one direction and the film in one direction are overlapped with each other. A molded product characterized in that a polyethylene film is inserted between films in different directions and integrated while maintaining orientation.
JP2016071119A 2016-03-31 2016-03-31 High-strength ultra-high molecular weight polyethylene molded product and its manufacturing method Active JP7005867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016071119A JP7005867B2 (en) 2016-03-31 2016-03-31 High-strength ultra-high molecular weight polyethylene molded product and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016071119A JP7005867B2 (en) 2016-03-31 2016-03-31 High-strength ultra-high molecular weight polyethylene molded product and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017177673A JP2017177673A (en) 2017-10-05
JP7005867B2 true JP7005867B2 (en) 2022-02-10

Family

ID=60003360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016071119A Active JP7005867B2 (en) 2016-03-31 2016-03-31 High-strength ultra-high molecular weight polyethylene molded product and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7005867B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054455A1 (en) * 2019-09-20 2021-03-25 三井化学株式会社 Method for remanufacturing article transporting container sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052428A (en) 1998-08-11 2000-02-22 Sekisui Chem Co Ltd Laminate producing method and apparatus
JP2000167924A (en) 1998-05-21 2000-06-20 Sekisui Chem Co Ltd Manufacture of laminate
JP2001198937A (en) 2000-01-21 2001-07-24 Mitsui Chemicals Inc Method for manufacturing high-molecular weight polyolefin laminated film excellent in transparency
JP2015505756A (en) 2011-12-13 2015-02-26 ハネウェル・インターナショナル・インコーポレーテッド Laminate made of ultra high molecular weight polyethylene tape
JP2015227450A (en) 2009-08-11 2015-12-17 ハネウェル・インターナショナル・インコーポレーテッド High strength ultra-high molecular weight polyethylene tape articles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232030A (en) * 1985-08-02 1987-02-12 Nippon Petrochem Co Ltd Method for molding polyethylene sheet with ultra-high molecular weight
JPS62156928A (en) * 1985-12-28 1987-07-11 Mitsui Petrochem Ind Ltd Manufacture of polyethylene film
EP0410384B1 (en) * 1989-07-28 1995-04-05 Nippon Oil Co. Ltd. Process for the continuous production of high-strength and high-modulus polyethylene material
JPH11268060A (en) * 1998-03-24 1999-10-05 Nippon Mitsubishi Oil Corp Manufacture of polyethylene material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167924A (en) 1998-05-21 2000-06-20 Sekisui Chem Co Ltd Manufacture of laminate
JP2000052428A (en) 1998-08-11 2000-02-22 Sekisui Chem Co Ltd Laminate producing method and apparatus
JP2001198937A (en) 2000-01-21 2001-07-24 Mitsui Chemicals Inc Method for manufacturing high-molecular weight polyolefin laminated film excellent in transparency
JP2015227450A (en) 2009-08-11 2015-12-17 ハネウェル・インターナショナル・インコーポレーテッド High strength ultra-high molecular weight polyethylene tape articles
JP2015505756A (en) 2011-12-13 2015-02-26 ハネウェル・インターナショナル・インコーポレーテッド Laminate made of ultra high molecular weight polyethylene tape

Also Published As

Publication number Publication date
JP2017177673A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6597309B2 (en) Cutting prepreg and cutting prepreg sheet
Dwiyati et al. Influence of layer thickness and 3D printing direction on tensile properties of ABS material
TWI311593B (en) Porous polymeric membrane toughened composites
TWI793144B (en) Prepreg laminate and method for producing fiber-reinforced plastic using prepreg laminate
JP5614746B2 (en) Method for producing ultra high molecular weight polyethylene film
JP6965957B2 (en) Laminated base material, its manufacturing method, and carbon fiber reinforced resin base material
TWI643738B (en) Preforms, sheet materials and integrally formed sheet materials
TW200948593A (en) Film material exhibiting textile properties, and method and apparatus for its manufacture
CN107249882A (en) Resin supplying material, the application method of reinforcing fiber, the manufacture method of preform and fiber-reinforced resin
JP6464602B2 (en) LAMINATED SUBSTRATE MANUFACTURING METHOD AND LAMINATED SUBSTRATE
JP2013221114A (en) Resin sheet made of carbon fiber composite resin material, resin molded product and method for manufacturing the same
TW202016188A (en) Polyamide-based resin foamed particlesand method for manufacturing same
JP2017043095A (en) Fiber-reinforced composite material molding and manufacturing method of the same
JP2013208725A (en) Carbon fiber-reinforced thermoplastic resin laminated body and method of producing the same
TW201707923A (en) Manufacturing method of fiber-reinforced composite material capable of suppressing appearance defects caused by mold-release films
CN110712379A (en) Carbon fiber reinforced thermoplastic resin plate and manufacturing method thereof
JP7005867B2 (en) High-strength ultra-high molecular weight polyethylene molded product and its manufacturing method
JPWO2012008223A1 (en) Production method of polymer products
TWI740075B (en) Composite laminated body and its manufacturing method
JP2021091116A (en) Polypropylene-based multilayer sheet and method for producing the same
JP6244265B2 (en) Method for producing fiber reinforced composite and fiber reinforced composite
CN107718398B (en) Three-dimensional shaped article and method for producing same
JP2013053245A (en) Thin-wall molding having uniform thickness, and method for manufacturing the same
JP2020049925A (en) Method for producing carbon fiber-reinforced thermoplastic resin composite material
JP2017206615A (en) Method for producing fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210716

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210716

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211110

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211217

R150 Certificate of patent or registration of utility model

Ref document number: 7005867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150