JP7002927B2 - Drive shaft arrangement structure - Google Patents
Drive shaft arrangement structure Download PDFInfo
- Publication number
- JP7002927B2 JP7002927B2 JP2017224105A JP2017224105A JP7002927B2 JP 7002927 B2 JP7002927 B2 JP 7002927B2 JP 2017224105 A JP2017224105 A JP 2017224105A JP 2017224105 A JP2017224105 A JP 2017224105A JP 7002927 B2 JP7002927 B2 JP 7002927B2
- Authority
- JP
- Japan
- Prior art keywords
- universal joint
- drive shaft
- drive
- support member
- shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Arrangement And Driving Of Transmission Devices (AREA)
- Support Of The Bearing (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Description
本発明は、動力源から駆動輪へ動力を伝達する駆動軸の配置に関し、特に車両の駆動軸配置構造に関する。 The present invention relates to arrangement of drive shafts for transmitting power from a power source to drive wheels, and particularly to a vehicle drive shaft arrangement structure.
従来、車両において、エンジンの動力を、変速機及びディファレンシャル機構(差動機構)を介して、駆動軸に伝達するものがある。エンジンの車両の幅方向(左右方向)における片側に変速機及び差動機構が配置される場合、特にFF車においてエンジンを横置きにする場合においては、差動機構を車両の幅方向の中央に配置することが難しい。このため、差動装置から左駆動輪までの距離と差動装置から右駆動輪までの距離とが異なる。 Conventionally, in a vehicle, the power of an engine is transmitted to a drive shaft via a transmission and a differential mechanism (differential mechanism). When the transmission and the differential mechanism are arranged on one side in the width direction (left-right direction) of the engine, especially when the engine is placed horizontally in the FF vehicle, the differential mechanism is located in the center of the width direction of the vehicle. Difficult to place. Therefore, the distance from the differential device to the left drive wheel and the distance from the differential device to the right drive wheel are different.
この場合、差動機構と右駆動輪とを一本の駆動軸(右駆動軸)で接続し、前記差動機構と左駆動輪とを他の一本の駆動軸(左駆動軸)で接続すると、右駆動軸と左駆動軸との長さが異なる構成、いわゆる不等長ドライブシャフト構成になる。 In this case, the differential mechanism and the right drive wheel are connected by one drive shaft (right drive shaft), and the differential mechanism and the left drive wheel are connected by another drive shaft (left drive shaft). Then, the right drive shaft and the left drive shaft have different lengths, that is, a so-called unequal length drive shaft configuration.
不等長ドライブシャフト構成では、右駆動軸と左駆動軸との剛性等のバランスが不均一になるおそれがある。そこで、右駆動軸と左駆動軸との長さが等しい等長ドライブシャフト構成とするため、差動機構から駆動輪までの距離が長い側に、差動機構と一方の駆動軸との間に中間駆動軸を配置するものがある(例えば、特許文献1参照)。 In the unequal length drive shaft configuration, the balance such as rigidity between the right drive shaft and the left drive shaft may become uneven. Therefore, in order to configure an equal-length drive shaft in which the right drive shaft and the left drive shaft have the same length, the distance between the differential mechanism and the drive wheel is longer on the side between the differential mechanism and one drive shaft. Some have an intermediate drive shaft (see, for example, Patent Document 1).
特許文献1では、差動機構と駆動輪との距離が短い左側において、差動機構と左駆動輪とを一本の左駆動軸で接続する。一方で、差動機構と駆動輪との距離が長い右側において、差動機構と右駆動軸との間に中間駆動軸を配置し、車両の右側の長い距離を中間駆動軸によって補っている。このように、差動機構と右駆動輪との間に複数の駆動軸(中間駆動軸及び右駆動軸)を配置することで、駆動軸の配置を調整することができる。なお、特許文献1における中間駆動軸と右駆動軸とは、一つの自在継手によって、互いに接続されている。自在継手は、入力軸である中間駆動軸と出力軸である右駆動軸との角度を変えつつ、入力軸から出力軸への動力を伝達する。 In Patent Document 1, the differential mechanism and the left drive wheel are connected by one left drive shaft on the left side where the distance between the differential mechanism and the drive wheel is short. On the other hand, on the right side where the distance between the differential mechanism and the drive wheels is long, an intermediate drive shaft is arranged between the differential mechanism and the right drive shaft, and the long distance on the right side of the vehicle is supplemented by the intermediate drive shaft. In this way, by arranging a plurality of drive shafts (intermediate drive shaft and right drive shaft) between the differential mechanism and the right drive wheel, the arrangement of the drive shafts can be adjusted. The intermediate drive shaft and the right drive shaft in Patent Document 1 are connected to each other by one universal joint. The universal joint transmits power from the input shaft to the output shaft while changing the angle between the intermediate drive shaft which is the input shaft and the right drive shaft which is the output shaft.
しかしながら、自在継手においては、入力軸に対して出力軸がなすことのできる角度(作動角)には制限がある。このため、予め入力軸や出力軸の配置に制約がある場合には、自在継手の作動角の制約と相まって、入力軸と出力軸とを含む駆動軸全体の配置の自由度が低くなるという問題がある。 However, in a universal joint, there is a limit to the angle (operating angle) that the output shaft can make with respect to the input shaft. For this reason, if there are restrictions on the arrangement of the input shaft and output shaft in advance, there is a problem that the degree of freedom in the arrangement of the entire drive shaft including the input shaft and the output shaft is reduced due to the restriction on the operating angle of the universal joint. There is.
特に、FF車においては、左右の駆動輪の間に、エンジン、変速機及び差動機構が配置されるため、これらと干渉しないように駆動軸とを配置せねばならない。さらに、FF車では、入力軸の一端は差動機構に接続され、出力軸の一端は駆動輪に接続されるため、入力軸と出力軸との間にある自在継手の配置にも制約がある。このように、従来の構成においては、駆動軸の配置の自由度が低いという問題があった。 In particular, in an FF vehicle, since the engine, transmission and differential mechanism are arranged between the left and right drive wheels, the drive shaft must be arranged so as not to interfere with these. Furthermore, in FF vehicles, one end of the input shaft is connected to the differential mechanism and one end of the output shaft is connected to the drive wheels, so there are restrictions on the arrangement of universal joints between the input shaft and the output shaft. .. As described above, in the conventional configuration, there is a problem that the degree of freedom in arranging the drive shaft is low.
本発明は上述の点に鑑みてなされたものでありその目的は、駆動軸の配置の自由度を高めることが可能な駆動軸配置構造を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide a drive shaft arrangement structure capable of increasing the degree of freedom in the arrangement of drive shafts.
上記課題を解決するため本発明にかかる駆動軸配置構造は、車両に搭載され動力を発生する動力源(E)と、動力源(E)からの動力が伝達される第一駆動軸(S1)と、第一駆動軸(S1)からの動力が伝達される第二駆動軸(S2)と、第二駆動軸(S2)からの動力が伝達される駆動輪(W)と、を備える駆動軸配置構造であって、第一駆動軸(S1)は、動力源(E)側の端部に配置される第一自在継手(J1)と第二駆動軸(S2)側の端部に配置される第二自在継手(J2)とを備え、第二駆動軸(S2)は、第一駆動軸(S1)側の端部に配置される第三自在継手(J3)と駆動輪(W)側の端部に配置される第四自在継手(J4)とを備え、第一駆動軸(S1)と第二駆動軸(S2)との間には、第二自在継手(J2)と第三自在継手(J3)とを支持する中間支持部材(A,A1)と、をさらに備えることを特徴とする。 In order to solve the above problems, the drive shaft arrangement structure according to the present invention includes a power source (E) mounted on a vehicle to generate power and a first drive shaft (S1) to which power from the power source (E) is transmitted. A drive shaft including a second drive shaft (S2) to which power from the first drive shaft (S1) is transmitted, and a drive wheel (W) to which power from the second drive shaft (S2) is transmitted. In the arrangement structure, the first drive shaft (S1) is arranged at the end on the power source (E) side and the first universal joint (J1) and the second drive shaft (S2). The second universal joint (J2) is provided, and the second drive shaft (S2) has a third universal joint (J3) and a drive wheel (W) side arranged at the end on the first drive shaft (S1) side. A fourth universal joint (J4) is provided at the end of the joint, and a second universal joint (J2) and a third universal joint (J2) and a third universal joint are provided between the first drive shaft (S1) and the second drive shaft (S2). It is characterized by further including an intermediate support member (A, A1) for supporting the joint (J3).
このように、動力源と駆動輪との間に、第一駆動軸と第二駆動軸との異なる駆動軸を有し、第一駆動軸と第二駆動軸とのそれぞれの両端に自在継手を配置することで、第一駆動軸及び第二駆動軸の両端における設置角度をより幅広く選択することができる。また、第一駆動軸と第二駆動軸との間には中間支持部材が配置される。ここで、中間支持部材と第一駆動軸との間には第二自在継手があり中間支持部材と第二駆動軸との間には第三自在継手があるため、中間支持部材の配置は、二つの自在継手の作動角の範囲で選択できる。このため、一つの自在継手のみで入力軸と出力軸とを連結した従来の構成と比較して、駆動軸の配置の自由度が高まることになる。 In this way, the first drive shaft and the second drive shaft have different drive shafts between the power source and the drive wheels, and universal joints are provided at both ends of the first drive shaft and the second drive shaft. By arranging them, the installation angles at both ends of the first drive shaft and the second drive shaft can be selected more widely. Further, an intermediate support member is arranged between the first drive shaft and the second drive shaft. Here, since there is a second universal joint between the intermediate support member and the first drive shaft and a third universal joint between the intermediate support member and the second drive shaft, the arrangement of the intermediate support member is as follows. It can be selected within the range of operating angles of the two universal joints. Therefore, the degree of freedom in arranging the drive shaft is increased as compared with the conventional configuration in which the input shaft and the output shaft are connected by using only one universal joint.
また、上記駆動軸配置構造において、中間支持部材(A,A1)は、第三自在継手(J3)が第四自在継手(J4)よりも車両の前後方向における前方になるように、第三自在継手(J3)を支持することとしてもよい。 Further, in the drive shaft arrangement structure, the intermediate support member (A, A1) is thirdly flexible so that the third universal joint (J3) is in front of the fourth universal joint (J4) in the front-rear direction of the vehicle. The joint (J3) may be supported.
このように構成すると、駆動輪が内輪となる側に当該駆動輪が転舵される場合における駆動輪の転舵角が大きくなる。すなわち、第三自在継手が第四自在継手よりも前方になるように中間支持部材の設置位置を選択すると、第二駆動軸の回転軸線と非転舵時の駆動輪の回転軸線とがなす角度である取付角が、非転舵時の駆動輪の回転軸線よりも前方に位置する。一方、駆動輪が転舵可能な角度は第四自在継手の作動角に規制される。特に、駆動輪が内輪となる側に当該駆動輪が転舵される場合、第四自在継手の作動角は、第二駆動軸を基点として前方に形成される。ここで、駆動輪が内輪となる側に当該駆動輪が転舵される場合、転舵時の駆動輪の回転軸線は、第四自在継手の回転中心を中心として、非転舵時の駆動輪の回転軸線よりも前方に移動する。この結果、駆動輪が内輪となる側に当該駆動輪が転舵される場合、当該駆動輪が転舵可能な転舵角は、前記取付角と前記作動角とを足した角度となり、駆動輪の転舵角を大きくすることができる。 With this configuration, the steering angle of the drive wheels becomes large when the drive wheels are steered to the side where the drive wheels are inner rings. That is, if the installation position of the intermediate support member is selected so that the third universal joint is in front of the fourth universal joint, the angle between the rotation axis of the second drive shaft and the rotation axis of the drive wheel when not steering is set. The mounting angle is located in front of the rotation axis of the drive wheel when the steering wheel is not steered. On the other hand, the angle at which the drive wheels can be steered is restricted by the operating angle of the fourth universal joint. In particular, when the drive wheel is steered to the side where the drive wheel is the inner ring, the operating angle of the fourth universal joint is formed forward with respect to the second drive shaft. Here, when the drive wheel is steered to the side where the drive wheel becomes the inner ring, the rotation axis of the drive wheel at the time of steering is centered on the rotation center of the fourth universal joint, and the drive wheel at the time of non-steering is not steered. Move forward from the axis of rotation of. As a result, when the drive wheel is steered to the side where the drive wheel becomes the inner ring, the steering angle at which the drive wheel can be steered is the sum of the mounting angle and the operating angle, and the drive wheel is steered. The steering angle of can be increased.
また、上記駆動軸配置構造において、中間支持部材(A,A1)は、中間支持部材(A)が支持する第三自在継手(J3)の高さが第四自在継手(J4)の高さと同様の高さになるように、配置されることとしてもよい。 Further, in the drive shaft arrangement structure, the height of the third universal joint (J3) supported by the intermediate support member (A) is the same as the height of the fourth universal joint (J4) in the intermediate support member (A, A1). It may be arranged so as to be at the height of.
このように、第二駆動軸の一端に配置される第三自在継手と第二駆動軸の他端に配置される第四自在継手とが同様の高さになるように中間支持部材を配置することによって、第二駆動軸が略水平となり、第三自在継手の高さと第四自在継手の高さとを大きく異なる高さとした場合と比較して、第二駆動軸の回転軸線と駆動輪の回転軸線とがなす取付角を小さくすることができる。 In this way, the intermediate support member is arranged so that the third universal joint arranged at one end of the second drive shaft and the fourth universal joint arranged at the other end of the second drive shaft have the same height. As a result, the second drive shaft becomes substantially horizontal, and the rotation axis of the second drive shaft and the rotation of the drive wheels are compared with the case where the height of the third universal joint and the height of the fourth universal joint are significantly different. The mounting angle formed by the axis can be reduced.
また、上記駆動軸配置構造において、第二自在継手(J2)の中間支持部材(A)側には回転軸(SJ2)が配置され、第三自在継手(J3)の中間支持部材(A)側には回転軸(SJ3)が配置され、第二自在継手(J2)の回転軸(SJ2)と第三自在継手(J3)の回転軸(SJ3)とは同一軸線上に固定され、中間支持部材(A)は、第二自在継手(J2)の回転軸(SJ2)と第三自在継手(J3)の回転軸(SJ3)とのうち、一方を支持することとしてもよい。 Further, in the drive shaft arrangement structure, the rotary shaft (SJ2) is arranged on the intermediate support member (A) side of the second universal joint (J2), and the intermediate support member (A) side of the third universal joint (J3) is arranged. A rotary shaft (SJ3) is arranged in the center, and the rotary shaft (SJ2) of the second universal joint (J2) and the rotary shaft (SJ3) of the third universal joint (J3) are fixed on the same axis, and an intermediate support member is provided. (A) may support one of the rotary shaft (SJ2) of the second universal joint (J2) and the rotary shaft (SJ3) of the third universal joint (J3).
このように構成すると、第二自在継手と第三自在継手とを支持する中間支持部材の軸方向(2つの回転軸の方向)の長さを短く構成することができる。 With this configuration, the length of the intermediate support member that supports the second universal joint and the third universal joint in the axial direction (directions of the two rotating shafts) can be shortened.
また、上記駆動軸配置構造において、第一自在継手(J1)、第二自在継手(J2)及び第四自在継手(J4)は、固定型等速ジョイントであり、第三自在継手(J3)は、摺動型等速ジョイントであることとしてもよい。 Further, in the drive shaft arrangement structure, the first universal joint (J1), the second universal joint (J2) and the fourth universal joint (J4) are fixed constant velocity joints, and the third universal joint (J3) is. , It may be a sliding type constant velocity joint.
このように、第一駆動軸の両端に配置される第一自在継手及び第二自在継手を、作動角の大きい固定型等速ジョイントとすることで、第一駆動軸の配置の自由度を高くすることができる。また、第二駆動軸の駆動輪側の端部に配置される第四自在継手を作動角の大きい固定型等速ジョイントとすることで、駆動輪の転舵角を大きくすることができる。また、第二駆動軸の中間支持部材側の端部に配置される第三自在継手を摺動型等速ジョイントとすることで、駆動輪と動力源との間の距離変化に対応することができる。 In this way, by making the first universal joint and the second universal joint arranged at both ends of the first drive shaft into fixed constant velocity joints having a large operating angle, the degree of freedom in the arrangement of the first drive shaft is increased. can do. Further, by making the fourth universal joint arranged at the end of the second drive shaft on the drive wheel side a fixed constant velocity joint having a large operating angle, the steering angle of the drive wheel can be increased. In addition, by using a sliding constant velocity joint as the third universal joint arranged at the end of the second drive shaft on the intermediate support member side, it is possible to respond to changes in the distance between the drive wheel and the power source. can.
また、上記駆動軸配置構造において、中間支持部材(A,A1)は、車両の幅方向において、動力源(E)と駆動輪(W)との間に配置されることとしてもよい。 Further, in the drive shaft arrangement structure, the intermediate support members (A, A1) may be arranged between the power source (E) and the drive wheels (W) in the width direction of the vehicle.
このように、中間支持部材が、車両の幅方向において、動力源と駆動輪との間に配置されることで、動力源の前後方向や高さ方向の位置に干渉されることなく、中間支持部材を自由に配置することができる。すると、中間支持部材に端部を支持される第一駆動軸及び第二駆動軸の配置の自由度をも高めることができる。 In this way, the intermediate support member is arranged between the power source and the drive wheels in the width direction of the vehicle, so that the intermediate support member does not interfere with the position in the front-rear direction or the height direction of the power source. Members can be arranged freely. Then, the degree of freedom in the arrangement of the first drive shaft and the second drive shaft whose ends are supported by the intermediate support member can be increased.
なお、上記の括弧内の符号は、後述する実施形態の対応する構成要素の符号を本発明の一例として示したものである。 The reference numerals in the above parentheses indicate the reference numerals of the corresponding components of the embodiments described later as an example of the present invention.
本発明にかかる駆動軸配置構造によれば、駆動軸の配置の自由度を高めることができる。 According to the drive shaft arrangement structure according to the present invention, the degree of freedom in the arrangement of the drive shaft can be increased.
以下、添付図面を参照して本発明の一実施形態を詳細に説明する。なお、以下の説明において、前方又は後方とは、車両の前後方向における前方又は後方を示す。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In the following description, the front or rear means the front or the rear in the front-rear direction of the vehicle.
図1は、本実施形態における駆動軸配置構造の全体概略構成を示す上面図である。図1において、図の上下方向が車両の前後方向であり、図の上方が車両の前方を示し、図の下方が車両の後方を示す。また、図の左右方向が車両の幅方向である。 FIG. 1 is a top view showing an overall schematic configuration of the drive shaft arrangement structure in the present embodiment. In FIG. 1, the vertical direction in the figure is the front-rear direction of the vehicle, the upper part of the figure shows the front of the vehicle, and the lower part of the figure shows the rear of the vehicle. Further, the left-right direction in the figure is the width direction of the vehicle.
図1に示すように、本実施形態の駆動軸配置構造は、車両に搭載され動力を発生するエンジンE(動力源)と、エンジンEに配置されるクランク軸の回転を変速する変速機Tと、変速機Tの動力を振り分けて、右駆動輪WRと左駆動輪WLとに伝達するディファレンシャル機構D(差動機構)とを有する。 As shown in FIG. 1, the drive shaft arrangement structure of the present embodiment includes an engine E (power source) mounted on a vehicle to generate power and a transmission T for shifting the rotation of a crank shaft arranged on the engine E. It has a differential mechanism D (differential mechanism) that distributes the power of the transmission T and transmits it to the right drive wheel WR and the left drive wheel WL.
ディファレンシャル機構Dから右駆動輪WRへの動力は、順に、右第一自在継手J1R、右第一駆動軸S1R、右第二自在継手J2R、右中間支持部材AR、右第三自在継手J3R、右第二駆動軸S2R、右第四自在継手J4Rを介して、伝達される。一方、ディファレンシャル機構Dから左駆動輪WLへの動力は、順に、左第一自在継手J1L、左第一駆動軸S1L、左第二自在継手J2L、左中間支持部材AL、左第三自在継手J3L、左第二駆動軸S2L、左第四自在継手J4Lを介して、伝達される。 The power from the differential mechanism D to the right drive wheel WR is, in order, the right first universal joint J1R, the right first drive shaft S1R, the right second universal joint J2R, the right intermediate support member AR, the right third universal joint J3R, and the right. It is transmitted via the second drive shaft S2R and the right fourth universal joint J4R. On the other hand, the power from the differential mechanism D to the left drive wheel WL is, in order, the left first universal joint J1L, the left first drive shaft S1L, the left second universal joint J2L, the left intermediate support member AL, and the left third universal joint J3L. , Left second drive shaft S2L, left fourth universal joint J4L.
本実施形態では、右第二駆動軸S2Rと左第二駆動軸S2Lとの長さが同一である等長ドライブシャフトの構成を例示する。そして、本実施形態のディファレンシャル機構Dは、エンジンE及び変速機Tの幅方向(左右方向)の中心位置より左側に配置される。この場合、ディファレンシャル機構Dから右駆動輪WR又は左駆動輪WLまでの各方向の主な部材構成の違いは、右第一駆動軸S1Rと左第一駆動軸S1Lとの長さや設置角度のみであり、その他の構成は左右で類似する。このため、以下の説明においては、必要な場合を除いて、左を表すLと右を表すRの符号を省略して説明する。 In this embodiment, the configuration of an equal-length drive shaft in which the right second drive shaft S2R and the left second drive shaft S2L have the same length is illustrated. The differential mechanism D of the present embodiment is arranged on the left side of the center position in the width direction (left-right direction) of the engine E and the transmission T. In this case, the difference in the main member configuration in each direction from the differential mechanism D to the right drive wheel WR or the left drive wheel WL is only the length and installation angle between the right first drive shaft S1R and the left first drive shaft S1L. Yes, the other configurations are similar on the left and right. Therefore, in the following description, unless necessary, the reference numerals of L representing the left and R representing the right will be omitted.
図1に示すように、本実施形態の車両の前方には、エンジンE及び変速機Tが配置され、それらの後方には、ディファレンシャル機構Dが配置される。エンジンEで発生した動力は、ディファレンシャル機構Dから、第一駆動軸S1、中間支持部材A、第二駆動軸S2を介して、駆動輪Wに伝達される。以下、各部材を詳細に説明する。 As shown in FIG. 1, an engine E and a transmission T are arranged in front of the vehicle of the present embodiment, and a differential mechanism D is arranged behind them. The power generated by the engine E is transmitted from the differential mechanism D to the drive wheels W via the first drive shaft S1, the intermediate support member A, and the second drive shaft S2. Hereinafter, each member will be described in detail.
第一駆動軸S1は、ディファレンシャル機構Dに伝達された動力を第二駆動軸S2に伝達する回転軸である。第一駆動軸S1において、動力伝達経路における動力源側の端部には第一自在継手J1が配置され、第二駆動軸S2側の端部には第二自在継手J2が配置される。また、本実施形態においては、第一駆動軸S1は、ディファレンシャル機構Dの回転軸SDの回転軸線XDよりも前方に位置する。 The first drive shaft S1 is a rotation shaft that transmits the power transmitted to the differential mechanism D to the second drive shaft S2. In the first drive shaft S1, the first universal joint J1 is arranged at the end on the power source side in the power transmission path, and the second universal joint J2 is arranged at the end on the second drive shaft S2 side. Further, in the present embodiment, the first drive shaft S1 is located ahead of the rotation axis XD of the rotation axis SD of the differential mechanism D.
第二駆動軸S2は、第一駆動軸S1に伝達された動力を駆動輪Wに伝達する回転軸である。第二駆動軸S2において、第一駆動軸S1側の端部には第三自在継手J3が配置され、動力伝達経路における駆動輪側の端部には第四自在継手J4が配置される。本実施形態においては、第二駆動軸S2は、駆動輪Wが転舵されていない非転舵時における駆動輪Wの車軸SWの回転軸線XW0(以下、「非転舵時の駆動輪Wの回転軸線XW0」という)よりも前方に位置する。 The second drive shaft S2 is a rotary shaft that transmits the power transmitted to the first drive shaft S1 to the drive wheels W. In the second drive shaft S2, the third universal joint J3 is arranged at the end on the first drive shaft S1 side, and the fourth universal joint J4 is arranged at the end on the drive wheel side in the power transmission path. In the present embodiment, the second drive shaft S2 is the rotation axis XW0 of the axle SW of the drive wheel W when the drive wheel W is not steered (hereinafter, "the drive wheel W when the drive wheel W is not steered". It is located in front of the rotation axis XW0).
第一自在継手J1は、ディファレンシャル機構Dと第一駆動軸S1との間に配置される。本実施形態の第一自在継手J1は、等速ジョイントである。特に、第一自在継手J1は、等速ジョイントの中でも、より入力軸と出力軸との作動角が大きい固定型等速ジョイントであることが好ましい。 The first universal joint J1 is arranged between the differential mechanism D and the first drive shaft S1. The first universal joint J1 of the present embodiment is a constant velocity joint. In particular, the first universal joint J1 is preferably a fixed constant velocity joint having a larger operating angle between the input shaft and the output shaft among the constant velocity joints.
第二自在継手J2は、第一駆動軸S1と中間支持部材Aとの間に配置される。本実施形態の第二自在継手J2は、等速ジョイントである。特に、第二自在継手J2は、等速ジョイントの中でも、固定型等速ジョイントであることが好ましい。 The second universal joint J2 is arranged between the first drive shaft S1 and the intermediate support member A. The second universal joint J2 of the present embodiment is a constant velocity joint. In particular, the second universal joint J2 is preferably a fixed constant velocity joint among the constant velocity joints.
第三自在継手J3は、中間支持部材Aと第二駆動軸S2との間に配置される。本実施形態の第三自在継手J3は、等速ジョイントである。特に、第三自在継手J3は、等速ジョイントの中でも、軸方向の距離変化が可能な摺動型等速ジョイントであることが好ましい。 The third universal joint J3 is arranged between the intermediate support member A and the second drive shaft S2. The third universal joint J3 of the present embodiment is a constant velocity joint. In particular, the third universal joint J3 is preferably a sliding type constant velocity joint capable of changing the distance in the axial direction among the constant velocity joints.
第四自在継手J4は、第二駆動軸S2と駆動輪Wとの間に配置される。本実施形態の第四自在継手J4は、等速ジョイントである。特に、第四自在継手J4は、等速ジョイントの中でも、固定型等速ジョイントであることが好ましい。 The fourth universal joint J4 is arranged between the second drive shaft S2 and the drive wheel W. The fourth universal joint J4 of the present embodiment is a constant velocity joint. In particular, the fourth universal joint J4 is preferably a fixed constant velocity joint among the constant velocity joints.
この構成により、エンジンEで発生した動力は、変速機Tを介してディファレンシャル機構Dに伝達される。ディファレンシャル機構Dに伝達された動力は、第一自在継手J1を介して、第一駆動軸S1に伝達される。第一駆動軸S1に伝達された動力は、第二自在継手J2、中間支持部材A及び第三自在継手J3を介して第二駆動軸S2に伝達される。第二駆動軸S2に伝達された動力は、第四自在継手J4を介して駆動輪Wに伝達される。 With this configuration, the power generated by the engine E is transmitted to the differential mechanism D via the transmission T. The power transmitted to the differential mechanism D is transmitted to the first drive shaft S1 via the first universal joint J1. The power transmitted to the first drive shaft S1 is transmitted to the second drive shaft S2 via the second universal joint J2, the intermediate support member A, and the third universal joint J3. The power transmitted to the second drive shaft S2 is transmitted to the drive wheels W via the fourth universal joint J4.
次に、本実施形態の中間支持部材Aの構成を説明する。図2は、本実施形態における中間支持部材Aの概略構成を示す拡大断面図である。中間支持部材Aは、第一駆動軸S1と第二駆動軸S2との間に介在し、車両の幅方向における一端において第二自在継手J2を支持し、車両の幅方向における他端において第三自在継手J3を支持する部材である。 Next, the configuration of the intermediate support member A of the present embodiment will be described. FIG. 2 is an enlarged cross-sectional view showing a schematic configuration of the intermediate support member A in the present embodiment. The intermediate support member A is interposed between the first drive shaft S1 and the second drive shaft S2, supports the second universal joint J2 at one end in the width direction of the vehicle, and is the third at the other end in the width direction of the vehicle. It is a member that supports the universal joint J3.
図2に示すように、中間支持部材Aは、車両に対して固定支持される支持部材本体11と、中間支持部材Aが支持する回転軸を回転自在に支持する軸受13とを有する。本実施形態において、中間支持部材Aが直接支持する回転軸は、第二自在継手J2の出力軸SJ2である。このため、中間支持部材Aの軸受13は、中間支持部材Aの径方向において、支持部材本体11と第二自在継手J2との間に配置される。
As shown in FIG. 2, the intermediate support member A has a support member
本実施形態では、第二自在継手J2の出力軸SJ2(回転軸)と第三自在継手J3の中空の入力軸SJ3(回転軸)とは同軸上で互いに連結し、一体となっている。具体的には、第二自在継手J2の出力軸SJ2の外径側が、第三自在継手J3の入力軸SJ3の内径側に対して、スプライン嵌合している。なお、第二自在継手J2と第三自在継手J3との連結の方法は、必ずしもこれに限らない。 In the present embodiment, the output shaft SJ2 (rotary shaft) of the second universal joint J2 and the hollow input shaft SJ3 (rotary shaft) of the third universal joint J3 are coaxially connected to each other and integrated. Specifically, the outer diameter side of the output shaft SJ2 of the second universal joint J2 is spline-fitted with respect to the inner diameter side of the input shaft SJ3 of the third universal joint J3. The method of connecting the second universal joint J2 and the third universal joint J3 is not necessarily limited to this.
このように、本実施形態では、第二自在継手J2の出力軸SJ2と第三自在継手J3の入力軸SJ3との2つの回転軸を互いに同一軸線上で連結し、これらの2つの回転軸のうち一方の回転軸(本実施形態では第二自在継手J2の出力軸SJ2)が、軸受13によって回転可能に支持される。こうして、中間支持部材Aは、第二自在継手J2及び第三自在継手J3を支持する。
As described above, in the present embodiment, the two rotating shafts of the output shaft SJ2 of the second universal joint J2 and the input shaft SJ3 of the third universal joint J3 are connected to each other on the same axis line, and these two rotating shafts are connected. One of the rotating shafts (in this embodiment, the output shaft SJ2 of the second universal joint J2) is rotatably supported by the
次に、本実施形態の中間支持部材Aが配置される具体的な位置を説明する。図3は、本実施形態における中間支持部材Aと駆動輪Wとの位置関係を示す上面図である。図4は、本実施形態における中間支持部材Aと駆動輪Wとの位置関係を示す側面図である。なお、図4は、図3におけるZ方向から見た図であり、説明のため、駆動輪W、第三自在継手J3、第四自在継手J4及び中間支持部材Aのみの位置関係を示している。 Next, a specific position where the intermediate support member A of the present embodiment is arranged will be described. FIG. 3 is a top view showing the positional relationship between the intermediate support member A and the drive wheel W in the present embodiment. FIG. 4 is a side view showing the positional relationship between the intermediate support member A and the drive wheel W in the present embodiment. Note that FIG. 4 is a view seen from the Z direction in FIG. 3, and for explanation, shows the positional relationship of only the drive wheel W, the third universal joint J3, the fourth universal joint J4, and the intermediate support member A. ..
図3に示すように、中間支持部材Aが支持する第二自在継手J2は、ディファレンシャル機構Dの回転軸線XDよりも前方である。このため、第二自在継手J2に接続される第一駆動軸S1は、ディファレンシャル機構Dの回転軸線XDよりも前方に配置されることになる。 As shown in FIG. 3, the second universal joint J2 supported by the intermediate support member A is in front of the rotation axis XD of the differential mechanism D. Therefore, the first drive shaft S1 connected to the second universal joint J2 is arranged in front of the rotation axis XD of the differential mechanism D.
また、中間支持部材Aは、中間支持部材Aにより支持される第三自在継手J3が第四自在継手J4よりも前方になるような位置に配置される。すると、第三自在継手J3に接続される第二駆動軸S2は、非転舵時の駆動輪Wの回転軸線XW0よりも前方になる。 Further, the intermediate support member A is arranged at a position such that the third universal joint J3 supported by the intermediate support member A is in front of the fourth universal joint J4. Then, the second drive shaft S2 connected to the third universal joint J3 is in front of the rotation axis XW0 of the drive wheel W at the time of non-steering.
また、中間支持部材Aは、車両の幅方向において、ディファレンシャル機構Dと駆動輪Wとの間に配置される。なお、本実施形態の左側の駆動軸の配置構成においては、車両の幅方向において、エンジンE、変速機T及びディファレンシャル機構Dを含む動力発生部と重なる位置に、中間支持部材Aが配置される。 Further, the intermediate support member A is arranged between the differential mechanism D and the drive wheels W in the width direction of the vehicle. In the arrangement configuration of the drive shaft on the left side of the present embodiment, the intermediate support member A is arranged at a position overlapping with the power generation unit including the engine E, the transmission T, and the differential mechanism D in the width direction of the vehicle. ..
図4に示すように、中間支持部材Aは、中間支持部材Aが支持する第三自在継手J3の高さが、第四自在継手J4の高さと同様の高さになるように、配置される。すなわち、第三自在継手J3から第二駆動軸S2へ動力を伝達する位置(位置Po)の高さは、第二駆動軸S2から非転舵時の駆動輪Wの回転軸線XW0の高さと同様の高さとなるように配置される。なお、ここでいう同様の高さとは、第三自在継手J3の高さと第四自在継手J4の高さとが同一の高さになる場合のみならず、同一の高さに近い高さであることをも含む。 As shown in FIG. 4, the intermediate support member A is arranged so that the height of the third universal joint J3 supported by the intermediate support member A is the same as the height of the fourth universal joint J4. .. That is, the height of the position (position Po) for transmitting power from the third universal joint J3 to the second drive shaft S2 is the same as the height of the rotation axis XW0 of the drive wheels W when the second drive shaft S2 is not steered. It is arranged so as to be at the height of. The same height here means not only when the height of the third universal joint J3 and the height of the fourth universal joint J4 are the same height, but also the height is close to the same height. Also includes.
このように、第三自在継手J3の高さと第四自在継手J4の高さとが同様の高さになるように、中間支持部材Aの配置を選択すると、第三自在継手J3と第四自在継手J4に挟持される第二駆動軸S2が、略水平となる。すると、非転舵時の駆動輪Wの回転軸線XW0と第二駆動軸S2の回転軸線X2とがなす取付角θ1(後述)を、小さく構成することができる。 In this way, if the arrangement of the intermediate support member A is selected so that the height of the third universal joint J3 and the height of the fourth universal joint J4 are the same, the third universal joint J3 and the fourth universal joint J3 and the fourth universal joint are selected. The second drive shaft S2 sandwiched between the J4s is substantially horizontal. Then, the mounting angle θ1 (described later) formed by the rotation axis XW0 of the drive wheel W at the time of non-steering and the rotation axis X2 of the second drive shaft S2 can be made small.
次に、駆動輪Wが内輪となる方向に駆動輪Wが転舵される場合における駆動輪Wの状態を説明する。図5は、本実施形態における転舵時の内輪側の駆動輪Wの状態を示す上面図である。本実施形態において、駆動輪Wが内輪となる方向に駆動輪Wが転舵される場合とは、駆動輪Wが左に転舵された場合であり、この場合、図に示す左の駆動輪Wが内輪側となる。 Next, the state of the drive wheel W when the drive wheel W is steered in the direction in which the drive wheel W becomes the inner ring will be described. FIG. 5 is a top view showing a state of the drive wheel W on the inner ring side at the time of steering in the present embodiment. In the present embodiment, the case where the drive wheel W is steered in the direction in which the drive wheel W becomes the inner ring is the case where the drive wheel W is steered to the left, and in this case, the left drive wheel shown in the figure. W is on the inner ring side.
図5に示すように、駆動輪Wが転舵されると、駆動輪Wは、第四自在継手J4における回転中心OJ4(または図4に示す回転軸線XJ4)の付近を中心として、図中反時計回りに回転する。この場合、転舵時における駆動輪Wの車軸SWの回転軸線XW(以下、「転舵時の駆動輪Wの回転軸線XW」という)は、非転舵時の駆動輪Wの回転軸線XW0よりも前方に移動することとなる。 As shown in FIG. 5, when the drive wheel W is steered, the drive wheel W is counterclockwise in the figure centering on the vicinity of the rotation center OJ4 (or the rotation axis XJ4 shown in FIG. 4) in the fourth universal joint J4. Rotate clockwise. In this case, the rotation axis XW of the axle SW of the drive wheel W at the time of steering (hereinafter referred to as "rotation axis XW of the drive wheel W at the time of steering") is from the rotation axis XW0 of the drive wheel W at the time of non-steering. Will also move forward.
上述のように構成した場合の、本実施形態の構成における取付角θ1及び内輪側転舵角θ3について、図を用いて、本実施形態の構成と比較例の構成とを対比しつつ説明する。図6は、本実施形態の構成における取付角θ1と内輪側転舵角θ3とを示す図であり、(a)は取付角θ1を示す図であり、(b)は内輪側転舵角θ3を示す図である。図7は、比較例の構成における取付角α1と内輪側転舵角α3とを示す図であり、(a)は取付角α1を示す図であり、(b)は内輪側転舵角α3を示す図である。図6及び図7の説明において、駆動輪Wの回転軸線XW(または回転軸線XW0)は、駆動輪Wに付帯する車軸SWの回転軸線である。 The mounting angle θ1 and the inner wheel cartwheel angle θ3 in the configuration of the present embodiment when configured as described above will be described with reference to the configuration of the present embodiment and the configuration of the comparative example. 6A and 6B are views showing a mounting angle θ1 and an inner wheel cartwheel θ3 in the configuration of the present embodiment, FIG. 6A is a diagram showing a mounting angle θ1, and FIG. 6B is a diagram showing an inner ring cartwheel θ3. It is a figure which shows. 7A and 7B are views showing the mounting angle α1 and the inner ring side steering angle α3 in the configuration of the comparative example, FIG. 7A is a diagram showing the mounting angle α1, and FIG. 7B is a diagram showing the inner ring side steering angle α3. It is a figure which shows. In the description of FIGS. 6 and 7, the rotation axis XW (or rotation axis XW0) of the drive wheel W is the rotation axis of the axle SW attached to the drive wheel W.
まず、取付角について比較をする。ここで、取付角とは、本実施形態においては、駆動輪Wが転舵されない場合に、入力軸と出力軸とがなす角度である。具体的に、本実施形態における取付角θ1は、図6(a)に示すように、入力軸である第二駆動軸S2(の回転軸線X2)と出力軸である車軸SW(の回転軸線XW0)とがなす角度である。また、比較例における取付角α1は、図7(a)に示すように、入力軸である駆動軸Sa(の回転軸線Xa)と出力軸である車軸SW(の回転軸線XW0)とがなす角度である。 First, we will compare the mounting angles. Here, the mounting angle is, in the present embodiment, an angle formed by the input shaft and the output shaft when the drive wheel W is not steered. Specifically, as shown in FIG. 6A, the mounting angle θ1 in the present embodiment has a second drive shaft S2 (rotational axis X2) as an input shaft and an axle SW (rotational axis XW0) as an output shaft. ) Is the angle. Further, as shown in FIG. 7A, the mounting angle α1 in the comparative example is an angle formed by the drive shaft Sa (rotational axis Xa) which is an input shaft and the axle SW (rotational axis XW0) which is an output shaft. Is.
上述のように、本実施形態の第二駆動軸S2は、中間支持部材A側の端部が前方になり駆動輪W側の端部が後方になるように配置される。そして、第二駆動軸S2の駆動輪W側の端部は第四自在継手J4を介して車軸SWに支持される(図3参照)。すると、図6(a)に示すように、第二駆動軸S2は、非転舵時の駆動輪Wの回転軸線XW0よりも前方に配置される。この場合、第二駆動軸S2の回転軸線X2と非転舵時の駆動輪Wの回転軸線XW0とがなす取付角θ1は、非転舵時の駆動輪Wの回転軸線XW0よりも前方に形成される。 As described above, the second drive shaft S2 of the present embodiment is arranged so that the end portion on the intermediate support member A side is in the front and the end portion on the drive wheel W side is in the rear. Then, the end portion of the second drive shaft S2 on the drive wheel W side is supported by the axle SW via the fourth universal joint J4 (see FIG. 3). Then, as shown in FIG. 6A, the second drive shaft S2 is arranged in front of the rotation axis XW0 of the drive wheel W at the time of non-steering. In this case, the mounting angle θ1 formed by the rotation axis X2 of the second drive shaft S2 and the rotation axis XW0 of the drive wheel W during non-steering is formed ahead of the rotation axis XW0 of the drive wheel W during non-steering. Will be done.
また、本実施形態の取付角θ1は、中間支持部材Aの配置を変更することで自由に設定することができる。このため、中間支持部材Aを、車両の前後方向において非転舵時の駆動輪Wの回転軸線XW0に近い位置にすることで、取付角θ1をより小さく構成することができる。取付角θ1を小さくすると、振動の低減等の効果がある。 Further, the mounting angle θ1 of the present embodiment can be freely set by changing the arrangement of the intermediate support member A. Therefore, the mounting angle θ1 can be made smaller by arranging the intermediate support member A at a position close to the rotation axis XW0 of the drive wheel W when the vehicle is not steered in the front-rear direction of the vehicle. Reducing the mounting angle θ1 has the effect of reducing vibration.
一方、比較例の駆動軸Saは、一端がディファレンシャル機構Dまたはディファレンシャル機構Dの出力軸と同軸の中間駆動軸に連結される。この場合、図7(a)に示すように、比較例の駆動軸Saの回転軸線Xaと非転舵時の駆動輪Wの回転軸線XW0とがなす取付角α1は、非転舵時の駆動輪Wの回転軸線XW0よりも後方に形成される。 On the other hand, one end of the drive shaft Sa of the comparative example is connected to an intermediate drive shaft coaxial with the output shaft of the differential mechanism D or the differential mechanism D. In this case, as shown in FIG. 7A, the mounting angle α1 formed by the rotation axis Xa of the drive shaft Sa of the comparative example and the rotation axis XW0 of the drive wheel W at the time of non-steering is the drive at the time of non-steering. It is formed behind the rotation axis XW0 of the ring W.
また、比較例の取付角α1は、ディファレンシャル機構Dと駆動輪Wとの位置関係に制約される。そして、ディファレンシャル機構Dや駆動輪W等の位置は、ディファレンシャル機構Dが付帯するエンジンE及び変速機Tの配置で決まるため、取付角α1を自由に設定することは困難であり、取付角α1をより小さい角度に設定することは困難である。 Further, the mounting angle α1 of the comparative example is restricted by the positional relationship between the differential mechanism D and the drive wheels W. Since the positions of the differential mechanism D, the drive wheels W, and the like are determined by the arrangement of the engine E and the transmission T attached to the differential mechanism D, it is difficult to freely set the mounting angle α1, and the mounting angle α1 is set. It is difficult to set it to a smaller angle.
次に、内輪側転舵角について比較をする。ここで、内輪側転舵角とは、運転者が駆動輪Wを転舵し、駆動輪Wが内輪となる方向に当該駆動輪Wが転舵される場合に、非転舵時の出力軸と転舵時の出力軸とがなす角度である。具体的に、本実施形態及び比較例では、駆動輪Wが内輪となる方向に当該駆動輪Wが転舵される場合として、左駆動輪WL(図1参照)が内輪となるように左駆動輪WLが左方に転舵される場合を例示して説明する。また、本実施形態及び比較例における内輪側転舵角は、図6(b)及び図7(b)に示すように、車両の非転舵時における駆動輪Wの回転軸線XW0と転舵時における駆動輪Wの回転軸線XWとがなす角度である。 Next, the steering angle on the inner ring side will be compared. Here, the inner wheel side steering angle is the output shaft at the time of non-steering when the driver steers the drive wheel W and the drive wheel W is steered in the direction in which the drive wheel W becomes the inner ring. It is the angle formed by the output shaft at the time of steering. Specifically, in the present embodiment and the comparative example, when the drive wheel W is steered in the direction in which the drive wheel W becomes the inner ring, the left drive wheel WL (see FIG. 1) is driven to the left so as to be the inner ring. The case where the wheel WL is steered to the left will be described as an example. Further, as shown in FIGS. 6 (b) and 7 (b), the steering angle on the inner ring side in the present embodiment and the comparative example is the rotation axis XW0 of the drive wheel W when the vehicle is not steered and the steering angle when the vehicle is steered. It is an angle formed by the rotation axis XW of the drive wheel W in the above.
本実施形態の構成において、駆動輪Wを左方に転舵するとき、図6(b)に示すように、車軸SWは、第四自在継手J4の回転中心OJ4を中心として、図における反時計回りに回転移動する。 In the configuration of the present embodiment, when the drive wheel W is steered to the left, as shown in FIG. 6B, the axle SW is counterclockwise in the figure with the rotation center OJ4 of the fourth universal joint J4 as the center. Rotate and move around.
車軸SWは、第四自在継手J4における最大の作動角θ2の範囲で転舵する。作動角とは、自在継手の入力軸と出力軸とがなす角度であり、本実施形態においては、入力軸である第二駆動軸S2(の回転軸線X2)と出力軸である車軸SW(の回転軸線XW)とがなす角度である。 The axle SW steers within the range of the maximum operating angle θ2 in the fourth universal joint J4. The operating angle is an angle formed by the input shaft and the output shaft of the universal joint. In the present embodiment, the second drive shaft S2 (rotational axis X2) which is the input shaft and the axle SW (of the output shaft) which are the output shafts. It is an angle formed by the rotation axis XW).
本実施形態においては、第二駆動軸S2の回転軸線X2が車軸SWの回転軸線XWよりも前方にある。すると、駆動輪Wを左方に転舵するとき、最大の作動角θ2は、第二駆動軸S2の回転軸線X2を挟んで取付角θ1と反対方向(図中前方)に形成される。このため、本実施形態において、駆動輪Wを左方に転舵するときの最大の内輪側転舵角θ3は、取付角θ1に最大の作動角θ2を加えた角度となる。すなわち、実施形態においては、内輪側転舵角が、第四自在継手J4における最大の作動角θ2よりも大きくなる。 In the present embodiment, the rotation axis X2 of the second drive shaft S2 is ahead of the rotation axis XW of the axle SW. Then, when the drive wheel W is steered to the left, the maximum operating angle θ2 is formed in the direction opposite to the mounting angle θ1 (front in the figure) with the rotation axis X2 of the second drive shaft S2 interposed therebetween. Therefore, in the present embodiment, the maximum inner wheel cartwheel θ3 when the drive wheel W is steered to the left is an angle obtained by adding the maximum operating angle θ2 to the mounting angle θ1. That is, in the embodiment, the steering angle on the inner ring side is larger than the maximum operating angle θ2 in the fourth universal joint J4.
一方、比較例の構成において、駆動輪Wを左方に転舵するとき、図7(b)に示すように、車軸SWは、自在継手Jaの回転中心OJaを中心として、図における反時計回りに回転移動する。この場合、車軸SWは、自在継手Jaにおける最大の作動角α2の範囲で転舵する。なお、比較のために、比較例の自在継手Jaは、本実施形態の第四自在継手J4と同様の作動角を有する自在継手を用いて説明する。すなわち、比較例の最大の作動角α2と本実施形態の最大の作動角θ2とは同一角度とする。 On the other hand, in the configuration of the comparative example, when the drive wheel W is steered to the left, as shown in FIG. 7B, the axle SW is counterclockwise in the figure with the rotation center OJa of the universal joint Ja as the center. Rotate and move to. In this case, the axle SW steers within the range of the maximum operating angle α2 in the universal joint Ja. For comparison, the universal joint Ja of the comparative example will be described using a universal joint having the same operating angle as the fourth universal joint J4 of the present embodiment. That is, the maximum operating angle α2 of the comparative example and the maximum operating angle θ2 of the present embodiment are set to be the same angle.
比較例においては、駆動軸Saの回転軸線Xaが非転舵時の車軸SWの回転軸線XW0よりも後方にある。すると、駆動輪Wを左方に転舵するとき、最大の作動角α2は、駆動軸Saの回転軸線Xaを起点として取付角α1と同じ方向(図中前方)に形成される。このため、比較例において、駆動輪Wを左方に転舵するときの最大の内輪側転舵角α3は、最大の作動角α2から取付角α1を引いた角度となる。すなわち、比較例においては、内輪側転舵角が、自在継手Jaの最大の作動角α2よりも小さくなってしまう。 In the comparative example, the rotation axis Xa of the drive shaft Sa is behind the rotation axis XW0 of the axle SW at the time of non-steering. Then, when the drive wheel W is steered to the left, the maximum operating angle α2 is formed in the same direction as the mounting angle α1 (front in the figure) starting from the rotation axis Xa of the drive shaft Sa. Therefore, in the comparative example, the maximum inner wheel cartwheel angle α3 when the drive wheel W is steered to the left is an angle obtained by subtracting the mounting angle α1 from the maximum operating angle α2. That is, in the comparative example, the steering angle on the inner ring side becomes smaller than the maximum operating angle α2 of the universal joint Ja.
なお、上述の実施形態において、中間支持部材Aは、2つの自在継手のうち一方の自在継手(本実施形態では第二自在継手J2)のみを支持する構成であったが、必ずしもその構成に限るものではない。 In the above-described embodiment, the intermediate support member A has a configuration in which only one of the two universal joints (the second universal joint J2 in the present embodiment) is supported, but the configuration is not necessarily limited to that. It's not a thing.
図8は、本実施形態の変形例における中間支持部材A1の概略構成を示す拡大断面図である。図8に示す変形例の中間支持部材A1は、第二自在継手J2及び第三自在継手J3の両方を、中間支持部材A1が具備する部材によって、直接支持している。 FIG. 8 is an enlarged cross-sectional view showing a schematic configuration of the intermediate support member A1 in the modified example of the present embodiment. The intermediate support member A1 of the modified example shown in FIG. 8 directly supports both the second universal joint J2 and the third universal joint J3 by the member included in the intermediate support member A1.
図8に示すように、変形例にかかる中間支持部材A1においては、支持部材本体11と、軸受13と、を有する。また、中間支持部材A1においては、入力側から得た回転動力を出力側へ伝達する回転体12を有する。
As shown in FIG. 8, the intermediate support member A1 according to the modified example has a support member
変形例における中間支持部材A1の回転体12は、動力の入力側の端部である第一駆動軸S1側の端部において、第二自在継手J2の出力軸SJ2aを支持する。また、中間支持部材A1の回転体12は、動力の出力側の端部である第二駆動軸S2側の端部において、第三自在継手J3の入力軸SJ3aを支持する。この構成により、中間支持部材A1の回転体12は、第一駆動軸S1から入力された回転動力を、第二駆動軸S2へ伝達する。
The rotating
以上のように、本実施形態においては、エンジンEと駆動輪Wとの間に、第一駆動軸S1と第二駆動軸S2という異なる駆動軸を有し、第一駆動軸S1と第二駆動軸S2とのそれぞれの両端に自在継手(第一自在継手J1、第二自在継手J2、第三自在継手J3、第四自在継手J4)を配置する。自在継手は、入力軸と出力軸との角度が変わっても動力を伝達することができるため、第一駆動軸S1及び第二駆動軸S2の両端における設置角度をより幅広く選択することができる。 As described above, in the present embodiment, different drive shafts, the first drive shaft S1 and the second drive shaft S2, are provided between the engine E and the drive wheel W, and the first drive shaft S1 and the second drive shaft S1 and the second drive shaft S2 are provided. Universal joints (first universal joint J1, second universal joint J2, third universal joint J3, fourth universal joint J4) are arranged at both ends of the shaft S2. Since the universal joint can transmit power even if the angle between the input shaft and the output shaft changes, the installation angles at both ends of the first drive shaft S1 and the second drive shaft S2 can be selected more widely.
また、第一駆動軸S1と第二駆動軸S2との間には中間支持部材Aが配置される。ここで、中間支持部材Aと第一駆動軸S1との間には第二自在継手J2があり、中間支持部材Aと第二駆動軸S2との間には第三自在継手J3がある。すると、中間支持部材Aにおける入力側端部と出力側端部との両方で角度調整が可能であり、中間支持部材Aの配置を二つの自在継手(第二自在継手J2、第三自在継手J3)の作動角の範囲で選択できる。このため、一つの自在継手のみで入力軸と出力軸とを連結した従来の構成と比較して、駆動軸(第一駆動軸S1及び第二駆動軸S2)の配置の自由度が高まることになる。 Further, an intermediate support member A is arranged between the first drive shaft S1 and the second drive shaft S2. Here, there is a second universal joint J2 between the intermediate support member A and the first drive shaft S1, and there is a third universal joint J3 between the intermediate support member A and the second drive shaft S2. Then, the angle can be adjusted at both the input side end portion and the output side end portion of the intermediate support member A, and the arrangement of the intermediate support member A is arranged in two universal joints (second universal joint J2 and third universal joint J3). ) Can be selected within the range of operating angles. Therefore, the degree of freedom in arranging the drive shafts (first drive shaft S1 and second drive shaft S2) is increased as compared with the conventional configuration in which the input shaft and the output shaft are connected by only one universal joint. Become.
また、本実施形態では、中間支持部材Aの位置を、第三自在継手J3が第四自在継手J4よりも前方になるように、配置される。すると、駆動輪Wの内輪側転舵角θ3が大きくなる。すなわち、第三自在継手J3が第四自在継手J4よりも前方になるように中間支持部材Aの設置位置を選択すると、第二駆動軸S2の回転軸線X2と非転舵時の駆動輪Wの回転軸線XW0とがなす角度である取付角θ1が、非転舵時の駆動輪Wの回転軸線XW0よりも前方に位置する。一方、駆動輪Wが転舵可能な角度は第四自在継手J4の最大の作動角θ2に規制される。特に、駆動輪Wが内輪となる側に当該駆動輪Wが転舵される場合、第四自在継手J4の最大の作動角θ2は、第二駆動軸S2を基点として前方に形成される。ここで、転舵時の駆動輪Wの回転軸線XWは、第四自在継手J4の回転中心OJ4の付近を中心として、非転舵時の駆動輪Wの回転軸線XW0よりも前方に移動する。この結果、内輪側転舵角θ3は、前記取付角θ1と前記作動角θ2とを足した角度となり、内輪側転舵角θ3を大きくすることができる。 Further, in the present embodiment, the position of the intermediate support member A is arranged so that the third universal joint J3 is in front of the fourth universal joint J4. Then, the steering angle θ3 on the inner ring side of the drive wheel W becomes large. That is, when the installation position of the intermediate support member A is selected so that the third universal joint J3 is in front of the fourth universal joint J4, the rotation axis X2 of the second drive shaft S2 and the drive wheel W at the time of non-steering are selected. The mounting angle θ1, which is an angle formed by the rotation axis XW0, is located ahead of the rotation axis XW0 of the drive wheel W at the time of non-steering. On the other hand, the angle at which the drive wheel W can be steered is restricted to the maximum operating angle θ2 of the fourth universal joint J4. In particular, when the drive wheel W is steered to the side where the drive wheel W becomes the inner ring, the maximum operating angle θ2 of the fourth universal joint J4 is formed forward with respect to the second drive shaft S2. Here, the rotation axis XW of the drive wheel W at the time of steering moves forward from the rotation axis XW0 of the drive wheel W at the time of non-steering, centering on the vicinity of the rotation center OJ4 of the fourth universal joint J4. As a result, the inner ring side steering angle θ3 becomes an angle obtained by adding the mounting angle θ1 and the operating angle θ2, and the inner ring side steering angle θ3 can be increased.
また、本実施形態では、第二駆動軸S2の一端に配置される第三自在継手J3と、第二駆動軸S2の他端に配置される第四自在継手J4とが同様の高さになるように、中間支持部材Aを配置する。これによって、第二駆動軸S2が略水平となり、第三自在継手J3の高さと第四自在継手J4の高さとを大きく異なる高さとした場合と比較して、第二駆動軸S2の回転軸線X2と非転舵時の駆動輪Wの回転軸線XW0とがなす取付角θ1を小さくすることができる。 Further, in the present embodiment, the third universal joint J3 arranged at one end of the second drive shaft S2 and the fourth universal joint J4 arranged at the other end of the second drive shaft S2 have the same height. As such, the intermediate support member A is arranged. As a result, the second drive shaft S2 becomes substantially horizontal, and the rotation axis X2 of the second drive shaft S2 is compared with the case where the height of the third universal joint J3 and the height of the fourth universal joint J4 are significantly different. The mounting angle θ1 formed by the rotation axis XW0 of the drive wheel W at the time of non-steering can be reduced.
また、本実施形態では、第二自在継手J2の出力軸SJ2と第三自在継手J3の入力軸SJ3とが同一軸線上で固定され、中間支持部材Aが、第二自在継手J2の出力軸SJ2と第三自在継手J3の入力軸SJ3とのうち、一方のみを支持する構成である。なお、本実施形態では、中間支持部材Aは、第二自在継手J2の出力軸SJ2を支持している。このように構成すると、2つの自在継手を支持する中間支持部材Aの軸方向(出力軸SJ2及び入力軸SJ3の軸方向、本実施形態では車両の幅方向)の長さを短く構成することができる。 Further, in the present embodiment, the output shaft SJ2 of the second universal joint J2 and the input shaft SJ3 of the third universal joint J3 are fixed on the same axis, and the intermediate support member A is the output shaft SJ2 of the second universal joint J2. And the input shaft SJ3 of the third universal joint J3, only one of them is supported. In this embodiment, the intermediate support member A supports the output shaft SJ2 of the second universal joint J2. With this configuration, the length of the intermediate support member A that supports the two universal joints (the axial direction of the output shaft SJ2 and the input shaft SJ3, and the width direction of the vehicle in this embodiment) can be shortened. can.
また、本実施形態では、第一駆動軸S1の両端に配置される第一自在継手J1及び第二自在継手J2を、作動角の大きい固定型等速ジョイントとする。これにより、第一駆動軸S1の両端における設置角度の自由が高まり、第一駆動軸S1の配置の自由度を高くすることができる。 Further, in the present embodiment, the first universal joint J1 and the second universal joint J2 arranged at both ends of the first drive shaft S1 are fixed constant velocity joints having a large operating angle. As a result, the freedom of the installation angle at both ends of the first drive shaft S1 is increased, and the degree of freedom of arrangement of the first drive shaft S1 can be increased.
また、第二駆動軸S2の駆動輪W側の端部に配置される第四自在継手J4を作動角の大きい固定型等速ジョイントとすることで、駆動輪Wの転舵角を大きくすることができる。そして、第二駆動軸S2の中間支持部材A側の端部に配置される第三自在継手J3を摺動型等速ジョイントとすることで、駆動輪WとエンジンEとの間の距離変化に対応することができる。 Further, the steering angle of the drive wheel W is increased by using the fourth universal joint J4 arranged at the end of the second drive shaft S2 on the drive wheel W side as a fixed constant velocity joint having a large operating angle. Can be done. Then, by using the third universal joint J3 arranged at the end of the second drive shaft S2 on the intermediate support member A side as a sliding constant velocity joint, the distance between the drive wheels W and the engine E can be changed. Can be accommodated.
以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。特に、本実施形態においては、動力発生部の動力源としてエンジンEを用いたが、これに限るものではなく、モータでもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and the present invention is not limited to the above embodiments, and various aspects are described within the scope of claims and the technical ideas described in the specification and drawings. It can be transformed. In particular, in the present embodiment, the engine E is used as the power source of the power generation unit, but the present invention is not limited to this, and a motor may be used.
また、前述の実施形態においては、中間支持部材A,A1は、車両の幅方向において、エンジンE等を含む動力発生部と重なる位置に配置された例を示したが、これに限るものではない。図9は、他の実施形態における駆動軸配置構造の全体概略構成を示す上面図である。 Further, in the above-described embodiment, the intermediate support members A and A1 are arranged at positions overlapping with the power generation unit including the engine E and the like in the width direction of the vehicle, but the present invention is not limited to this. .. FIG. 9 is a top view showing an overall schematic configuration of the drive shaft arrangement structure in another embodiment.
図9に示すように、他の実施形態の車両の前方には、エンジンE及び変速機Tが配置され、それらの後方には、ディファレンシャル機構Dが配置される。そして、他の実施形態における中間支持部材A,A1は、車両の幅方向において、エンジンEと駆動輪Wとの間に配置される。このように、中間支持部材A,A1は、車両の前後方向において、エンジンEと重なる位置にも配置することができる。なお、他の実施形態の左側の駆動軸の配置構成においては、車両の幅方向において、エンジンE、変速機T及びディファレンシャル機構Dを含む動力発生部と駆動輪Wとの間に、中間支持部材Aが配置される。 As shown in FIG. 9, the engine E and the transmission T are arranged in front of the vehicle of the other embodiment, and the differential mechanism D is arranged behind them. The intermediate support members A and A1 in the other embodiment are arranged between the engine E and the drive wheels W in the width direction of the vehicle. As described above, the intermediate support members A and A1 can be arranged at positions overlapping with the engine E in the front-rear direction of the vehicle. In the arrangement configuration of the drive shaft on the left side of the other embodiment, an intermediate support member is provided between the power generation unit including the engine E, the transmission T and the differential mechanism D and the drive wheel W in the width direction of the vehicle. A is placed.
このように、中間支持部材A,A1が、車両の幅方向において、エンジンEと駆動輪Wとの間に配置されることで、エンジンEの前後方向や高さ方向の位置に干渉されることなく、中間支持部材A,A1を自由に配置することができる。すると、中間支持部材A,A1に端部を支持される第一駆動軸S1及び第二駆動軸S2の配置の自由度をも高めることができる。 In this way, the intermediate support members A and A1 are arranged between the engine E and the drive wheels W in the width direction of the vehicle, so that they interfere with the positions of the engine E in the front-rear direction and the height direction. Instead, the intermediate support members A and A1 can be freely arranged. Then, the degree of freedom in the arrangement of the first drive shaft S1 and the second drive shaft S2 whose ends are supported by the intermediate support members A and A1 can be increased.
A,A1…中間支持部材
11…本体
12…回転体
13…軸受
S1…第一駆動軸
S2…第二駆動軸
SJ2…出力軸(第二自在継手の回転軸)
SJ3…入力軸(第三自在継手の回転軸)
SW…車軸
J1…第一自在継手
J2…第二自在継手
J3…第三自在継手
J4…第四自在継手
OJ4…回転中心
W…駆動輪
X2…回転軸線
XW0…非転舵時の駆動輪の回転軸線
XW…転舵時の駆動輪の回転軸線
θ1…取付角
θ2…作動角
θ3…内輪側転舵角
D…ディファレンシャル機構(差動機構)
E…エンジン(動力源)
T…変速機
A, A1 ...
SJ3 ... Input shaft (rotary shaft of third universal joint)
SW ... Axle J1 ... First universal joint J2 ... Second universal joint J3 ... Third universal joint J4 ... Fourth universal joint OJ4 ... Rotation center W ... Drive wheel X2 ... Rotation axis XW0 ... Rotation of drive wheel when not steering Axis line XW ... Rotation axis of the drive wheel at the time of steering θ1 ... Mounting angle θ2 ... Operating angle θ3 ... Inner ring side steering angle D ... Differential mechanism (differential mechanism)
E ... Engine (power source)
T ... Transmission
Claims (4)
前記動力源からの動力が伝達される第一駆動軸と、
前記第一駆動軸からの動力が伝達される第二駆動軸と、
前記第二駆動軸からの動力が伝達される駆動輪と、を備える駆動軸配置構造であって、
前記第一駆動軸は、前記動力源側の端部に配置される第一自在継手と、前記第二駆動軸側の端部に配置される第二自在継手と、を備え、
前記第二駆動軸は、前記第一駆動軸側の端部に配置される第三自在継手と、前記駆動輪側の端部に配置される第四自在継手と、を備え、
前記第一駆動軸と前記第二駆動軸との間には、前記第二自在継手と前記第三自在継手とを支持する中間支持部材と、をさらに備え、
前記中間支持部材は、
前記第二自在継手が前記第一自在継手よりも前記車両の前後方向における前方になるように、前記第二自在継手を支持し、
前記第三自在継手が前記第四自在継手よりも前記車両の前後方向における前方になるように、前記第三自在継手を支持し、
前記第二自在継手の前記中間支持部材側には回転軸が配置され、
前記第三自在継手の前記中間支持部材側には回転軸が配置され、
前記第二自在継手の前記回転軸と前記第三自在継手の前記回転軸とは同一軸線上に固定され、
前記第二自在継手の前記回転軸と前記第三自在継手の前記回転軸とは、互いに連結されており、
前記中間支持部材は、前記第二自在継手の前記回転軸と前記第三自在継手の前記回転軸とのうち、一方の前記回転軸を直接支持し、他方の前記回転軸を前記一方の前記回転軸を介して支持する
ことを特徴とする駆動軸配置構造。 A power source that is mounted on a vehicle and generates power,
The first drive shaft to which the power from the power source is transmitted,
The second drive shaft to which the power from the first drive shaft is transmitted and
A drive shaft arrangement structure including a drive wheel to which power is transmitted from the second drive shaft.
The first drive shaft includes a first universal joint arranged at an end on the power source side and a second universal joint arranged at the end on the second drive shaft side.
The second drive shaft includes a third universal joint arranged at the end on the first drive shaft side and a fourth universal joint arranged at the end on the drive wheel side.
An intermediate support member for supporting the second universal joint and the third universal joint is further provided between the first drive shaft and the second drive shaft.
The intermediate support member is
The second universal joint is supported so that the second universal joint is in front of the first universal joint in the front-rear direction of the vehicle.
The third universal joint is supported so that the third universal joint is in front of the fourth universal joint in the front-rear direction of the vehicle.
A rotating shaft is arranged on the intermediate support member side of the second universal joint.
A rotating shaft is arranged on the intermediate support member side of the third universal joint.
The rotation axis of the second universal joint and the rotation axis of the third universal joint are fixed on the same axis.
The rotation shaft of the second universal joint and the rotation shaft of the third universal joint are connected to each other.
The intermediate support member directly supports one of the rotation shafts of the rotation shaft of the second universal joint and the rotation shaft of the third universal joint, and the other rotation shaft is the rotation of the one. Support via shaft
The drive shaft arrangement structure is characterized by this.
ことを特徴とする請求項1に記載の駆動軸配置構造。 Claim 1 is characterized in that the intermediate support member is arranged so that the height of the third universal joint supported by the intermediate support member is the same as the height of the fourth universal joint. Drive shaft arrangement structure described in.
前記第三自在継手は、摺動型等速ジョイントである
ことを特徴とする請求項1又は2に記載の駆動軸配置構造。 The first universal joint, the second universal joint, and the fourth universal joint are fixed constant velocity joints.
The drive shaft arrangement structure according to claim 1 or 2, wherein the third universal joint is a sliding constant velocity joint .
ことを特徴とする請求項1乃至3のいずれか1項に記載の駆動軸配置構造。 The drive according to any one of claims 1 to 3 , wherein the intermediate support member is arranged between the power source and the drive wheel in the width direction of the vehicle. Shaft arrangement structure.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017224105A JP7002927B2 (en) | 2017-11-22 | 2017-11-22 | Drive shaft arrangement structure |
CN201811121508.1A CN109808489B (en) | 2017-11-22 | 2018-09-26 | Drive shaft arrangement structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017224105A JP7002927B2 (en) | 2017-11-22 | 2017-11-22 | Drive shaft arrangement structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019093866A JP2019093866A (en) | 2019-06-20 |
JP7002927B2 true JP7002927B2 (en) | 2022-01-20 |
Family
ID=66601486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017224105A Active JP7002927B2 (en) | 2017-11-22 | 2017-11-22 | Drive shaft arrangement structure |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7002927B2 (en) |
CN (1) | CN109808489B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR712018A (en) | 1930-06-07 | 1931-09-23 | Improvements to the control of the driving front wheels of automobiles | |
US1847749A (en) | 1928-07-06 | 1932-03-01 | Voran Automobilbau Ag | Motor vehicle |
JP2001113972A (en) | 1999-10-20 | 2001-04-24 | Ntn Corp | Drive shaft |
US20050239560A1 (en) | 2004-04-23 | 2005-10-27 | Gehrke Glenn F | High speed high angle universal joint |
JP2006142967A (en) | 2004-11-18 | 2006-06-08 | Nissan Motor Co Ltd | Torque steering suppressing structure of vehicle |
JP2011218869A (en) | 2010-04-05 | 2011-11-04 | Toyota Motor Corp | Running characteristics control device of vehicle |
JP5587625B2 (en) | 2010-02-01 | 2014-09-10 | アピックヤマダ株式会社 | Lead frame and substrate for LED package |
JP6441432B2 (en) | 2003-05-06 | 2018-12-19 | バイオベラティブ セラピューティクス インコーポレイテッド | Immunoglobulin chimera monomer-dimer hybrid |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4192396A (en) * | 1977-03-21 | 1980-03-11 | Lear Siegler, Inc. | Vehicle axle including endways opening axle end |
US4132134A (en) * | 1977-06-24 | 1979-01-02 | Caterpillar Tractor Co. | Vehicle final drive assembly |
FR2416811A1 (en) * | 1978-02-13 | 1979-09-07 | Glaenzer Spicer Sa | Constant velocity universal joint for vehicle front wheel drive - has displacement laterally permitted by annular rollers mounted on three-arm link |
JPS54138235A (en) * | 1978-04-20 | 1979-10-26 | Nissan Motor Co Ltd | Side mount type power unit for automobile |
JPS619765Y2 (en) * | 1981-06-16 | 1986-03-28 | ||
JPS58164432A (en) * | 1982-03-24 | 1983-09-29 | Honda Motor Co Ltd | Power transmission for front wheel drive car |
JPH0619390Y2 (en) * | 1987-09-07 | 1994-05-25 | 本田技研工業株式会社 | Vehicle power transmission device |
JPH01111527A (en) * | 1987-10-26 | 1989-04-28 | Mazda Motor Corp | Drive device for vehicle |
JPH0730418Y2 (en) * | 1989-06-28 | 1995-07-12 | ダイハツ工業株式会社 | Vibration control structure for isometric drive shaft |
JPH08156618A (en) * | 1994-12-09 | 1996-06-18 | Isuzu Motors Ltd | Transmission system of vehicle |
-
2017
- 2017-11-22 JP JP2017224105A patent/JP7002927B2/en active Active
-
2018
- 2018-09-26 CN CN201811121508.1A patent/CN109808489B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1847749A (en) | 1928-07-06 | 1932-03-01 | Voran Automobilbau Ag | Motor vehicle |
FR712018A (en) | 1930-06-07 | 1931-09-23 | Improvements to the control of the driving front wheels of automobiles | |
JP2001113972A (en) | 1999-10-20 | 2001-04-24 | Ntn Corp | Drive shaft |
JP6441432B2 (en) | 2003-05-06 | 2018-12-19 | バイオベラティブ セラピューティクス インコーポレイテッド | Immunoglobulin chimera monomer-dimer hybrid |
US20050239560A1 (en) | 2004-04-23 | 2005-10-27 | Gehrke Glenn F | High speed high angle universal joint |
JP2006142967A (en) | 2004-11-18 | 2006-06-08 | Nissan Motor Co Ltd | Torque steering suppressing structure of vehicle |
JP5587625B2 (en) | 2010-02-01 | 2014-09-10 | アピックヤマダ株式会社 | Lead frame and substrate for LED package |
JP2011218869A (en) | 2010-04-05 | 2011-11-04 | Toyota Motor Corp | Running characteristics control device of vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN109808489A (en) | 2019-05-28 |
JP2019093866A (en) | 2019-06-20 |
CN109808489B (en) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10894571B2 (en) | Leaning vehicle | |
JP7147552B2 (en) | Vehicle wheel arrangement module | |
US8640812B2 (en) | Electric drive axle configuration | |
CN108136890B (en) | In-wheel motor drive device, and connection structure of in-wheel motor drive device and suspension device | |
WO2017057066A1 (en) | Coupling structure for in-wheel motor drive device and strut suspension device | |
US20180065478A1 (en) | Coupled compound planetary transmission for a wheel unit | |
EP3305563B1 (en) | Vehicle steering system | |
JP6271196B2 (en) | In-wheel motor drive device | |
JP2004122953A (en) | In-wheel motor system for steering wheel | |
JP2015042548A (en) | Steering device of tractor | |
JP2000025474A (en) | Steering driving shaft | |
JP7002927B2 (en) | Drive shaft arrangement structure | |
JP4953359B2 (en) | Automated guided vehicle | |
JP6125066B1 (en) | In-wheel motor drive device | |
JP2010132238A (en) | Steering unit for vehicle | |
JP2011002032A (en) | Shaft coupling and vehicular shaft driving type power transmission device having shaft coupling | |
JP2015093652A (en) | Suspension device of vehicle | |
JP2014069741A (en) | Vehicle steering device | |
WO2017057067A1 (en) | In-wheel motor drive device, and coupling structure for in-wheel motor drive device and suspension device | |
JP2020104574A (en) | Power transmission mechanism | |
JP2021154763A (en) | In-wheel motor drive device | |
US10995841B2 (en) | Member joining structure for differential device | |
JP5163537B2 (en) | Driving force distribution device | |
JP2020069972A (en) | In-wheel motor drive device mounting structure | |
JP4239702B2 (en) | Drive device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7002927 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |