JP7002213B2 - Spatial / gradation super-resolution device and program - Google Patents

Spatial / gradation super-resolution device and program Download PDF

Info

Publication number
JP7002213B2
JP7002213B2 JP2017091314A JP2017091314A JP7002213B2 JP 7002213 B2 JP7002213 B2 JP 7002213B2 JP 2017091314 A JP2017091314 A JP 2017091314A JP 2017091314 A JP2017091314 A JP 2017091314A JP 7002213 B2 JP7002213 B2 JP 7002213B2
Authority
JP
Japan
Prior art keywords
super
resolution
gradation
image
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017091314A
Other languages
Japanese (ja)
Other versions
JP2018190145A (en
Inventor
康孝 松尾
慎平 根本
慎一 境田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2017091314A priority Critical patent/JP7002213B2/en
Publication of JP2018190145A publication Critical patent/JP2018190145A/en
Application granted granted Critical
Publication of JP7002213B2 publication Critical patent/JP7002213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)

Description

本発明は、原画像を空間方向及び階調方向に超解像処理して空間・階調超解像画像を生成する空間・階調超解像装置及びプログラムに関する。 The present invention relates to a spatial / gradation super-resolution device and a program that generate a spatial / gradation super-resolution image by super-resolution processing an original image in the spatial direction and the gradation direction.

従来、画像を空間方向に空間超解像処理して元の画像よりも解像度の高い画像を生成する空間超解像技術が知られている。空間超解像技術としては、学習型と再構成型が知られている。学習型は、低周波成分と高周波成分の組をデータベースとして保持し、原画像と低周波成分のマッチングにより高周波成分を超解像成分として設定する方式である。再構成型は、線形、非線形フィルタ処理、又は複数フレーム間のレジストレーションにより超解像成分を生成する方式である(例えば、非特許文献1参照)。 Conventionally, there is known a spatial super-resolution technique in which an image is subjected to spatial super-resolution processing in the spatial direction to generate an image having a higher resolution than the original image. Learning type and reconstruction type are known as spatial super-resolution technology. The learning type is a method in which a set of a low frequency component and a high frequency component is held as a database, and the high frequency component is set as a super-resolution component by matching the original image and the low frequency component. The reconstruction type is a method of generating a super-resolution component by linear, non-linear filtering, or registration between a plurality of frames (see, for example, Non-Patent Document 1).

また、画像を階調方向に階調超解像処理して、元の画像よりも階調数の多い画像を生成する階調超解像装置が知られている。例えば、隣接する画素値は連続するという仮定のもと、ガウシアンフィルタなどにより中間階調値を生成することができる(例えば、特許文献1参照)。 Further, there is known a gradation super-resolution device that performs gradation super-resolution processing on an image in the gradation direction to generate an image having a larger number of gradations than the original image. For example, under the assumption that adjacent pixel values are continuous, an intermediate gradation value can be generated by a Gaussian filter or the like (see, for example, Patent Document 1).

特開2014-003370号公報Japanese Unexamined Patent Publication No. 2014-003370

奥富、田中、竹島、松本、「画像超解像処理技術の最新動向」、No.93(8)、p.693-698、Aug. 2010Okutomi, Tanaka, Takeshima, Matsumoto, "Latest Trends in Image Super-Resolution Processing Technology", No.93 (8), p.693-698, Aug. 2010

従来の学習型の空間超解像においては、高画質な空間超解像画像を得るためには、膨大なデータベースが必要となる。また、従来の再構成型の空間超解像においては、線形、非線形フィルタ処理では、必ずしも高画質な超解像画像が得られず、複数フレーム間のレジストレーションでは、位置合わせ精度が高い場合は高画質な超解像画像が得られるが、一般にオクルージョンやノイズなどの影響により高い位置合わせ精度を得ることは困難である。 In the conventional learning type spatial super-resolution, a huge database is required to obtain a high-quality spatial super-resolution image. Further, in the conventional reconstruction type spatial super-resolution, linear and non-linear filter processing does not always obtain a high-quality super-resolution image, and resisting between multiple frames has high alignment accuracy. Although high-quality super-resolution images can be obtained, it is generally difficult to obtain high alignment accuracy due to the influence of occlusion and noise.

また、従来の階調超解像技術においては、エッジやテクスチャがぼやけるほか、ノイズなどに弱いという問題があった。 Further, in the conventional gradation super-resolution technique, there is a problem that edges and textures are blurred and that they are vulnerable to noise and the like.

かかる事情に鑑みてなされた本発明の目的は、高画質な空間・階調超解像画像を生成することが可能な空間・階調超解像装置及びプログラムを提供することにある。 An object of the present invention made in view of such circumstances is to provide a space / gradation super-resolution device and a program capable of generating a high-quality space / gradation super-resolution image.

上記課題を解決するため、本発明に係る空間階調超解像装置は、原画像を空間方向及び階調方向に超解像処理して空間・階調超解像画像を生成する空間・階調超解像装置であって、前記原画像の各画素の階調値を、前記空間・階調超解像画像の階調数に応じて整数倍して階調超解像画像を生成する階調超解像画像生成部と、前記階調超解像画像に対して周波数分解処理を行って周波数分解画像を生成する周波数分解部と、前記階調超解像画像と、前記周波数分解画像の低周波成分画像との間で類似するブロックの位置関係を示す位置合わせ情報を生成する位置合わせ部と、前記位置合わせ情報に従って、前記空間・階調超解像画像の高周波成分として、前記周波数分解画像の高周波成分画像を割り付けて超解像高周波成分画像を生成する超解像高周波成分割付部と、前記階調超解像画像を低周波成分とし、前記割り付けがなされた前記超解像高周波成分画像を高周波成分として周波数再構成処理して前記空間・階調超解像画像を生成する周波数再構成部と、を備えることを特徴とする。
さらに、本発明に係る空間階調超解像装置において、前記超解像高周波成分割付部は、前記階調超解像画像と同じサイズで初期値が0である、超解像水平成分画像、超解像垂直成分画像、及び超解像対角成分画像からなる超解像高周波成分画像を生成し、前記位置合わせ情報に従って、前記超解像高周波成分画像に、前記周波数分解画像の高周波成分画像を割り付けることを特徴とする。
In order to solve the above problems, the spatial gradation super-resolution device according to the present invention super-resolutions the original image in the spatial direction and the gradation direction to generate a spatial / gradation super-resolution image. It is a toning super-resolution device, and a gradation super-resolution image is generated by multiplying the gradation value of each pixel of the original image by an integral number according to the number of gradations of the space / gradation super-resolution image. A gradation super-resolution image generation unit, a frequency decomposition unit that performs frequency decomposition processing on the gradation super-resolution image to generate a frequency-resolved image, the gradation super-resolution image, and the frequency-resolved image. An alignment unit that generates alignment information indicating the positional relationship of similar blocks with the low-frequency component image of the above, and the frequency as the high-frequency component of the spatial / gradation super-resolution image according to the alignment information. The super-resolution high-resolution segmentation section that allocates the high-resolution component image of the decomposed image to generate the super-resolution high-frequency component image, and the super-resolution high-frequency component to which the gradation super-resolution image is used as the low-frequency component and the allocation is made. It is characterized by including a frequency reconstruction unit that generates the space / gradation super-resolution image by frequency reconstruction processing using the component image as a high frequency component.
Further, in the spatial gradation super-resolution apparatus according to the present invention, the super-resolution high-frequency super-resolution image having the same size as the gradation super-resolution image and having an initial value of 0, the super-resolution horizontal component image. A super-resolution high-frequency component image consisting of a super-resolution vertical component image and a super-resolution diagonal component image is generated, and according to the alignment information, the super-resolution high-frequency component image is combined with the high-resolution component image of the frequency-resolved image. It is characterized by allocating.

さらに、本発明に係る空間階調超解像装置において、前記位置合わせ部は、前記階調超解像画像と、前記周波数分解画像の低周波成分画像との間で類似するブロックの位置関係を小数画素精度で求め、前記超解像高周波成分割付部は、点広がり関数を用いた補間を行い、該点広がり関数の半値幅を前記低周波成分画像の階層ごとに設定すること特徴とする。 Further, in the spatial gradation super-resolution device according to the present invention, the alignment unit establishes a similar block positional relationship between the gradation super-resolution image and the low-frequency component image of the frequency-resolved image. The super-resolution high-frequency segmentation unit is characterized by performing interpolation using a point spread function and setting the half-value width of the point spread function for each layer of the low-frequency component image.

さらに、本発明に係る空間階調超解像装置において、前記周波数分解部は、線形位相性を有し、タップ長が閾値以上のウェーブレットを用いたウェーブレット分解処理を行い、前記周波数再構成部は、前記ウェーブレットを用いたウェーブレット再構成を行うことを特徴とする。 Further, in the spatial gradation super-resolution device according to the present invention, the frequency decomposition unit has a linear phase property, and a wavelet decomposition process using a wavelet having a tap length of a threshold value or more is performed, and the frequency reconstruction unit is , The wavelet is reconstructed using the wavelet.

また、上記課題を解決するため、本発明に係るプログラムは、コンピュータを、上記空間階調超解像装置として機能させることを特徴とする。 Further, in order to solve the above-mentioned problems, the program according to the present invention is characterized in that the computer functions as the above-mentioned spatial gradation super-resolution device.

本発明によれば、高画質な空間・階調超解像画像を生成することができる。 According to the present invention, it is possible to generate a high-quality spatial / gradation super-resolution image.

本発明の一実施形態に係る空間階調超解像装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the spatial gradation super-resolution apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る空間階調超解像装置における階調超解像画像の階調値の一例を示す図である。It is a figure which shows an example of the gradation value of the gradation super-resolution image in the spatial gradation super-resolution apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る空間階調超解像装置における位置合わせ部の処理の概要を示す図である。It is a figure which shows the outline of the processing of the alignment part in the spatial gradation super-resolution apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る空間階調超解像装置における超解像高周波成分割付部の処理の概要を示す図である。It is a figure which shows the outline of the processing of the super-resolution high-frequency generation division attachment part in the spatial gradation super-resolution apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る空間階調超解像装置における周波数再構成部の処理の概要を示す図である。It is a figure which shows the outline of the processing of the frequency reconstruction part in the spatial gradation super-resolution apparatus which concerns on one Embodiment of this invention.

以下、本発明の一実施形態について、図面を参照して詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1に、本発明の一実施形態に係る空間・階調超解像装置の構成例を示す。図1に示す空間・階調超解像装置1は、階調超解像画像生成部11と、周波数分解部12と、位置合わせ部13と、超解像高周波成分割付部14と、周波数再構成部15とを備える。 FIG. 1 shows a configuration example of a spatial / gradation super-resolution device according to an embodiment of the present invention. The space / gradation super-resolution device 1 shown in FIG. 1 includes a gradation super-resolution image generation unit 11, a frequency decomposition unit 12, an alignment unit 13, a super-resolution high-frequency super-resolution unit 14, and frequency regeneration. A component 15 is provided.

空間・階調超解像装置1は、原画像を入力して空間・階調超解像処理し、空間・階調超解像画像を生成する。本明細書において、「空間・階調超解像処理」とは、原画像を空間方向及び階調方向に超解像処理することをといい、「空間・階調超解像画像」とは、空間・階調超解像処理された画像のことをという。 The space / gradation super-resolution device 1 inputs an original image and performs space / gradation super-resolution processing to generate a space / gradation super-resolution image. In the present specification, "spatial / gradation super-resolution processing" means super-resolution processing of the original image in the spatial direction and the gradation direction, and "spatial / gradation super-resolution image" is used. , Spatial / gradation super-resolution processed image.

階調超解像画像生成部11は、原画像を入力して、原画像の各画素の階調値を空間・階調超解像画像の階調数に応じてL倍して階調超解像画像を生成し、周波数分解部12、位置合わせ部13、及び周波数再構成部15に出力する。原画像の階調数をa、空間・階調超解像画像の階調数をbとすると、L=2(b-a)である。例えば、8ビット階調を12ビット階調に超解像する場合には、階調値を16倍する。 The gradation super-resolution image generation unit 11 inputs the original image, multiplies the gradation value of each pixel of the original image by L according to the number of gradations of the space / gradation super-resolution image, and super-gradations. A resolution image is generated and output to the frequency decomposition unit 12, the alignment unit 13, and the frequency reconstruction unit 15. Assuming that the number of gradations of the original image is a and the number of gradations of the space / gradation super-resolution image is b, L = 2 (ba) . For example, in the case of super-resolution of 8-bit gradation to 12-bit gradation, the gradation value is multiplied by 16.

図2は、階調超解像画像の階調値の一例を示す図である。図2の左側は原画像の階調値を示し、右側は階調超解像画像の階調値を示している。階調超解像画像は原画像に対して階調値が整数倍されているため、階調値は飛び飛びの値となる。 FIG. 2 is a diagram showing an example of gradation values of a gradation super-resolution image. The left side of FIG. 2 shows the gradation value of the original image, and the right side shows the gradation value of the gradation super-resolution image. Since the gradation value of the gradation super-resolution image is multiplied by an integer with respect to the original image, the gradation value becomes a discrete value.

周波数分解部12は、階調超解像画像生成部11により生成された階調超解像画像に対して複数階層の周波数分解(多重解像度分解)処理を行って周波数分解画像を生成する。周波数分解画像は、階調超解像画像の低周波成分画像LLと、階調超解像画像の高周波成分画像である水平高周波成分画像LH、垂直高周波成分画像HL、及び対角高周波成分画像HHとからなる。添え字のnは分解階数を意味し、例えば、原画像を3階周波数分解した場合には、n=1,2,3の周波数分解画像が生成される。周波数分解部12は、低周波成分画像LLを位置合わせ部13に出力し、高周波成分画像LH,HL,HHを超解像高周波成分割付部14に出力する。 The frequency decomposition unit 12 generates a frequency decomposition image by performing frequency decomposition (multi-resolution decomposition) processing of a plurality of layers on the gradation super-resolution image generated by the gradation super-resolution image generation unit 11. The frequency-resolved images include a low-frequency component image LL n of a gradation super-resolution image, a horizontal high-frequency component image LH n which is a high-frequency component image of a gradation super-resolution image, a vertical high-frequency component image HL n , and a diagonal high frequency. It consists of a component image HH n . The subscript n means the decomposition order. For example, when the original image is frequency-resolved to the third order, a frequency-resolved image of n = 1, 2, and 3 is generated. The frequency decomposition unit 12 outputs the low frequency component image LL n to the alignment unit 13, and outputs the high frequency component images LH n , HL n , and HH n to the super-resolution high frequency division attachment unit 14.

周波数分解部12は、階調超解像画像の階調値が不連続なことを考慮して、線形位相性を有し、タップ長が閾値以上のウェーブレット(例えば、CDF9/7)を用いたウェーブレット分解処理を行うのが好適である。 The frequency decomposition unit 12 uses a wavelet (for example, CDF9 / 7) having a linear phase property and having a tap length equal to or larger than the threshold value in consideration of the discontinuity of the gradation value of the gradation super-resolution image. It is preferable to perform wavelet decomposition treatment.

位置合わせ部13は、階調超解像画像生成部11により生成された階調超解像画像と、周波数分解部12により生成された周波数分解画像のうちの低周波成分画像LLとの間で類似するブロックの位置関係を示す位置合わせ情報(レジストレーション情報)を生成し、超解像高周波成分割付部14に出力する。 The alignment unit 13 is between the gradation super-resolution image generated by the gradation super-resolution image generation unit 11 and the low-frequency component image LL n of the frequency-resolved images generated by the frequency decomposition unit 12. Alignment information (registration information) indicating the positional relationship of similar blocks is generated in, and is output to the super-resolution high-frequency segmentation section 14.

図3は、位置合わせ部13における位置合わせ処理の概要を示す図である。位置合わせ部13は、例えば階調超解像画像を基準フレームとし、低周波成分画像LL(図3ではn=1)を参照フレームとして、両フレーム間でブロックマッチングを行い、探索範囲内で類似度(相関性)の最も高いブロックの位置関係を示す位置合わせ情報を生成する。ブロックマッチングは、絶対値誤差和(SAD;Sum of Absolute Difference)、二乗誤差和(SSD;Sum of Squared Difference)などの評価関数を用いて、既知の手法により行われる。また、ブロックマッチングは、例えば式(1)に示すパラボラフィッティング関数を用いた補間処理により、小数画素精度で行う。なお、SAD又はSSDの評価関数値が閾値を超えた場合は、位置合わせ情報として採用しないようにしてもよい。 FIG. 3 is a diagram showing an outline of the alignment process in the alignment unit 13. The alignment unit 13 performs block matching between both frames using, for example, a gradation super-resolution image as a reference frame and a low-frequency component image LL n (n = 1 in FIG. 3) as a reference frame, and within the search range. Generates alignment information indicating the positional relationship of blocks with the highest degree of similarity (correlation). Block matching is performed by a known method using an evaluation function such as an absolute sum of errors (SAD) and a sum of squared errors (SSD). Further, the block matching is performed with a decimal pixel accuracy by, for example, interpolation processing using the parabolic fitting function shown in the equation (1). If the evaluation function value of SAD or SSD exceeds the threshold value, it may not be adopted as the alignment information.

Figure 0007002213000001
Figure 0007002213000001

ここで、探索位置における画素位置をxとしたとき、SSD(x)は、画素位置におけるSSD値を表し、より具体的には、SSD(0)は中心位置(SSD値を最小とする位置)におけるSSD値、SSD(-1)は中心位置から-x方向又は-y方向の隣接画素の位置におけるSSD値、SSD(1)は中心位置から+x方向又は+y方向の隣接画素の位置におけるSSD値を表す。式(1)から、水平又は垂直方向の小数画素精度の画素位置(小数画素位置)をそれぞれ算出することができる。 Here, when the pixel position at the search position is x, the SSD (x) represents the SSD value at the pixel position, and more specifically, the SSD (0) is the center position (the position where the SSD value is minimized). SSD (-1) is the SSD value at the position of the adjacent pixel in the −x direction or −y direction from the center position, and SSD (1) is the SSD value at the position of the adjacent pixel in the + x direction or + y direction from the center position. Represents. From the equation (1), the pixel positions (decimal pixel positions) with the decimal pixel accuracy in the horizontal or vertical direction can be calculated respectively.

超解像高周波成分割付部14は、原画像のナイキスト周波数を超える、空間・階調超解像画像の高周波成分画像(超解像高周波成分画像)を推定するために、まず初期値を設定する。超解像高周波成分画像は、空間・階調超解像画像の水平高周波成分である超解像水平成分画像と、空間・階調超解像画像の垂直高周波成分である超解像垂直成分画像と、空間・階調超解像画像の対角高周波成分である超解像対角成分画像からなる。例えば、超解像水平成分画像、超解像垂直成分画像、超解像対角成分画像をそれぞれ階調超解像画像と同じサイズ(すなわち、原画像と同じサイズ)とし、初期値として全画素の値を0とする。 The super-resolution high-frequency segmentation section 14 first sets initial values in order to estimate a high-frequency component image (super-resolution high-frequency component image) of a spatial / gradation super-resolution image that exceeds the Nyquist frequency of the original image. .. The super-resolution high-resolution component image is a super-resolution horizontal component image which is a horizontal high-frequency component of a space / gradation super-resolution image and a super-resolution vertical component image which is a vertical high-frequency component of a space / gradation super-resolution image. It consists of a super-resolution diagonal component image, which is a diagonal high-frequency component of the space / gradation super-resolution image. For example, the super-resolution horizontal component image, super-resolution vertical component image, and super-resolution diagonal component image are each set to the same size as the gradation super-resolution image (that is, the same size as the original image), and all pixels are set as initial values. The value of is 0.

次に、超解像高周波成分割付部14は、位置合わせ部13により生成された位置合わせ情報に従って、超解像高周波成分画像の高周波成分として、周波数分解部12により生成された高周波成分画像LH,HL,HHを割り付けて超解像高周波成分画像を生成し、周波数再構成部15に出力する。 Next, the super-resolution high-frequency segmentation section 14 uses the high-frequency component image LH n generated by the frequency-resolving section 12 as the high-frequency component of the super-resolution high-frequency component image according to the alignment information generated by the alignment section 13. , HL n , HH n are assigned to generate a super-resolution high-frequency component image, and output to the frequency reconstruction unit 15.

図4は、超解像高周波成分割付部14の処理の概要を示す図である。超解像高周波成分割付部14は、位置合わせ情報に従って、高周波成分画像LH,HL,HHを、超解像水平成分画像、超解像垂直成分画像、及び超解像対角成分画像に割り付ける。ここで、高周波成分画像LH,HL,HHを割り付ける際には、低周波成分画像LL内の同じ位相位置の位置合わせ情報に従うこととする。これは、階調超解像画像内のブロックPが低周波成分画像LL内のブロックQに類似していれば、未知の超解像水平成分画像、超解像垂直成分画像、超解像対角成分画像内における、ブロックPと同じ位相位置のブロックは、高周波成分LH,HL,HH内における、ブロックQと同じ位相位置のブロックとそれぞれ類似する可能性が高いためである。 FIG. 4 is a diagram showing an outline of the processing of the super-resolution high-frequency segmentation section 14. The super-resolution high-frequency segmentation section 14 converts the high-frequency component images LH n , HL n , and HH n into super-resolution horizontal component images, super-resolution vertical component images, and super-resolution diagonal component images according to the alignment information. Allocate to. Here, when allocating the high frequency component images LH n , HL n , and HH n , it is assumed that the alignment information of the same phase position in the low frequency component image LL n is followed. This means that if the block P in the gradation super-resolution image is similar to the block Q in the low-frequency component image LL n , the unknown super-resolution horizontal component image, super-resolution vertical component image, and super-resolution This is because the block having the same phase position as the block P in the diagonal component image is likely to be similar to the block having the same phase position as the block Q in the high frequency components LH n , HL n , and HH n .

また、位置合わせ部13において、類似するブロックの位置関係を小数画素精度で求めた場合には、超解像高周波成分割付部14は、小数画素位置を通常の画素位置に合わせるために、割り付け後の超解像水平成分画像、超解像垂直成分画像、及び超解像対角成分画像に対して、光学系の解像度劣化過程を模擬した点広がり関数(Point spread function;PSF)を用いた補間を行う。式(2)に、点広がり関数を示す。ここで、wはガウス関数の半値幅(分散値)である。そして、点広がり関数の分散をn階ごとに制御する。具体的には、階数nが大きいほど、解像度劣化(ぼやけ)が大きいとして、半値幅wを大きな値に設定する。例えばn=1の時にw=1とし、n=2ではw=2とし、n=3ではw=3とする。 Further, when the positional relationship of similar blocks is obtained with the fractional pixel accuracy in the alignment unit 13, the super-resolution high-frequency division with division 14 after allocation in order to align the fractional pixel position with the normal pixel position. Super-resolution horizontal component image, super-resolution vertical component image, and super-resolution diagonal component image are interpolated using a point spread function (PSF) that simulates the resolution deterioration process of the optical system. I do. Equation (2) shows the point spread function. Here, w is the half width (variance value) of the Gaussian function. Then, the variance of the point spread function is controlled for each nth order. Specifically, it is assumed that the larger the rank n, the larger the resolution deterioration (blurring), and the half width w is set to a large value. For example, w = 1 when n = 1, w = 2 when n = 2, and w = 3 when n = 3.

Figure 0007002213000002
Figure 0007002213000002

超解像高周波成分割付部14は、水平、垂直、対角超解像成分として候補が複数存在する場合には、それらの値を平均するか、最大事後確率(Maximum a posteriori;MAP)再構成を行い、未知の値を推定する。MAP再構成の詳細については、例えば、E. Levitan and G. Herman: “A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography”, IEEE Transactions on Medical Imaging, vol. 6, no. 3, pp. 185-192, Sep. 1987.を参照されたい。また、その他の方法として、ML法や、割り付けられた画素の距離に応じた重み付けにより、超解像高周波成分画像を推定してもよい。 When there are multiple candidates for horizontal, vertical, and diagonal super-resolution components, the super-resolution high-frequency segmentation section 14 averages those values or reconstructs the maximum a posteriori (MAP). To estimate an unknown value. For more information on MAP reconstruction, see, for example, E. Levitan and G. Herman: “A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography”, IEEE Transactions on Medical Imaging, vol. 6, no. 3, pp. . 185-192, Sep. 1987. Further, as another method, the super-resolution high-frequency component image may be estimated by the ML method or the weighting according to the distance of the allocated pixels.

周波数再構成部15は、階調超解像画像生成部11により生成された階調超解像画像を低周波成分とし、超解像高周波成分割付部14により割り付けられた超解像高周波成分画像を高周波成分として、周波数再構成処理して空間・階調超解像画像を生成し、外部に出力する。なお、周波数分解部11が周波数分解処理としてウェーブレット分解処理を行った場合には、周波数再構成部15は、同じウェーブレットを用いてウェーブレット再構成処理を行う。 The frequency reconstruction unit 15 uses the gradation super-resolution image generated by the gradation super-resolution image generation unit 11 as a low-frequency component, and the super-resolution high-frequency component image allocated by the super-resolution high-frequency generation division attachment unit 14. Is used as a high-frequency component, and frequency reconstruction processing is performed to generate a spatial / gradation super-resolution image and output to the outside. When the frequency decomposition unit 11 performs the wavelet decomposition processing as the frequency decomposition processing, the frequency reconstruction unit 15 performs the wavelet reconstruction processing using the same wavelet.

図5は、周波数再構成部15の処理の概要を示す図である。図5の例では、1階ウェーブレット再構成処理を行うことで、原画像に対して水平方向の画素数が2倍、垂直方向の画素数が2倍の空間・階調超解像画像を生成される様子を示している。 FIG. 5 is a diagram showing an outline of processing of the frequency reconstruction unit 15. In the example of FIG. 5, by performing the first-order wavelet reconstruction processing, a spatial / gradation super-resolution image in which the number of pixels in the horizontal direction is doubled and the number of pixels in the vertical direction is doubled with respect to the original image is generated. It shows how it is done.

なお、上述した空間・階調超解像装置1として機能させるためにコンピュータを好適に用いることができ、そのようなコンピュータは、空間・階調超解像装置1の各機能を実現する処理内容を記述したプログラムを該コンピュータの記憶部に格納しておき、該コンピュータのCPUによってこのプログラムを読み出して実行させることで実現することができる。なお、このプログラムは、コンピュータ読取り可能な記録媒体に記録可能である。 A computer can be suitably used to function as the above-mentioned space / gradation super-resolution device 1, and such a computer has processing contents for realizing each function of the space / gradation super-resolution device 1. It can be realized by storing the program describing the above in the storage unit of the computer and reading and executing this program by the CPU of the computer. This program can be recorded on a computer-readable recording medium.

また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROMなどの記録媒体であってもよい。 The program may also be recorded on a computer-readable medium. It can be installed on a computer using a computer-readable medium. Here, the computer-readable medium on which the program is recorded may be a non-transient recording medium. The non-transient recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or a DVD-ROM.

上述したように、本発明は、まず原画像の各画素の階調値を、空間・階調超解像画像の階調数に応じて整数倍して階調超解像画像を生成し、階調超解像画像に対して周波数分解処理を行って周波数分解画像を生成する。次に、階調超解像画像と、周波数分解画像の低周波成分画像との間で類似するブロックの位置関係を示す位置合わせ情報を生成し、位置合わせ情報を用いて、空間・階調超解像画像の高周波成分として、周波数分解画像の高周波成分画像を割り付けて超解像高周波成分画像を生成する。最後に、階調超解像画像を低周波成分とし、超解像高周波成分画像を高周波成分として周波数再構成処理して空間・階調超解像画像を生成する。これにより、原画像の空間解像度及び階調数を超解像処理した、高精度かつ高確度な空間・階調超解像画像を生成することができる。 As described above, the present invention first generates a gradation super-resolution image by multiplying the gradation value of each pixel of the original image by an integral number according to the number of gradations of the space / gradation super-resolution image. A frequency-resolved image is generated by performing frequency-resolved processing on the gradation super-resolution image. Next, alignment information indicating the positional relationship of similar blocks between the gradation super-resolution image and the low-frequency component image of the frequency-resolved image is generated, and the spatial / gradation super is used using the alignment information. A super-resolution high-frequency component image is generated by allocating a high-frequency component image of a frequency-resolved image as a high-frequency component of the resolution image. Finally, the gradation super-resolution image is used as a low-frequency component, and the super-resolution high-frequency component image is used as a high-frequency component, and frequency reconstruction processing is performed to generate a spatial / gradation super-resolution image. This makes it possible to generate a highly accurate and highly accurate spatial / gradation super-resolution image in which the spatial resolution and the number of gradations of the original image are super-resolution processed.

また、位置合わせを小数画素精度で求め、小数画素精度の位置合わせ結果を画素位置に合わせるために、水平、垂直、対角高周波成分に光学系の解像度劣化過程を模擬した点広がり関数を適用し、この点広がり関数を低周波成分画像の階層ごとに設定するようにしてもよい。特に、階調数の超解像における従来法では、隣接画素値は連続しやすいという根拠のもと、ガウシアンフィルタ等を用いて階調数を補間していた。これに対して本発明では、同一フレーム内の相似オブジェクトの小数画素精度位置合わせ及び周波数分解階数に応じた点広がり関数を用いた割り付けを行うため、従来よりも高精度かつ高確度に空間解像度及び階調数を同時に補間することができる。 In addition, in order to obtain the alignment with the fractional pixel accuracy and align the alignment result with the fractional pixel accuracy to the pixel position, a point spread function simulating the resolution deterioration process of the optical system is applied to the horizontal, vertical, and diagonal high frequency components. , This point spread function may be set for each layer of the low frequency component image. In particular, in the conventional method for super-resolution of the number of gradations, the number of gradations is interpolated using a Gaussian filter or the like on the basis that adjacent pixel values are easily continuous. On the other hand, in the present invention, since the decimal pixel accuracy alignment of similar objects in the same frame and the allocation using the point spread function according to the frequency decomposition order are performed, the spatial resolution and the spatial resolution and the accuracy are higher than before. The number of gradations can be interpolated at the same time.

上述の実施形態は代表的な例として説明したが、本発明の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。例えば、実施形態の構成図に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。 Although the above embodiments have been described as typical examples, it will be apparent to those skilled in the art that many modifications and substitutions can be made within the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited by the above-described embodiments, and various modifications and modifications can be made without departing from the scope of claims. For example, it is possible to combine a plurality of the constituent blocks described in the configuration diagram of the embodiment into one, or to divide one constituent block into one.

1 空間・階調超解像装置
11 階調超解像画像生成部
12 周波数分解部
13 位置合わせ部
14 超解像高周波成分割付部
15 周波数再構成部
1 Spatial / gradation super-resolution device 11 Gradation super-resolution image generation unit 12 Frequency decomposition unit 13 Alignment unit 14 Super-resolution high-frequency super-resolution attachment unit 15 Frequency reconstruction unit

Claims (5)

原画像を空間方向及び階調方向に超解像処理して空間・階調超解像画像を生成する空間・階調超解像装置であって、
前記原画像の各画素の階調値を、前記空間・階調超解像画像の階調数に応じて整数倍して階調超解像画像を生成する階調超解像画像生成部と、
前記階調超解像画像に対して周波数分解処理を行って周波数分解画像を生成する周波数分解部と、
前記階調超解像画像と、前記周波数分解画像の低周波成分画像との間で類似するブロックの位置関係を示す位置合わせ情報を生成する位置合わせ部と、
前記位置合わせ情報に従って、前記空間・階調超解像画像の高周波成分として、前記周波数分解画像の高周波成分画像を割り付けて超解像高周波成分画像を生成する超解像高周波成分割付部と、
前記階調超解像画像を低周波成分とし、前記割り付けがなされた前記超解像高周波成分画像を高周波成分として周波数再構成処理して前記空間・階調超解像画像を生成する周波数再構成部と、
を備えることを特徴とする空間・階調超解像装置。
It is a spatial / gradation super-resolution device that generates a spatial / gradation super-resolution image by super-resolution processing the original image in the spatial direction and the gradation direction.
A gradation super-resolution image generation unit that generates a gradation super-resolution image by multiplying the gradation value of each pixel of the original image by an integer according to the number of gradations of the space / gradation super-resolution image. ,
A frequency decomposition unit that performs frequency decomposition processing on the gradation super-resolution image to generate a frequency decomposition image,
An alignment unit that generates alignment information indicating the positional relationship of similar blocks between the gradation super-resolution image and the low-frequency component image of the frequency-resolved image.
According to the alignment information, the super-resolution high-frequency component image is assigned as the high-frequency component of the spatial / gradation super-resolution image, and the super-resolution high-frequency component image is generated.
The gradation super-resolution image is used as a low-frequency component, and the assigned super-resolution high-frequency component image is used as a high-frequency component for frequency reconstruction processing to generate the spatial / gradation super-resolution image. Department and
A spatial / gradation super-resolution device characterized by being equipped with.
前記超解像高周波成分割付部は、前記階調超解像画像と同じサイズで初期値が0である、超解像水平成分画像、超解像垂直成分画像、及び超解像対角成分画像からなる超解像高周波成分画像を生成し、前記位置合わせ情報に従って、前記超解像高周波成分画像に、前記周波数分解画像の高周波成分画像を割り付けることを特徴とする、請求項1に記載の空間・階調超解像装置。 The super-resolution high-frequency segmentation section has a super-resolution horizontal component image, a super-resolution vertical component image, and a super-resolution diagonal component image having the same size as the gradation super-resolution image and an initial value of 0. The space according to claim 1, wherein a super-resolution high-frequency component image comprising the above is generated, and a high-frequency component image of the frequency-resolved image is assigned to the super-resolution high-frequency component image according to the alignment information. -Gradation super-resolution device. 前記位置合わせ部は、前記階調超解像画像と、前記周波数分解画像の低周波成分画像との間で類似するブロックの位置関係を小数画素精度で求め、
前記超解像高周波成分割付部は、点広がり関数を用いた補間を行い、該点広がり関数の半値幅を前記低周波成分画像の階層ごとに設定すること特徴とする、請求項1又は2に記載の空間・階調超解像装置。
The alignment unit obtains the positional relationship of similar blocks between the gradation super-resolution image and the low-frequency component image of the frequency-resolved image with decimal pixel accuracy.
2 . The described space / gradation super-resolution device.
前記周波数分解部は、線形位相性を有し、タップ長が閾値以上のウェーブレットを用いたウェーブレット分解処理を行い、
前記周波数再構成部は、前記ウェーブレットを用いたウェーブレット再構成を行うことを特徴とする、請求項1から3のいずれか一項に記載の空間・階調超解像装置。
The frequency decomposition unit has linear phase, and performs wavelet decomposition processing using a wavelet having a tap length equal to or larger than a threshold value.
The spatial / gradation super-resolution device according to any one of claims 1 to 3, wherein the frequency reconstruction unit performs wavelet reconstruction using the wavelet.
コンピュータを、請求項1からのいずれか一項に記載の空間・階調超解像装置として機能させるためのプログラム。 A program for causing a computer to function as the spatial / gradation super-resolution device according to any one of claims 1 to 4 .
JP2017091314A 2017-05-01 2017-05-01 Spatial / gradation super-resolution device and program Active JP7002213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017091314A JP7002213B2 (en) 2017-05-01 2017-05-01 Spatial / gradation super-resolution device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017091314A JP7002213B2 (en) 2017-05-01 2017-05-01 Spatial / gradation super-resolution device and program

Publications (2)

Publication Number Publication Date
JP2018190145A JP2018190145A (en) 2018-11-29
JP7002213B2 true JP7002213B2 (en) 2022-01-20

Family

ID=64479815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017091314A Active JP7002213B2 (en) 2017-05-01 2017-05-01 Spatial / gradation super-resolution device and program

Country Status (1)

Country Link
JP (1) JP7002213B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111383177B (en) * 2020-03-23 2024-04-16 中国科学院金属研究所 Laser ultrasonic visual image resolution improving method
CN112669209B (en) * 2020-12-24 2023-06-16 华中科技大学 Three-dimensional medical image super-resolution reconstruction method and system
US11984218B2 (en) 2021-06-09 2024-05-14 Canon Medical Systems Corporation Apparatus, method, and non-transitory computer-readable storage medium for enhancing computed tomography image resolution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257120A (en) 2011-06-09 2012-12-27 Nippon Hoso Kyokai <Nhk> Super resolution assistance information generating device, encoder, decoder and program of them
JP2015132930A (en) 2014-01-10 2015-07-23 日本放送協会 Space super-resolution and gradation interpolation device and program
JP2015203952A (en) 2014-04-14 2015-11-16 日本放送協会 super-resolution device and program
JP2016134075A (en) 2015-01-21 2016-07-25 日本放送協会 Super-resolution device and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257120A (en) 2011-06-09 2012-12-27 Nippon Hoso Kyokai <Nhk> Super resolution assistance information generating device, encoder, decoder and program of them
JP2015132930A (en) 2014-01-10 2015-07-23 日本放送協会 Space super-resolution and gradation interpolation device and program
JP2015203952A (en) 2014-04-14 2015-11-16 日本放送協会 super-resolution device and program
JP2016134075A (en) 2015-01-21 2016-07-25 日本放送協会 Super-resolution device and program

Also Published As

Publication number Publication date
JP2018190145A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
CN105469363B (en) Method and apparatus based on blurred picture generation clear image
US9965832B2 (en) Method for performing super-resolution on single images and apparatus for performing super-resolution on single images
JP6387646B2 (en) Grayscale image processing method and apparatus
JP7002213B2 (en) Spatial / gradation super-resolution device and program
US8571355B2 (en) Method and apparatus for reconstructing a high-resolution image by using multi-layer low-resolution images
WO2010002630A2 (en) Computing higher resolution images from multiple lower resolution images
JP6462372B2 (en) Super-resolution device and program
JP2015203952A (en) super-resolution device and program
JP2021184594A (en) Video frame interpolation device and method
US9721329B2 (en) Image de-noising method
US20220027741A1 (en) Unsupervised learning method for general inverse problem and apparatus therefor
JP6276596B2 (en) Spatial super-resolution / tone interpolation device and program
Alvarez-Ramos et al. Image super-resolution via two coupled dictionaries and sparse representation
KR101341617B1 (en) Apparatus and method for super-resolution based on error model of single image
JP6951163B2 (en) Gradation super-resolution device and program
JP6955386B2 (en) Super-resolution device and program
KR20110017336A (en) Method and apparatus for reconstructing high-resolution image by using multi-layer low-resolution image
JP6817784B2 (en) Super-resolution device and program
JP6920942B2 (en) Gradation complement device and program
JP6378531B2 (en) Super-resolution device and program
CN112581362A (en) Image processing method and device for adjusting image details
Rohith et al. A novel approach to super resolution image reconstruction algorithm from low resolution panchromatic images
JP6864557B2 (en) Encoding device, decoding device, and program
KR101106613B1 (en) Apparatus and method for converting resolution of image using edge profile
JP5309097B2 (en) Motion estimation apparatus and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R150 Certificate of patent or registration of utility model

Ref document number: 7002213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150