JP7003313B1 - Powdered oil and fat composition - Google Patents

Powdered oil and fat composition Download PDF

Info

Publication number
JP7003313B1
JP7003313B1 JP2021077897A JP2021077897A JP7003313B1 JP 7003313 B1 JP7003313 B1 JP 7003313B1 JP 2021077897 A JP2021077897 A JP 2021077897A JP 2021077897 A JP2021077897 A JP 2021077897A JP 7003313 B1 JP7003313 B1 JP 7003313B1
Authority
JP
Japan
Prior art keywords
oil
fat
powdered
type
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021077897A
Other languages
Japanese (ja)
Other versions
JP2022171315A (en
Inventor
誠也 竹口
哲朗 岩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Oillio Group Ltd
Original Assignee
Nisshin Oillio Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Oillio Group Ltd filed Critical Nisshin Oillio Group Ltd
Priority to JP2021077897A priority Critical patent/JP7003313B1/en
Application granted granted Critical
Publication of JP7003313B1 publication Critical patent/JP7003313B1/en
Publication of JP2022171315A publication Critical patent/JP2022171315A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】本発明は、新規粉末油脂組成物、好ましくは流動性を改善した粉末油脂組成物を提供することを目的とする。【解決手段】グリセリンの1位~3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物であって、前記炭素数xが16~20から選択される整数であり、前記粉末油脂組成物がβ型油脂を含み、前記油脂成分のX線回折ピークにおいて、ピーク強度比が、0.6~1であり、前記粉末油脂組成物の凝集度が60%以下であり、該粉末油脂組成物のゆるめ嵩密度が0.05~0.6g/cm3であり、安息角相対値が90%以下であることを特徴とする、粉末油脂組成物を提供する。【選択図】図1PROBLEM TO BE SOLVED: To provide a novel powder oil / fat composition, preferably a powder oil / fat composition having improved fluidity. SOLUTION: The powder fat and oil composition contains a fat and oil component containing one or more kinds of XXX type triglycerides having a fatty acid residue X having a carbon number x at the 1st to 3rd positions of glycerin, and the carbon number x is 16. It is an integer selected from about 20 and the powdered fat and oil composition contains β-type fat and oil, and the peak intensity ratio is 0.6 to 1 at the X-ray diffraction peak of the fat and oil component, and the powdered fat and oil composition. The degree of aggregation of the powdered fat or oil is 60% or less, the loosening bulk density of the powdered fat or oil composition is 0.05 to 0.6 g / cm3, and the relative value of the angle of repose is 90% or less. The composition is provided. [Selection diagram] Fig. 1

Description

本発明は、粉末油脂組成物及びその用途に関する。より具体的には、本発明は、XXX型トリグリセリドを含む油脂成分(β型油脂を含み、X線回折ピークにおいて、特定のX線回折ピーク比を有する)を含有する粉末油脂組成物であって、当該粉末油脂組成物が特定の凝集度、相対的な安息角、及びゆるめ嵩密度を有することを特徴とする粉末油脂組成物、当該粉末油脂組成物を含む食品、並びに当該粉末油脂組成物を含む粉体流動性改良剤等に関する。 The present invention relates to a powdered oil / fat composition and its use. More specifically, the present invention is a powder oil / fat composition containing an oil / fat component containing XXX-type triglyceride (containing β-type oil / fat and having a specific X-ray diffraction peak ratio at the X-ray diffraction peak). , A powdered fat composition characterized by having a specific degree of aggregation, a relative angle of repose, and a loose bulk density, a food containing the powdered fat composition, and the powdered fat composition. Containing powder fluidity improver and the like.

これまで、粉末油脂組成物として、XXX型卜リグリセリドを含む油脂組成物原料を融解後、冷却固化し、β型油脂を含有し、その粒子形状が板状である粉末油脂組成物が開発されていた(特許文献1)。かかる粉末油脂組成物は、各種粉体の粉体流動性改善の目的等で使用されてきたが、さらに粉体流動性を高くすることができる素材が求められていた。また、粉末油脂組成物を調製する方法として、極度硬化油等の常温で固体脂含量が高い油脂を粉砕後、篩で粒度を揃える方法(特許文献2)、及び、極度硬化油等の常温で固体脂含量が高い油脂を融解し、直接噴霧する方法(特許文献3)等が知られているが、工程が煩雑であるためより工業化に適した方法が求められていた。また、かかる方法で製造された粉末油脂よりも、さらに粉体流動性を高くすることができる素材も求められていた。 So far, as a powdered fat or oil composition, a powdered fat or oil composition containing a β-type fat or oil after melting the raw material of the fat or oil composition containing the XXX type liglyceride has been developed. (Patent Document 1). Such powdered oil / fat compositions have been used for the purpose of improving the powder fluidity of various powders, but there has been a demand for a material capable of further increasing the powder fluidity. Further, as a method for preparing a powdered oil / fat composition, a method of crushing an oil / fat having a high solid fat content at room temperature such as extremely hydrogenated oil and then aligning the particle size with a sieve (Patent Document 2), and a method of making the particle size uniform at room temperature such as extremely hydrogenated oil at room temperature. A method of melting fats and oils having a high solid fat content and directly spraying them (Patent Document 3) is known, but since the process is complicated, a method more suitable for industrialization has been sought. Further, there has been a demand for a material capable of further increasing the powder fluidity as compared with the powdered fats and oils produced by such a method.

国際公開WO2017/051910International release WO2017 / 051910 特開昭52-71390号公報Japanese Unexamined Patent Publication No. 52-71390 特開平6-245700号公報Japanese Unexamined Patent Publication No. 6-245700

本発明の目的の一つは、XXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物であって、上記油脂成分がβ型油脂を含み(X線回折ピークにおいて、特定のX線回折ピーク比を有する)、特定の凝集度、相対的な安息角、及びゆるめ嵩密度を有する粉末油脂組成物を提供することであり得る。
本発明の目的の一つは、上記粉末油脂組成物を含有することを特徴とする、食品及び粉体流動性改良剤を提供することであり得る。
本発明の目的の一つは、流動性を改善した粉体、例えば、流動性を改善した粉末食品や流動性を改善した非食品の粉末を提供することであり得る。
One of the objects of the present invention is a powder oil / fat composition containing an oil / fat component containing XXX-type triglyceride, wherein the oil / fat component contains β-type oil / fat (at a specific X-ray diffraction peak ratio at an X-ray diffraction peak). It is possible to provide a powdered fat composition having a specific degree of aggregation, a relative angle of repose, and a loose bulk density.
One of the objects of the present invention may be to provide a food product and a powder fluidity improving agent, which comprises the above-mentioned powdered oil / fat composition.
One of the objects of the present invention may be to provide a powder having improved fluidity, for example, a powdered food having improved fluidity or a non-food powder having improved fluidity.

本発明者らは、上記課題を達成するため、特定のXXX型トリグリセリド(1種類又はそれ以上)を含む油脂成分であって、当該油脂成分がβ型油脂を含むものを含有する粉末油脂組成物が、特定の凝集度、相対的な安息角、及びゆるめ嵩密度等の少なくともいずれかの特性を有する場合に、流動性改善などの新規な特性を有する粉末油脂組成物を提供できることを見出し、本発明に至った。即ち、本発明は、以下の態様を含み得る。 In order to achieve the above problems, the present inventors have made a powdered oil / fat composition containing an oil / fat component containing a specific XXX-type triglyceride (one or more), wherein the oil / fat component contains a β-type oil / fat. However, they have found that it is possible to provide a powdered oil / fat composition having novel properties such as improved fluidity when it has at least one property such as a specific degree of cohesion, a relative angle of repose, and a loose bulk density. It led to the invention. That is, the present invention may include the following aspects.

〔1〕グリセリンの1位~3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物であって、前記炭素数xが16~20から選択される整数であり、前記粉末油脂組成物がβ型油脂を含み、
前記油脂成分のX線回折ピークにおいて、β型の特徴的な4.6Å付近のピークとα型の特徴的な4.2Å付近のピークとの強度比:[4.6Å付近のピーク強度/(4.6Å付近のピーク強度+4.2Å付近のピーク強度)]が、0.6~1であり、
前記粉末油脂組成物の凝集度が60%以下であり、該粉末油脂組成物のゆるめ嵩密度が0.05~0.6g/cm3であり、式(I)により求めた安息角相対値が90%以下であることを特徴とする、粉末油脂組成物。
安息角相対値=[前記粉末油脂組成物と粉末澱粉との混合粉末の安息角]/[前記粉末油脂組成物を含有しない前記粉末澱粉のみの安息角]×100 (I)
(式(I)中、「混合粉末」は、混合粉末全体の質量に対して粉末油脂組成物を1質量%含有する。)
〔2〕前記粉末油脂組成物の全質量を100質量%とした場合、該粉末油脂組成物中に前記XXX型トリグリセリドを50質量%以上含有する、前記〔1〕に記載の粉末油脂組成物。
〔3〕前記粉末油脂組成物が、表面上に薄片が複数存在する薄片含有粒子の形態である、前記〔1〕又は〔2〕に記載の粉末油脂組成物。
〔4〕前記粒子の体積平均径に基づく平均粒径が、0.5~200μmである、前記〔3〕に記載の粉末油脂組成物。
〔5〕
前記薄片における長辺の平均の長さが0.1~5μmである、前記〔3〕又は〔4〕に記載の粉末油脂組成物。
〔6〕
前記〔1〕~〔5〕のいずれか1項に記載の粉末油脂組成物を含有することを特徴とする、食品。
〔7〕前記〔1〕~〔5〕のいずれか1項に記載の粉末油脂組成物を含有することを特徴とする、粉体流動性改良剤。
[1] A powdered oil / fat composition containing an oil / fat component containing one or more XXX-type triglycerides having a fatty acid residue X having the carbon number x at the 1st to 3rd positions of glycerin, wherein the carbon number x is 16 to 16. An integer selected from 20, wherein the powdered fat composition contains β-type fats and oils.
In the X-ray diffraction peak of the oil and fat component, the intensity ratio between the characteristic peak of β type near 4.6 Å and the characteristic peak of α type around 4.2 Å: [Peak intensity around 4.6 Å / ( Peak intensity around 4.6 Å + peak intensity around 4.2 Å)] is 0.6 to 1.
The degree of cohesion of the powdered oil / fat composition is 60% or less, the loosening bulk density of the powdered oil / fat composition is 0.05 to 0.6 g / cm 3 , and the relative value of the angle of repose determined by the formula (I) is A powdered oil / fat composition characterized by being 90% or less.
Relative value of repose = [angle of repose of the mixed powder of the powdered oil / fat composition and powdered starch] / [angle of repose of only the powdered starch not containing the powdered oil / fat composition] × 100 (I)
(In the formula (I), the "mixed powder" contains 1% by mass of the powdered oil / fat composition with respect to the total mass of the mixed powder.)
[2] The powdered fat or oil composition according to the above [1], wherein the powdered fat or oil composition contains 50% by mass or more of the XXX type triglyceride when the total mass of the powdered fat or oil composition is 100% by mass.
[3] The powdered fat or oil composition according to the above [1] or [2], wherein the powdered fat or oil composition is in the form of flakyse-containing particles in which a plurality of flakes are present on the surface.
[4] The powdered oil / fat composition according to the above [3], wherein the average particle size based on the volume average diameter of the particles is 0.5 to 200 μm.
[5]
The powdered oil / fat composition according to the above [3] or [4], wherein the average length of the long side of the flakes is 0.1 to 5 μm.
[6]
A food product comprising the powdered oil / fat composition according to any one of the above [1] to [5].
[7] A powder fluidity improving agent comprising the powder oil / fat composition according to any one of the above [1] to [5].

また、本発明は、以下の態様を含んでいてもよい。
〔A〕
グリセリンの1位~3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物の製造方法であって、前記炭素数xが16~20から選択される整数であり、前記油脂成分がβ型油脂を含み、前記粉末油脂組成物のゆるめ嵩密度が0.05~0.6g/cm3であり、
以下の工程、
(a)XXX型トリグリセリドを含む固体の油脂組成物原料を準備する工程、
(b)工程(a)で得られた固体の油脂組成物原料を融点未満の温度で加熱して、当該固体の油脂組成物原料中の油脂成分をβ型油脂に変化させ、β型油脂含有組成物原料を得る工程、及び
(c)工程(b)で得られたβ型油脂含有組成物原料を、機械的な粉砕を伴わない該原料同士の衝突により粉砕し、粉末油脂組成物を得る工程、
を含むことを特徴とする粉末油脂組成物の製造方法。
〔B〕
前記粉末油脂組成物の全質量を100質量%とした場合、該粉末油脂組成物中に前記XXX型トリグリセリドを50質量%以上含有する、〔A〕に記載の粉末油脂組成物の製造方法。
〔C〕
前記工程(b)の融点未満の温度が、前記固体の油脂組成物原料の融点より1~30℃低い温度である、〔A〕又は〔B〕に記載の粉末油脂組成物の製造方法。
〔D〕
前記工程(b)が、前記固体の油脂組成物原料を静置した状態で行われる、〔A〕~〔C〕のいずれかに記載の粉末油脂組成物の製造方法。
〔E〕
前記工程(b)が、前記固体の油脂組成物原料を非静置状態で行われる、〔A〕~〔C〕のいずれかに記載の粉末油脂組成物の製造方法。
〔F〕
前記非静置状態が、前記固体の油脂組成物原料を撹拌している状態である、〔E〕に記載の粉末油脂組成物の製造方法。
〔G〕
前記工程(c)の原料同士の衝突による粉砕が、機械的な粉砕を伴わない気流式粉砕機を用いた粉砕である、請求項〔A〕~〔F〕のいずれかに記載の粉末油脂組成物の製造方法。
〔H〕
前記XXX型トリグリセリドを含む固体の油脂組成物原料が、菜種極度硬化油である、請求項〔A〕~〔G〕のいずれかに記載の粉末油脂組成物の製造方法。
In addition, the present invention may include the following aspects.
[A]
A method for producing a powdered oil / fat composition containing an oil / fat component containing one or more XXX-type triglycerides having a fatty acid residue X having a carbon number x at the 1st to 3rd positions of glycerin, wherein the carbon number x is 16 to 16. It is an integer selected from 20, the fat and oil component contains β-type fat and oil, and the loosening bulk density of the powdered fat and oil composition is 0.05 to 0.6 g / cm 3 .
The following process,
(A) Step of preparing a solid oil / fat composition raw material containing XXX-type triglyceride,
(B) The solid oil / fat composition raw material obtained in step (a) is heated at a temperature below the melting point to change the oil / fat component in the solid oil / fat composition raw material into β-type oil / fat, and contains β-type oil / fat. The β-type oil-and-fat-containing composition raw material obtained in the steps of obtaining the composition raw material and (c) step (b) is pulverized by collision between the raw materials without mechanical pulverization to obtain a powdered oil-and-fat composition. Process,
A method for producing a powdered oil / fat composition, which comprises.
[B]
The method for producing a powdered fat or oil composition according to [A], wherein the powdered fat or oil composition contains 50% by mass or more of the XXX type triglyceride when the total mass of the powdered fat or oil composition is 100% by mass.
[C]
The method for producing a powdered fat or oil composition according to [A] or [B], wherein the temperature below the melting point of the step (b) is 1 to 30 ° C. lower than the melting point of the solid fat or oil composition raw material.
[D]
The method for producing a powdered oil / fat composition according to any one of [A] to [C], wherein the step (b) is performed in a state where the solid oil / fat composition raw material is allowed to stand.
[E]
The method for producing a powdered fat or oil composition according to any one of [A] to [C], wherein the step (b) is performed in a non-standing state of the solid fat and oil composition raw material.
[F]
The method for producing a powdered oil / fat composition according to [E], wherein the non-standing state is a state in which the solid oil / fat composition raw material is agitated.
[G]
The powdered oil / fat composition according to any one of claims [A] to [F], wherein the pulverization due to the collision between the raw materials in the step (c) is pulverization using an air flow type pulverizer without mechanical pulverization. Manufacturing method of things.
[H]
The method for producing a powdered fat or oil composition according to any one of claims [A] to [G], wherein the raw material for the solid fat and oil composition containing the XXX type triglyceride is rapeseed extremely hydrogenated oil.

本発明により、XXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物であって、上記油脂成分がβ型油脂を含み、特定の凝集度、相対的な安息角、及びゆるめ嵩密度を有する粉末油脂組成物を提供することができる。
本発明により、上記粉末油脂組成物を含有することを特徴とする、食品及び粉体流動性改良剤を提供することができる。
本発明により、流動性を改善した粉体、例えば、流動性を改善した粉末食品や流動性を改善した非食品の粉末や粉末食品を提供することができる。
INDUSTRIAL APPLICABILITY According to the present invention, a powdered oil / fat composition containing an oil / fat component containing XXX-type triglyceride, wherein the oil / fat component contains β-type oil / fat and has a specific degree of cohesion, a relative angle of repose, and a loose bulk density. An oil / fat composition can be provided.
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a food product and a powder fluidity improving agent, which are characterized by containing the powdered oil / fat composition.
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a powder having improved fluidity, for example, a powdered food having improved fluidity, a non-food powder having improved fluidity, or a powdered food.

製造例1の粉末油脂組成物(β型油脂)の外観写真である。It is an appearance photograph of the powder fats and oils composition (β type fats and oils) of Production Example 1. 製造例4の粉末油脂組成物(β型油脂)の外観写真である。It is an appearance photograph of the powder fat composition (β type fat) of Production Example 4. 製造比較例1の粉末油脂組成物(α型及びβ型油脂)の外観写真である。It is an appearance photograph of the powder fat composition (α-type and β-type fats and oils) of the production comparative example 1. 製造比較例2の粉末油脂組成物(β型油脂)の顕微鏡写真である。It is a micrograph of the powder fat composition (β type fat) of production comparative example 2. 製造比較例5の粉末油脂組成物(β型油脂)の顕微鏡写真である。It is a micrograph of the powder fat composition (β type fat) of the production comparative example 5. 製造比較例8の粉末油脂組成物(β型油脂)の顕微鏡写真である。It is a micrograph of the powder fat composition (β type fat) of the production comparative example 8. 製造比較例9の粉末油脂組成物(β型油脂)の顕微鏡写真である。It is a micrograph of the powder fat composition (β type fat) of the production comparative example 9. 製造例1を40℃の恒温槽で5日間保管した後の外観写真である。It is an appearance photograph after the production example 1 was stored in the constant temperature bath of 40 degreeC for 5 days. 製造比較例1を40℃の恒温槽で5日間保管した後の外観写真である。It is an appearance photograph after the production comparative example 1 was stored in the constant temperature bath of 40 degreeC for 5 days. 製造比較例4を40℃の恒温槽で5日間保管した後の外観写真である。It is an appearance photograph after the production comparative example 4 was stored in the constant temperature bath of 40 degreeC for 5 days.

ここで、発明を実施するための形態を詳説するが、以下で例示する好ましい態様やより好ましい態様等は、「好ましい」や「より好ましい」等の表現にかかわらず適宜相互に組み合わせて使用することができる。また、数値範囲の記載は例示であって、各範囲の上限と下限並びに実施例の数値とを適宜組み合わせた範囲も好ましく使用することができる。さらに、「含有する」又は「含む」等の用語は、「本質的になる」や「のみからなる」と読み替えてもよい。 Here, the embodiments for carrying out the invention will be described in detail, but the preferred embodiments and more preferred embodiments exemplified below shall be used in combination with each other as appropriate regardless of expressions such as "favorable" and "more preferable". Can be done. Further, the description of the numerical range is an example, and a range in which the upper limit and the lower limit of each range and the numerical values of the examples are appropriately combined can also be preferably used. Further, terms such as "contains" or "contains" may be read as "essentially" or "consisting only".

<粉末油脂組成物>
本発明の一態様は、グリセリンの1位~3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物であって、前記炭素数xが16~20から選択される整数であり、前記粉末油脂組成物がβ型油脂を含み、
前記油脂成分のX線回折ピークにおいて、β型の特徴的な4.6Å付近のピークとα型の特徴的な4.2Å付近のピークとの強度比:[4.6Å付近のピーク強度/(4.6Å付近のピーク強度+4.2Å付近のピーク強度)](以下、ピーク強度比ともいう。)が、0.6~1であり、
前記粉末油脂組成物の凝集度が60%以下であり、該粉末油脂組成物のゆるめ嵩密度が0.05~0.6g/cm3であり、式(I)により求めた安息角相対値が90%以下であることを特徴とする、粉末油脂組成物に関する。
安息角相対値=[前記粉末油脂組成物と粉末澱粉との混合粉末の安息角]/[前記粉末油脂組成物を含有しない前記粉末澱粉のみの安息角]×100 (I)
ここで、式(I)中、「混合粉末」は、混合粉末全体の質量に対して粉末油脂組成物を1質量%含有する。
以下、本発明の粉末油脂組成物を詳細に説明する。
<Powdered oil and fat composition>
One aspect of the present invention is a powdered oil / fat composition containing an oil / fat component containing one or more XXX-type triglycerides having a fatty acid residue X having carbon number x at the 1st to 3rd positions of glycerin. x is an integer selected from 16 to 20, and the powdered fat or oil composition contains β-type fat or oil.
In the X-ray diffraction peak of the fat component, the intensity ratio between the characteristic peak of β type near 4.6 Å and the characteristic peak of α type around 4.2 Å: [Peak intensity around 4.6 Å / ( Peak intensity near 4.6 Å + peak intensity near 4.2 Å)] (hereinafter, also referred to as peak intensity ratio) is 0.6 to 1.
The degree of cohesion of the powdered oil / fat composition is 60% or less, the loosening bulk density of the powdered oil / fat composition is 0.05 to 0.6 g / cm 3 , and the relative value of the angle of repose determined by the formula (I) is The present invention relates to a powdered oil / fat composition, which is characterized by being 90% or less.
Relative value of repose = [angle of repose of the mixed powder of the powdered oil / fat composition and powdered starch] / [angle of repose of only the powdered starch not containing the powdered oil / fat composition] × 100 (I)
Here, in the formula (I), the "mixed powder" contains 1% by mass of the powdered oil / fat composition with respect to the total mass of the mixed powder.
Hereinafter, the powdered oil / fat composition of the present invention will be described in detail.

<油脂成分>
本発明の粉末油脂組成物は、油脂成分を含有する。当該油脂成分は、少なくともXXX型トリグリセリドを含み、任意にその他のトリグリセリドを含む。
上記油脂成分はβ型油脂を含む。ここで、β型油脂とは、油脂の結晶多形の一つであるβ型の結晶のみからなる油脂である。その他の結晶多形の油脂としては、β’型油脂及びα型油脂があり、β’型油脂とは、油脂の結晶多形の一つであるβ’型の結晶のみからなる油脂である。α型油脂とは、油脂の結晶多形の一つであるα型の結晶のみからなる油脂である。油脂の結晶には、同一組成でありながら、異なる副格子構造(結晶構造)を持つものがあり、結晶多形と呼ばれている。代表的には、六方晶型、斜方晶垂直型及び三斜晶平行型があり、それぞれα型、β’型及びβ型と呼ばれている。また、各多形の融点はα、β’、βの順に融点が高くなり、各多形の融点は、炭素数xの脂肪酸残基Xの種類により異なるので、以下、表1にそれぞれ、トリパルミチン、トリステアリン、トリアラキジンである場合の各多形の融点(℃)を示す。なお、表1は、Nissim Garti et al.、”Crystallization and Polymorphism of Fats and Fatty Acids”、Marcel Dekker Inc.、1988、pp.32-33に基づいて作成した。そして、表1の作成にあたり、融点の温度(℃)は小数点第1位を四捨五入した。また、油脂の組成とその各多形の融点がわかれば、少なくとも当該油脂中にβ型油脂が存在するか否かを検出することができる。
<Fat and oil components>
The powdered oil / fat composition of the present invention contains an oil / fat component. The fat and oil component contains at least XXX type triglyceride, and optionally contains other triglycerides.
The above fats and oils include β-type fats and oils. Here, the β-type fat and oil is a fat and oil composed of only β-type crystals, which is one of the polymorphs of crystals of the fat and oil. Other polymorphic fats and oils include β'type fats and oils and α-type fats and oils, and β'type fats and oils are fats and oils composed only of β'type crystals, which is one of the polymorphic crystals of fats and oils. The α-type fats and oils are fats and oils composed of only α-type crystals, which is one of the polymorphs of crystals of fats and oils. Some fat crystals have the same composition but different sublattice structures (crystal structures), and are called crystal polymorphs. Typically, there are hexagonal type, orthorhombic vertical type and triclinic parallel type, which are called α type, β'type and β type, respectively. Further, the melting points of each polymorph become higher in the order of α, β', β, and the melting point of each polymorph differs depending on the type of fatty acid residue X having the number of carbon atoms x. The melting points (° C) of each polymorph in the case of tripalmitin, tristearin, and triarachidin are shown. Table 1 was prepared based on Nissim Garti et al., "Crystallization and Polymorphism of Fats and Fatty Acids", Marcel Dekker Inc., 1988, pp. 32-33. Then, in preparing Table 1, the melting point temperature (° C.) was rounded off to the first decimal place. Further, if the composition of the fat and oil and the melting point of each polymorph thereof are known, it is possible to detect at least whether or not the β-type fat and oil is present in the fat and oil.

Figure 0007003313000002
Figure 0007003313000002

これらの多形を同定する一般的な手法は、X線回折法があり、回折条件は下記のブラッグの式によって与えられる。
2dsinθ=nλ(n=1,2,3・・・)
この式を満たす位置に回折ピークが現れる。ここでdは格子定数、θは回折(入射)角、λはX線の波長、nは自然数である。短面間隔に対応する回折ピークの2θ=16~27°からは、結晶中の側面のパッキング(副格子)に関する情報が得られ、多形の同定を行なうことができる。特にトリアシルグリセロールの場合、2θ=19、23、24°(4.6Å付近、3.9Å付近、3.8Å付近)にβ型の特徴的ピークが、21°(4.2Å)付近にα型の特徴的なピークが出現する。なお、X線回折測定は、例えば、20℃に維持したX線回折装置((株)リガク、全自動多目的X線回折装置Smart Lab 9 kW)を用いて測定される。X線の光源としてはCuKα線(1.54Å)が最もよく利用される。
A common method for identifying these polymorphs is X-ray diffraction, and the diffraction conditions are given by Bragg's equation below.
2dsinθ = nλ (n = 1, 2, 3 ...)
A diffraction peak appears at a position that satisfies this equation. Here, d is a lattice constant, θ is a diffraction (incident) angle, λ is an X-ray wavelength, and n is a natural number. From 2θ = 16 to 27 ° of the diffraction peak corresponding to the short surface spacing, information on the packing (secondary lattice) of the side surface in the crystal can be obtained, and the polymorph can be identified. Especially in the case of triacylglycerol, the characteristic peak of β type is at 2θ = 19, 23, 24 ° (near 4.6 Å) (near 3.9 Å), and α at around 21 ° (4.2 Å). A characteristic peak of the type appears. The X-ray diffraction measurement is performed using, for example, an X-ray diffractometer maintained at 20 ° C. (Rigaku Co., Ltd., a fully automated multipurpose X-ray diffractometer Smart Lab 9 kW). CuKα rays (1.54 Å) are most often used as the light source for X-rays.

ここで、油脂成分は、β型油脂を含むもので、ピーク強度比が0.6~1であるもの、あるいはβ型油脂を主成分(粉末油脂組成物又は油脂成分に対して50質量%超)として含むものである。
油脂成分の好ましい態様としては、上記油脂成分がβ型油脂から実質的になるものであり、より好ましい態様は上記油脂成分がβ型油脂からなるものであり、特に好ましい態様は、上記油脂成分がβ型油脂のみからなるものである。上記油脂成分のすべてがβ型油脂である場合とは、示差走査熱量測定法によってα型油脂及び/又はβ’型油脂が検出されない場合である。
本発明の更なる態様として、上記油脂成分が全てβ型油脂であることが好ましいが、その他のα型油脂やβ’型油脂が含まれていてもよい。
Here, the fat and oil component contains β-type fat and oil and has a peak intensity ratio of 0.6 to 1, or contains β-type fat and oil as a main component (more than 50% by mass with respect to the powdered fat and oil composition or the fat and oil component). ).
A preferred embodiment of the fat and oil component is one in which the fat and oil component is substantially composed of β-type fat and oil, a more preferred embodiment is one in which the fat and oil component is composed of β-type fat and oil, and a particularly preferable embodiment is the above-mentioned fat and oil component. It consists only of β-type fats and oils. The case where all of the above fats and oils are β-type fats and oils is a case where α-type fats and oils and / or β'type fats and oils are not detected by the differential scanning calorimetry method.
As a further aspect of the present invention, it is preferable that all of the above fats and oils are β-type fats and oils, but other α-type fats and oils and β'type fats and oils may be contained.

具体的には、上述のX線回折測定に関する知見をもとに、β型の特徴的ピークである2θ=19°(4.6Å)のピーク強度とα型の特徴的ピークである2θ=21°(4.2Å)のピーク強度の比率:19°付近のピーク強度/(19°付近のピーク強度+21°のピーク強度)[4.6Å付近のピーク強度/(4.6Å付近のピーク強度+4.2Å付近のピーク強度)]を算出することで上記油脂成分のβ型油脂の存在量を表す指標とし、「β型油脂を含む」ことが理解できる。本発明は、上記油脂成分が全てβ型油脂である(即ち、ピーク強度比=1)ことが理想である。
つまり、このピーク強度比が0であった場合、すべてがα型油脂であるとわかり、ピーク強度比が1であった場合、すべてがβ型油脂であるとわかり、また、ピーク強度比が1に近い数字であると、β型油脂が多いということがわかる。
本発明では、油脂成分中のβ型油脂がより多い方が好ましいので、ピーク強度比は、1に近い値であることが好ましい。
したがって、ピーク強度比は、好ましくは0.6~1であり、より好ましくは0.7~1であり、さらに好ましくは0.8~1であり、さらにより好ましくは0.9~1であり、特に好ましくは0.95~1である。
本発明の油脂成分は、粉末油脂組成物に対して、例えば50~100質量%、70~100質量%、80~100質量%、85~100質量%、92~100質量%、95~100質量%程度であってもよい。
Specifically, based on the above-mentioned findings regarding the X-ray diffraction measurement, the peak intensity of 2θ = 19 ° (4.6 Å), which is a characteristic peak of β type, and 2θ = 21 which is a characteristic peak of α type. Ratio of peak intensities of ° (4.2 Å): Peak intensities around 19 ° / (Peak intensities around 19 ° + Peak intensities around 21 °) [Peak intensities near 4.6 Å / (Peak intensities around 4.6 Å + By calculating the peak intensity around 4.2 Å)], it can be understood that "contains β-type fats and oils" as an index showing the abundance of β-type fats and oils as the above-mentioned fats and oils component. In the present invention, it is ideal that all of the above fats and oils are β-type fats and oils (that is, peak intensity ratio = 1).
That is, when this peak intensity ratio is 0, it is known that all are α-type fats and oils, and when the peak intensity ratio is 1, it is known that all are β-type fats and oils, and the peak intensity ratio is 1. If the number is close to, it can be seen that there are many β-type fats and oils.
In the present invention, it is preferable that the amount of β-type fats and oils in the fats and oils component is larger, so that the peak intensity ratio is preferably a value close to 1.
Therefore, the peak intensity ratio is preferably 0.6 to 1, more preferably 0.7 to 1, still more preferably 0.8 to 1, and even more preferably 0.9 to 1. , Particularly preferably 0.95 to 1.
The oil and fat component of the present invention is, for example, 50 to 100% by mass, 70 to 100% by mass, 80 to 100% by mass, 85 to 100% by mass, 92 to 100% by mass, and 95 to 100% by mass with respect to the powdered oil and fat composition. It may be about%.

<XXX型トリグリセリド>
本発明の油脂成分は、グリセリンの1位~3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む。当該XXX型トリグリセリドは、グリセリンの1位~3位に炭素数xの脂肪酸残基Xを有するトリグリセリドであり、各脂肪酸残基Xは互いに同一である。ここで、当該炭素数xは16~20から選択される整数であり、好ましくは16~18から選択される整数、より好ましくは18である。
脂肪酸残基Xは、飽和あるいは不飽和の脂肪酸残基であってもよい。具体的な脂肪酸残基Xとしては、例えば、パルミチン酸、ステアリン酸、アラキジン酸等の残基が挙げられるがこれに限定するものではない。脂肪酸としてより好ましくは、パルミチン酸及びステアリン酸であり、さらに好ましくは、ステアリン酸である。
当該XXX型トリグリセリドの含有量は、粉末油脂組成物又は油脂成分の全質量を100質量%とした場合、例えば、50質量%以上、好ましくは60質量%以上、より好ましくは、70質量%以上、さらに好ましくは、80質量%以上を下限とし、例えば、100質量%以下、好ましくは、99質量%以下、より好ましくは、95質量%以下を上限とする範囲である。XXX型トリグリセリドは1種類又は2種類以上用いることができ、好ましくは1種類又は2種類であり、より好ましくは1種類が用いられる。XXX型トリグリセリドが2種類以上の場合は、その合計値がXXX型トリグリセリドの含有量となる。
<XXX type triglyceride>
The oil and fat component of the present invention contains one or more XXX-type triglycerides having a fatty acid residue X having the number of carbon atoms x at the 1st to 3rd positions of glycerin. The XXX-type triglyceride is a triglyceride having a fatty acid residue X having the number of carbon atoms x at the 1st to 3rd positions of glycerin, and each fatty acid residue X is the same as each other. Here, the number of carbon atoms x is an integer selected from 16 to 20, preferably an integer selected from 16 to 18, and more preferably 18.
The fatty acid residue X may be a saturated or unsaturated fatty acid residue. Specific examples of the fatty acid residue X include, but are not limited to, residues such as palmitic acid, stearic acid, and arachidic acid. The fatty acids are more preferably palmitic acid and stearic acid, and even more preferably stearic acid.
The content of the XXX-type triglyceride is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, when the total mass of the powdered fat composition or the fat component is 100% by mass. More preferably, the lower limit is 80% by mass or more, and for example, the upper limit is 100% by mass or less, preferably 99% by mass or less, and more preferably 95% by mass or less. One type or two or more types of XXX type triglyceride can be used, preferably one type or two types, and more preferably one type. When there are two or more types of XXX-type triglyceride, the total value is the content of XXX-type triglyceride.

<その他のトリグリセリド>
本発明の油脂成分は、本発明の効果を損なわない限り、上記XXX型トリグリセリド以外の、その他のトリグリセリドを含んでいてもよい。その他のトリグリセリドは、複数の種類のトリグリセリドであってもよく、合成油脂であっても天然油脂であってもよい。合成油脂としては、トリカプリル酸グリセリル、トリカプリン酸グリセリル等が挙げられる。天然油脂としては、例えば、ココアバター、ヒマワリ油、菜種油、大豆油、綿実油等が挙げられる。本発明の粉末油脂組成物又は油脂成分中の全トリグリセリドを100質量%とした場合、その他のトリグリセリドは、粉末油脂組成物又は油脂成分の全質量を100質量%とした場合、例えば1質量%以上、あるいは5~50質量%程度含まれていても問題はない。その他のトリグリセリドの含有量は、粉末油脂組成物又は油脂成分の全質量を100質量%とした場合、例えば、0~50質量%、好ましくは5~40質量%、より好ましくは10~30質量%、更に好ましくは15~25質量%である。
<Other triglycerides>
The oil and fat component of the present invention may contain other triglycerides other than the above-mentioned XXX type triglyceride as long as the effects of the present invention are not impaired. The other triglyceride may be a plurality of types of triglycerides, and may be synthetic fats and oils or natural fats and oils. Examples of synthetic fats and oils include glyceryl tricaprylate and glyceryl tricaprate. Examples of natural fats and oils include cocoa butter, sunflower oil, rapeseed oil, soybean oil, cottonseed oil and the like. When the total triglyceride in the powdered fat composition or the fat component of the present invention is 100% by mass, the other triglycerides are, for example, 1% by mass or more when the total mass of the powdered fat composition or the fat component is 100% by mass. Or, there is no problem even if it is contained in an amount of about 5 to 50% by mass. The content of other triglycerides is, for example, 0 to 50% by mass, preferably 5 to 40% by mass, and more preferably 10 to 30% by mass when the total mass of the powdered fat composition or the fat component is 100% by mass. , More preferably 15 to 25% by mass.

<その他の成分>
本発明の粉末油脂組成物は、上記トリグリセリド等の油脂成分の他、任意に乳化剤、香料、着色料等のその他の成分(添加剤)を含んでいてもよい。これらの任意のその他の成分は本発明の粉末油脂組成物に外添することもできる。
ここで、当該その他の成分としての乳化剤としては、例えば、モノグリセリド、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、レシチン等を挙げることができ、香料としては、例えば、リモネン、バニリン、オレンジ、バニラ、ジャスミン等を挙げることができ、着色料としては、例えばウコン色素、クチナシ色素、ベニバナ色素、パプリカ色素、赤キャベツ色素等の天然着色料や、タール系色素等の合成着色料等を挙げることができる。
これらその他の成分の量は、本発明の効果を損なわない限り任意の量とすることができるが、例えば、粉末油脂組成物の全質量を100質量%とした場合、例えば、0~30質量%、好ましくは1~18質量%、より好ましくは2~15質量%、更に好ましくは3~8質量%である。その他の成分は、その90質量%以上が、平均粒径が1000μm以下である粉体であることが好ましく、平均粒径が500μm以下の粉体であることがより好ましい。さらに、20μm以下の細かい粒子は人間の感覚では感じとることが困難であるので、平均粒径が例えば20μm以下、好ましくは0.1~20μm、より好ましくは1~12μmの粉体であれば、口に含んだ際の粉体の粗いざらついた感触がなくなるので好ましい。なお、特に断らない限り、本明細書で言う平均粒径は、レーザ回折散乱法(ISO13320及びJIS Z 8825-1準拠)によって測定した値である。レーザ回折散乱法については、下記で詳述する。
但し、本発明の好ましい粉末油脂組成物は、実質的に上記油脂成分のみからなることが好ましく、かつ、油脂成分は、実質的にトリグリセリドのみからなることが好ましい。また、「実質的に」とは、油脂組成物中に含まれる油脂成分以外の成分または油脂成分中に含まれるトリグリセリド以外の成分が、粉末油脂組成物または油脂成分を100質量%とした場合、例えば、0~15質量%、好ましくは1~10質量%、より好ましくは2~5質量%であることを意味する。
<Other ingredients>
In addition to the above-mentioned oil and fat components such as triglyceride, the powdered oil and fat composition of the present invention may optionally contain other components (additives) such as emulsifiers, fragrances and colorants. Any of these other components can also be added to the powdered oil / fat composition of the present invention.
Here, examples of the emulsifier as the other component include monoglyceride, polyglycerin fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, lecithin and the like, and examples of the fragrance include limonene, vanillin and orange. , Vanilla, jasmine and the like, and examples of the coloring agent include natural coloring agents such as turmeric pigment, cutinashi pigment, benivana pigment, paprika pigment, red cabbage pigment, and synthetic coloring agent such as tar-based pigment. be able to.
The amount of these other components can be any amount as long as the effect of the present invention is not impaired. For example, when the total mass of the powdered oil / fat composition is 100% by mass, for example, 0 to 30% by mass. It is preferably 1 to 18% by mass, more preferably 2 to 15% by mass, and further preferably 3 to 8% by mass. 90% by mass or more of the other components are preferably powders having an average particle size of 1000 μm or less, and more preferably powders having an average particle size of 500 μm or less. Further, since fine particles of 20 μm or less are difficult to be perceived by human senses, a powder having an average particle size of, for example, 20 μm or less, preferably 0.1 to 20 μm, and more preferably 1 to 12 μm is used in the mouth. It is preferable because it eliminates the rough and rough feel of the powder when it is contained in. Unless otherwise specified, the average particle size referred to in the present specification is a value measured by a laser diffraction / scattering method (ISO13320 and JIS Z 8825-1 compliant). The laser diffraction / scattering method will be described in detail below.
However, it is preferable that the preferred powdered oil / fat composition of the present invention is substantially composed of only the above-mentioned oil / fat component, and the oil / fat component is preferably composed of substantially only triglyceride. Further, "substantially" means that the component other than the oil and fat component contained in the oil and fat composition or the component other than the triglyceride contained in the oil and fat component is 100% by mass of the powdered oil and fat composition or the oil and fat component. For example, it means 0 to 15% by mass, preferably 1 to 10% by mass, and more preferably 2 to 5% by mass.

<粉末油脂組成物の特性>
本発明の粉末油脂組成物は、20℃で粉末状の固体である。本発明の粉末油脂組成物は、以下のような物理的特性を有していてもよい。
〔凝集度〕
「凝集度」とは、粒子の凝集のしやすさを数値化したものである。凝集度は、例えば、篩に所定時間と一定の振動を与えて残る粉体の量を計ることにより求めることができる。凝集度が小さいほど粉体の流動性が高く、凝集度が大きいほど粉体の流動性が低いと判断することができる。
凝集度の測定例としては、パウダテスタPT-X(ホソカワミクロン株式会社製)を使用して測定する方法を挙げることができる。具体的には、目開きが異なる直径7.5cmの3つの円形の篩(上段篩:目開き355μm、中段篩:目開き250μm、下段篩:目開き150μm)を重ね、上段篩にあらかじめ精確に秤量した約2gのサンプル粉体を供し、全篩を、後述する振動時間T(秒)で、1mmの振幅で水平方向に振動させる。その後、各篩上に残ったサンプル粉体の質量をさらに秤量し、以下の式(II)から凝集度を算出することができる。
なお、凝集度は、1つのサンプルについて測定を3回行い、求めた値の平均値をそのサンプルの凝集度とする。

凝集度(%)=(U/N+M/N×3/5+L/N×1/5)×100 (II)

(式中、U:上段篩上のサンプル粉体の質量(g)、M:中段篩上のサンプル粉体の質量(g)、L:下段篩上のサンプル粉体の質量(g)、N:初期のサンプル粉体の質量(g))

上記式(II)より算出され得る本発明の粉末油脂組成物の凝集度は、例えば、0%以上でありかつ60%以下、55%以下、若しくは51%以下であり、好ましくは1~60%であり、より好ましくは2~55%であり、さらにより好ましくは3~51%である。
<Characteristics of powdered oil and fat composition>
The powdered oil / fat composition of the present invention is a solid powder at 20 ° C. The powdered oil / fat composition of the present invention may have the following physical properties.
[Cohesion]
The "degree of agglomeration" is a numerical value of the ease of agglomeration of particles. The degree of cohesion can be determined, for example, by applying a constant vibration to the sieve for a predetermined time and measuring the amount of powder remaining. It can be determined that the smaller the degree of cohesion is, the higher the fluidity of the powder is, and the larger the degree of cohesion is, the lower the fluidity of the powder is.
As an example of measuring the degree of cohesion, a method of measuring using a powder tester PT-X (manufactured by Hosokawa Micron Co., Ltd.) can be mentioned. Specifically, three circular sieves with different mesh openings (7.5 cm in diameter: upper sieve: mesh opening 355 μm, middle sieve: mesh opening 250 μm, lower mesh: mesh opening 150 μm) are stacked and accurately preliminarily on the upper sieve. About 2 g of the weighed sample powder is provided, and the entire sieve is vibrated horizontally with an amplitude of 1 mm at a vibration time T (seconds) described later. Then, the mass of the sample powder remaining on each sieve is further weighed, and the degree of cohesion can be calculated from the following formula (II).
The degree of cohesion is measured three times for one sample, and the average value of the obtained values is taken as the degree of cohesion of the sample.

Cohesion degree (%) = (U / N + M / N × 3/5 + L / N × 1/5) × 100 (II)

(In the formula, U: mass of sample powder on upper sieve (g), M: mass of sample powder on middle sieve (g), L: mass of sample powder on lower sieve (g), N : Mass of initial sample powder (g))

The degree of cohesion of the powdered oil / fat composition of the present invention that can be calculated from the above formula (II) is, for example, 0% or more and 60% or less, 55% or less, or 51% or less, preferably 1 to 60%. It is more preferably 2 to 55%, and even more preferably 3 to 51%.

〔振動時間Tについて〕
上記凝集度の測定で使用される振動時間T(秒)は、次の計算式(III)によって算出される。
T(秒)=20+{(1.6-W)/0.016} (III)
ここで、Wは粉体の動的嵩密度で、次式(IV)から算出される。
W=(Q-P)C/100+P (IV)
(式中、P:ゆるめ嵩密度、Q:固め嵩密度、C:圧縮度) ただし、W≧1.6のときは、T=20となる。
さらに、上記固め嵩密度、ゆるめ嵩密度、圧縮度は、以下のようにして求めることができる。
[Vibration time T]
The vibration time T (seconds) used in the measurement of the degree of cohesion is calculated by the following formula (III).
T (seconds) = 20 + {(1.6-W) /0.016} (III)
Here, W is the dynamic bulk density of the powder and is calculated from the following equation (IV).
W = (QP) C / 100 + P (IV)
(In the formula, P: loose bulk density, Q: solid bulk density, C: degree of compression) However, when W ≧ 1.6, T = 20.
Further, the solidified bulk density, the loosened bulk density, and the degree of compression can be obtained as follows.

〔ゆるめ嵩密度〕
ゆるめ嵩密度(g/cm3)は、粉体の質量を、その粉体の占める嵩体積で割った値、すなわち、単位嵩体積当たりの粉体質量である。
ゆるめ嵩密度の測定は、パウダテスタPT-X(ホソカワミクロン株式会社製)を使用して行うことができる。パウダテスタPT-Xによる測定では、注入法を採用し、正弦波の振動により容器へ空気を含んだ粉粒体を自由落下させることにより測定を行う。
具体的には、直径7.5cmの目開き1.7mmの円形の篩に粉末サンプルを200~300cm3供し、振幅1.5mmで振動させ、篩から落下させる(正弦波の振動による自由落下)。27cmの高さから自由落下した粉末サンプルは、篩の下に設置してあるステンレス製100cm3カップ(内径約5cm×高さ約5cm)に注入され、粉末サンプルが当該カップから溢れるまで注入された後、篩の振動を止める。その後、長方形のブレードでカップ上の余分な粉体サンプルをカップの上面に沿ってすり切り、カップ中の粉体サンプルの質量(A(g))を測定することでゆるめ嵩密度を下記式(V)から算出する。
ゆるめ嵩密度は、1つのサンプルについて3回測定し、その平均値をそのサンプルのゆるめ嵩密度の値とする。

ゆるめ嵩密度(g/cm3)=A(g)/100(cm3) (V)

本発明の粉末油脂組成物のゆるめ嵩密度は、例えば実質的に油脂成分のみからなる場合、0.05~0.6g/cm3、好ましくは0.1~0.5g/cm3であり、より好ましくは0.1~0.4cm3であり、さらに好ましくは0.1~0.3g/cm3である。
[Loose bulk density]
The loose bulk density (g / cm 3 ) is the value obtained by dividing the mass of the powder by the bulk volume occupied by the powder, that is, the mass of the powder per unit bulk volume.
The loosening bulk density can be measured using a powder tester PT-X (manufactured by Hosokawa Micron Corporation). In the measurement by the powder tester PT-X, the injection method is adopted, and the measurement is performed by freely dropping the powder or granular material containing air into the container by the vibration of a sine and cosine wave.
Specifically, 200 to 300 cm 3 of the powder sample is placed on a circular sieve with a diameter of 7.5 cm and an opening of 1.7 mm, vibrated with an amplitude of 1.5 mm, and dropped from the sieve (free fall due to vibration of a sine wave). .. The powder sample that freely fell from a height of 27 cm was injected into a stainless steel 100 cm 3 cup (inner diameter of about 5 cm × height of about 5 cm) placed under the sieve until the powder sample overflowed from the cup. After that, stop the vibration of the sieve. Then, the excess powder sample on the cup is ground along the upper surface of the cup with a rectangular blade, and the mass (A (g)) of the powder sample in the cup is measured to loosen the bulk density by the following formula (V). ).
The loosening bulk density is measured three times for one sample, and the average value is taken as the value of the loosening bulk density of the sample.

Loose bulk density (g / cm 3 ) = A (g) / 100 (cm 3 ) (V)

The loosening bulk density of the powdered oil / fat composition of the present invention is, for example, 0.05 to 0.6 g / cm 3 , preferably 0.1 to 0.5 g / cm 3 when it is substantially composed of only the oil / fat component. It is more preferably 0.1 to 0.4 cm 3 , and even more preferably 0.1 to 0.3 g / cm 3 .

〔固め嵩密度〕
固め嵩密度(g/cm3)は、ゆるめ嵩密度の粉体をさらにタッピングして固めて出来た粉体から求めた嵩密度である。
具体的には、上述のようにしてゆるめ嵩密度を測定した後のステンレス製100cm3カップ(内径約5cm×高さ約5cm)の開口上部に、当該カップと同じ大きさの穴を有する筒状キャップ(穴の直径5.04cm×高さ4cm、筒の両端は開口されている)を取り付け、上記カップの開口部を延長する。筒状キャップを取り付けたステンレス製100cm3カップを、直径7.5cmの目開き1.7mmの円形の篩の下に設置する。篩に粉末サンプルを200~300cm3供し、振幅1.5mmで振動させ、篩から落下させる(正弦波の振動による自由落下)。27cmの高さから自由落下したサンプルは、下に設置してあるステンレス製100cm3カップに十分量注入し、当該カップを180回タッピング(ストローク18mm、タッピング速度60回/分)することでサンプルを圧密させる。タッピングを行うと、粉粒体が圧密されてその体積が減少する。タッピングの途中で、粉粒体の体積の減少により粉粒体の粉面がカップ上端より下がった場合には、再度同様の方法でサンプルをカップに注入し、粉粒体の粉面がカップ上端より高くなるようにする。タッピング終了後、キャップを取り外し、ブレードでカップ上の余分なサンプルをカップの面に沿ってすり切り、質量(B(g))を測定することで固め嵩密度を下記式(VI)から算出する。
固め嵩密度は、1つのサンプルについて3回測定し、その平均値をそのサンプルの固め嵩密度の値とする。

固め嵩密度(g/cm3)=B(g)/100(cm3) (VI)

本発明の粉末油脂組成物の固め嵩密度は、例えば実質的に油脂成分のみからなる場合、0.1~2.0g/cm3、好ましくは0.1~1.0g/cm3であり、より好ましくは0.15~0.7cm3であり、さらに好ましくは0.2~0.5g/cm3である。
[Hardening bulk density]
The solidified bulk density (g / cm 3 ) is the bulk density obtained from the powder obtained by further tapping and solidifying the loose bulk density powder.
Specifically, a cylindrical shape having a hole of the same size as the cup at the upper part of the opening of a 100 cm 3 cup (inner diameter of about 5 cm x height of about 5 cm) made of stainless steel after loosening and measuring the bulk density as described above. A cap (hole diameter 5.04 cm x height 4 cm, both ends of the cylinder are open) is attached to extend the opening of the cup. A stainless steel 100 cm 3 cup with a tubular cap is placed under a circular sieve with a diameter of 7.5 cm and an opening of 1.7 mm. A powder sample of 200 to 300 cm 3 is placed on a sieve, vibrated with an amplitude of 1.5 mm, and dropped from the sieve (free fall due to vibration of a sine wave). A sample that has freely fallen from a height of 27 cm is injected into a stainless steel 100 cm 3 cup installed below in a sufficient amount, and the cup is tapped 180 times (stroke 18 mm, tapping speed 60 times / minute) to prepare the sample. Consolidate. When tapping is performed, the powder or granular material is compacted and its volume is reduced. If the powder level of the powder or granular material drops below the top of the cup due to a decrease in the volume of the powder or granular material during tapping, the sample is injected into the cup again in the same manner, and the powder surface of the powder or granular material is at the top of the cup. Try to be higher. After the tapping is completed, the cap is removed, the excess sample on the cup is ground along the surface of the cup with a blade, and the mass (B (g)) is measured to calculate the solidification bulk density from the following formula (VI).
The compaction bulk density is measured three times for one sample, and the average value is taken as the value of the compaction bulk density of the sample.

Hardening bulk density (g / cm 3 ) = B (g) / 100 (cm 3 ) (VI)

The solidified bulk density of the powdered oil / fat composition of the present invention is, for example, 0.1 to 2.0 g / cm 3 , preferably 0.1 to 1.0 g / cm 3 when it is substantially composed of only the oil / fat component. It is more preferably 0.15 to 0.7 cm 3 , and even more preferably 0.2 to 0.5 g / cm 3 .

〔圧縮度〕
圧縮度C(%)は、ゆるめ嵩密度Pと固め嵩密度Qを用いて、次の式(VII)で求められる値である。
C(%)=100×(Q-P)/Q (VII)
[Compression]
The degree of compression C (%) is a value obtained by the following formula (VII) using the loosened bulk density P and the hardened bulk density Q.
C (%) = 100 × (QP) / Q (VII)

〔安息角相対値〕
本発明の粉末油脂組成物は、特定の相対的な安息角を有する。ここで相対的な安息角とは、粉末馬鈴薯等の澱粉自体の安息角に対する当該粉末馬鈴薯等の澱粉に粉末油脂組成物を混合した場合の混合物の安息角の比を意味し、それによって求められた値を安息角相対値と呼ぶ。相対的な安息角を確認することにより、粉末油脂組成物の澱粉流動性の改善効果を確認することができる。安息角相対値は、具体的には、次の式(I)により求められる値である。

安息角相対値(%)=[該粉末油脂組成物と粉末澱粉との混合粉末の安息角]/[該粉末油脂組成物を含有しない該粉末澱粉のみの安息角]×100 (I)

ここで、式(I)中、「混合粉末」は、混合粉末全体の質量に対して粉末油脂組成物を1質量%含有する。「粉末澱粉」としては、粉末馬鈴薯澱粉、片栗粉等を使用することができる。粉末澱粉の平均粒径は、例えば、1~100μm、好ましくは10~50μm、より好ましくは20~40μmである。ここで、平均粒径は、レーザ回折散乱法(ISO13320及びJIS Z 8825-1準拠)によって測定される体積平均径〔MV〕を意味し、具体的には以下で説明する通りである。また、「安息角」とは、粉体を水平面に落下させた後、静止した粉体の堆積層の自由表面(堆積した粉体が形成する山の稜線)が水平となす角度で定義される。一般的に、流動性の良い粉体は、安息角が小さくなり、流動性の悪い粉体は、安息角が大きくなる。
したがって、上記式(I)で得られる安息角相対値が100%より大きくなると、粉末油脂組成物と粉末澱粉との混合粉末の流動性が粉末澱粉それ自体の流動性よりも悪くなった、即ち、粉末油脂組成物が粉体澱粉の流動性に悪影響を及ぼしたことになり、逆に、安息角相対値が100%より小さくなれば、粉末油脂組成物と粉末澱粉との混合粉末の流動性が粉末澱粉それ自体の流動性よりも良くなった、即ち、粉末油脂組成物が粉体澱粉の流動性を改善したことになる。
[Relative value of angle of repose]
The powdered fat composition of the present invention has a specific relative angle of repose. Here, the relative angle of repose means the ratio of the angle of repose of the mixture when the powdered oil / fat composition is mixed with the starch such as powdered potato to the angle of repose of the starch itself such as powdered potato. The value is called the relative value of the angle of repose. By confirming the relative angle of repose, the effect of improving the starch fluidity of the powdered oil / fat composition can be confirmed. The angle of repose relative value is specifically a value obtained by the following equation (I).

Relative value of repose (%) = [Angle of repose of a mixed powder of the powdered oil / fat composition and powdered starch] / [Angle of repose of only the powdered starch not containing the powdered oil / fat composition] × 100 (I)

Here, in the formula (I), the "mixed powder" contains 1% by mass of the powdered oil / fat composition with respect to the total mass of the mixed powder. As the "powdered starch", powdered potato starch, potato starch and the like can be used. The average particle size of the powdered starch is, for example, 1 to 100 μm, preferably 10 to 50 μm, and more preferably 20 to 40 μm. Here, the average particle size means the volume average diameter [MV] measured by the laser diffraction / scattering method (ISO13320 and JIS Z 8825-1 compliant), and is specifically as described below. The "angle of repose" is defined as the angle at which the free surface of the stationary powder deposit layer (the ridgeline of the mountain formed by the deposited powder) becomes horizontal after the powder is dropped on a horizontal plane. .. In general, a powder having good fluidity has a small angle of repose, and a powder having poor fluidity has a large angle of repose.
Therefore, when the relative value of the rest angle obtained by the above formula (I) becomes larger than 100%, the fluidity of the mixed powder of the powdered oil / fat composition and the powdered starch becomes worse than the fluidity of the powdered starch itself, that is, , The powdered oil / fat composition adversely affected the fluidity of the powdered starch, and conversely, if the relative rest angle value is smaller than 100%, the fluidity of the mixed powder of the powdered oil / fat composition and the powdered starch Is better than the fluidity of the powdered starch itself, that is, the powdered oil and fat composition has improved the fluidity of the powdered starch.

本発明の粉末油脂組成物の安息角相対値は、例えば、90%以下であり、好ましくは88%以下であり、より好ましくは86%以下であり、さらにより好ましくは84%以下である。また、本発明の粉末油脂組成物の安息角相対値は、例えば、70%以上であり、好ましくは75%以上であり、より好ましくは80%以上である。
安息角相対値の算出に必要な安息角の測定は、例えば、パウダテスタPT-X(ホソカワミクロン株式会社製)のような試験装置を用いて測定することができる。
具体的には、粉末馬鈴薯澱粉297g(製品名:国産片栗粉(北海)(火乃国食品工業株式会社製)、後述するレーザ回折散乱法で測定した平均粒径34.8μm)に、試験対象とする各種粉末を3g添加し、フードプロセッサー(製品名「フードプロセッサー1.9L」、コンエアージャパン合同会社製)で20秒間攪拌混合し、サンプル(全体の質量に対して粉末油脂組成物を1質量%含有する混合粉末)を調製する。
対照として、粉末油脂組成物を添加していない粉末馬鈴薯澱粉を、上記同様にフードプロセッサーで20秒間攪拌混合し、対照サンプルを調製する。
The relative value of the angle of repose of the powdered oil / fat composition of the present invention is, for example, 90% or less, preferably 88% or less, more preferably 86% or less, and even more preferably 84% or less. The angle of repose relative value of the powdered oil / fat composition of the present invention is, for example, 70% or more, preferably 75% or more, and more preferably 80% or more.
The angle of repose required for calculating the relative value of the angle of repose can be measured using, for example, a test device such as Powder Tester PT-X (manufactured by Hosokawa Micron Corporation).
Specifically, 297 g of powdered potato starch (product name: domestic potato starch (Hokkaido) (manufactured by Hinokuni Food Industry Co., Ltd.), average particle size of 34.8 μm measured by the laser diffraction scattering method described later) was used as the test target. Add 3 g of various powders to be added, stir and mix with a food processor (product name "Food Processor 1.9 L", manufactured by Conair Japan GK) for 20 seconds, and add 1% by mass of the powdered oil / fat composition to the total mass. The mixed powder to be contained) is prepared.
As a control, the powdered potato starch to which the powdered fat composition is not added is stirred and mixed with a food processor for 20 seconds in the same manner as described above to prepare a control sample.

得られたサンプル及び対照サンプルの安息角は、上記パウダテスタを用いて測定することができる。
具体的には、直径7.5cmの目開き710μmの円形の篩に上記サンプル又は対照サンプルを200~300cm3供し、振幅1.5mmで振動させ、篩から落下させる(正弦波の振動による自由落下)。上記サンプル等は、篩の下にある開口部の径5mmの漏斗を通過後、漏斗下端より7.5cmの高さから円形テーブル(直径8cm)上に落下させ、テーブルの端部から粉体があふれる程度に堆積させる。その後静止したサンプル等が形成する粉体の堆積層の自由表面(堆積した粉体が形成する山の稜線)が水平となす角度を、画像により算出し、その値を安息角とする。
安息角は、1つのサンプルについて3回測定し、その平均値をそのサンプルの安息角の値とする。
The angle of repose of the obtained sample and the control sample can be measured using the above-mentioned powder tester.
Specifically, 200 to 300 cm 3 of the above sample or control sample is placed on a circular sieve with a diameter of 7.5 cm and an opening of 710 μm, vibrated with an amplitude of 1.5 mm, and dropped from the sieve (free fall due to vibration of a sine wave). ). After passing through a funnel with a diameter of 5 mm at the opening under the sieve, the above samples and the like are dropped from a height of 7.5 cm from the lower end of the funnel onto a circular table (diameter 8 cm), and powder is released from the end of the table. Accumulate to the extent that it overflows. After that, the angle formed by the free surface (the ridgeline of the mountain formed by the deposited powder) of the powder deposit layer formed by the stationary sample or the like is calculated by an image, and the value is used as the angle of repose.
The angle of repose is measured three times for one sample, and the average value is taken as the value of the angle of repose of the sample.

〔比表面積〕
粉末油脂組成物の比表面積(cm2/g)は、N2ガス吸着法(多点法)により測定することができる。
2ガス吸着法(多点法)による測定は、例えば、マイクロメリティックス社製の比表面積測定分析装置を使って測定することができる。具体的には、試料1.2~1.5gをセルに採取し、前処理装置(マイクロメリティックス社製、装置名「VacPrep 061」)を用いて、室温(約25℃)で約24時間の減圧脱気処理後、比表面積測定分析装置(マイクロメリティックス社製、装置名「3Flex」)を使って、N2ガス吸着法(多点法)により比表面積を測定することができる。粉末油脂組成物の比表面積の値は、例えば、0.5~10m2/g、好ましくは0.5~8m2/g、より好ましくは1~8m2/g、更に好ましくは1~7m2/gが適当である。
〔Specific surface area〕
The specific surface area (cm 2 / g) of the powdered oil / fat composition can be measured by the N 2 gas adsorption method (multi-point method).
The measurement by the N 2 gas adsorption method (multi-point method) can be performed by using, for example, a specific surface area measurement analyzer manufactured by Micromeritics. Specifically, 1.2 to 1.5 g of a sample is collected in a cell, and about 24 at room temperature (about 25 ° C.) using a pretreatment device (manufactured by Micromeritics, device name “VacPrep 061”). After degassing under reduced pressure for a period of time, the specific surface area can be measured by the N 2 gas adsorption method (multi-point method) using a specific surface area measurement analyzer (manufactured by Micromeritics, device name "3Flex"). .. The value of the specific surface area of the powdered oil / fat composition is, for example, 0.5 to 10 m 2 / g, preferably 0.5 to 8 m 2 / g, more preferably 1 to 8 m 2 / g, still more preferably 1 to 7 m 2 . / G is appropriate.

[粉末油脂組成物の形状]
本発明の粉末油脂組成物は、表面上に薄片が複数存在する薄片含有粒子の形態を有する。この薄片含有粒子の形状は、表面上に薄片が複数存在・集積することにより、表面に凹凸が形成された不定形状を有している。この薄片含有粒子の内部は、粒子の断面を直接見ることができないため、どのような構造になっているか明確でないものの、図1の製造例1の粉末油脂組成物(平均粒径3.5μm)、及び図2の製造例4の粉末油脂組成物(平均粒径10.5μm)の電子顕微鏡の外観写真から判断すると、製造例4よりも小さく粉砕した製造例1の粒子であっても、粒径の大きい製造例4の粒子と同じように、粒子表面に薄片が複数存在していて、その外観はほとんど変わらないことから、当該薄片含有粒子の内部も薄片が複数集まった構造であると予想される。
実施例において粒子の顕微鏡写真と安息角相対値の値を比較して説明をするが、本発明の粉末油脂組成物の安息角相対値が90%以下となるのは、メカニズムは定かではないものの、このような特殊な粒子の構造によるものであると推測される。
当該粒子の平均粒径(有効径)は、例えば、好ましくは0.5~200μm、より好ましくは1~100μm、さらに好ましくは1~50μm、殊更好ましくは、1~30μmである。
ここで、当該平均粒径(有効径)は、体積平均径〔MV〕を言い、粒度分布測定装置(例えば、株式会社島津製作所製、装置名:SALD-2300)でレーザ回折散乱法(ISO13320,JIS Z 8825-1)に基づいて、乾式測定により体積基準粒度分布を測定して体積平均径〔MV〕を求め、得られた体積平均径〔MV〕を平均粒径とした。体積平均径〔MV〕は、粒子の粒径、粒子の体積、及び粒子の体積の総和の各値を使って以下の式から求めることができる。

体積平均径〔MV〕=(粒径×その粒子の体積)の総和/粒子の体積の総和

なお、有効径とは、測定対象となる結晶の実測回折パターンが、球形と仮定して得られる理論的回折パターンに適合する場合の、当該球形の粒径を意味する。このように、レーザ回折散乱法の場合、球形と仮定して得られる理論的回折パターンと、実測回折パターンを適合させて有効径を算出しているので、測定対象が板状形状であっても球状形状であっても同じ原理で測定することができる。
[Shape of powdered oil / fat composition]
The powdered oil / fat composition of the present invention has the form of flakes-containing particles in which a plurality of flakes are present on the surface. The shape of the flakes-containing particles has an indefinite shape in which irregularities are formed on the surface due to the existence and accumulation of a plurality of flakes on the surface. Although it is not clear what kind of structure the inside of the fragment-containing particles has because the cross section of the particles cannot be directly seen, the powdered oil / fat composition of Production Example 1 in FIG. 1 (average particle size 3.5 μm). And, judging from the appearance photograph of the powdered oil / fat composition (average particle size 10.5 μm) of Production Example 4 in FIG. 2, even the particles of Production Example 1 crushed to be smaller than Production Example 4 are grains. Similar to the particles of Production Example 4 having a large diameter, a plurality of flakes are present on the surface of the particles, and the appearance thereof is almost the same. Will be done.
In the examples, the micrographs of the particles and the relative values of the angle of repose will be compared, and the relative value of the angle of repose of the powdered oil / fat composition of the present invention is 90% or less, although the mechanism is not clear. It is presumed that this is due to the structure of such special particles.
The average particle size (effective diameter) of the particles is, for example, preferably 0.5 to 200 μm, more preferably 1 to 100 μm, still more preferably 1 to 50 μm, and particularly preferably 1 to 30 μm.
Here, the average particle size (effective diameter) refers to a volume average diameter [MV], and is a laser diffraction scattering method (ISO13320, manufactured by Shimadzu Corporation, device name: SALD-2300) using a particle size distribution measuring device. Based on JIS Z 8825-1), the volume-based particle size distribution was measured by dry measurement to obtain the volume average diameter [MV], and the obtained volume average diameter [MV] was used as the average particle size. The volume average diameter [MV] can be obtained from the following formula using the respective values of the particle size of the particles, the volume of the particles, and the sum of the volumes of the particles.

Volume average diameter [MV] = sum of (particle size x volume of the particle) / sum of the volume of the particle

The effective diameter means the particle size of the spherical shape when the measured diffraction pattern of the crystal to be measured matches the theoretical diffraction pattern obtained by assuming that the crystal is spherical. In this way, in the case of the laser diffraction / scattering method, the effective diameter is calculated by matching the theoretical diffraction pattern obtained assuming a spherical shape with the measured diffraction pattern, so that even if the measurement target is a plate shape. Even if it has a spherical shape, it can be measured by the same principle.

ここで、本発明の粉末油脂組成物の粒子表面の薄片の寸法(長辺、短辺、厚さ)は、電子顕微鏡写真からその大きさを測定して得た平均値を採用することができる。当該薄片の長辺の平均の長さは、例えば、好ましくは0.01~5μm、より好ましくは0.05~4μm、さらに好ましくは0.1~3μm、さらにより好ましくは0.2~2.5μmである。当該薄片の短辺の平均の長さは、長辺より短く、例えば、好ましくは0.01~4μm、より好ましくは0.05~3μm、さらに好ましくは0.1~2μm、さらにより好ましくは0.2~1μmである。当該薄片の厚さの平均の長さは、長辺や短辺より短く、例えば、好ましくは0.005~0.5μm、より好ましくは0.01~0.3μm、さらに好ましくは0.02~0.2μm、さらにより好ましくは0.03~0.15μmである。 Here, as the dimensions (long side, short side, thickness) of the particle surface of the powdered oil / fat composition of the present invention, an average value obtained by measuring the size from an electron micrograph can be adopted. .. The average length of the long sides of the flakes is, for example, preferably 0.01 to 5 μm, more preferably 0.05 to 4 μm, still more preferably 0.1 to 3 μm, still more preferably 0.2 to 2. It is 5 μm. The average length of the short sides of the flakes is shorter than the long sides, eg, preferably 0.01-4 μm, more preferably 0.05-3 μm, even more preferably 0.1-2 μm, even more preferably 0. .2 to 1 μm. The average length of the thickness of the flakes is shorter than the long and short sides, for example, preferably 0.005 to 0.5 μm, more preferably 0.01 to 0.3 μm, still more preferably 0.02 to 0.02. It is 0.2 μm, and even more preferably 0.03 to 0.15 μm.

<粉末油脂組成物の製造方法>
本発明の粉末油脂組成物は、例えば、グリセリンの1位~3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む固体の油脂組成物原料を融解しないで、即ち融点未満の温度で、XXX型トリグリセリドの種類にあわせた特定の温度に加熱等することで当該原料中の油脂成分をβ型油脂(好ましくは、X線回折ピークのピーク強度比が0.6~1)に変化させた後、原料同士を衝突させて粉砕することによって、粉末状の油脂組成物(粉末油脂組成物)を得ることができる。具体的には、以下のような粉末油脂組成物の製造方法を例示することができる。
<Manufacturing method of powdered oil / fat composition>
The powdered oil / fat composition of the present invention does not melt, for example, a solid oil / fat composition raw material containing one or more XXX-type triglycerides having a fatty acid residue X having the number of carbon atoms x at the 1st to 3rd positions of glycerin. By heating the oil / fat component in the raw material to a specific temperature according to the type of XXX-type triglyceride at a temperature below the melting point, β-type oil / fat (preferably, the peak intensity ratio of the X-ray diffraction peak is 0.6 to After the change to 1), the raw materials are made to collide with each other and pulverized to obtain a powdery fat or oil composition (powdered fat or oil composition). Specifically, the following method for producing a powdered oil / fat composition can be exemplified.

グリセリンの1位~3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物の製造方法であって、前記炭素数xが16~20から選択される整数であり、前記油脂成分がβ型油脂を含み、前記粉末油脂組成物のゆるめ嵩密度が0.05~0.6g/cm3であり、
好ましくは、該油脂成分のX線回折ピークにおいて、β型の特徴的な4.6Å付近のピークとα型の特徴的な4.2Å付近のピークとの強度比:[4.6Å付近のピーク強度/(4.6Å付近のピーク強度+4.2Å付近のピーク強度)]が、0.6~1であり、かつ、好ましくは、該粉末油脂組成物の凝集度が60%以下であり、
以下の工程、
(a)XXX型トリグリセリドを含む固体の油脂組成物原料を準備する工程、
(b)工程(a)で得られた固体の油脂組成物原料を、好ましくは融解させないように、融点未満の温度で加熱して、当該固体の油脂組成物原料中の油脂成分をβ型油脂(好ましくは、X線回折ピークのピーク強度比が0.6~1)に変化させ、β型油脂含有組成物原料を得る工程、及び
(c)工程(b)で得られたβ型油脂含有組成物原料を、機械的な粉砕を伴わない該原料同士の衝突により粉砕して粉末油脂組成物を得る工程、
を含むことを特徴とする粉末油脂組成物の製造方法。
以下、上記工程(a)~(c)について説明する。
A method for producing a powdered oil / fat composition containing an oil / fat component containing one or more XXX-type triglycerides having a fatty acid residue X having a carbon number x at the 1st to 3rd positions of glycerin, wherein the carbon number x is 16 to 16. It is an integer selected from 20, the fat and oil component contains β-type fat and oil, and the loosening bulk density of the powdered fat and oil composition is 0.05 to 0.6 g / cm 3 .
Preferably, in the X-ray diffraction peak of the oil and fat component, the intensity ratio between the characteristic peak of β type near 4.6 Å and the characteristic peak of α type around 4.2 Å: [peak near 4.6 Å]. Intensity / (peak intensity around 4.6 Å + peak intensity around 4.2 Å)] is 0.6 to 1, and preferably, the degree of cohesion of the powdered oil / fat composition is 60% or less.
The following process,
(A) Step of preparing a solid oil / fat composition raw material containing XXX-type triglyceride,
(B) The solid fat / oil composition raw material obtained in step (a) is heated at a temperature below the melting point so as not to be preferably melted, and the fat / oil component in the solid fat / oil composition raw material is made into β-type fat / oil. (Preferably, the peak intensity ratio of the X-ray diffraction peak is changed to 0.6 to 1) to obtain a β-type oil / fat-containing composition raw material, and (c) contains the β-type oil / fat obtained in step (b). A step of crushing a composition raw material by collision between the raw materials without mechanical crushing to obtain a powdered oil / fat composition.
A method for producing a powdered oil / fat composition, which comprises.
Hereinafter, the steps (a) to (c) will be described.

(a)原料準備工程
工程(a)で準備されるXXX型トリグリセリドを含む固体の油脂組成物原料は、グリセリンの1位~3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む通常のXXX型トリグリセリド等の油脂の製造方法に基づいて製造され、もしくは容易に市場から入手され得る。当該固体の油脂組成物原料は粉末状、フレーク状、ブロック状など、いかなる形状であっても良い。ここで、上記炭素数x及び脂肪酸残基Xで特定されるXXX型トリグリセリドは、最終的に得られる目的の粉末油脂組成物や油脂成分のものと結晶多形以外の点で同じであってよい。つまり、当該XXX型トリグリセリド、油脂成分、粉末油脂組成物等の各用語の詳細は、結晶多形がβ型であるか否かを問わない点以外は、既に上述したとおりの定義が適用され得る。当該原料にはα型油脂、β’型油脂、あるいはβ型油脂が含まれていても良い。
固体の油脂組成物原料には、上述したとおりのXXX型トリグリセリドを1種類又は2種以上含んでいてもよく、好ましくは1種類又は2種類であり、より好ましくは1種類である。
具体的には、例えば、上記XXX型トリグリセリドは、脂肪酸または脂肪酸誘導体とグリセリンを用いた直接合成によって製造することができる。XXX型トリグリセリドを直接合成する方法としては、(i)炭素数xの脂肪酸Xとグリセリンとを直接エステル化する方法(直接エステル合成)、(ii)炭素数xである脂肪酸Xのカルボキシル基がアルコキシル基と結合した脂肪酸アルキル(例えば、脂肪酸メチル及び脂肪酸エチル)とグリセリンとを塩基性または酸性触媒条件下にて反応させる方法(脂肪酸アルキルを用いたエステル交換合成)、(iii)炭素数xである脂肪酸Xのカルボキシル基の水酸基がハロゲンに置換された脂肪酸ハロゲン化物(例えば、脂肪酸クロリド及び脂肪酸ブロミド)とグリセリンとを塩基性触媒下にて反応させる方法(酸ハライド合成)が挙げられる。
XXX型トリグリセリドは前述の(i)~(iii)のいずれの方法によっても製造できるが、製造の容易さの観点から、(i)直接エステル合成又は(ii)脂肪酸アルキルを用いたエステル交換合成が好ましく、(i)直接エステル合成がより好ましい。
(A) Raw Material Preparation Step The raw material for a solid oil / fat composition containing XXX-type triglyceride prepared in the step (a) is one or more XXX having a fatty acid residue X having the number of carbon atoms x at the 1st to 3rd positions of glycerin. It is manufactured based on a method for producing fats and oils such as ordinary XXX-type triglycerides containing type triglycerides, or can be easily obtained from the market. The solid oil / fat composition raw material may have any shape such as powder, flakes, and blocks. Here, the XXX-type triglyceride specified by the number of carbon atoms x and the fatty acid residue X may be the same as that of the desired powdered oil / fat composition or oil / fat component finally obtained except for the polymorphism. .. That is, the details of each term such as the XXX type triglyceride, the oil / fat component, the powdered oil / fat composition, etc. can be defined as already described above except that it does not matter whether the crystalline polymorph is β type or not. .. The raw material may contain α-type fats and oils, β'-type fats and oils, or β-type fats and oils.
The solid oil / fat composition raw material may contain one or more of the XXX-type triglycerides as described above, preferably one or two, and more preferably one.
Specifically, for example, the XXX-type triglyceride can be produced by direct synthesis using a fatty acid or a fatty acid derivative and glycerin. As a method for directly synthesizing the XXX type triglyceride, (i) a method for directly esterifying the fatty acid X having the carbon number x and glycerin (direct ester synthesis), and (ii) the carboxyl group of the fatty acid X having the carbon number x is alkoxyl. A method for reacting a fatty acid alkyl bonded to a group (for example, fatty acid methyl and fatty acid ethyl) with glycerin under basic or acidic catalytic conditions (ester exchange synthesis using fatty acid alkyl), (iii) carbon number x. Examples thereof include a method (acid halide synthesis) in which a fatty acid halide (for example, fatty acid chloride and fatty acid bromide) in which the hydroxyl group of the carboxyl group of fatty acid X is replaced with a halogen is reacted with glycerin under a basic catalyst.
The XXX-type triglyceride can be produced by any of the above-mentioned methods (i) to (iii), but from the viewpoint of ease of production, (i) direct ester synthesis or (ii) transesterification synthesis using fatty acid alkyl is possible. Preferably, (i) direct ester synthesis is more preferred.

XXX型トリグリセリドを(i)直接エステル合成によって製造するには、製造効率の観点から、グリセリン1モルに対して脂肪酸Xまたは脂肪酸Yを3~5モルを用いることが好ましく、3~4モルを用いることがより好ましい。
XXX型トリグリセリドの(i)直接エステル合成における反応温度は、エステル化反応によって生ずる生成水が系外に除去できる温度であればよく、例えば、120℃~300℃が好ましく、150℃~270℃がより好ましく、180℃~250℃がさらに好ましい。反応を180~250℃で行うことで、特に効率的にXXX型トリグリセリドを製造することができる。
In order to produce XXX-type triglyceride by (i) direct ester synthesis, it is preferable to use 3 to 5 mol of fatty acid X or fatty acid Y with respect to 1 mol of glycerin, and 3 to 4 mol is used. Is more preferable.
The reaction temperature of the XXX-type triglyceride (i) in the direct ester synthesis may be any temperature as long as the water produced by the esterification reaction can be removed from the system, for example, 120 ° C to 300 ° C, preferably 150 ° C to 270 ° C. More preferably, 180 ° C to 250 ° C is even more preferable. By carrying out the reaction at 180 to 250 ° C., XXX-type triglyceride can be produced particularly efficiently.

XXX型トリグリセリドの(i)直接エステル合成においては、エステル化反応を促進する触媒を用いても良い。触媒としては酸触媒、及びアルカリ土類金属のアルコキシド等が挙げられる。触媒の使用量は、反応原料の総質量に対して0.001~1質量%程度であることが好ましい。
XXX型トリグリセリドの(i)直接エステル合成においては、反応後、水洗、アルカリ脱酸及び/又は減圧脱酸、及び吸着処理等の公知の精製処理を行うことで、触媒や原料未反応物を除去することができる。更に、脱色・脱臭処理を施すことで、得られた反応物をさらに精製することができる。
In (i) direct ester synthesis of XXX-type triglyceride, a catalyst that promotes the esterification reaction may be used. Examples of the catalyst include acid catalysts and alkoxides of alkaline earth metals. The amount of the catalyst used is preferably about 0.001 to 1% by mass with respect to the total mass of the reaction raw materials.
In (i) direct ester synthesis of XXX-type triglyceride, catalysts and unreacted raw materials are removed by performing known purification treatments such as washing with water, alkaline deoxidation and / or vacuum deoxidization, and adsorption treatment after the reaction. can do. Further, by subjecting the decolorization / deodorization treatment, the obtained reaction product can be further purified.

上記固体の油脂組成物原料中に含まれるXXX型トリグリセリドの量は、例えば、当該原料中又は油脂成分中に含まれる全トリグリセリドの全質量を100質量%とした場合、100~50質量%、好ましくは95~55質量%、より好ましくは90~60質量%である。さらに殊更好ましくは85~65質量%である。 The amount of XXX-type triglyceride contained in the solid oil / fat composition raw material is preferably 100 to 50% by mass, for example, when the total mass of all triglycerides contained in the raw material or the oil / fat component is 100% by mass. Is 95 to 55% by mass, more preferably 90 to 60% by mass. Even more preferably, it is 85 to 65% by mass.

<その他のトリグリセリド>
XXX型トリグリセリドを含む固体の油脂組成物原料となるその他のトリグリセリドとしては、上記XXX型トリグリセリドの他、本発明の効果を損なわない限り、各種トリグリセリドを含めてもよい。その他のトリグリセリドとしては、例えば、上記XXX型トリグリセリドの脂肪酸残基Xの1つが脂肪酸残基Yに置換したX2Y型トリグリセリド、上記XXX型トリグリセリドの脂肪酸残基Xの2つが脂肪酸残基Yに置換したXY2型トリグリセリド等を挙げることができる。
上記その他のトリグリセリドの量は、例えば、全トリグリセリドの全質量を100質量%とした場合、0~50質量%、好ましくは5~45質量%、より好ましくは10~40質量%、さらに殊更好ましくは15~35質量%である。
<Other triglycerides>
As other triglycerides used as raw materials for solid oil and fat compositions containing XXX-type triglycerides, in addition to the above-mentioned XXX-type triglycerides, various triglycerides may be included as long as the effects of the present invention are not impaired. As other triglycerides, for example, one of the fatty acid residues X of the XXX-type triglyceride is replaced with the fatty acid residue Y, and two of the fatty acid residues X of the XXX-type triglyceride are replaced with the fatty acid residue Y. XY2 type triglyceride and the like can be mentioned.
The amount of the other triglycerides is, for example, 0 to 50% by mass, preferably 5 to 45% by mass, more preferably 10 to 40% by mass, and even more preferably 10% by mass, when the total mass of all triglycerides is 100% by mass. It is 15 to 35% by mass.

また、本発明の固体の油脂組成物原料としては、上記XXX型トリグリセリドを直接合成する代わりに、天然由来のトリグリセリド組成物に対し水素添加、エステル交換又は分別を行ったものを使用してもよい。天然由来のトリグリセリド組成物としては、例えば、ナタネ油、大豆油、ヒマワリ油、ハイオレイックヒマワリ油、サフラワー油、パームステアリン及びこれらの混合物等を挙げることができる。特に、これらの天然由来のトリグリセリド組成物の硬化油、部分硬化油、極度硬化油が好ましいものとして挙げられる。さらに好ましくは、ハードパームステアリン、ハイオレイックヒマワリ油極度硬化油、菜種極度硬化油、大豆極度硬化油が挙げられ、さらにより好ましくは、菜種極度硬化油である。 Further, as the raw material for the solid oil / fat composition of the present invention, instead of directly synthesizing the above-mentioned XXX-type triglyceride, a naturally-derived triglyceride composition obtained by hydrogenation, transesterification or fractionation may be used. .. Examples of the naturally derived triglyceride composition include rapeseed oil, soybean oil, sunflower oil, hyoleic sunflower oil, safflower oil, palm stea and mixtures thereof. In particular, hydrogenated oils, partially hydrogenated oils, and extremely hydrogenated oils of these naturally derived triglyceride compositions are preferred. Further preferred are hard palm stea, high oleic sunflower oil extremely hydrogenated oil, rapeseed extremely hydrogenated oil, soybean extremely hydrogenated oil, and even more preferably rapeseed extremely hydrogenated oil.

さらに、本発明の固体の油脂組成物原料としては、市販されている、トリグリセリド組成物又は合成油脂を挙げることができる。例えば、トリグリセリド組成物としては、ハードパームステアリン(日清オイリオグループ株式会社製)、菜種極度硬化油(横関油脂工業株式会社製)、大豆極度硬化油(横関油脂工業株式会社製)を挙げることができる。また、合成油脂としては、トリパルミチン(東京化成工業株式会社製)、トリステアリン(シグマアルドリッチ製)、トリステアリン(東京化成工業株式会社製)、トリアラキジン(東京化成工業株式会社製)を挙げることができる。 Further, examples of the raw material for the solid fat and oil composition of the present invention include commercially available triglyceride compositions and synthetic fats and oils. For example, examples of the triglyceride composition include hard palm stearin (manufactured by Nisshin Oillio Group Co., Ltd.), rapeseed extremely hydrogenated oil (manufactured by Yokoseki Oil & Fat Industry Co., Ltd.), and soybean extremely hydrogenated oil (manufactured by Yokoseki Oil & Fat Industry Co., Ltd.). can. Examples of synthetic fats and oils include tripalmitin (manufactured by Tokyo Chemical Industry Co., Ltd.), tristearin (manufactured by Sigma-Aldrich), tristearin (manufactured by Tokyo Chemical Industry Co., Ltd.), and triarakidin (manufactured by Tokyo Chemical Industry Co., Ltd.). can.

<その他の成分>
上記固体の油脂組成物原料としては、上記トリグリセリドの他、任意に部分グリセリド、脂肪酸、抗酸化剤、乳化剤、水などの溶媒等のその他の成分を含んでいてもよい。これらその他の成分の量は、本発明の効果を損なわない限り任意の量とすることができるが、例えば、油脂組成物原料の全質量を100質量%とした場合、0~5質量%、好ましくは0~2質量%、より好ましくは0~1質量%である。
<Other ingredients>
In addition to the triglyceride, the solid oil / fat composition raw material may optionally contain other components such as a partial glyceride, a fatty acid, an antioxidant, an emulsifier, and a solvent such as water. The amount of these other components can be any amount as long as the effect of the present invention is not impaired, but for example, when the total mass of the raw material for the oil and fat composition is 100% by mass, it is preferably 0 to 5% by mass. Is 0 to 2% by mass, more preferably 0 to 1% by mass.

上記固体の油脂組成物原料は、成分が複数含まれる場合、任意に混合してもよい。混合は、均質な反応基質が得られる限り公知のいかなる混合方法を用いてもよいが、例えば、パドルミキサー、アジホモミキサー、ディスパーミキサー、V型混合機、W型混合機、リボンミキサー等で行うことができる。 When a plurality of components are contained in the solid oil / fat composition raw material, they may be arbitrarily mixed. Any known mixing method may be used as long as a homogeneous reaction substrate can be obtained, and the mixing is carried out by, for example, a paddle mixer, a horse mackerel homomixer, a disper mixer, a V-type mixer, a W-type mixer, a ribbon mixer or the like. be able to.

(b)β型油脂に変化させる工程
(c)工程の前に、上記工程(a)で準備された固体の油脂組成物原料中の油脂成分を、β型油脂(好ましくは、X線回折ピークのピーク強度比が0.6~1)に、その結晶多形を変化させる。
β型油脂に変化させる工程で、油脂成分がβ型油脂を含むものに変化したことは、X線回折ピークのうち、β型の特徴的ピークとα型の特徴的ピークとの強度比:[β型の特徴的ピークの強度/(α型の特徴的ピークの強度+β型の特徴的ピークの強度)](ピーク強度比)から判断することができる。
具体的には、上述のX線回折測定に関する知見をもとに、β型の特徴的ピークである2θ=19°(4.6Å)のピーク強度とα型の特徴的ピークである2θ=21°(4.2Å)のピーク強度の比率:19°付近のピーク強度/(19°付近のピーク強度+21°のピーク強度)[4.6Å付近のピーク強度/(4.6Å付近のピーク強度+4.2Å付近のピーク強度)]を算出することで上記油脂成分のβ型油脂の存在量を表す指標とし、「β型油脂を含む」ことが理解できる。
つまり、このピーク強度比が0であった場合、すべてがα型油脂であるとわかり、ピーク強度比が1であった場合、すべてがβ型油脂であるとわかり、また、ピーク強度比が1に近い数字であると、β型油脂が多いということがわかる。本発明は、上記油脂成分が全てβ型油脂である(即ち、ピーク強度比=1)ことが理想である。
したがって、β型油脂に変化させる工程では、油脂成分のピーク強度比が、好ましくは0.6~1、より好ましくは0.7~1、さらに好ましくは0.8~1、さらにより好ましくは0.9~1、特に好ましくは0.95~1になるように処理をする。
(B) Step of changing to β-type fat and oil Before the step (c), the fat and oil component in the solid fat and oil composition raw material prepared in the above step (a) is subjected to β-type fat and oil (preferably X-ray diffraction peak). The crystal polymorph is changed so that the peak intensity ratio of is 0.6 to 1).
In the process of changing to β-type fats and oils, the fat component changed to one containing β-type fats and oils. It can be judged from the intensity of the β-type characteristic peak / (intensity of the α-type characteristic peak + the intensity of the β-type characteristic peak)] (peak intensity ratio).
Specifically, based on the above-mentioned findings regarding the X-ray diffraction measurement, the peak intensity of 2θ = 19 ° (4.6 Å), which is a characteristic peak of β type, and 2θ = 21 which is a characteristic peak of α type. Ratio of peak intensities of ° (4.2 Å): Peak intensities around 19 ° / (Peak intensities around 19 ° + Peak intensities around 21 °) [Peak intensities near 4.6 Å / (Peak intensities around 4.6 Å + By calculating the peak intensity around 4.2 Å)], it can be understood that "contains β-type fats and oils" as an index showing the abundance of β-type fats and oils as the above-mentioned fats and oils component.
That is, when this peak intensity ratio is 0, it is known that all are α-type fats and oils, and when the peak intensity ratio is 1, it is known that all are β-type fats and oils, and the peak intensity ratio is 1. If the number is close to, it can be seen that there are many β-type fats and oils. In the present invention, it is ideal that all of the above fats and oils are β-type fats and oils (that is, peak intensity ratio = 1).
Therefore, in the step of changing to β-type fat and oil, the peak intensity ratio of the fat and oil component is preferably 0.6 to 1, more preferably 0.7 to 1, still more preferably 0.8 to 1, and even more preferably 0. The treatment is carried out so as to be 9.9 to 1, particularly preferably 0.95 to 1.

β型油脂に変化させる方法は、種々の方法を利用することができるが、代表的な方法としては工程(a)で得られた固体の油脂組成物原料を融解しないで、融点未満の温度で加熱する方法である。ここで言う「融点」は、油脂組成物原料の融点であり、より好ましくは油脂組成物原料中の油脂成分の融点を意味する。油脂組成物原料が融解しないこと、つまり、油脂成分を融解せずにβ型油脂に変化させることが重要である。加熱温度は、加熱工程を通してその温度を一定に保持することが好ましい。ここで一定とは、例えば温度変化を±3℃、好ましくは±1℃、より好ましくは±0.5℃に制御することが適当である。
また、加熱は、加熱工程を通して固体の油脂組成物原料中の油脂成分が融解しない温度で加熱するのが良い。
固体の油脂組成物原料を加熱してβ型油脂に変化させる工程は、固体の油脂組成物原料を恒温槽に入れて、静置したまま行うこともできるが、例えば、横型撹拌タンク等の機械を用いて、原料を撹拌させながら、すなわち、非静置下で加熱することもできる。非静置下で加熱する方法の方が、β型油脂に変化させる時間が短くなるため、生産効率が上がるという利点がある。
例えば、加熱温度は、グリセリンの1位~3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する固体の油脂組成物原料の融点より1~30℃低い温度、好ましくは当該融点より2~27℃低い温度、より好ましくは当該融点より3~23℃低い温度、さらにより好ましくは当該融点より3~19℃低い温度とすることが適当である。
例えば、炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドの場合、β型油脂の融点は74℃であるので(表1)、加熱温度は当該融点より1~30℃低い温度(即ち44~73℃)であることが好ましく、当該融点より2~27℃低い温度(即ち47~72℃)であることがより好ましく、当該融点より3~23℃低い温度(即ち51~71℃)であることがさらに好ましく、当該融点より3~19℃低い温度(即ち55~71℃)であることがさらにより好ましい。
さらに、前記炭素数xが16のXXX型トリグリセリドの場合、加熱温度は36~65℃であることが好ましく、39~64℃であることがより好ましい。前記炭素数xが20の場合、加熱温度は48~77℃であることが好ましく、51~76℃であることがより好ましい。
また、例えば、融点が67℃のフレーク状の菜種極度硬化油の場合、加熱温度を当該融点より1~30℃低い温度(即ち37~66℃)、好ましくは当該融点より2~27℃低い温度(即ち40~65℃)、より好ましくは当該融点より3~23℃低い温度(即ち44~64℃)、さらにより好ましくは当該融点より3~19℃低い温度(即ち48~64℃)とすることが適当である。
加熱時間は、β型油脂に変化するために十分な時間であればよいが、例えば、10分以上、好ましくは20分~120時間、より好ましくは30分~100時間、さらに好ましくは30~72時間であることが適当である。
Various methods can be used for changing to β-type fats and oils, but as a typical method, the solid fat and oil composition raw material obtained in step (a) is not melted and is kept at a temperature below the melting point. It is a method of heating. The "melting point" referred to here is the melting point of the oil / fat composition raw material, and more preferably the melting point of the oil / fat component in the oil / fat composition raw material. It is important that the raw material of the fat and oil composition does not melt, that is, the fat and oil component is changed to β-type fat and oil without melting. The heating temperature is preferably kept constant throughout the heating step. Here, “constant” means that, for example, it is appropriate to control the temperature change to ± 3 ° C, preferably ± 1 ° C, and more preferably ± 0.5 ° C.
Further, the heating is preferably performed at a temperature at which the fat and oil components in the solid fat and oil composition raw material do not melt through the heating step.
The step of heating the solid oil / fat composition raw material to change it into β-type oil / fat can be performed by putting the solid oil / fat composition raw material in a constant temperature bath and leaving it to stand, for example, a machine such as a horizontal stirring tank. Can also be used to heat the raw material with stirring, i.e., in a non-static environment. The method of heating in a non-static state has an advantage that the production efficiency is improved because the time for changing to β-type fats and oils is shorter.
For example, the heating temperature is 1 to 30 from the melting point of a solid fat or oil composition raw material containing a fat or oil component containing one or more XXX-type triglycerides having a fatty acid residue X having the number of carbon atoms x at the 1st to 3rd positions of glycerin. It is appropriate that the temperature is lower than the melting point, preferably 2 to 27 ° C. lower than the melting point, more preferably 3 to 23 ° C. lower than the melting point, and even more preferably 3 to 19 ° C. lower than the melting point.
For example, in the case of XXX-type triglyceride having three stearic acid residues having 18 carbon atoms, the melting point of β-type fats and oils is 74 ° C. (Table 1), so that the heating temperature is 1 to 30 ° C. lower than the melting point (Table 1). That is, it is preferably 44 to 73 ° C.), more preferably 2 to 27 ° C. lower than the melting point (that is, 47 to 72 ° C.), and 3 to 23 ° C. lower than the melting point (that is, 51 to 71 ° C.). ), And even more preferably a temperature 3 to 19 ° C. lower than the melting point (that is, 55 to 71 ° C.).
Further, in the case of the XXX type triglyceride having 16 carbon atoms, the heating temperature is preferably 36 to 65 ° C, more preferably 39 to 64 ° C. When the number of carbon atoms x is 20, the heating temperature is preferably 48 to 77 ° C, more preferably 51 to 76 ° C.
Further, for example, in the case of a flake-shaped rapeseed extremely hardened oil having a melting point of 67 ° C., the heating temperature is 1 to 30 ° C. lower than the melting point (that is, 37 to 66 ° C.), preferably 2 to 27 ° C. lower than the melting point. (Ie, 40-65 ° C), more preferably 3-23 ° C lower than the melting point (ie 44-64 ° C), even more preferably 3-19 ° C lower than the melting point (ie 48-64 ° C). Is appropriate.
The heating time may be a time sufficient for changing to β-type fats and oils, but for example, 10 minutes or more, preferably 20 minutes to 120 hours, more preferably 30 minutes to 100 hours, still more preferably 30 to 72. Time is appropriate.

工程(b)は、固体の油脂組成物原料を静置状態、又は非静置状態で行うことができる。
静置状態での加熱は、固体の油脂組成物原料を恒温室、恒温槽等に入れて加熱する方法が挙げられる。静置状態での加熱の加熱時間を短くするには、原料全体に熱が伝わる状態で加熱するのが好ましく、かかる状態にするには、加熱時に、原料の堆積の高さを低くすると良い。原料の堆積の高さを低くして加熱する方法として、例えば、縦10~100cm、横10~100cm、高さ5~30cmのステンレス容器に、固体の油脂組成物原料の堆積の高さが低くなるように拡げて敷き詰めて、恒温室、恒温槽等で加熱する方法が挙げられる。なお、加熱時間を短くする必要がない場合には、原料の堆積の高さを低くする必要はない。
静置状態で加熱する場合の加熱時間は、油脂成分がβ型油脂に変化するために十分な時間であれば特に制限はなく、例えば、好ましくは20分以上、より好ましくは30分~120時間、さらに好ましくは10~100時間、さらにより好ましくは15~72時間であることが適当である。加熱処理する固体の油脂組成物原料の堆積の高さを低くして、原料全体への熱の伝わりが速い状態であれば、短時間でβ型油脂に変化させることができるが、原料の堆積の高さが高く、原料全体への熱の伝わりが遅い状態であれば、より長い時間の加熱が必要になる。
The step (b) can be carried out in a stationary state or a non-static state of the solid oil / fat composition raw material.
Examples of heating in a stationary state include a method in which a solid oil / fat composition raw material is placed in a constant temperature room, a constant temperature bath, or the like and heated. In order to shorten the heating time of heating in a stationary state, it is preferable to heat in a state where heat is transferred to the entire raw material, and in order to achieve such a state, it is preferable to lower the height of the deposition of the raw material during heating. As a method of heating by lowering the height of the deposit of the raw material, for example, the height of the deposit of the solid oil / fat composition raw material is low in a stainless steel container having a length of 10 to 100 cm, a width of 10 to 100 cm, and a height of 5 to 30 cm. There is a method of spreading and laying it so as to be, and heating it in a constant temperature room, a constant temperature bath, or the like. If it is not necessary to shorten the heating time, it is not necessary to reduce the height of the deposition of the raw material.
The heating time in the case of heating in a stationary state is not particularly limited as long as it is a time sufficient for the fat and oil component to change to β-type fat and oil, for example, preferably 20 minutes or more, more preferably 30 minutes to 120 hours. , More preferably 10 to 100 hours, even more preferably 15 to 72 hours. Solid fats and oils to be heat-treated If the height of the deposit of the raw material is lowered and the heat is quickly transferred to the whole raw material, it can be changed to β-type fat and oil in a short time, but the deposit of the raw material If the height is high and the heat transfer to the whole raw material is slow, heating for a longer time is required.

非静置状態での加熱は、例えば、固体の油脂組成物原料を、横型撹拌タンク等を用いて撹拌しながら加熱する方法が挙げられる。
静置状態で加熱する場合の加熱時間は、油脂成分がβ型油脂に変化するために十分な時間であれば特に制限はないが、例えば、10分以上、15分以上、又は20分以上であることが適当であり、加熱時間の上限は、好ましくは5時間以下、より好ましくは2時間以下であることが適当である。加熱時間は短い方が、作業の効率化等の面から見ても好ましい。
Examples of the heating in the non-standing state include a method of heating a solid oil / fat composition raw material while stirring using a horizontal stirring tank or the like.
The heating time in the case of heating in a stationary state is not particularly limited as long as it is a sufficient time for the fat and oil component to change to β-type fat and oil, but is, for example, 10 minutes or more, 15 minutes or more, or 20 minutes or more. The upper limit of the heating time is preferably 5 hours or less, more preferably 2 hours or less. It is preferable that the heating time is short from the viewpoint of improving work efficiency.

(c)原料同士の衝突により粉砕して粉末油脂組成物を得る工程
上記工程(b)で得られたβ型油脂含有組成物原料同士を、機械的な粉砕を伴わない気流式粉砕機等を用いて原料同士を衝突させることにより粉砕し、粉末油脂組成物を得ることができる。
原料同士を衝突させることによる粉砕は、機械的な粉砕を伴わない気流式粉砕機等を使用して行うことができる。「機械的な粉砕」とは、サイクロンミルやハンマーミルなどに備え付けられたインペラやハンマーなどの粉砕器具によって機械的に粉砕を行うことを意味する。「機械的な粉砕を伴わない」とは、「原料同士を衝突させることによる粉砕」の際に、同時に機械的な粉砕を行なわない、という意味で解釈される。本発明では、粉砕の初期工程として、工程(b)で得た原料を解砕機で解砕すること、及び機械的な粉砕を行うことは許容されるものの、最終的な粉末油脂組成物を得る直前の粉砕が、原料同士を衝突させることによってのみ行われ、その際に、機械的な粉砕は一切行われないことが適当である。ここで、「気流式粉砕」は、圧縮空気などの気流を用い、当該気流によって移動する粉砕対象物同士が衝突することによって粉砕対象を粉砕する方法である。機械的に粉砕対象を粉砕する方式と異なり、粉砕対象同士を衝突させるので、粉砕された粒子の表面がハンマー面等によって平滑化されてしまうなどの表面特性が変化してしまうことなく、より微細な粒子を得ることができる。また、分級器を備える気流式粉砕機を使用することにより、所望の粒径を有する粒子を得ることができる。「気流式粉砕機」としては、例えば、流動層式ジェットミル、カウンター式ジェットミルを挙げることができ、より具体的な気流式粉砕機としては、例えば、ホソカワミクロン株式会社製の粉砕機「カウンタジェットミル200AFG」等が挙げられる。
例えば、上記カウンタジェットミルを使用する場合、分級速度を、例えば1800~12000rpmとすることができる。分級速度を大きくするほど、得られる粉末油脂組成物の平均粒径が小さくなる傾向があるため、分級速度を変えることで、得られる粒子の平均粒径を調整することができる。
前記(c)工程は、最終的な粉末油脂組成物を得る直前の工程であることが適当である。最終的に原料同士を衝突させて粉砕し、その後機械粉砕をせずに最終的な粉末油脂組成物を得る限り、気流式粉砕機で粉砕する前に、解砕機等で解砕をしても良い。また、加熱によりβ型油脂に変化させた油脂組成物原料の粉砕は、品温を室温(25℃±5℃)まで冷却してから行っても良い。
(C) Step of crushing raw materials by collision with each other to obtain a powdered oil / fat composition The β-type oil / fat-containing composition raw materials obtained in the above step (b) are crushed together with an air flow type crusher or the like without mechanical pulverization. It can be pulverized by colliding the raw materials with each other to obtain a powdered oil / fat composition.
The crushing by colliding the raw materials can be performed by using an air flow type crusher or the like that does not involve mechanical crushing. "Mechanical crushing" means crushing mechanically with a crushing device such as an impeller or a hammer installed in a cyclone mill or a hammer mill. "No mechanical crushing" is interpreted to mean that "crushing by colliding raw materials with each other" does not simultaneously perform mechanical crushing. In the present invention, as an initial step of pulverization, although it is permissible to pulverize the raw material obtained in step (b) with a crusher and mechanically pulverize, a final powdered oil / fat composition is obtained. It is appropriate that the immediately preceding crushing is performed only by colliding the raw materials with each other, and at that time, no mechanical crushing is performed. Here, the "air flow type crushing" is a method of crushing a crushing object by using an air flow such as compressed air and colliding with each other moving objects to be crushed by the air flow. Unlike the method of mechanically crushing the crushed object, the crushed objects collide with each other, so that the surface of the crushed particles is smoothed by a hammer surface or the like, and the surface characteristics are not changed, and the particles are finer. Particles can be obtained. Further, by using an airflow type crusher equipped with a classifier, particles having a desired particle size can be obtained. Examples of the "air flow type crusher" include a fluidized layer type jet mill and a counter type jet mill. As a more specific air flow type crusher, for example, a crusher "counter jet" manufactured by Hosokawa Micron Co., Ltd. Mill 200AFG "and the like.
For example, when the counter jet mill is used, the classification speed can be set to, for example, 1800 to 12000 rpm. As the classification rate is increased, the average particle size of the obtained powdered oil / fat composition tends to be smaller. Therefore, the average particle size of the obtained particles can be adjusted by changing the classification rate.
It is appropriate that the step (c) is a step immediately before obtaining the final powdered oil / fat composition. As long as the raw materials are finally crushed by colliding with each other and then the final powdered oil / fat composition is obtained without mechanical crushing, even if the raw materials are crushed by a crusher or the like before being crushed by the airflow type crusher. good. Further, the raw material of the fat or oil composition converted into β-type fat or oil by heating may be pulverized after the product temperature has been cooled to room temperature (25 ° C. ± 5 ° C.).

<粉末油脂組成物の用途>
本発明の粉末油脂組成物は、粉末油脂を原料とする各種分野で利用できる。特に、パン、菓子、ケーキミックス、麺、打ち粉、バッター、天ぷら粉、唐揚げ粉、粉末澱粉、粉末馬鈴薯澱粉等の食品分野で利用することができる。また、本発明の粉末油脂組成物は、粉末状の食品等の流動性を改善するための粉体流動性改良剤として利用することができる。
<Use of powdered oil and fat composition>
The powdered fat and oil composition of the present invention can be used in various fields using powdered fats and oils as a raw material. In particular, it can be used in the food field such as bread, confectionery, cake mix, noodles, flour, batter, tempura flour, fried flour, powdered starch, and powdered potato starch. Further, the powdered oil / fat composition of the present invention can be used as a powder fluidity improving agent for improving the fluidity of powdered foods and the like.

<油脂組成物を含む食品及び非食品>
本発明の食品中の粉末油脂組成物の含有量は、対象とする食品の種類によって異なるが、例えば、最終的に得られる食品全体を100質量%とした場合、例えば、0.1~99質量%、好ましくは、0.1~90質量%、より好ましくは、0.5~80質量%、さらに好ましくは、1~70質量%である。本発明の食品は、本発明の粉末油脂組成物を原料として使用する以外は、公知の方法により製造することができる。粉末状の食品を使用する場合、当該粉末状の食品の平均粒径は、例えば、1~100μm、好ましくは10~50μm、より好ましくは20~40μmである。また、食品以外の非食品粉末においても、上記食品同様に利用することができる。
<Foods and non-foods containing oil and fat compositions>
The content of the powdered oil / fat composition in the food of the present invention varies depending on the type of the target food, but for example, when the total amount of the finally obtained food is 100% by mass, for example, 0.1 to 99% by mass. %, Preferably 0.1 to 90% by mass, more preferably 0.5 to 80% by mass, still more preferably 1 to 70% by mass. The food product of the present invention can be produced by a known method except that the powdered oil / fat composition of the present invention is used as a raw material. When a powdered food is used, the average particle size of the powdered food is, for example, 1 to 100 μm, preferably 10 to 50 μm, and more preferably 20 to 40 μm. In addition, non-food powders other than foods can be used in the same manner as the above foods.

<粉体流動性改良剤>
本発明に用いる粉末油脂組成物は、粉体の流動性を改善するための粉体流動性改良剤として使用できる。例えば、澱粉等の粉末食品の原材料の一部として本発明に用いる粉末油脂組成物を加えると、従来の粉末食品の流動性を改善することができる。流動性の改善は、例えば、凝集度及び安息角相対値によって確認することができる。好ましい凝集度及び安息角相対値は上述したとおりである。
本発明の粉体流動性改良剤は、有効成分であると上述した粉末油脂組成物を含有したものであればよく、この他に本発明の効果を損なわない範囲で、デキストリン、澱粉等の賦形剤、乳化剤等の他の成分を含有させたものであってもよい。
本発明の粉体流動性改良剤は、上述の粉末油脂組成物を含有する。本発明の粉体流動性改良剤は、上記の粉末油脂組成物を、好ましくは50~100質量%、より好ましくは80~100質量%、さらに好ましくは90~100質量%含有する。
但し、本発明の好ましい粉体流動性改良剤は、実質的に当該粉末油脂組成物のみからなることが好ましい。また「実質的に」とは、粉体流動性改良剤中に含まれる粉末油脂組成物以外の成分が、粉体流動性改良剤を100質量%とした場合、例えば、0~10質量%、好ましくは0~5質量%、より好ましくは、0~3質量%であることを意味する。
また、本発明の粉体流動性改良剤の粉末食品(澱粉等)への添加量は、好ましくは0.05~20質量%であり、より好ましくは0.08~10質量%であり、さらに好ましくは0.1~5質量%である。
<Powder fluidity improver>
The powdered oil / fat composition used in the present invention can be used as a powder fluidity improving agent for improving the fluidity of the powder. For example, by adding the powdered oil / fat composition used in the present invention as a part of the raw material of the powdered food such as starch, the fluidity of the conventional powdered food can be improved. The improvement in fluidity can be confirmed, for example, by the degree of cohesion and the relative value of the angle of repose. Preferred cohesion and angle of repose relative values are as described above.
The powder fluidity improving agent of the present invention may be any as long as it contains the above-mentioned powdered oil / fat composition as an active ingredient, and other than this, dextrin, starch and the like can be added as long as the effects of the present invention are not impaired. It may contain other components such as a shaping agent and an emulsifier.
The powder fluidity improver of the present invention contains the above-mentioned powder oil / fat composition. The powder fluidity improver of the present invention contains the above-mentioned powdered oil / fat composition in an amount of preferably 50 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass.
However, it is preferable that the preferable powder fluidity improving agent of the present invention is substantially composed of only the powdered oil / fat composition. Further, "substantially" means, for example, 0 to 10% by mass when the component other than the powder oil / fat composition contained in the powder fluidity improving agent is 100% by mass of the powder fluidity improving agent. It means that it is preferably 0 to 5% by mass, more preferably 0 to 3% by mass.
The amount of the powder fluidity improving agent of the present invention added to powdered foods (starch, etc.) is preferably 0.05 to 20% by mass, more preferably 0.08 to 10% by mass, and further. It is preferably 0.1 to 5% by mass.

次に本発明を製造例及び製造比較例により詳細に説明する。
[分析方法]
以下、使用した各種分析方法を説明する。一部製造例1を例にとって説明しているが、特に断りがない限り、ここに記載したすべての製造例及び製造比較例でも同様の分析を行っている。
・トリグリセリド組成
トリグリド組成は、ガスクロマトグラフィー分析により行った。以下に測定条件を示す。ガスクロマトグラフィー分析条件
DB1-ht(0.32mm×0.1μm×5m)Agilent Technologies社(123-1131)
注入量 :1.0μL
注入口 :370℃
検出器 :370℃
スプリット比 :50/1 35.1kPa コンスタントプレッシャー
カラムCT :200℃(0min hold)~(15℃/min)~370℃(4min hold)
・X線回折測定
X線回折装置((株)リガク、全自動多目的X線回折装置Smart Lab 9 kW)を用いて、CuKα(λ=1.542Å)を線源とし、Cu用フィルタ使用、出力9.0kW、操作角0.96~30.0°、測定速度20°/分の条件で測定した。この測定により、XXX型トリグリセリドを含む油脂成分におけるα型油脂、β’型油脂、及びβ型油脂の存在を確認した。4.6Å付近のピークのみを有し、4.1~4.2Å付近のピークを有しない場合は、油脂成分のすべてがβ型油脂であると判断できる。
したがって、上記X線回析測定の結果から、ピーク強度比=[β型の特徴的ピークの強度(2θ=19°(4.6Å))/(α型の特徴的ピークの強度(2θ=21°(4.2Å))+β型の特徴的ピークの強度(2θ=19°(4.6Å)))]を算出し、その値をβ型油脂の存在量を表す指標として判断した。
Next, the present invention will be described in detail with reference to Production Examples and Comparative Production Examples.
[Analysis method]
Hereinafter, various analysis methods used will be described. Although a part of Production Example 1 is described as an example, the same analysis is performed for all Production Examples and Production Comparative Examples described here unless otherwise specified.
-Triglyceride composition Triglyceride composition was performed by gas chromatography analysis. The measurement conditions are shown below. Gas chromatography analysis conditions
DB1-ht (0.32 mm x 0.1 μm x 5 m) Agilent Technologies (123-1131)
Injection volume: 1.0 μL
Injection port: 370 ℃
Detector: 370 ℃
Split ratio: 50/1 35.1kPa Constant pressure column CT: 200 ℃ (0min hold) ~ (15 ℃ / min) ~ 370 ℃ (4min hold)
・ X-ray diffraction measurement Using an X-ray diffractometer (Rigaku Co., Ltd., fully automated multipurpose X-ray diffractometer Smart Lab 9 kW), using CuKα (λ = 1.542 Å) as the radiation source, using a Cu filter, output The measurement was performed under the conditions of 9.0 kW, an operation angle of 0.96 to 30.0 °, and a measurement speed of 20 ° / min. By this measurement, the presence of α-type fat, β'-type fat, and β-type fat in the fat component containing XXX-type triglyceride was confirmed. If it has only a peak near 4.6 Å and does not have a peak around 4.1 to 4.2 Å, it can be determined that all of the fat and oil components are β-type fats and oils.
Therefore, from the results of the above X-ray diffraction measurement, the peak intensity ratio = [intensity of β-type characteristic peak (2θ = 19 ° (4.6 Å)) / (intensity of α-type characteristic peak (2θ = 21)). ° (4.2 Å)) + β-type characteristic peak intensity (2θ = 19 ° (4.6 Å)))] was calculated, and the value was judged as an index indicating the abundance of β-type fats and oils.

・凝集度
凝集度は、パウダテスタPT-X(ホソカワミクロン株式会社製)を使用して測定した。
具体的には、嵩密度から選択される目開きが異なる直径7.5cmの3つの円形の篩、(上段篩:目開き355μm、中段篩:目開き250μm、下段篩:目開き150μm)を重ね、上段篩に約2gの製造例1の粉末油脂組成物を供し、全篩を、106秒の振動時間で、1mmの振幅で水平方向に振動させた。その後、各篩上に残った製造例1の粉末油脂組成物の質量を秤量し、以下の式(II)から凝集度を算出した。なお、凝集度は、1つのサンプル粉体(製造例1の粉末油脂組成物)について測定を3回行い、求めた値の平均値を製造例1の粉末油脂組成物の凝集度とした。

凝集度(%)=(U/N+M/N×3/5+L/N×1/5)×100 (II)
(式中、U:上段篩上のサンプル粉体の質量(g)、M:中段篩上のサンプル粉体の質量(g)、L:下段篩上のサンプル粉体の質量(g)、N:初期のサンプル粉体の質量(g))

なお、振動時間(T(秒))の算出は、〔発明を実施するための形態〕で記載した式(III)及び式(IV)を利用した方法で行った。
T(秒)=20+{(1.6-W)/0.016} (III)
(Wは粉体の動的嵩密度で、次式(IV)から算出される)
W=(Q-P)C/100+P (IV)
(式中、P:ゆるめ嵩密度、Q:固め嵩密度、C:圧縮度)ただし、W≧1.6のときは、T=20となる。
-Cohesion degree The cohesion degree was measured using a powder tester PT-X (manufactured by Hosokawa Micron Corporation).
Specifically, three circular sieves having a diameter of 7.5 cm, which are selected from the bulk density and have different openings, (upper stage sieve: mesh opening 355 μm, middle stage sieve: mesh opening 250 μm, lower stage sieve: mesh opening 150 μm) are stacked. About 2 g of the powdered oil / fat composition of Production Example 1 was applied to the upper sieve, and the entire sieve was vibrated horizontally with an amplitude of 1 mm with a vibration time of 106 seconds. Then, the mass of the powdered oil / fat composition of Production Example 1 remaining on each sieve was weighed, and the degree of cohesion was calculated from the following formula (II). The degree of cohesion was measured three times for one sample powder (powdered oil / fat composition of Production Example 1), and the average value obtained was taken as the degree of cohesion of the powdered oil / fat composition of Production Example 1.

Cohesion degree (%) = (U / N + M / N × 3/5 + L / N × 1/5) × 100 (II)
(In the formula, U: mass of sample powder on upper sieve (g), M: mass of sample powder on middle sieve (g), L: mass of sample powder on lower sieve (g), N : Mass of initial sample powder (g))

The vibration time (T (seconds)) was calculated by the method using the formula (III) and the formula (IV) described in [Mode for carrying out the invention].
T (seconds) = 20 + {(1.6-W) /0.016} (III)
(W is the dynamic bulk density of the powder and is calculated from the following equation (IV))
W = (QP) C / 100 + P (IV)
(In the formula, P: loose bulk density, Q: solid bulk density, C: degree of compression) However, when W ≧ 1.6, T = 20.

・ゆるめ嵩密度
ゆるめ嵩密度(g/cm3)は、粉体の質量を、その粉体の占める嵩体積で割った値、すなわち、単位嵩体積当たりの粉体質量として求めた。
ゆるめ嵩密度の測定は、パウダテスタPT-X(ホソカワミクロン株式会社製)を使用して測定した。パウダテスタPT-Xは注入法を採用しており、正弦波の振動により容器へ空気を含んだ粉粒体を自由落下させることにより測定を行った。
具体的には、直径7.5cmの目開き1.7mmの円形の篩に粉末サンプルを200~300cm3供し、振幅1.5mmで振動させ、篩から落下させた(正弦波の振動による自由落下)。27cmの高さから自由落下した粉末サンプルは、篩の下に設置してあるステンレス製100cm3カップ(内径約5cm×高さ約5cm)に注入され、粉末サンプルがカップから溢れるまで注入された後、篩の振動を止めた。その後、長方形のブレードでカップ上の余分な粉末サンプルをカップの上面に沿ってすり切り、カップ中の粉体サンプルの質量(A(g))を測定することでゆるめ嵩密度を下記式(V)から算出した。なお、ゆるめ嵩密度は、1つのサンプルについて3回測定し、その平均値をそのサンプルのゆるめ嵩密度の値とした。
ゆるめ嵩密度(g/cm3)=A(g)/100(cm3) (V)
Loose bulk density The loose bulk density (g / cm 3 ) was determined as the value obtained by dividing the mass of the powder by the bulk volume occupied by the powder, that is, the mass of the powder per unit bulk volume.
The loose bulk density was measured using a powder tester PT-X (manufactured by Hosokawa Micron Corporation). The powder tester PT-X adopts the injection method, and the measurement is performed by freely dropping the powder or granular material containing air into the container by the vibration of a sine and cosine wave.
Specifically, 200 to 300 cm 3 of the powder sample was applied to a circular sieve having a diameter of 7.5 cm and an opening of 1.7 mm, vibrated with an amplitude of 1.5 mm, and dropped from the sieve (free fall due to vibration of a sine wave). ). The powder sample that has fallen freely from a height of 27 cm is injected into a stainless steel 100 cm 3 cup (inner diameter of about 5 cm x height of about 5 cm) placed under the sieve, and after the powder sample is injected until it overflows from the cup. , Stopped the vibration of the sieve. Then, the excess powder sample on the cup is ground along the upper surface of the cup with a rectangular blade, and the mass (A (g)) of the powder sample in the cup is measured to loosen the bulk density by the following formula (V). Calculated from. The loosening bulk density was measured three times for one sample, and the average value was taken as the value of the loosening bulk density of the sample.
Loose bulk density (g / cm 3 ) = A (g) / 100 (cm 3 ) (V)

・固め嵩密度
ゆるめ嵩密度を測定した後のステンレス製100cm3カップ(内径約5cm×高さ約5cm)の開口上部に、当該カップと同じ大きさの穴を有する筒状キャップ(穴の直径5.04cm×高さ4cm、筒の両端は開口されている)を取り付け、上記カップの開口部を延長した。筒状キャップを取り付けたステンレス製100cm3カップを、直径7.5cmの目開き1.7mmの円形の篩の下に設置した。篩に粉末サンプルを200~300cm3供し、振幅1.5mmで振動させ、篩から落下させた(正弦波の振動による自由落下)。27cmの高さから自由落下したサンプルは、下に設置してあるステンレス製100cm3カップに十分量注入し、当該カップを180回タッピング(ストローク18mm、タッピング速度60回/分)することでサンプルを圧密させた。タッピングを行うことで、粉粒体が圧密されてその体積が減少した。タッピングの途中で、粉粒体の体積の減少により粉粒体の粉面がカップ上端より下がった場合には、再度同様の方法でサンプルをカップに注入し、粉粒体の粉面がカップ上端より高くなるようにした。タッピング終了後、キャップを取り外し、ブレードでカップ上の余分なサンプルをカップの面に沿ってすり切り、質量(B(g))を測定することで固め嵩密度を下記式(VI)から算出した。
固め嵩密度は、1つのサンプルについて3回測定し、その平均値をそのサンプルの固め嵩密度の値とした。

固め嵩密度(g/cm3)=B(g)/100(cm3) (VI)
・ Hardened bulk density After measuring the loosened bulk density, a cylindrical cap (hole diameter 5) with a hole of the same size as the cup at the top of the opening of a 100 cm 3 cup (inner diameter approx. 5 cm x height approx. 5 cm) made of stainless steel. .04 cm x 4 cm in height, both ends of the cylinder are open) were attached to extend the opening of the cup. A stainless steel 100 cm 3 cup with a tubular cap was placed under a circular sieve with a diameter of 7.5 cm and an opening of 1.7 mm. A powder sample of 200 to 300 cm 3 was placed on a sieve, vibrated with an amplitude of 1.5 mm, and dropped from the sieve (free fall due to vibration of a sine wave). A sample that has freely fallen from a height of 27 cm is injected into a stainless steel 100 cm 3 cup installed below in a sufficient amount, and the cup is tapped 180 times (stroke 18 mm, tapping speed 60 times / minute) to prepare the sample. Consolidated. By tapping, the powder or granular material was compacted and its volume was reduced. If the powder level of the powder or granular material drops below the top of the cup due to a decrease in the volume of the powder or granular material during tapping, the sample is injected into the cup again in the same manner, and the powder surface of the powder or granular material is at the top of the cup. Made it higher. After the tapping was completed, the cap was removed, the excess sample on the cup was ground along the surface of the cup with a blade, and the mass (B (g)) was measured to solidify and the bulk density was calculated from the following formula (VI).
The compaction bulk density was measured three times for one sample, and the average value was taken as the value of the compaction bulk density of the sample.

Hardening bulk density (g / cm 3 ) = B (g) / 100 (cm 3 ) (VI)

・圧縮度
圧縮度C(%)は、上記ゆるめ嵩密度Pと固め嵩密度Qを用いて、次の式(VII)から求めた。
C(%)=100×(Q-P)/Q (VII)
-Compression degree The compression degree C (%) was obtained from the following formula (VII) using the loosening bulk density P and the solidifying bulk density Q.
C (%) = 100 × (QP) / Q (VII)

・安息角相対値
粉末馬鈴薯澱粉297g(製品名:国産片栗粉(北海)(火乃国食品工業株式会社製)、後述するレーザ回折散乱法で測定した平均粒径34.8μm)に、製造例1の粉末油脂組成物を3g添加して(全体の質量に対して粉末油脂組成物を1質量%含有)混合粉末を調製し、当該混合粉末をフードプロセッサー(製品名「フードプロセッサー1.9L」、コンエアージャパン合同会社製)で20秒間攪拌混合し、サンプルを調製した。製造例1の粉末油脂組成物の代わりに、製造例2~4、製造比較例1~9の粉末油脂組成物を添加したサンプルも、同様の方法で調製した。
対照として、粉末油脂組成物を添加していない粉末馬鈴薯澱粉自体を、同様にフードプロセッサーで20秒間攪拌混合し、対照サンプルを調製した。
得られたサンプルの安息角を、パウダテスタPT-X(ホソカワミクロン株式会社製)を用いて測定した。
具体的には、直径7.5cmの目開き1.7mmの円形の篩に粉末サンプルを200~300cm3供し、振幅1.5mmで振動させ、篩から落下させた(正弦波の振動による自由落下)。粉末サンプルは、篩の下にある開口部の径5mmの漏斗を通過後、7.5cmの高さから円形テーブル(直径8cm)上に落下させ、テーブルの端部から粉体があふれる程度に堆積させた。形成する粉体堆積層の自由表面が水平となす角度を、画像により算出し、その値を安息角とした。
安息角は、1つのサンプルについて3回測定を行い、その平均値をそのサンプルの安息角とした。
次に、測定した安息角の値を用いて、次の式(I)から安息角相対値を求めた。

安息角相対値(%)=[該粉末油脂組成物と粉末馬鈴薯澱粉との混合粉末の安息角]/[該粉末油脂組成物を含有しない該粉末馬鈴薯澱粉のみの安息角]×100 (I)

(式(I)中、「混合粉末」は、混合粉末全体の質量に対して粉末油脂組成物を1質量%含有)
-Relative rest angle powder 297 g of potato starch (product name: domestic potato starch (Hokkaido) (manufactured by Hinokuni Food Industry Co., Ltd.), average particle size of 34.8 μm measured by the laser diffraction scattering method described later), Production Example 1 Add 3 g of the powdered fat and oil composition (containing 1% by mass of the powdered fat and oil composition to the total mass) to prepare a mixed powder, and use the mixed powder as a food processor (product name "Food Processor 1.9 L"). A sample was prepared by stirring and mixing for 20 seconds with (manufactured by Conair Japan GK). Samples to which the powdered oil and fat compositions of Production Examples 2 to 4 and Comparative Examples 1 to 9 were added instead of the powdered oil and fat composition of Production Example 1 were also prepared by the same method.
As a control, the powdered potato starch itself to which the powdered fat composition was not added was similarly stirred and mixed with a food processor for 20 seconds to prepare a control sample.
The angle of repose of the obtained sample was measured using a powder tester PT-X (manufactured by Hosokawa Micron Corporation).
Specifically, 200 to 300 cm 3 of the powder sample was applied to a circular sieve having a diameter of 7.5 cm and an opening of 1.7 mm, vibrated with an amplitude of 1.5 mm, and dropped from the sieve (free fall due to vibration of a sine wave). ). After passing through a funnel with a diameter of 5 mm at the opening under the sieve, the powder sample is dropped from a height of 7.5 cm onto a circular table (diameter 8 cm) and deposited to the extent that the powder overflows from the end of the table. I let you. The angle formed by the free surface of the powder deposit layer to be formed was calculated from an image, and the value was taken as the angle of repose.
The angle of repose was measured three times for one sample, and the average value was taken as the angle of repose of the sample.
Next, using the measured angle of repose value, the relative value of the angle of repose was obtained from the following equation (I).

Relative value of repose (%) = [Angle of repose of a mixed powder of the powdered potato starch and the powdered potato starch] / [Angle of repose of the powdered potato starch alone not containing the powdered potato starch] × 100 (I)

(In the formula (I), the "mixed powder" contains 1% by mass of the powdered oil / fat composition with respect to the total mass of the mixed powder).

・比表面積
粉末油脂組成物の比表面積(cm2/g)は、N2ガス吸着法(多点法)により測定した。
具体的には、試料1.2~1.5gをセルに採取し、前処理装置(マイクロメリティックス社製、装置名「VacPrep 061」)を用いて、室温(25℃)で24時間の減圧脱気処理後、比表面積測定分析装置(マイクロメリティックス社製、装置名「3Flex」)を使って、N2ガス吸着法(多点法)により比表面積を測定した。
-Specific surface area The specific surface area (cm 2 / g) of the powdered oil / fat composition was measured by the N 2 gas adsorption method (multi-point method).
Specifically, 1.2 to 1.5 g of a sample is collected in a cell, and a pretreatment device (manufactured by Micromeritics Co., Ltd., device name "VacPrep 061") is used for 24 hours at room temperature (25 ° C.). After the degassing treatment under reduced pressure, the specific surface area was measured by the N 2 gas adsorption method (multi-point method) using a specific surface area measurement analyzer (manufactured by Micromeritics, device name "3Flex").

・平均粒径
平均粒径は、粒度分布測定装置(株式会社島津製作所製、装置名:SALD-2300)でレーザ回折散乱法(ISO13320、JIS Z 8825-1)に基づいて、乾式測定により体積基準粒度分布を測定して体積平均径〔MV〕を求め、得られた体積平均径〔MV〕を平均粒径とした。体積平均径〔MV〕は、粒子の粒径、粒子の体積、及び粒子の体積の総和の各値を使って以下の式から求めた。

体積平均径〔MV〕=(粒径×その粒子の体積)の総和/粒子の体積の総和
-Average particle size The average particle size is volume-based by dry measurement based on the laser diffraction and scattering method (ISO13320, JIS Z 8825-1) with a particle size distribution measuring device (manufactured by Shimadzu Corporation, device name: SALD-2300). The particle size distribution was measured to obtain the volume average diameter [MV], and the obtained volume average diameter [MV] was used as the average particle size. The volume average diameter [MV] was calculated from the following formula using the respective values of the particle size of the particles, the volume of the particles, and the sum of the volumes of the particles.

Volume average diameter [MV] = sum of (particle size x volume of the particle) / sum of the volume of the particle

・外観観察
得られた各種粉末油脂組成物の外観を目視で観察した。
また、粉末油脂組成物の粒子の形状を、電子顕微鏡(日本電子株式会社製、「JSM-7500F」)を用いて、倍率10000倍で観察した。
電子顕微鏡で観察するサンプルの蒸着方法を以下に記載する。
まず、銅板上に導電テープを張り試料粉を上に載せた後、余剰試料を飛ばす目的で窒素ガスによるブロワー処理をした。その後、蒸着処置は、Osmium plasma coator(Nippon Laser&Electronics Lab.社製、「OPC-80」)を用いて、オスミウム蒸着処理(30nm)を行った。
-Observation of appearance The appearance of the obtained powdered oil and fat compositions was visually observed.
Further, the shape of the particles of the powdered oil / fat composition was observed at a magnification of 10,000 times using an electron microscope (“JSM-7500F” manufactured by JEOL Ltd.).
The method of vapor deposition of the sample observed with an electron microscope is described below.
First, a conductive tape was put on the copper plate and the sample powder was placed on the copper plate, and then a blower treatment with nitrogen gas was performed for the purpose of removing the surplus sample. Then, as the thin-film deposition treatment, an osmium vapor deposition treatment (30 nm) was performed using an Osmium plasma coator (“OPC-80” manufactured by Nippon Plasma & Electronics Lab.).

・粉末油脂組成物の粒子の表面上に存在する薄片の大きさ
製造例1~4、製造比較例1で得られた粉末油脂組成物の粒子の表面上に存在する薄片の大きさを、上述した電子顕微鏡写真を用いて測定した。
電子顕微鏡写真に写った薄片の長辺(μm)、短辺(μm)、厚さ(μm)をそれぞれ測定した。測定は10個の薄片について行い、その平均値を求めた。
・原料
製造例及び製造比較例において原料として使用したフレーク状の菜種極度硬化油の詳細は以下の通りである。
横関油脂工業株式会社製、α型油脂、菜種極度硬化油の全質量を100質量%とした場合のグリセリンの1位~3位に炭素数18の脂肪酸残基X(ステアリン酸残基)を有するXXX型トリグリセリドの含有量は79.6質量%、ピーク強度比:0.03、融点67℃
The size of the flakes present on the surface of the particles of the powdered oil / fat composition The size of the flakes present on the surface of the particles of the powdered oil / fat composition obtained in Production Examples 1 to 4 and Comparative Example 1 is described above. It was measured using the electron micrograph.
The long side (μm), short side (μm), and thickness (μm) of the slices shown in the electron micrograph were measured. The measurement was performed on 10 flakes, and the average value was calculated.
-The details of the flake-shaped rapeseed extremely hydrogenated oil used as a raw material in the raw material production example and the production comparative example are as follows.
It has a fatty acid residue X (stearic acid residue) with 18 carbon atoms at the 1st to 3rd positions of glycerin when the total mass of α-type fats and oils and rapeseed extremely hydrogenated oil manufactured by Yokoseki Yushi Kogyo Co., Ltd. is 100% by mass. The content of XXX type triglyceride is 79.6% by mass, peak intensity ratio: 0.03, melting point 67 ° C.

製造例1~4(恒温室、カウンタジェットミル)
フレーク状の菜種極度硬化油20kgを、紙袋(縦:800mm、横450mm:、厚さ:150mm)に入れて、恒温室(横幅:5100mm×高さ:2100mm×奥行:4050mm、エスペック株式会社製、装置名「TBUU」)に入れ、融解が生じない62℃にて64時間静置し、フレーク状の油脂を得た。
得られたフレーク状の油脂12.0kgを解砕機で解砕し、油脂解砕物を得た。得られた油脂解砕物6.0kgを、気流式粉砕機(ホソカワミクロン株式会社製、装置名「カウンタジェットミル200AFG」)で原料同士の衝突により粉砕することにより粉末油脂組成物(粉末油脂組成物の全質量を100質量%とした場合のグリセリンの1位~3位に炭素数18の脂肪酸残基X(ステアリン酸残基)を有するXXX型トリグリセリドの含有量は79.6質量%)4.8kgを得た。なお、製造例1~4は、粉砕時の分級速度が表2に示すように異なっている以外は、同一の方法で製造されている。得られた製造例1~4の粉末油脂組成物中の油脂の結晶多形は、X線回折分析により、β型であることを確認した。表2に、気流式粉砕機の粉砕条件、各サンプルの外観、分析値、及びX線回折分析で確認をした各粉末油脂組成物中の油脂の結晶多形を示す。
Production Examples 1 to 4 (constant greenhouse, counter jet mill)
Put 20 kg of flake-shaped rapeseed extremely hydrogenated oil in a paper bag (length: 800 mm, width 450 mm :, thickness: 150 mm) and put it in a constant temperature room (width: 5100 mm x height: 2100 mm x depth: 4050 mm, manufactured by ESPEC CORPORATION, It was placed in an apparatus name "TBUU") and allowed to stand at 62 ° C. where melting did not occur for 64 hours to obtain flake-shaped oils and fats.
12.0 kg of the obtained flaky fat and oil was crushed by a crusher to obtain a crushed fat and oil. A powdered fat or oil composition (powdered fat or oil composition) is obtained by crushing 6.0 kg of the obtained crushed fat or oil by collision between raw materials using an air flow type crusher (manufactured by Hosokawa Micron Co., Ltd., device name "Counter Jet Mill 200AFG"). When the total mass is 100% by mass, the content of XXX-type triglyceride having a fatty acid residue X (stearic acid residue) having 18 carbon atoms at the 1st to 3rd positions of glycerin is 79.6% by mass) 4.8 kg. Got In addition, Production Examples 1 to 4 are produced by the same method except that the classification speed at the time of crushing is different as shown in Table 2. It was confirmed by X-ray diffraction analysis that the crystalline polymorphs of the fats and oils in the obtained powdered fats and oils compositions of Production Examples 1 to 4 were β-type. Table 2 shows the crushing conditions of the airflow type crusher, the appearance of each sample, the analytical values, and the crystal polymorphs of the fats and oils in each powdered fat and oil composition confirmed by X-ray diffraction analysis.

Figure 0007003313000003
Figure 0007003313000003

製造例1~4の粉末油脂組成物の各粒子を上記外観観察に基づいて電子顕微鏡にて観察した結果、当該粒子は、表面上に薄片が複数存在・集積することにより、表面に凹凸が形成された不定形状であった。参考のため、製造例1の上記電子顕微鏡写真を図1に、製造例4の上記電子顕微鏡写真を図2に示す。 As a result of observing each particle of the powdered oil / fat composition of Production Examples 1 to 4 with an electron microscope based on the above appearance observation, the particles have irregularities on the surface due to the presence / accumulation of a plurality of flakes on the surface. It was an indefinite shape. For reference, the electron micrograph of Production Example 1 is shown in FIG. 1, and the electron micrograph of Production Example 4 is shown in FIG.

製造例5(β化処理のみ、恒温室)
恒温室を用いて、α型油脂のβ化処理を検討した。
具体的には、フレーク状の菜種極度硬化油6kgを、ステンレス容器(横幅:530mm×奥行:325mm×高さ:200mm)に拡げて敷き詰め、恒温室(横幅:5100mm×高さ:2100mm×奥行:4050mm、エスペック株式会社製、装置名「TBUU」)内のスチールラック(横幅:760mm×奥行:460mm×高さ:1795mm)に入れ、40℃で28日間加熱処理し、加熱処理したフレーク状の油脂(粉末油脂組成物の全質量を100質量%とした場合のグリセリンの1位~3位に炭素数18の脂肪酸残基X(ステアリン酸残基)を有するXXX型トリグリセリドの含有量は79.6質量%)6kgを得た。
X線回折分析により、加熱処理したフレーク状の油脂の結晶多形は、β型であることを確認した。表3に、加熱方法、外観、分析値、及びX線回折分析で確認をした油脂の結晶多形を示す。
Production Example 5 (β conversion treatment only, homeothermic treatment)
A beta treatment of α-type fats and oils was investigated using a homeothermic environment.
Specifically, 6 kg of flake-shaped rapeseed extremely hydrogenated oil is spread in a stainless steel container (width: 530 mm x depth: 325 mm x height: 200 mm) and spread in a constant temperature room (width: 5100 mm x height: 2100 mm x depth:). 4050 mm, manufactured by Espec Co., Ltd., device name "TBUU") placed in a steel rack (width: 760 mm x depth: 460 mm x height: 1795 mm), heat-treated at 40 ° C for 28 days, and heat-treated flake-shaped oils and fats. (When the total mass of the powdered oil / fat composition is 100% by mass, the content of XXX-type triglyceride having a fatty acid residue X (stearic acid residue) having 18 carbon atoms at the 1st to 3rd positions of glycerin is 79.6. Weight%) 6 kg was obtained.
By X-ray diffraction analysis, it was confirmed that the crystal polymorphs of the heat-treated flake-shaped fats and oils were β-type. Table 3 shows the heating method, appearance, analytical values, and polymorphs of fats and oils confirmed by X-ray diffraction analysis.

製造例6(β化処理のみ、恒温室)
恒温室を用いて、α型油脂のβ化処理を検討した。
具体的には、フレーク状の菜種極度硬化油6kgを、ステンレス容器(横幅:530mm×奥行:325mm×高さ:200mm)に拡げて敷き詰め、恒温室(横幅:5100mm×高さ:2100mm×奥行:4050mm、エスペック株式会社製、装置名「TBUU」)内のスチールラック(横幅:760mm×奥行:460mm×高さ:1795mm)に入れ、62℃で15時間加熱処理し、加熱処理したフレーク状の油脂(粉末油脂組成物の全質量を100質量%とした場合のグリセリンの1位~3位に炭素数18の脂肪酸残基X(ステアリン酸残基)を有するXXX型トリグリセリドの含有量は79.6質量%)6kgを得た。
X線回折分析により、加熱処理したフレーク状の油脂の結晶多形は、β型であることを確認した。表3に、加熱方法、外観、分析値、及びX線回折分析で確認をした油脂の結晶多形を示す。
Production Example 6 (β conversion treatment only, homeothermic treatment)
A beta treatment of α-type fats and oils was investigated using a homeothermic environment.
Specifically, 6 kg of flake-shaped rapeseed extremely hydrogenated oil is spread in a stainless steel container (width: 530 mm x depth: 325 mm x height: 200 mm) and spread in a constant temperature room (width: 5100 mm x height: 2100 mm x depth:). Flake-shaped oil and fat placed in a steel rack (width: 760 mm x depth: 460 mm x height: 1795 mm) in a steel rack (width: 760 mm x depth: 460 mm x height: 1795 mm) in 4050 mm, manufactured by Espec Co., Ltd., and heat-treated at 62 ° C for 15 hours. (When the total mass of the powdered oil / fat composition is 100% by mass, the content of XXX-type triglyceride having a fatty acid residue X (stearic acid residue) having 18 carbon atoms at the 1st to 3rd positions of glycerin is 79.6. Weight%) 6 kg was obtained.
By X-ray diffraction analysis, it was confirmed that the crystal polymorphs of the heat-treated flake-shaped fats and oils were β-type. Table 3 shows the heating method, appearance, analytical values, and polymorphs of fats and oils confirmed by X-ray diffraction analysis.

製造例7(β化処理のみ、横型撹拌タンク)
横型撹拌タンクを用いて、α型油脂のβ化処理を検討した。
具体的には、フレーク状の菜種極度硬化油4.0kgを、横型撹拌タンク(株式会社マツボー製、装置名「レーディゲミキサーM20」)を用いて、63℃、撹拌速度100rpmで30分加熱処理することにより、フレーク状の油脂(粉末油脂組成物の全質量を100質量%とした場合のグリセリンの1位~3位に炭素数18の脂肪酸残基X(ステアリン酸残基)を有するXXX型トリグリセリドの含有量は79.6質量%)3.8kgを得た。X線回折分析により、加熱処理したフレーク状の油脂の結晶多形は、β型であることを確認した。表3に、加熱方法、外観、分析値、及びX線回折分析で確認をした油脂の結晶多形を示す。
Production Example 7 (β conversion treatment only, horizontal stirring tank)
Using a horizontal agitation tank, β-formation treatment of α-type fats and oils was examined.
Specifically, 4.0 kg of flake-shaped rapeseed extremely hydrogenated oil is heated at 63 ° C. and a stirring speed of 100 rpm for 30 minutes using a horizontal stirring tank (manufactured by Matsubo Co., Ltd., device name “Radige Mixer M20”). By the treatment, XXX having a fatty acid residue X (stearic acid residue) having 18 carbon atoms at the 1st to 3rd positions of glycerin when the total mass of the powdered oil / fat composition is 100% by mass. The content of the type triglyceride was 79.6% by mass) 3.8 kg was obtained. By X-ray diffraction analysis, it was confirmed that the crystal polymorphs of the heat-treated flake-shaped fats and oils were β-type. Table 3 shows the heating method, appearance, analytical values, and polymorphs of fats and oils confirmed by X-ray diffraction analysis.

製造例8(β化処理のみ、横型撹拌タンク)
横型撹拌タンクを用いて、α型油脂のβ化処理を検討した。
具体的には、フレーク状の菜種極度硬化油4.0kgを、横型撹拌タンク(株式会社マツボー製、装置名「レーディゲミキサーM20」)を用いて、65℃、撹拌速度50rpmで1時間加熱処理することにより、フレーク状の油脂(粉末油脂組成物の全質量を100質量%とした場合のグリセリンの1位~3位に炭素数18の脂肪酸残基X(ステアリン酸残基)を有するXXX型トリグリセリドの含有量は79.6質量%)3.8kgを得た。X線回折分析により、加熱処理したフレーク状の油脂の結晶多形は、β型であることを確認した。表3に、加熱方法、外観、分析値、及びX線回折分析で確認をした油脂の結晶多形を示す。
Production Example 8 (β conversion treatment only, horizontal stirring tank)
Using a horizontal agitation tank, β-formation treatment of α-type fats and oils was examined.
Specifically, 4.0 kg of flake-shaped rapeseed extremely hydrogenated oil is heated at 65 ° C. and a stirring speed of 50 rpm for 1 hour using a horizontal stirring tank (manufactured by Matsubo Co., Ltd., device name “Radige Mixer M20”). By the treatment, XXX having a fatty acid residue X (stearic acid residue) having 18 carbon atoms at the 1st to 3rd positions of glycerin when the total mass of the powdered oil / fat composition is 100% by mass. The content of the type triglyceride was 79.6% by mass) 3.8 kg was obtained. By X-ray diffraction analysis, it was confirmed that the crystal polymorphs of the heat-treated flake-shaped fats and oils were β-type. Table 3 shows the heating method, appearance, analytical values, and polymorphs of fats and oils confirmed by X-ray diffraction analysis.

Figure 0007003313000004
Figure 0007003313000004

上記表3の結果から、α型油脂を、40℃~65℃の温度で加熱処理することで、原料を融解することなく、β型油脂に変化させられることがわかった。また、製造例5及び6、製造例7及び8からわかるように、同じ加熱装置を用いた場合の加熱時間を比較すると、加熱温度が高い方がβ型油脂に変化させる時間が短いという傾向がみられた。さらに、製造例5及び6のように、加熱する原料を静置状態で加熱するよりも、製造例7及び8のように、加熱する原料を撹拌状態の非静置状態で加熱した方が、β型油脂に変化させる時間が短くできることがわかった。 From the results in Table 3 above, it was found that by heat-treating the α-type fats and oils at a temperature of 40 ° C. to 65 ° C., the raw materials can be converted into β-type fats and oils without melting. Further, as can be seen from Production Examples 5 and 6, when comparing the heating times when the same heating device is used, there is a tendency that the higher the heating temperature, the shorter the time for changing to β-type fats and oils. It was seen. Further, it is better to heat the heated raw material in a non-static state in a stirred state as in Production Examples 7 and 8 than to heat the heated raw material in a stationary state as in Production Examples 5 and 6. It was found that the time to change to β-type fats and oils can be shortened.

製造比較例1(β化処理なし、カウンタジェットミル)
フレーク状の菜種極度硬化油12.0kgを解砕機で解砕し、11.5kgの油脂解砕物を得た。得られた油脂解砕物6.0kgを、気流式粉砕機(ホソカワミクロン株式会社製、装置名「カウンタジェットミル200AFG」)で粉砕することにより粉末油脂組成物(粉末油脂組成物の全質量を100質量%とした場合のグリセリンの1位~3位に炭素数18の脂肪酸残基X(ステアリン酸残基)を有するXXX型トリグリセリドの含有量は79.6質量%)4.8kgを得た。X線回折分析により、得られた粉末油脂組成物中の油脂の結晶多形は、α型及びβ型であることを確認した。
なお、製造比較例1では、加熱処理を行っていないが、気流式粉砕機での粉砕時に発生した熱等により、α型油脂の一部がβ型油脂に変化したと考えられる。
表4に、気流式粉砕機の粉砕条件、サンプルの外観、分析値、及びX線回折分析で確認をした粉末油脂組成物中の油脂の結晶多形を示す。
Manufacturing Comparative Example 1 (without β-treatment, counter jet mill)
12.0 kg of flaky rapeseed extremely hydrogenated oil was crushed with a crusher to obtain 11.5 kg of crushed oil and fat. By crushing 6.0 kg of the obtained crushed fat and oil with an air flow type crusher (manufactured by Hosokawa Micron Co., Ltd., device name "Counter Jet Mill 200AFG"), the powdered fat and oil composition (total mass of the powdered fat and oil composition is 100 mass). The content of XXX-type triglyceride having a fatty acid residue X (stearic acid residue) having 18 carbon atoms at the 1st to 3rd positions of glycerin was 79.6% by mass), and 4.8 kg was obtained. By X-ray diffraction analysis, it was confirmed that the polymorphs of the fats and oils in the obtained powdered fats and oils composition were α-type and β-type.
Although the heat treatment was not performed in Production Comparative Example 1, it is considered that a part of the α-type fat and oil was changed to the β-type fat and oil due to the heat generated during crushing by the airflow type crusher.
Table 4 shows the crushing conditions of the airflow type crusher, the appearance of the sample, the analytical values, and the crystal polymorphs of the fats and oils in the powdered fats and oils composition confirmed by the X-ray diffraction analysis.

Figure 0007003313000005
Figure 0007003313000005

製造比較例1の粉末油脂組成物の粒子を上記外観観察に基づいて電子顕微鏡にて観察した結果、当該粒子は、表面上に薄片が複数存在・集積することにより、表面に凹凸が形成された不定形状であった。参考のため、製造比較例1の上記電子顕微鏡写真を図3に示す。 As a result of observing the particles of the powdered oil / fat composition of Production Comparative Example 1 with an electron microscope based on the above-mentioned appearance observation, the particles had irregularities on the surface due to the presence / accumulation of a plurality of flakes on the surface. It had an irregular shape. For reference, the electron micrograph of Production Comparative Example 1 is shown in FIG.

製造比較例2(恒温室、サイクロンミル(機械的及び気流式粉砕機))
フレーク状の菜種極度硬化油6.0kgを、ステンレス容器(横幅:530mm×奥行:325mm×高さ:200mm)に拡げて敷き詰め、恒温室(横幅:5100mm×高さ:2100mm×奥行:4050mm、エスペック株式会社製、装置名「TBUU」)内のスチールラック(横幅:760mm×奥行:460mm×高さ:1795mm)に入れ、66℃で4時間、63℃4時間のサイクルを3回実施し、フレーク状の油脂を得た。
得られたフレーク状の油脂6.0kgを解砕機で解砕し、油脂解砕物を得た。
次に、得られた油脂解砕物4.0kgを、機械的及気流式の粉砕機(株式会社静岡プラント製、装置名「サイクロンミル150BMS」)で粉砕することにより粉末油脂組成物3.5kgを得た。ここで、サイクロンミルは、インペラによる機械的な粉砕と高速気流中の粒子同士の衝突による気流式粉砕、さらに遠心分級の3つの機能を併せ持つ粉砕機である。粉末油脂組成物の粒径をさらに小さくするために、得られた粉末油脂組成物1.3kgを、もう1度、機械的及び気流式の粉砕機(株式会社静岡プラント製、装置名「サイクロンミル150BMS」)で粉砕し、粉末油脂組成物(粉末油脂組成物の全質量を100質量%とした場合のグリセリンの1位~3位に炭素数18の脂肪酸残基X(ステアリン酸残基)を有するXXX型トリグリセリドの含有量は79.6質量%)1.0kgを得た。X線回折分析により、得られた粉末油脂組成物中の油脂の結晶多形は、β型であることを確認した。表5に、機械的及び気流式粉砕機の粉砕条件、サンプルの外観、分析値、及びX線回折分析で確認をした粉末油脂組成物中の油脂の結晶多形を示す。
Manufacturing Comparative Example 2 (constant greenhouse, cyclone mill (mechanical and airflow crusher))
Spread 6.0 kg of flake-shaped rapeseed extremely hydrogenated oil in a stainless steel container (width: 530 mm x depth: 325 mm x height: 200 mm) and spread it in a constant temperature room (width: 5100 mm x height: 2100 mm x depth: 4050 mm, ESPEC. Placed in a steel rack (width: 760 mm x depth: 460 mm x height: 1795 mm) in a steel rack (width: 760 mm x depth: 1795 mm) manufactured by Co., Ltd., and cycled at 66 ° C for 4 hours and 63 ° C for 4 hours three times, and flakes. The shape of oil and fat was obtained.
6.0 kg of the obtained flake-shaped fat and oil was crushed by a crusher to obtain a crushed fat and oil.
Next, 4.0 kg of the obtained crushed fat and oil was crushed with a mechanical airflow type crusher (manufactured by Shizuoka Plant Co., Ltd., device name "Cyclone Mill 150BMS") to obtain 3.5 kg of powdered fat and oil composition. Obtained. Here, the cyclone mill is a crusher having three functions of mechanical crushing by an impeller, airflow type crushing by collision of particles in a high-speed airflow, and centrifugal classification. In order to further reduce the particle size of the powdered fat and oil composition, 1.3 kg of the obtained powdered fat and oil composition was once again subjected to a mechanical and air flow type crusher (manufactured by Shizuoka Plant Co., Ltd., device name "Cyclone Mill". After crushing with 150 BMS ”), fatty acid residue X (stearic acid residue) having 18 carbon atoms is added to the 1st to 3rd positions of glycerin in the powdered fat and oil composition (when the total mass of the powdered fat and oil composition is 100% by mass). The content of the XXX-type triglyceride contained was 79.6% by mass), and 1.0 kg was obtained. By X-ray diffraction analysis, it was confirmed that the crystal polymorphs of the fats and oils in the obtained powdered fats and oils composition were β-type. Table 5 shows the crushing conditions of the mechanical and airflow crushers, the appearance of the sample, the analytical values, and the crystal polymorphs of the fats and oils in the powdered fats and oils composition confirmed by the X-ray diffraction analysis.

Figure 0007003313000006
Figure 0007003313000006

製造比較例2の粉末油脂組成物の粒子を上記外観観察に基づいて電子顕微鏡観察をした結果、薄片が表面に存在しない不定形状の粒子が一部存在しており、また、表面上に薄片が複数存在・集積することにより、表面に凹凸が形成された不定形状の粒子も存在していた。
一方、サイクロンミルによる粉砕では、表面上に薄片が複数存在することにより表面に凹凸が形成された不定形状粒子だけでなく、薄片が粒子の表面上にない不定形状の粒子も存在していた(図4)。薄片が粒子の表面上にない不定形状の粒子が存在する理由として、サイクロンミルによる粉砕では、高速気流中の粒子同士の衝突による気流式粉砕だけではなく、インペラによる機械的な粉砕も同時に行っているので、表面上の薄片がつぶされてなくなってしまったためと考えられる。
このことから、ほとんどの粒子が、表面上に薄片が複数存在・集積することにより、表面に凹凸が形成された不定形状の粉末油脂組成物を製造するには、最終的な粉末油脂組成物を得る直前の粉砕工程では、機械的な粉砕を行わない粉砕機、例えば、気流式粉砕機を用いて製造する必要があることがわかった。
As a result of observing the particles of the powdered oil / fat composition of Production Comparative Example 2 with an electron microscope based on the above-mentioned appearance observation, some irregularly shaped particles in which the flakes are not present on the surface are present, and the flakes are present on the surface. There were also irregularly shaped particles with irregularities formed on the surface due to the existence and accumulation of multiple particles.
On the other hand, in the pulverization by the cyclone mill, not only the irregularly shaped particles having irregularities formed on the surface due to the presence of a plurality of flakes on the surface but also the irregularly shaped particles in which the flakes were not on the surface of the particles were present ( FIG. 4). The reason for the existence of irregularly shaped particles in which flakes are not on the surface of the particles is that in crushing with a cyclone mill, not only airflow crushing due to collisions between particles in a high-speed airflow, but also mechanical crushing with an impeller is performed at the same time. It is probable that the flakes on the surface were crushed and disappeared.
From this, in order to produce an amorphous powder oil / fat composition in which irregularities are formed on the surface of most particles due to the presence / accumulation of a plurality of flakes on the surface, the final powder oil / fat composition is prepared. It was found that in the crushing step immediately before the acquisition, it is necessary to manufacture using a crusher that does not perform mechanical crushing, for example, an air flow type crusher.

製造比較例3~7(融解後固化、カウンタジェットミル)
フレーク状の菜種極度硬化油2kgを、ステンレス容器(横幅:530mm×奥行:325mm×高さ:100mm)に拡げて敷き詰め、計6個のステンレス容器を恒温室(横幅:5100mm×高さ:2100mm×奥行:4050mm、エスペック株式会社製、装置名「TBUU」)内のスチールラック(横幅:760mm×奥行:460mm×高さ:1795mm)に静置し、融点を超える80℃にて10時間維持して完全に融解した後、60℃で15時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却し、油脂固形物を得た。
得られた油脂固形物12.0kgを解砕機で解砕し、油脂解砕物を得た。次に、得られた油脂解砕物10.0kgを、気流式粉砕機(ホソカワミクロン株式会社製、装置名「カウンタジェットミル200AFG」)で粉砕することにより、粉末油脂組成物(粉末油脂組成物の全質量を100質量%とした場合のグリセリンの1位~3位に炭素数18の脂肪酸残基X(ステアリン酸残基)を有するXXX型トリグリセリドの含有量は79.4質量%)7.8kgを得た。X線回折分析により、得られた粉末油脂組成物中の油脂の結晶多形は、β型であることを確認した。表6に、気流式の粉砕機の粉砕条件、サンプルの外観、分析値、及びX線回折分析で確認をした粉末油脂組成物中の油脂の結晶多形を示す。
Production Comparative Examples 3 to 7 (solidification after melting, counter jet mill)
2 kg of flake-shaped rapeseed extremely hydrogenated oil is spread and spread in a stainless steel container (width: 530 mm x depth: 325 mm x height: 100 mm), and a total of 6 stainless steel containers are placed in a constant temperature room (width: 5100 mm x height: 2100 mm x). Depth: 4050 mm, manufactured by Espec Co., Ltd., device name "TBUU"), placed in a steel rack (width: 760 mm x depth: 460 mm x height: 1795 mm) and maintained at 80 ° C, which exceeds the melting point, for 10 hours. After completely melting, it is cooled at 60 ° C. for 15 hours to form a solid substance having voids with increased volume, and after crystallization is completed, it is cooled to a room temperature (25 ° C.) state to obtain a fat and oil solid substance. rice field.
12.0 kg of the obtained fat and oil solid was crushed by a crusher to obtain a fat and oil crushed product. Next, 10.0 kg of the obtained crushed fat and oil was crushed by an air flow type crusher (manufactured by Hosokawa Micron Co., Ltd., device name "Counter Jet Mill 200AFG") to obtain a powdered fat and oil composition (all of the powdered fat and oil composition). When the mass is 100% by mass, the content of XXX-type triglyceride having a fatty acid residue X (stearic acid residue) having 18 carbon atoms at the 1st to 3rd positions of glycerin is 79.4% by mass) 7.8 kg. Obtained. By X-ray diffraction analysis, it was confirmed that the crystal polymorphs of the fats and oils in the obtained powdered fats and oils composition were β-type. Table 6 shows the crushing conditions of the airflow type crusher, the appearance of the sample, the analytical values, and the crystal polymorphs of the fats and oils in the powdered fats and oils composition confirmed by the X-ray diffraction analysis.

Figure 0007003313000007
Figure 0007003313000007

製造比較例3~7の粉末油脂組成物の粒子を上記外観観察に基づいて電子顕微鏡にて観察した結果、粒子は、表面上に薄片が複数存在・集積することにより、表面に凹凸が形成された不定形状ではなく、単なる板状形状であった。参考のため、製造比較例5の上記電子顕微鏡写真を図5に示す。 As a result of observing the particles of the powdered oil / fat composition of Production Comparative Examples 3 to 7 with an electron microscope based on the above-mentioned appearance observation, the particles have irregularities formed on the surface due to the presence / accumulation of a plurality of flakes on the surface. It was not an indefinite shape, but just a plate shape. For reference, the electron micrograph of Production Comparative Example 5 is shown in FIG.

製造比較例8(恒温室、サイクロンミル(機械的及び気流式粉砕機))
フレーク状の菜種極度硬化油2.0kgを、ステンレス容器(横幅:530mm×奥行:325mm×高さ:100mm)に拡げて敷き詰め、計3個のステンレス容器を恒温室(横幅:5100mm×高さ:2100mm×奥行:4050mm、エスペック株式会社製、装置名「TBUU」)内のスチールラック(横幅:760mm×奥行:460mm×高さ:1795mm)に静置し、融点を超える80℃にて10時間維持して完全に融解した後、60℃で16時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却し、油脂固形物を得た。
得られた油脂固形物6.0kgを解砕機で解砕し、油脂解砕物を得た。
次に、得られた油脂解砕物5.8kgを、機械的及び気流式の粉砕機(株式会社静岡プラント製、装置名「サイクロンミル150BMS」)で粉砕することにより粉末油脂組成物(粉末油脂組成物の全質量を100質量%とした場合のグリセリンの1位~3位に炭素数18の脂肪酸残基X(ステアリン酸残基)を有するXXX型トリグリセリドの含有量は79.4質量%)5.4kgを得た。
ここで、サイクロンミルは、インペラによる機械的な粉砕と高速気流中の粒子同士の衝突による気流式粉砕、さらに遠心分級の3つの機能を併せ持つ粉砕機である。
X線回折分析により、得られた粉末油脂組成物中の油脂の結晶多形は、β型であることを確認した。
表7に、機械的及び気流式の粉砕機の粉砕条件、サンプルの外観、分析値、及びX線回折分析で確認をした粉末油脂組成物中の油脂の結晶多形を示す。
Manufacturing Comparative Example 8 (constant greenhouse, cyclone mill (mechanical and airflow crusher))
2.0 kg of flake-shaped rapeseed extremely hydrogenated oil was spread and spread in a stainless steel container (width: 530 mm x depth: 325 mm x height: 100 mm), and a total of three stainless steel containers were placed in a constant temperature room (width: 5100 mm x height: 100 mm). 2100 mm x depth: 4050 mm, manufactured by Espec Co., Ltd., device name "TBUU"), placed in a steel rack (width: 760 mm x depth: 460 mm x height: 1795 mm) and maintained at 80 ° C above the melting point for 10 hours. After completely melting, the mixture was cooled at 60 ° C. for 16 hours to form a solid substance having voids with increased volume, and after crystallization was completed, it was cooled to a room temperature (25 ° C.) state to form an oil / fat solid substance. Got
6.0 kg of the obtained fat and oil solid was crushed by a crusher to obtain a fat and oil crushed product.
Next, 5.8 kg of the obtained crushed fat and oil was crushed by a mechanical and airflow type crusher (manufactured by Shizuoka Plant Co., Ltd., device name "Cyclone Mill 150BMS") to obtain a powdered fat and oil composition (powdered fat and oil composition). When the total mass of the substance is 100% by mass, the content of XXX-type triglyceride having a fatty acid residue X (stearic acid residue) having 18 carbon atoms at the 1st to 3rd positions of glycerin is 79.4% by mass) 5. Obtained 0.4 kg.
Here, the cyclone mill is a crusher having three functions of mechanical crushing by an impeller, airflow type crushing by collision of particles in a high-speed airflow, and centrifugal classification.
By X-ray diffraction analysis, it was confirmed that the crystal polymorphs of the fats and oils in the obtained powdered fats and oils composition were β-type.
Table 7 shows the crushing conditions of the mechanical and airflow type crushers, the appearance of the sample, the analytical values, and the crystal polymorphs of the fats and oils in the powdered fats and oils composition confirmed by the X-ray diffraction analysis.

Figure 0007003313000008
Figure 0007003313000008

製造比較例8の粉末油脂組成物の粒子を上記外観観察に基づいて電子顕微鏡にて観察した結果、粒子は、表面上に薄片が複数存在・集積することにより、表面に凹凸が形成された不定形状ではなく、単なる板状形状であった。参考のため、製造比較例8の上記電子顕微鏡写真を図6に示す。 As a result of observing the particles of the powdered oil / fat composition of Production Comparative Example 8 with an electron microscope based on the above appearance observation, the particles had irregularities formed on the surface due to the presence / accumulation of a plurality of flakes on the surface. It was not a shape, but just a plate shape. For reference, the electron micrograph of Production Comparative Example 8 is shown in FIG.

製造比較例9(融解後結晶、機械的粉砕機)
フレーク状の菜種極度硬化油2.0kgを、ステンレス容器(横幅:530mm×奥行:325mm×高さ:100mm)に拡げて敷き詰め、計3個のステンレス容器を恒温室(横幅:5100mm×高さ:2100mm×奥行:4050mm、エスペック株式会社製、装置名「TBUU」)内のスチールラック(横幅:760mm×奥行:460mm×高さ:1795mm)に静置し、融点を超える80℃にて10時間維持して完全に融解した後、60℃で16時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却し、油脂固形物を得た。
得られた油脂固形物6.0kgを解砕機で解砕し、油脂解砕物を得た。
次に、得られた油脂解砕物5.8kgを、機械的粉砕機である衝撃型分級機内蔵微粉砕機(ホソカワミクロン株式会社製、装置名「ACM―10A」)で粉砕することにより、粉末油脂組成物(粉末油脂組成物の全質量を100質量%とした場合のグリセリンの1位~3位に炭素数18の脂肪酸残基X(ステアリン酸残基)を有するXXX型トリグリセリドの含有量は79.4質量%)5.5kgを得た。X線回折分析により、得られた粉末油脂組成物中の油脂の結晶多形は、β型であることを確認した。表8に、衝撃型分級機内蔵微粉砕機の粉砕条件、サンプルの外観、分析値、及びX線回折分析で確認をした粉末油脂組成物中の油脂の結晶多形を示す。
Production Comparative Example 9 (Crystal after melting, mechanical crusher)
2.0 kg of flake-shaped rapeseed extremely hydrogenated oil was spread and spread in a stainless steel container (width: 530 mm x depth: 325 mm x height: 100 mm), and a total of three stainless steel containers were placed in a constant temperature room (width: 5100 mm x height: 100 mm). 2100 mm x depth: 4050 mm, manufactured by Espec Co., Ltd., device name "TBUU"), placed in a steel rack (width: 760 mm x depth: 460 mm x height: 1795 mm) and maintained at 80 ° C above the melting point for 10 hours. After completely melting, the mixture was cooled at 60 ° C. for 16 hours to form a solid substance having voids with increased volume, and after crystallization was completed, it was cooled to a room temperature (25 ° C.) state to form an oil / fat solid substance. Got
6.0 kg of the obtained fat and oil solid was crushed by a crusher to obtain a fat and oil crushed product.
Next, 5.8 kg of the obtained crushed fat and oil is crushed by a fine crusher with a built-in impact type classifier (manufactured by Hosokawa Micron Co., Ltd., device name "ACM-10A"), which is a mechanical crusher, to obtain powdered fat and oil. The content of XXX-type triglyceride having a fatty acid residue X (stearic acid residue) having 18 carbon atoms at the 1st to 3rd positions of glycerin when the total mass of the powdered oil / fat composition is 100% by mass is 79. 0.4% by mass) 5.5 kg was obtained. By X-ray diffraction analysis, it was confirmed that the polymorphism of the fat and oil in the obtained powdered fat and oil composition was β-type. Table 8 shows the pulverization conditions of the fine pulverizer with a built-in impact classifier, the appearance of the sample, the analytical values, and the crystal polymorphs of the oil and fat in the powdered oil and fat composition confirmed by the X-ray diffraction analysis.

Figure 0007003313000009
Figure 0007003313000009

製造比較例9の粉末油脂組成物の粒子を上記外観観察に基づいて電子顕微鏡にて観察した結果、粒子は、表面上に薄片が複数存在・集積することにより、表面に凹凸が形成された不定形状ではなく、単なる板状形状であった。参考のため、製造比較例9の上記電子顕微鏡写真を図7に示す。 As a result of observing the particles of the powdered oil / fat composition of Production Comparative Example 9 with an electron microscope based on the above appearance observation, the particles had irregularities formed on the surface due to the presence / accumulation of a plurality of flakes on the surface. It was not a shape, but just a plate shape. For reference, the electron micrograph of Production Comparative Example 9 is shown in FIG.

[40℃及び20℃での保存安定性試験]
製造比較例1で得られたα型及びβ型油脂含有粉末油脂組成物、並びに、製造例1及び製造比較例4で得られたβ型油脂含有粉末油脂組成物について、40℃での保存安定性試験1を行った。具体的には、ポリエチレン製ビニール袋にそれぞれサンプル約100gを入れ、40℃の恒温槽(遮光状態)で5日間保管し、保管後の外観を観察した(図8~10)。また、保管条件を「40℃で5日間」から「20℃で5ヶ月間」に変更した保存安定性試験2も同様に行った。保存安定性試験1及び2の結果を表9に示す。
[Storage stability test at 40 ° C and 20 ° C]
The α-type and β-type oil-containing powder oil and fat compositions obtained in Production Comparative Example 1 and the β-type oil and fat-containing powder oil and fat compositions obtained in Production Example 1 and Production Comparative Example 4 are stable in storage at 40 ° C. Sex test 1 was performed. Specifically, about 100 g of each sample was placed in a polyethylene plastic bag, stored in a constant temperature bath (light-shielded state) at 40 ° C. for 5 days, and the appearance after storage was observed (FIGS. 8 to 10). Further, the storage stability test 2 in which the storage condition was changed from "40 ° C. for 5 days" to "20 ° C. for 5 months" was also performed in the same manner. The results of storage stability tests 1 and 2 are shown in Table 9.

Figure 0007003313000010
Figure 0007003313000010

表9から、各粉末油脂組成物を40℃で5日間保存すると、β型油脂である製造例1及び製造比較例4の粉末油脂組成物は、その外観は変わらなかったが(図8及び図10)、α型及びβ型油脂を含有する製造比較例1の粉末油脂組成物は(図9)、ブロッキング(粉末の凝集)が起こり、大きな塊が生じた。
また、各粉末油脂組成物を20℃で5ヵ月間保存(長期保存)すると、β型油脂である製造例1及び製造比較例4の粉末油脂組成物は、その外観は変わらなかったが、α型及びβ型油脂を含有する製造比較例1の粉末油脂組成物は、一部にブロッキング(粉末の凝集)が起こっていた。
以上のことから、α型及びβ型油脂を含有する製造比較例1の粉末油脂組成物は、40℃で5日間及び20℃で5ヶ月間のどちらの場合においても保存安定性が悪い粉末であったため、商品価値がないと判断した。
From Table 9, when each powdered fat or oil composition was stored at 40 ° C. for 5 days, the appearance of the powdered fat or oil composition of Production Example 1 and Production Comparative Example 4 which were β-type fats and oils did not change (FIGS. 8 and 8). 10) In the powdered fat and oil composition of Production Comparative Example 1 containing α-type and β-type fats and oils (FIG. 9), blocking (aggregation of powder) occurred and large lumps were formed.
Further, when each powdered fat or oil composition was stored at 20 ° C. for 5 months (long-term storage), the appearance of the powdered fats and oils compositions of Production Example 1 and Production Comparative Example 4, which were β-type fats and oils, did not change, but α. The powdered fat and oil composition of Production Comparative Example 1 containing the mold and β-type fats and oils had some blocking (powder aggregation).
From the above, the powdered fat and oil composition of Production Comparative Example 1 containing α-type and β-type fats and oils is a powder having poor storage stability in both cases of 40 ° C. for 5 days and 20 ° C. for 5 months. Because it was there, it was judged that it had no commercial value.

[安息角相対値試験]
表10~12に、製造例1~4、製造比較例1~9の粉末油脂組成物を1質量%添加した粉末馬鈴薯澱粉の安息角相対値を示す。
また、表13に、製造後20℃で5ヵ月間保存した製造例1及び製造比較例4の粉末油脂組成物を1質量%添加した粉末馬鈴薯澱粉の安息角相対値を示す。
[Angle of repose relative value test]
Tables 10 to 12 show the relative values of the angle of repose of the powdered potato starch to which 1% by mass of the powdered fat composition of Production Examples 1 to 4 and Production Comparative Examples 1 to 9 was added.
In addition, Table 13 shows the relative values of the angle of repose of the powdered potato starch to which 1% by mass of the powdered fat composition of Production Example 1 and Production Comparative Example 4 stored at 20 ° C. for 5 months after production was added.

Figure 0007003313000011
Figure 0007003313000011

Figure 0007003313000012
Figure 0007003313000012

Figure 0007003313000013
Figure 0007003313000013

Figure 0007003313000014
Figure 0007003313000014

表10~12から、製造例1~4の粉末油脂組成物の凝集度はすべて60%以下で、製造比較例3~9の粉末油脂組成物の凝集度は66%以上であったので、製造比較例3~9の粉末油脂組成物よりも製造例1~4の粉末油脂組成物の方が、粉体の流動性が高いことがわかった。
よって、本発明の粉末油脂組成物はハンドリング性が良い粉体であることから、粉末油脂組成物の製造時に取り扱いがし易く、また、粉末油脂組成物を他の成分に添加して粉体混合物を製造する場合には、当該粉体混合物の製造の作業効率が良くなると考えられる。
また、製造例1~4の粉末油脂組成物を添加した粉末馬鈴薯澱粉の安息角相対値はすべて90%以下で、製造比較例2及び4~9の粉末油脂組成物を添加した粉末馬鈴薯澱粉の安息角相対値は90%より大きかった。このことから、本発明の粉末油脂組成物は、澱粉等の粉末に添加することで、その粉末の流動性を向上させることができることがわかった。
メカニズムは定かではないが、図1~図7の粒子の形状から考えると、この安息角相対値の違いは、本発明の製造例1及び4の粉末油脂組成物(図1及び2)並びに製造比較例1(図3)の粒子が、表面上に薄片が複数存在する薄片含有粒子の形態である一方、製造比較例2の粉末油脂組成物では、表面上に薄片が複数存在することにより表面に凹凸が形成された不定形状粒子だけでなく、薄片が粒子の表面上にない不定形状の粒子も存在しているということ(図4)、また、製造比較例5、8及び9の粉末油脂組成物では、粒子の形状が板状形状で粒子の表面上に薄片が存在していないということ(図5~7)、によると推測される。
また、表10及び13からわかるように、20℃で5ヵ月間保存(長期保存)した製造例1の粉末油脂組成物を添加した粉末馬鈴薯澱粉の安息角相対値(86.9%、表13)は、保存前の安息角相対値(86.3%、表10)とほとんど変わらなかった。
一方、表11からわかるように、保存前のα型及びβ型油脂を含有する製造比較例1の粉末油脂組成物は、凝集度が60%以下で、粉末油脂組成物を添加した粉末馬鈴薯澱粉の安息角相対値が90%以下(89.1%)であったが、表13からわかるように、20℃で5ヵ月間保存(長期保存)した製造比較例1の粉末油脂組成物を添加した粉末馬鈴薯澱粉の安息角相対値は97.6%で、長期保存前よりかなり大きい値に変化した。このことから、製造比較例1の粉末油脂組成物は、長期保存をすると安息角相対値が大きく変化し、品質が安定しないので商品価値がないと判断した。
From Tables 10 to 12, the cohesiveness of the powdered oil and fat compositions of Production Examples 1 to 4 was 60% or less, and the cohesiveness of the powdered oil and fat compositions of Production Comparative Examples 3 to 9 was 66% or more. It was found that the powder oil and fat compositions of Production Examples 1 to 4 had higher powder fluidity than the powder oil and fat compositions of Comparative Examples 3 to 9.
Therefore, since the powdered oil / fat composition of the present invention is a powder having good handleability, it is easy to handle at the time of manufacturing the powdered oil / fat composition, and the powdered oil / fat composition is added to other components to make a powder mixture. It is considered that the work efficiency of the production of the powder mixture is improved in the case of producing.
Further, the relative angles of repose of the powdered potato starch to which the powdered fat and oil compositions of Production Examples 1 to 4 were added were all 90% or less, and the powdered potato starch to which the powdered fat and oil compositions of Production Comparative Examples 2 and 4 to 9 were added had a relative angle of repose. The relative angle of repose was greater than 90%. From this, it was found that the powdered oil / fat composition of the present invention can improve the fluidity of the powder by adding it to a powder such as starch.
Although the mechanism is not clear, considering the shape of the particles of FIGS. 1 to 7, this difference in the relative value of the rest angle is due to the powdered oil and fat compositions (FIGS. 1 and 2) and the production of Production Examples 1 and 4 of the present invention. The particles of Comparative Example 1 (FIG. 3) are in the form of shard-containing particles having a plurality of shards on the surface, while the powder oil / fat composition of Production Comparative Example 2 has a surface due to the presence of a plurality of shards on the surface. Not only the irregularly shaped particles having irregularities formed on the surface, but also the irregularly shaped particles having no flakes on the surface of the particles (FIG. 4), and the powdered oils and fats of Production Comparative Examples 5, 8 and 9. It is presumed that the composition has a plate-like shape and no flakes are present on the surface of the particles (FIGS. 5 to 7).
Further, as can be seen from Tables 10 and 13, the angle of repose relative value (86.9%, Table 13) of the powdered potato starch to which the powdered fat composition of Production Example 1 stored at 20 ° C. for 5 months (long-term storage) was added. ) Was almost the same as the relative value of the angle of repose before storage (86.3%, Table 10).
On the other hand, as can be seen from Table 11, the powdered fat and oil composition of Production Comparative Example 1 containing the α-type and β-type fats and oils before storage has a degree of aggregation of 60% or less, and is a powdered potato starch to which the powdered fat and oil composition is added. The relative value of the angle of repose was 90% or less (89.1%), but as can be seen from Table 13, the powdered oil / fat composition of Production Comparative Example 1 stored at 20 ° C. for 5 months (long-term storage) was added. The relative value of the angle of repose of the powdered potato starch was 97.6%, which was considerably larger than that before long-term storage. From this, it was judged that the powdered oil / fat composition of Production Comparative Example 1 had no commercial value because the relative value of the angle of repose changed significantly when stored for a long period of time and the quality was not stable.

Claims (6)

グリセリンの1位~3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物であって、前記炭素数xが16~20から選択される整数であり、前記粉末油脂組成物がβ型油脂を含み、前記油脂成分のX線回折ピークにおいて、β型の特徴的な4.6Å付近のピークとα型の特徴的な4.2Å付近のピークとの強度比:[4.6Å付近のピーク強度/(4.6Å付近のピーク強度+4.2Å付近のピーク強度)]が、0.6~1であり、前記粉末油脂組成物の凝集度が60%以下であり、該粉末油脂組成物のゆるめ嵩密度が0.05~0.6g/cm3であり、式(I)により求めた安息角相対値が90%以下であり、前記粉末油脂組成物が、表面上に薄片が複数存在する薄片含有粒子の形態であり、かつ、前記粉末油脂組成物が以下の工程(a)~(c)を含む製造方法により得られたものであることを特徴とする、粉末油脂組成物。
安息角相対値=[前記粉末油脂組成物と粉末澱粉との混合粉末の安息角]/[前記粉末油脂組成物を含有しない前記粉末澱粉のみの安息角]×100 (I)
(式(I)中、「混合粉末」は、混合粉末全体の質量に対して粉末油脂組成物を1質量%含有する。)
(a)XXX型トリグリセリドを含む固体の油脂組成物原料を準備する工程、
(b)工程(a)で得られた固体の油脂組成物原料を融点未満の温度で加熱して、該油脂組成物原料を融解しないで前記固体の油脂組成物原料中の油脂成分をβ型油脂に変化させ、β型油脂含有組成物原料を得る工程、及び
(c)工程(b)で得られたβ型油脂含有組成物原料を、機械的な粉砕を伴わない該原料同士の衝突により粉砕し、粉末油脂組成物を得る工程
A powdered oil / fat composition containing an oil / fat component containing one or more XXX-type triglycerides having a fatty acid residue X having a carbon number x at the 1st to 3rd positions of glycerin, wherein the carbon number x is selected from 16 to 20. The powdered fat and oil composition contains β-type fat and oil, and the peak near 4.6 Å, which is characteristic of β-type, and 4.2 Å, which is characteristic of α-type, at the X-ray diffraction peak of the fat and oil component. The intensity ratio with the peak in the vicinity: [peak intensity in the vicinity of 4.6 Å / (peak intensity in the vicinity of 4.6 Å + peak intensity in the vicinity of 4.2 Å)] is 0.6 to 1, and the powdered oil / fat composition. The degree of aggregation is 60% or less, the loose bulk density of the powdered oil / fat composition is 0.05 to 0.6 g / cm 3 , and the relative rest angle value determined by the formula (I) is 90% or less. The powdered oil / fat composition is in the form of fragment-containing particles in which a plurality of flakes are present on the surface, and the powdered oil / fat composition is obtained by a production method including the following steps (a) to (c). A powdered oil / fat composition, which is characterized by being a fatty acid.
Relative value of repose = [angle of repose of the mixed powder of the powdered oil / fat composition and powdered starch] / [angle of repose of only the powdered starch not containing the powdered oil / fat composition] × 100 (I)
(In the formula (I), the "mixed powder" contains 1% by mass of the powdered oil / fat composition with respect to the total mass of the mixed powder.)
(A) Step of preparing a solid oil / fat composition raw material containing XXX-type triglyceride,
(B) The solid oil / fat composition raw material obtained in the step (a) is heated at a temperature below the melting point, and the oil / fat component in the solid oil / fat composition raw material is β-type without melting the oil / fat composition raw material. The process of converting to fats and oils to obtain a raw material for a β-type fat and oil-containing composition, and
(C) A step of pulverizing the β-type oil / fat-containing composition raw material obtained in step (b) by collision between the raw materials without mechanical pulverization to obtain a powdered oil / fat composition.
前記粉末油脂組成物の全質量を100質量%とした場合、該粉末油脂組成物中に前記XXX型トリグリセリドを50質量%以上含有する、請求項1に記載の粉末油脂組成物。 The powdered fat or oil composition according to claim 1, wherein the powdered fat or oil composition contains 50% by mass or more of the XXX type triglyceride when the total mass of the powdered fat or oil composition is 100% by mass. 前記粒子の体積平均径に基づく平均粒径が、0.5~200μmである、請求項に記載の粉末油脂組成物。 The powdered oil / fat composition according to claim 2 , wherein the average particle size based on the volume average diameter of the particles is 0.5 to 200 μm. 前記薄片における長辺の平均の長さが0.1~5μmである、請求項又はに記載の粉末油脂組成物。 The powdered oil / fat composition according to claim 2 or 3 , wherein the average length of the long sides of the flakes is 0.1 to 5 μm. 請求項1~のいずれか1項に記載の粉末油脂組成物を含有することを特徴とする、食品。 A food product comprising the powdered oil / fat composition according to any one of claims 1 to 4 . 請求項1~のいずれか1項に記載の粉末油脂組成物を含有することを特徴とする、粉体流動性改良剤。 A powder fluidity improving agent comprising the powdered oil / fat composition according to any one of claims 1 to 4 .
JP2021077897A 2021-04-30 2021-04-30 Powdered oil and fat composition Active JP7003313B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021077897A JP7003313B1 (en) 2021-04-30 2021-04-30 Powdered oil and fat composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021077897A JP7003313B1 (en) 2021-04-30 2021-04-30 Powdered oil and fat composition

Publications (2)

Publication Number Publication Date
JP7003313B1 true JP7003313B1 (en) 2022-01-20
JP2022171315A JP2022171315A (en) 2022-11-11

Family

ID=80560911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021077897A Active JP7003313B1 (en) 2021-04-30 2021-04-30 Powdered oil and fat composition

Country Status (1)

Country Link
JP (1) JP7003313B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056415A1 (en) 2016-09-23 2018-03-29 日清オイリオグループ株式会社 Powdery fat or oil-containing adhesive composition and method for manufacturing same
WO2020026946A1 (en) 2018-07-31 2020-02-06 日清オイリオグループ株式会社 Composition for filling soft capsule and soft capsule filled therewith
JP2021016320A (en) 2019-07-17 2021-02-15 日清オイリオグループ株式会社 Flavor oil composition, and food containing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056415A1 (en) 2016-09-23 2018-03-29 日清オイリオグループ株式会社 Powdery fat or oil-containing adhesive composition and method for manufacturing same
WO2020026946A1 (en) 2018-07-31 2020-02-06 日清オイリオグループ株式会社 Composition for filling soft capsule and soft capsule filled therewith
JP2021016320A (en) 2019-07-17 2021-02-15 日清オイリオグループ株式会社 Flavor oil composition, and food containing the same

Also Published As

Publication number Publication date
JP2022171315A (en) 2022-11-11

Similar Documents

Publication Publication Date Title
JP6529597B2 (en) Powdered fat and oil composition and method for producing the same
JP7000218B2 (en) Anti-hygroscopic agent or anti-consolidation agent containing an adhesive composition containing powdered oil.
JP6783018B2 (en) Powdered fat composition for chocolate
KR20170118060A (en) Metal soap and manufacturing method therefor
WO2018174201A1 (en) Powdered oil and fat composition and production method therefor
JP7003313B1 (en) Powdered oil and fat composition
JP7003314B1 (en) Method for manufacturing powdered oil / fat composition
WO2020026946A1 (en) Composition for filling soft capsule and soft capsule filled therewith
JP2021016320A (en) Flavor oil composition, and food containing the same
JP6877828B2 (en) Powdered oil and fat composition for rice cakes
WO2021241351A1 (en) 3-hydroxybutyric-acid-containing oil and fat composition
US20240130389A1 (en) Method for producing powdered oil composition
JP6877827B2 (en) Powdered oil and fat composition for noodles
JP7339108B2 (en) Method for producing flaky or powdered chocolate
JP2023019813A (en) Method for separating food ingredients into fibrous part and powder part
JP2023044535A (en) Improved acidic seasoning and method for producing the same
JP6877826B2 (en) Powdered oil and fat composition for noodle skin
JP7214322B2 (en) WAX POWDER OIL AND FAT COMPOSITION AND WAX COMPOSITION
JP6931623B2 (en) Dispersant in oil, composition for dispersion in oil, and water-in-oil dispersion
JP7336882B2 (en) A powdery fat composition for rice cake powder and a hardening inhibitor for rice cake dough.
JP2023044534A (en) Whipped cream-like composition
JP7309465B2 (en) Bean jam for baked confectionery
JP2024010643A (en) Heat-treated food product using flavor-containing oil-and-fat powder
JP2023019814A (en) Method for producing sheared food material
JP2023044533A (en) food composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210430

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211228

R150 Certificate of patent or registration of utility model

Ref document number: 7003313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150